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Abstract

On the Meritocratic Allocation of Higher Education

by

Zachary I. Bleemer

Doctor of Philosophy in Economics

University of California, Berkeley

Professor David Card, Chair

Access to higher education is a key determinant of lifetime earnings in the U.S. Since the 1960s,
selective public universities have admitted students mostly on the basis of standardized test scores
and other measures of academic preparation. In this dissertation, I employ quasi-experimental
and structural research designs to investigate the efficiency and economic mobility ramifications
of these ‘meritocratic’ admissions policies. I focus on the selective University of California (UC)
system, with each chapter analyzing a newly-constructed longitudinal dataset that links all 1994-
2018 UC applicants and most 1975-2018 UC enrollees to their national college enrollment, major
choice, and degree attainment (whether at UC or elsewhere); their UC student transcripts (for UC
enrollees); and their 2000-2019 California wages.

Chapter 2 studies race-based affirmative action, which broadened lower-‘merit’
underrepresented minority (URM) college applicants’ access to UC campuses until the policy was
banned by a ballot proposition in 1998. I employ a difference-in-difference research design to
show that ending affirmative action caused underrepresented minority (URM) freshman
applicants to cascade into lower-quality colleges. The well-known “Mismatch Hypothesis”
implies that this cascade would provide net educational benefits to URM applicants, but URM
applicants’ degree attainment declined overall and in STEM fields, especially among less
academically qualified applicants, and URM UC applicant’s average wages fell in turn. These
declines are not explained by URM students’ performance or persistence in STEM course
sequences, which were unchanged after Prop 209. Complementary regression discontinuity and
institutional value-added analyses suggest that affirmative action’s net wage benefits for URM
applicants exceed its (potentially small) net costs for on-the-margin white and Asian applicants.
These findings provide the first causal evidence that banning affirmative action exacerbates
socioeconomic inequities and suggest that loosening meritocratic admissions policies may
generate efficiency and economic mobility gains.

Chapter 3 further analyzes the efficacy of test-based meritocracy in college admissions by
evaluating the impact of a grade-based “top percent” policy implemented by UC between 2001
and 2011. Eligibility in the Local Context (ELC) provided large admission advantages to the top
four percent of graduates from each California high school. I first employ a regression
discontinuity design to show that ELC led over 10 percent of barely-eligible applicants from
low-opportunity high schools to enroll at selective UC campuses instead of less-selective public
colleges and universities. Half of those participants were URM, and their average SAT scores
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were at the 12th percentile of their UC peers. Instrumental variable estimates show that ELC
participants’ more-selective university enrollment caused large increases in five-year degree
attainment and annual early-career wages. I then analyze ELC’s general equilibrium effects by
estimating a structural model of university application, admission, and enrollment with an
embedded top percent policy. I find that ELC and counterfactual expansions of ELC substantively
increase disadvantaged students’ net enrollment at selective public universities. Reduced-form
and structural estimates show that ELC participants derived similar or greater value from
more-selective university enrollment than their higher-testing peers, providing further evidence
that access-oriented admission policies at selective universities can promote economic mobility
without efficiency losses.

In Chapters 4 and 5, both coauthored with Aashish Mehta, I turn from meritocratic college
admissions policies to the meritocratic allocation of lucrative fields of study. We study a popular
class of policies – which we term ‘major restriction’ policies – that prohibit students with poor
introductory course grades from earning their preferred college major. Chapter 4 employs a
difference-in-difference event study design around the implementation of 28 major restrictions at
four UC campuses since the 1970s to show that the policies are binding and differentially impact
URM students and students with absolute (not comparative) academic disadvantage, closely
paralleling the function of meritocratic college admissions policies in decreasing educational
access for disadvantaged lower-‘merit’ students. A student-level extension of the event study
design shows that major restriction policies tend to lead female and URM students to relatively
lower-average-wage majors, generating cross-major stratification.

Chapter 5 focuses on one specific major restriction policy – which limited access to the UC
Santa Cruz economics major between 2008 and 2012 – and uses a regression discontinuity design
to show that lower-GPA students prohibited from declaring the economics major earned $22,000
(46%) lower annual early-career wages than they would have as economics majors. A
decomposition of this wage effect shows that the return to majoring in economics would likely
have been above-average for the near-threshold students rejected from the economics major, once
again suggesting the potential for efficiency and economic mobility gains in implementing a less
‘merit’-oriented allocation policy.

In sum, this dissertation presents a collage of evidence from three educational allocation
policies suggesting that the reallocation of selective higher education to disadvantaged students
with relatively poorer measured academic preparation can promote both economic mobility and
allocative efficiency, with those students’ net education and wage gains exceeding their
crowded-out peers’ net losses. These efficiency findings undermine the primary justification for
the 1960s implementation of meritocratic admissions policies at public institutions.
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Chapter 1

Introduction

“The more capable high school students should have the greater freedom of choice of
collegiate institution, and selection procedures should give preference to the more able . . .
[to] predict success in the state colleges.”

∼ Technical Committee for the California Master Plan for Higher Education, 1961

American universities have long facilitated the transition to adulthood for America’s most
promising youths. As a result, the allocation of higher education – that is, the decentralized
decision-making of colleges and universities that determines which institutions and
(subsequently) fields of study are available to each young person – is a key determinant of
lifetime earnings and economic mobility in the U.S. (Chetty et al., 2020a; Rothstein, 2019).

Consider American higher education as a marketplace where many highly-differentiated
institutions sell their educational ‘goods’ to student-consumers. This market exhibits three market
failures:

1. Students have imperfect information about the educational experiences offered by different
institutions, and the quality of their information is correlated with their socioeconomic status,
or SES (Bleemer and Zafar, 2018);

2. The societal value of students’ educational choices depends on those choices’ effects on
many other people, with externalities arising from how much education students attain,
match effects between institutions and students, and peer effects within institutions
(Moretti, 2004a,b); and

3. There is a direct public interest in redistributing the highest-demand institutions to low-SES
students.

This combination of market failures have contributed to American higher education’s unusual
market structure. Among private institutions, lower-demand institutions function in a manner
consistent with a marketplace in the presence of externalities: prices are differentiated but
competitive, and the government provides large price subsidies, especially to low-SES students.
Higher-demand institutions, on the other hand, set highly-differentiated below-market prices
(often spanning negative prices up to the millions of dollars, when quid pro quo donations are
included) and carefully select their students on the basis of individual characteristics ranging from
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academic preparation and athletic ability to lineage and ethnicity (Arcidiacono, Kinsler and
Ransom, 2019b).

America’s public universities – which today enroll three-quarters of U.S. college students –
were founded on the supposition that higher education was socially beneficial for anyone with
sufficient preparation, and public universities provided 100 years of broad educational access to
students from all backgrounds who satisfactorily completed the high school curriculum (Douglass,
2007). But when the mid-20th-century brought a surge of prospective undergraduates, many high-
quality public universities were forced to adopt selective admissions policies to regulate this new
demand. Since the 1960s, selective public universities have admitted students mostly on the basis
of measured academic preparation for college-level coursework, with more measurably-prepared
students generally being provided access to higher-demand (and higher-quality) institutions.

The term ‘meritocracy’ has been widely adopted to refer to these test- and grade-based
selection mechanisms, and in this dissertation I adopt the term with that meaning. As a result, I
use the term ‘merit’ (in quotation marks) as it is de facto employed by the admissions offices of
most American public universities: as a characteristic of students largely determined by their
standardized test scores, their high school grades and curriculum, and (to a lesser degree) other
academic and socioeconomic information that help admissions officers determine how
academically successful they believe a student would be at their university.1 Many selective
public universities also implement policies that aim to broaden access for lower-‘merit’ applicants
– like race-based affirmative action, top percent policies, and holistic review (which emulates
selective private universities’ admissions mechanisms) – but meritocracy has remained the
principal pillar of selective public university admissions for about 60 years.

Public universities’ primary justification for their meritocratic admissions policies is the
theory – enshrined in California’s influential Master Plan for Higher Education – that
highly-prepared students can best take advantage of rigorous universities’ academic curricula.
Public universities’ goal in admitting students with maximal academic preparation is to identify
students who perform well in introductory college courses and persist to graduation, presumably
because those students would thus maximally benefit from their college education, generating
public returns on their subsidized higher-education investment in the form of greater productivity,
innovation, and/or entrepreneurship.2 Meritocratic admissions may also generate positive
spillovers by incentivizing K-12 learning, as students compete for scarce higher education
opportunities by investing in their observable college preparation (Akhtari, Bau and Laliberte,
2020; Cotton, Hickman and Price, 2021).

The dominant criticism of public universities’ meritocratic admissions policies, on the other
hand, has been that they unfairly exclude low-SES students with poorer access to pre-college
educational opportunities (Soares, 2020). The criticism generally takes one of two flavors:

• That the statistics used to measure applicants’ academic preparation – particularly
standardized test scores – are systematically biased in favor of high-SES students, who
artificially raise their measured preparation through (e.g.) expensive test-prep courses and
tutoring (Lemann, 1999), high school grade inflation (Bleemer, 2020b), and sometimes
expensive malfeasance (Korn and Levitz, 2020).

1I directly estimate selective public universities preferences over applicants – and validate this notion of ‘merit’ as
implemented by universities – in Chapter 3 below.

2See Westrick et al. (2019) and University of California (2020).

2



• That measures of academic preparation fail to capture the latent academic potential of low-
SES students who had access to lower-quality secondary schools, fewer advanced placement
courses, and fewer outside educational resources that hindered their ability to reveal that
potential (Black, Cortes and Lincove, 2016; Tough, 2019).

In either formulation, this criticism is generally understood as a key trade-off prescribed by
meritocratic admissions: meritocracy may identify the most-prepared students (which may have
positive implications for long-run economic growth), but it exacerbates equity gaps between high-
and low-SES families (with negative implications for economic mobility) (Arrow, Bowles and
Durlauf, 2000).3

The chapters below illuminate both sides of this potential trade-off by carefully studying three
university policies that vary the degree to which elite higher education is allocated by meritocracy.
What happens when lower-‘merit’ students are provided with elite higher education, reallocating
students across America’s universities? Do they struggle academically, and does that lead to
long-run negative consequences like drop-out or unemployment? And if not – if it turns out that
elite higher education is valuable to them – then how does the educational value-added that they
receive from elite higher education compare to the value-added received by their high-‘merit’
peers? Finally, how does the prior socioeconomic status of the targeted lower-‘merit’ students
differ from that of the students who would have taken their places under strict meritocracy?

These questions get to the heart of the efficiency and economic mobility ramifications of
meritocratic admissions policies. In this context, a policy’s (allocative) efficiency refers to
whether it results in an economically optimal sorting of students across colleges and universities.
The chapters below measure economic outcomes in terms of degree attainment and wages: a
policy that changes the allocation of higher education – by causing one group of students to
switch from a less-selective university to an elite university, but then causing an equal number of
students to attend the less-selective university instead of the elite university – are
efficiency-improving if they increase average graduation rates and employment outcomes across
all students.4 If meritocracy successfully identifies the students who can best take advantage of
elite universities, then it should be (reasonably) efficient: replacing high-‘merit’ students with
lower-‘merit’ students at elite universities would lead to average declines in educational
outcomes, because the newly-enrolled students would have a relatively harder time benefiting
from the elite university’s rigorous curriculum. A policy improves economic mobility, on the
other hand, when it increases the net educational and labor market outcomes of students from
low-SES households relative to those of high-SES students.

Chapter 2 provides an first set of answers to the research questions posed above by studying
the efficiency and economic mobility ramifications of race-based affirmative action. Affirmative
action is one of most popular “access-oriented” admissions policies – selective university policies
that intentionally admit certain students with poorer measured academic preparation – in the
United States, but it is also highly controversial: ten states have banned university affirmative

3Other recent criticisms of meritocratic admissions include that it is massively wasteful with regard to children’s
measured-preparation investments and dangerously demoralizing to the rejected (Markovits, 2019; Sandel, 2020).

4Proxying economic outcomes by wages faces two key limitations. First, to the degree that wages are
biased measures of workers’ marginal product (with the bias plausibly-correlated with university selectivity), wage
differences may partially reflect signaling or other factors in addition to actual productivity gains. Second, wages may
not capture the full public value of innovation, entrepreneurship, or other externalities. I intend to address this latter
concern in future work.
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action policies, and decades of Supreme Court cases have gradually constrained its operation. To
study the effect of elite university enrollment on the lower-‘merit’ students admitted to those
universities by affirmative action, I focus on a useful natural experiment induced by one of those
state bans: Proposition 209, which ended California public universities’ affirmative action
policies in 1998. What happens to California’s students when meritocracy intensifies after the end
of the state’s affirmative action regime?

I study the effects of Prop 209 using a difference-in-difference research design and a newly-
constructed longitudinal database linking all 1994-2002 University of California applicants to their
college enrollment, course performance, major choice, degree attainment, and wages into their
mid-30s. As expected, ending affirmative action caused UC’s 10,000 annual underrepresented
minority (URM) freshman applicants to cascade into lower-quality public and private universities,
with thousands of URM applicants going to a slightly less-selective school than they would have if
affirmative action had continued. While the well-known “Mismatch Hypothesis” implies that this
cascade would provide net educational benefits to URM applicants (Arcidiacono and Lovenheim,
2016), instead the opposite occurred: their undergraduate and graduate degree attainment declined
overall and in STEM fields, especially among lower-testing applicants, and the average URM UC
applicant’s wages declined by 5 percent annually through at least their mid-30s. These costs added
up: by the mid-2010s, Prop 209 had caused a cumulative decline in the number of early-career
URM Californians earning over $100,000 by at least 3 percent. Prop 209 also deterred thousands
of qualified URM students from applying to any UC campus.

Interestingly, there is no evidence that the lower-‘merit’ Black and Hispanic students who
enrolled at more-selective universities under affirmative action were any less able to take
advantage of those universities’ academic curricula than their higher-‘merit’ peers: enrolling at
less-selective UC campuses did not improve URM students’ performance or persistence in STEM
course sequences. More damning to meritocracy’s claim to efficiency, a series of complementary
statistical analyses – employing regression discontinuity and fixed-effect value-added designs –
suggest that affirmative action’s net wage benefits for URM applicants exceed its (potentially
small) net costs for on-the-margin white and Asian applicants. In other words, not only did elite
university enrollment benefit the lower-‘merit’ students targeted by affirmative action, but those
benefits appear to exceed the benefits accrued by the higher-‘merit’ white and Asian students who
gained access to those elite universities after the end of affirmative action. Altogether, the
evidence from affirmative action suggests that loosening meritocratic admissions policies may not
generate a efficiency-mobility trade-off at all; instead, access-oriented admission policies might
accomplish both efficiency and economic mobility improvements.

Chapter 3 takes a second look at the efficiency and economic mobility ramifications of
meritocracy by studying the effects of another access-oriented admissions policy: a top percent
policy called Eligibility in the Local Context (ELC). ELC – which was implemented by the
University of California between 2001 and 2011 – provided elite university admission advantages
to the top four percent of graduates from each California high school, ranking students only by
their high school grades. As in the case of Prop 209, I study ELC by constructing a longitudinal
dataset linking the ELC era’s 1.8 million UC applicants to a variety of educational and labor
market outcomes. I first employ a regression discontinuity design to show that ELC functioned as
an access-oriented admission policy: it caused over 10 percent of barely-eligible applicants from
low-opportunity high schools to enroll at selective UC campuses instead of less-selective public
colleges and universities. Half of those participants were URM, and their average SAT scores
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were at the 12th percentile of their UC peers: ELC participants were from low-SES backgrounds
and were sharply lower-‘merit’ than their peers at the universities where they ended up enrolling.
Using a comprehensive structural model of university enrollment, I show that a broad range of top
percent policies like ELC substantially increase low-SES students’ net enrollment at selective
public universities. Next, I use an instrumental variables research design to show that ELC
participants’ more-selective university enrollment was extremely beneficial to them, causing
increases in five-year degree attainment by 30 percentage points and annual early-career wages by
up to $25,000.

The chapter concludes with evidence from both the regression discontinuity design and the
structural model suggesting that ELC participants derived similar or greater value from more-
selective university enrollment than their higher-testing peers. These findings align closely with
the Prop 209 analysis presented in the previous chapter, once again supporting the hypothesis
that access-oriented admission policies at selective universities can promote economic mobility
without efficiency losses, and likely with efficiency gains. In fact, the evidence from the structural
model suggests that the return to elite universities is negatively correlated with both applicants’
SAT scores and high school GPAs: the less measurably-prepared the high school graduate (among
the self-selected graduates who apply to UC), the greater their economic return to enrolling at an
elite university. This represents a stark refutation of meritocracy’s central justifying theory.

The subsequent two chapters, which are coauthored with Aashish Mehta, turn to a closely
related question: what happens when ‘elite’ college majors are restricted using meritocratic
admissions policies? Many universities restrict access to their high-demand majors using ‘major
restriction’ policies like mechanical GPA thresholds – requiring students to earn high grades in
the department’s introductory courses if they want to declare the major – and full-blown
competitive internal applications (even after the students have already been admitted to the
university). We find that these policies mirror more-meritocratic university admissions policies in
both function and outcome.

Once again, I construct a novel database to analyze these policies, this time linking four
universities’ 1975-2016 student transcripts to education and wage outcomes over the subsequent
years and decades. Chapter 4 employs a difference-in-difference event study design around those
four universities’ implementation of 28 major restrictions to show that the policies tend to
decrease enrollment in restricted majors, especially among URM students and students with
absolute academic disadvantages. This closely parallels the function of meritocratic college
admissions policies: by restricting access on educational preparedness, the policies decrease elite
educational access for disadvantaged lower-‘merit’ students. We then extend the event study
design to carefully assess the major choices of students who intend to earn restricted majors,
showing that the restrictions drive female and URM students to earn relatively less-lucrative
majors than their male and non-URM peers who had also intended to earn the restricted majors.
Lastly, a case study of two universities’ economics majors suggests that these stratification effects
are largely explained by URM and low-income students’ poorer pre-college academic opportunity
and measured preparedness, which lead to poor performance in introductory classes. This
evidence shows that meritocratic college major policies have important negative equity and
mobility consequences.

Finally, Chapter 5 focuses on the longer-run ramifications of one specific major restriction
policy: a 2008-2012 GPA restriction on UC Santa Cruz’s ‘elite’ economics major. Using a
regression discontinuity design, we show that the economics major is extremely valuable even to

5



students who perform relatively poorly in the field’s introductory courses; lower-GPA students
prohibited from declaring the economics major earned $22,000 (46%) lower annual early-career
wages than they would have as economics majors. A careful decomposition of this wage effect
shows that the return to majoring in economics for near-threshold low-GPA students would likely
have been above the average return received by UCSC economics majors, once again suggesting
the potential for efficiency gains in implementing a less ‘merit’-oriented allocation policy.

In sum, the presented evidence rejects the theory of an efficiency-equity trade-off when
considering the consequences of feasible higher education policies that allocate elite education
through non-meritocratic mechanisms. At best, there is no evidence that strict meritocracy
efficiently allocates elite education relative to reasonable alternatives; at worst, the evidence
suggest feasible changes that could very substantially improve higher education’s allocative
efficiency both across and within institutions, with simultaneous improvements in economic
mobility and equity.

A number of questions remain unanswered. First, each of the analyzed policies is relatively
small-scale (though Prop 209 reallocated thousands of students per year); perhaps larger-scale
changes to meritocratic allocation policies would have unmeasured general equilibrium
repercussions because of sizable changes in peer or sheepskin effects. Second, as discussed
above, wages are an imperfect proxy for productivity; future study should analyze the relative
returns to elite education for lower- and higher-‘merit’ students in terms of innovation,
entrepreneurship, and potentially geography (since states have an interest in promoting local
economic activity) as well as non-economic outcomes. Finally, the evidence presented in this
study was all collected in the California public university context, where strong public support
(despite recent disinvestment) has resulted in research universities with a wide variety of services
aimed at supporting struggling students. The return to selective universities may have been far
smaller absent those services. Given these caveats, the evidence presented in this dissertation
provides a direct challenge to the presumed efficiency of the meritocratic allocation of higher
education.
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Chapter 2

Affirmative Action, Mismatch, and
Economic Mobility after California’s
Proposition 209

“Those who deny that preferences are not [sic] being given or that the granting
of such preferences is without negative consequences do a great disservice to the
need for finding reasonable solutions. Equally so, those who believe that social and
economic equality of opportunity can be achieved merely by the passage of ballot
initiatives, however justified the need might be, are misguided. The “heavy-lifting”
to achieve a society of genuine inclusion and equality of opportunity merely begins
with the removal of race-based decision-making.”

∼UC Regent Ward Connerly, in introducing SP-1 and SP-21

2.1 Introduction
Educational attainment, income, wealth, and economic mobility exhibit racial disparities in the
United States. Access to selective universities is a key determinant of economic success and
intergenerational mobility (Chetty et al., 2020a). As a result, many selective universities provide
admissions advantages to applicants from disadvantaged racial and ethnic groups. Proponents of
affirmative action argue that it offsets applicant qualification gaps that result from systemically
unequal educational opportunities (Johnson, 2019). Detractors argue that affirmative action limits
opportunity for Asian and white applicants and may have unintended consequences for targeted
students. This study examines three questions at the basis of this disagreement. First, which
students are targeted by affirmative action, and to what degree does affirmative action impact
where those students go to college? Second, what are the short- and long-run effects of enrolling
at a more-selective university because of affirmative action? Finally, how are the net benefits and
costs of affirmative action distributed across Asian, Black, Hispanic, and white university
applicants?

Prior scholarship has arrived at conflicting conclusions about the value of enrolling at a more-
selective university because of access-oriented admissions policies like affirmative action. On
the one hand, several recent studies have shown that applicants with test scores and grades at

1Letter to the Regents of the University of California, July 5, 1995: Berkeley Bancroft Library CU-558, Cnt. 8.
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selective universities’ minimum admissions thresholds are benefited by admission.2 Studies of
affirmative action, however, have uncovered mixed evidence on student outcomes (Arcidiacono
and Lovenheim, 2016), with some finding support for the so-called “Mismatch Hypothesis”: that
the lower-testing applicants targeted by affirmative action would benefit from enrolling at less-
selective universities, where they better “match” their peers’ academic qualifications.

This study combines longitudinal administrative data with a difference-in-difference research
design to estimate the impact of affirmative action on students’ college quality, course
performance, choice of major, degree attainment, and wages over the subsequent 15 years. I
construct a novel database of all 1994-2002 freshman applicants to the University of California
(UC) system, which comprises all public research universities in the state, and individually link
each applicant to nationwide university records and annual California wages. I then compare the
outcomes of Black and Hispanic UC applicants with those of academically-comparable white and
Asian applicants before and after California’s Proposition 209, which ended affirmative action at
UC in 1998. I also link the applicant data to institutional value-added statistics to measure Prop
209’s effect on applicants’ university quality; to California high school records to examine Prop
209’s effect on UC application-sending; and to five UC campuses’ student transcripts to estimate
Prop 209’s impact on performance and persistence in demanding courses. Finally, I employ a
regression discontinuity design to identify the value of being admitted to a selective public
university for the on-the-margin white and Asian students likely to obtain greater university
access after Prop 209.

I begin by documenting Prop 209’s impact on admissions at UC’s eight undergraduate
campuses. Prop 209 curbed the large admissions advantages – some over 50 percentage points –
provided by affirmative action to underrepresented minority (URM) UC applicants.3 As a result,
UC’s URM applicants cascaded into less-selective colleges and universities: those with a high
“UC Academic Index” (AI , a weighted average of high school grades and test scores) tended to
flow from more-selective UC campuses to less-selective campuses and private universities, while
those with lower AIs mostly flowed to less-selective public colleges and universities. Overall,
Prop 209 resulted in a net outflow of lower-income students from highly-selective public
universities.

How did less-selective enrollment affect URM UC applicants? I estimate the average effect of
Prop 209 using a difference-in-difference design estimated over the population of UC applicants.
Each model estimates how URM applicant outcomes change after 1997 (the last year of
affirmative action) relative to changes among non-URM applicants, with the second difference
absorbing ethnicity-neutral enrollment trends in the 1990s.4 High school fixed effects and AI
covariates absorb spurious variation and observable selection bias into UC application.5 I also

2See Hoekstra (2009); Zimmerman (2014); Anelli (2019); Kozakowski (2019); Sekhri (2020); Smith, Goodman
and Hurwitz (2020). Few quasi-experimental studies examine selective universities’ value to applicants with poorer
measured academic qualifications, but Cohodes and Goodman (2014) and Bleemer (2018a) provide evidence of
positive returns to selectivity for such students in other contexts.

3URM includes African-American (Black), Chicano and Latino (Hispanic), and Native American students.
4Non-URM applicants may not represent a traditional unimpacted comparison group, since some likely “crowded

into” more-selective universities after Prop 209. I return to the question of non-URM applicant outcomes in Section
2.6, but the fact that non-URM applicants outnumber URM applicants by more than four-to-one in the applicant pool
dilutes any “crowd-in” effects, implying that at least 80 percent of the observed differences are likely driven by changes
in URM applicant outcomes.

5AI and ethnicity explained 40-70 percent of admissions variation at most UC campuses in the mid-1990s; see
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estimate effect heterogeneity by URM AI quartile and by URM ethnicity.
Implementing this model, I show that Prop 209 led URM UC applicants to enroll at relatively

lower-quality colleges and universities on average, measured both by traditional metrics like
graduation rate and by institutional value-added.6 In contrast with the predictions of the Mismatch
Hypothesis, URM UC applicants’ average educational outcomes deteriorated after Prop 209:
Bachelor’s degree attainment declined by 4.3 percentage points among URM applicants in the
bottom AI quartile, and overall STEM and graduate degree attainment declined by 1.0 and 1.3
percentage points, respectively. Following these applicants into the labor market, I find that Prop
209 caused URM UC applicants to earn 5 percent lower average annual wages between ages 24
and 34, with larger proportional effects for lower-AI applicants.7 The observed wage effects are
driven by Hispanic applicants; despite parallel enrollment and degree attainment outcomes, I find
no evidence of average wage deterioration among Black UC applicants after Prop 209.8

These estimated effects are averaged across every URM UC applicant, many of whose
enrollments were likely unchanged by the affirmative action ban. This implies that treatment
effects for directly-impacted applicants were likely much larger. Given the magnitude of UC’s
applicant pool, these estimates imply that Prop 209 caused an aggregate decline in the number of
URM Californians in their early 30s with 2014 wages over $100,000 by at least 3 percent.
American Community Survey data confirm a 2010s pattern of relative wage deterioration among
high-earning early-career URM Californians.

The primary threat to this baseline research design is the possibility of sample selection bias
arising from differential selection into UC application after Prop 209.9 Estimating a difference-in-
difference model of the proportion of California public high school students who applied to UC
by ethnicity and AI bin, I find that UC annually received about 250 fewer Black and 900 fewer
Hispanic applications after Prop 209, almost 80 percent of whom would likely have been admitted
to at least one UC campus.10 While application deterrence could generate bias, I find that the
baseline estimates are insensitive to a school-ethnicity-AI control function (following Card and
Rothstein, 2007) and other highly-detailed socioeconomic and academic covariates.11

The baseline research design does not separately identify the impact of Prop 209 on non-URM
applicants’ outcomes. Instead, I exploit a large discontinuity non-URM admissions at UC Berkeley

Figure A.11. Cortes (2010) uses a similar design to compare student outcomes between Texas’s affirmative action and
Top Ten policies.

6I estimate institutional value-added by regressing degree attainment and wages on UC applicants’ first enrollment
institution, conditioning on observables following either Mountjoy and Hickman (2020) or Chetty et al. (2020a). See
Appendix A.9.

7These changes cannot be explained by California labor market entry or exit: 69 percent of UC applicants had
positive annual CA wages between ages 24-34, and URM applicants’ employment remained unchanged after Prop 209
overall and in each AI quartile.

8This finding is in line with Chetty et al. (2020b)’s argument that educational differences cannot explain the U.S.’s
Black-white wage gap, though that study does not discuss the role of university selectivity.

9Other potential threats – including non-reported applicant ethnicity, imperfect National Student Clearinghouse
degree reporting, and some campuses’ preemptive implementation of Prop 209 – are discussed below and in Appendix
A.4. None meaningfully impacts the baseline findings.

10Card and Krueger (2005) reach a different conclusion when they proxy university applications with SAT ‘score
sends’ from the College Board. My analysis uses actual university applications. See Appendix A.6.

11In particular, I perform a Monte Carlo exercise randomly selecting sets of detailed covariates like family income,
parental occupation and education, and additional measures of academic preparation for model inclusion. While the
baseline estimates are insensitive to additional covariates, bias on orthogonal unobserved characteristics could remain.
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before Prop 209 to study the return to selective university access for on-the-margin non-URM
applicants, many of whom may have been admitted if not for affirmative action. Employing a
regression discontinuity design, I find that students just below Berkeley’s admissions threshold
nevertheless ended up with similar educational and labor market outcomes after enrolling at other
universities, though the confidence intervals cannot rule out positive treatment effects.12 This
suggests that the value of selective public university access for on-the-margin non-URM students
was small.13

Next, I turn to mechanisms explaining URM UC applicants’ deteriorated educational
outcomes after Prop 209. Several prior studies have suggested that URM students’ STEM course
performance and persistence would improve absent affirmative action, which likely would have
led to the opposite of Prop 209’s effect on STEM degree completion.14 However, while URM UC
students earned lower grades and were less likely to persist along introductory STEM course
sequences than their non-URM peers before Prop 209, these gaps are largely explained by
students’ prior academic opportunities and preparation, not their enrollment institution.15 Prop
209 has no observable effect on students’ STEM course performance and persistence, which do
not appear to contribute to the effects of Prop 209 on students’ educational and wage outcomes.

I conclude with a discussion of the efficiency of affirmative action. Two sets of evidence
favor its allocative efficiency, which in this case requires (to a first-order approximation) that the
benefit of more-selective university enrollment is greater for affirmative action’s URM enrollees
than for the non-URM students who would have enrolled in their place.16 First, the estimated
return to UC Berkeley and Davis admission for on-the-margin non-URM students appears small,
while URM applicants’ estimated wage return to more-selective enrollment before Prop 209 is
large.17 Second, that latter return exceeds the average observed change in institutional value-
added experienced by URM UC applicants, suggesting that the URM applicants impacted by Prop
209 had received above-average returns to more-selective university enrollment (as in Dale and
Krueger, 2014; Bleemer, 2018a).18 These evidence suggest that affirmative action both promotes
socioeconomic mobility among URM youths and improves higher education’s allocative efficiency.

This study makes three main contributions. First, while previous studies have analyzed the
intermediate effects of universities’ affirmative action policies – sometimes coming to conflicting
conclusions – they share common limitations. Several studies have exploited cross-state policy
variation to estimate the educational impact of banning affirmative action, but out-of-state

12Appendix A.10 presents similar evidence among on-the-margin non-URM applicants to UC Davis before Prop
209.

13Appendix A.5 shows that relative to academically-comparable white applicants, Asian applicants enrolled at
similar universities and had indistinguishable wage outcomes after Prop 209, suggesting proportional effects of
affirmative action for both groups.

14See Loury and Garman (1993); Holzer and Neumark (2000); Arcidiacono, Aucejo and Hotz (2016).
15This study’s examination of STEM course performance contributes to a literature interested in the production and

composition of STEM graduates (Ehrenberg, 2010; Griffith, 2010; Sjoquist and Winters, 2015b; Denning and Turley,
2017; Castleman, Long and Mabel, 2018). This is the first known study to estimate how student outcomes in specific
STEM courses change under different policy regimes.

16Figure A.12 shows that relative enrollment at high- and low-value-add California universities was unchanged by
Prop 209.

17Black, Denning and Rothstein (2020) also provide evidence against large returns to more-selective university
enrollment for the students who were “crowded out” of selective Texas universities by Texas Top Ten.

18Selection bias in the estimated value-added statistics will tend to exaggerate differences across institutions,
implying that Prop 209’s estimated effect on institutional value-added is likely biased upwards.
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enrollment confounds identification of the policies’ effects on impacted students.19 Others
estimate models of applicant and university behavior to predict how affirmative action could
impact student enrollment and outcomes, but do not validate these predictions using actual policy
variation.20 A third set of studies have analyzed administrative university data from before and
after Prop 209, but limits on available covariates and outcomes have challenged attempts to
separately identify the effect of affirmative action from compositional changes among UC’s
applicants and students.21 This study augments previous research by implementing a
quasi-experimental research design spanning all U.S. universities that identifies the
individual-level effects of affirmative action, and by analyzing new intermediate outcomes like
university “value-added,” STEM performance and persistence, and graduate degree completion.

Second, this is the first study to causally link changes in university quality to wage outcomes
in the context of affirmative action, bridging the affirmative action literature with a literature
identifying heterogeneity in the return to higher education.22 Much of the affirmative action
literature has focused on whether it leads URM applicants to earn lower average wages (Sowell,
1972; Arcidiacono and Lovenheim, 2016), but my findings are inconsistent with this “Mismatch
Hypothesis”.23 On the other hand, while most studies of heterogeneous university returns focus
on a local margin (e.g. Hoekstra, 2009; Zimmerman, 2014), I estimate average returns to
university quality across subsets of all URM UC applicants after an affirmative action ban. I also
present regression discontinuity evidence highlighting the importance of applicants’
counterfactual enrollments and heterogeneity in estimating the return to selective university
enrollment.

Finally, I provide the first direct evidence that affirmative action has first-order implications for
intergenerational mobility and socioeconomic gaps by ethnicity. A growing literature examines the
mechanisms explaining opportunity gaps for lower-income and URM youths and the efficacy of
available policies to narrow those gaps (e.g. Jackson, Johnson and Persico, 2016; Chetty, Hendren
and Katz, 2016). I find little evidence that affirmative action narrowed the Black-white mobility
gap, which has received particular attention (Dobbie and Fryer Jr, 2011; Billings, Deming and
Rockoff, 2014; Chetty et al., 2020b; Derenoncourt and Montialoux, 2021), but find that it improved
Black students’ educational attainment and relatively increased (mostly lower-income) Hispanic
youths’ wages.

19See Backes (2012); Hinrichs (2012, 2014); Blume and Long (2014); Hill (2017); Long and Bateman (2020).
20See Alon and Tienda (2005); Howell (2010); Arcidiacono, Aucejo and Hotz (2016). Kapor (2020) identifies

a model of affirmative action’s effect on enrollment and GPA using variation from the implementation of Texas’s
race-blind Top Ten policy.

21See Antonovics and Backes (2013, 2014); Arcidiacono et al. (2014); Arcidiacono, Aucejo and Hotz (2016).
Bagde, Epple and Taylor (2016) and Bertrand, Hanna and Mullainathan (2010) show that Indian universities’ caste-
based affirmative action improves targeted students’ grades and wage outcomes, respectively.

22For canonical examples, see Dale and Krueger (2002) and Arcidiacono (2004). Bowen and Bok (1998)
and Arcidiacono (2005) use selection-on-observables and a structural model, respectively, to identify the effect of
affirmative action on URM students’ wages. Zimmerman (2019) shows that the largest returns to elite Chilean
university enrollment accrue only to high-income students.

23Two recent studies of affirmative action “mismatch” also analyze the University of California in the 1990s
(Arcidiacono et al., 2014; Arcidiacono, Aucejo and Hotz, 2016). Bleemer (2020c) discusses the limitations of that
previous research in the specific context of Prop 209 and reconciles their analysis with my baseline findings. Dillon
and Smith (2020) and Barrow, Sartain and de la Torre (2020) find evidence of test- and income-based ‘mismatch’ at
US undergraduate institutions and elite Chicago public high schools, respectively.
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2.2 Background and Data

2.2.1 University of California Admissions in the 1990s
The University of California system is tasked by the 1960 Master Plan for Higher Education to
educate roughly the top 12.5 percent of California public high school graduates. The system
enrolled 137,000 undergraduates at eight campuses in 1999, with the campuses ranging in
selectivity from the highly-selective Berkeley and Los Angeles (UCLA) campuses (which
admitted 35 percent of applicants with an average SAT score 1.5 sd above mean) to the
less-selective Santa Cruz and Riverside campuses (with an 85 percent admission rate and SAT
scores 0.5 sd above mean). Ranking campuses by their admissions rates in the period, I refer to
the Berkeley, UCLA, and San Diego campuses as ‘more selective’, the Santa Barbara, Irvine, and
Davis campuses as ‘selective’, and the Santa Cruz and Riverside campuses as ‘less selective’. In
1999, California also had a 22-campus system of teaching-oriented universities – the California
State University (CSU) system – and 114 two-year community colleges.

Affirmative action began at UC in 1964, the first year that the number of eligible applicants to
UC Berkeley exceeded the number of available seats.24 The policy augmented UC’s standard
admissions protocol, which required that at least 50 percent of students be admitted solely based
on their “Academic Index” (AI), a linear combination of high school GPA and SAT scores.25 For
example, archival documents from UC Berkeley (Figure A.13) show that it guaranteed admission
to all applicants above an AI threshold (e.g. 7,150), but set a lower threshold (6,500) for
African-American, American Indian, Chicano, and Latino “underrepresented minority” (URM)
applicants. Applications with AIs below their respective threshold were “read” by admissions
personnel, giving them a variable likelihood of admission, while those with AIs below a second
threshold (7,000 for non-URM applicants, below 6,000 for URM applicants) were mostly
mechanically rejected.

Figure 2.1 summarizes the relative admissions likelihood of normal URM and non-URM
applicants to each campus by AI in two-year increments from 1994 to 2001.26 At the
most-selective Berkeley campus, for example, 1994-1995 URM applicants with AIs between
6,000 to 7,100 were 80 percentage points more likely to be admitted than same-AI non-URM
applicants. The admissions advantage declines to zero above AI = 7,400 because all such
applicants were admitted. Seven of the eight UC campuses provided admissions advantages to
URM applicants under affirmative action, with the advantage shifting to higher-AI applicants
over time as the campuses became more selective. UC Riverside admitted all ‘normal’ UC
applicants. The figure’s superscripts show the empirical integrals under each curve by the

24“The Educational Opportunity Program was established on campus in 1964 and identified ethnicity, socio-
economic status, and educational background as the three criteria it would use in targeting students. This was the
first time that race emerged as a positive factor in university admissions.” Unsigned memo, 1988; Berkeley Bancroft
Library CU-558, Cnt. 5. Affirmative action is now practiced by public universities in at least half of states (see
Appendix A.1).

25In particular,AI = min(HSGPA, 4)×1, 000+SATI+SATIIs. The index included both SAT I components
(math and verbal) and three SAT II scores: writing, math, and a third of the student’s choosing. All SAT components
were scored out of 800, so the maximum AI was 8,000. Some campuses employed variants of this formula.

26‘Normal’ applicants exclude applicants without UC’s minimum academic credentials and applicants to restricted
programs like some engineering majors. Appendix A.2 presents annual admissions likelihoods by AI at each campus
for ‘normal’ applicants.
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contemporaneous AI distribution of each campus’s URM applicants, estimating the excess
number of annual URM admissions relative to simulated URM admissions under the non-URM
AI admissions rule. Many campuses admitted hundreds of URM applicants annually by
affirmative action.

Increasing political controversy around affirmative action culminated in the mid-1990s, when
the policy was prohibited first by the UC Regents in July 1995 and then by a voter referendum in
November 1996. While the original Regents policy (SP-1) was rescinded in 2001, Prop 209 has
prohibited UC and other public California institutions from “discriminat[ing] against, or grant[ing]
preferential treatment to, any individual or group on the basis of race, sex, color, ethnicity, or
national origin” since the Fall 1998 admission cohort.27 Figure 2.1 shows that most campuses
continued providing large admissions advantages to URM applicants in 1996 and 1997 (though
some programs were curtailed), but those advantages shrank considerably in 1998.28

Starting in 1998, UC implemented outreach programs to increase enrollment from
majority-URM high schools, but those programs wound down after 2001 with little evidence of
success (Atkinson and Pelfrey, 2004; University of California, 2003). Instead, UC’s primary
policy response to the end of affirmative action was its Eligibility in the Local Context top percent
policy, which did not begin until 2001 (Bleemer, 2018a).

2.2.2 Data
This study analyzes the effects of Prop 209 using four primary data sources. The first, collected
contemporaneously for administrative use by the UC Office of the President, covers all 1994-2002
California-resident freshman applicants to any University of California campus.29 Each record
contains an applicant’s high school, gender, ethnicity, parental education, parental occupations,
and family income.30 Academic preparation measures include SAT and ACT standardized test
scores by component, SAT II scores, high school grade point averages, and the number of 12th-

27Prop 209 also prohibited racial preferences in university outreach and financial aid as well as affirmative action
policies at the teaching-oriented California State Universities, though their lesser selectivity entailed those policies’
smaller impact. Prop 209 also banned racial preferences in state hiring (Marion, 2009) and graduate school admissions
(Yagan, 2016), though high school graduates shortly before and after 1998 were similarly-impacted, since both entered
the labor market after 1998.

28Figure A.14 shows that some UC campuses saw declines in URM admissions and enrollment between 1995 and
1996 relative to academically-comparable non-URM applicants (particularly at UCLA and the less-selective UCs), but
every UC campus saw sharp immediate declines in URM admission between 1997 and 1998, and the more selective UC
campuses also saw sharp year-over-year declines in URM enrollment. Another approach to estimating the magnitude
of each campus’s racial preferences is to consider the annual difference between the R2 of two linear regressions:
admission on applicants’ leave-one-out admissions probability by AI and ethnicity, and admission on that probability
by just AI . Figure A.15 shows, for example, that the difference was about 0.25 at UCLA in ‘94-95, 0.15 in ‘96-97,
and less than 0.05 after 1998. Most campuses saw small declines in 1996 and large declines in 1998.

29About one-third of UC students transfer from community colleges rather than enrolling as freshmen. Because
affirmative action was likely less impactful for those applicants and because of limited data availability about those
students’ academic background (prohibiting selection correction on observables), transfer applicants are not directly
analyzed in the present study, though freshman applicants may enroll at a community college and transfer to UC later.

30Parental education is observed as an index of maximum parental education for up to two parents, from 1 (no high
school) to 7 (graduate degree). Parental occupations are observed as one of 17 occupation codes each for two parents
(or 289 total codes), including codes like ‘Clerical’, ‘Laborer’, and ‘Professional’ as well as ‘Homemaker’, ‘Retired’,
‘Other’, or ‘Deceased’. Family income is not reported by about 15 percent of applicants.

13



grade honors courses.31 Application, admission, and enrollment indicators are available for each
UC campus, as are degree attainment and major choice for UC enrollees.

The second dataset, an extract from the National Student Clearinghouse’s (NSC)
StudentTracker database, contains enrollment and graduation records – covering nearly all U.S.
two- and four-year colleges and universities – for all students in the UC application dataset, linked
by full name and birth date.32 Science, Technology, Engineering, and Mathematics (STEM)
majors are categorized by CIP code following the U.S. Department of Homeland Security
(2016).33 NSC data are available starting with the 1995 applicant cohort.34

Third, I observe UC applicants’ quarterly 2000-2017 wages from the California Employment
Development Department, linked by SSN.35 Wages are unavailable for workers not covered by
California unemployment insurance, including out-of-state, federal, and self-employed workers.
Annual wages are measured as the sum of quarterly wages, CPI-adjusted to 2018, and winsorized
at the top and bottom one percent. About 69 percent of UC applicants have positive covered wages
in each of 6-16 years after UC application.

The fourth dataset includes comprehensive student transcripts – including course enrollments
and grades – for five UC campuses: Berkeley, Davis, Santa Barbara, Santa Cruz, and Riverside.
The transcripts were obtained from campus Offices of the Registrar and are linked by name and
birth date (Bleemer, 2018b).

Additional educational administrative data come from several sources. Universities’
admissions rate, average SAT scores, and six-year graduation rates from IPEDS are linked to NSC
institutions.36 Aggregated data from the California Department of Education provide the annual
number of graduates from each public high school by gender and ethnicity. Finally, a
comprehensive College Board SAT-taker database covering public California high school students
is linked by name and birth date to the UC applicant pool.

31Throughout the study period, each UC applicant was required to submit an SAT score and SAT II scores in
writing, mathematics (1 or 2), and a third field of their choosing. Only 0.9 percent of applicants submitted ACT
instead of SAT scores.

32The NSC data include semesterly enrollment (by institution) and attainment (by institution, degrees, and majors)
for all Title-IV postsecondary institutions that had commenced reporting to NSC, excluding students who opted against
data disclosure.

33STEM includes the 278 “fields involving research, innovation, or development of new technologies using
engineering, mathematics, computer science, or natural sciences (including physical, biological, and agricultural
sciences)” identified by CIP code. Not all NSC majors have CIP codes; I assign each major to its modal CIP code
(in the full observed NSC database) for categorization. See Tables A.14 and A.15 for the most common STEM and
non-STEM majors in the data. This definition generally aligns with that used by Arcidiacono, Aucejo and Hotz (2016),
though a wider variety of majors are categorized, especially among STEM health fields.

34Some 1990s NSC records are incomplete, for which reason I augment them with administrative UC records in
the undergraduate degree analysis below. Since UC enrollment declined after Prop 209, this could bias estimates of
the impact of Prop 209 on degree attainment toward 0. See Appendix A.4.

35Social security numbers on UC applications are not verified unless the student enrolls at a UC campus. Among
enrollees, the verified social security number differs from that reported on their application in fewer than 0.25 percent
of cases. All statistics estimated using EDD data were originally published as institutional research (Bleemer, 2019b).

36Average SAT scores are measured as the sum of the mean of universities’ 25th and 75th Math and Verbal SAT
percentiles. Admissions rates (and SAT scores) are fixed at 2006 (2000); graduation rates are contemporaneous. See
https://nces.ed.gov/ipeds/.
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2.2.3 University of California Descriptive Statistics
Table 2.1 provides descriptive statistics of UC applications, admissions, and enrollment for
California-resident freshman applicants in three two-year cohorts: ‘94-95, who applied before
Prop 209’s passage; ‘96-97, who applied after the ban was approved but before its mandatory
implementation; and ‘98-99, following the ban. The presented statistics indicate a university
system steadily increasing in reputation and selectivity throughout the 1990s, with increases in
non-URM applications of 25 percent overall and 42 percent at the more-selective campuses.
Admissions rates consistently fell at all but the least-selective Riverside campus, but increasing
yield rates – the percent of admitted students who enrolled – stemmed the decline in the
proportion of applicants who enrolled at each campus. The average SAT scores of most
campuses’ applicants also rose steadily, as did the average scores of students admitted to each
campus.

Almost 20 percent of UC applicants were URM in 1997, and URM applicants’ average SAT
scores rose through the period, potentially reflecting deterrence among lower-testing URM
students.37 Most campuses’ URM admissions rates fell slightly in 1996 but then sharply declined
in 1998, matched by a sharp rise in URM admits’ test scores.38 URM enrollment rates fell
precipitously at UC’s more-selective campuses, slightly declined at the selective campuses, and
slightly increased at the less-selective campuses. The next section examines the URM ‘cascade’
from more- to less-selective universities after Prop 209 in greater detail.

2.2.4 UC Applicants’ University Enrollment
Figure 2.2 shows how URM UC applicants’ decreased likelihood of UC admission after Prop 209
affected their UC enrollment. Enrollment shares are shown for the full AI distribution of URM
UC applicants for the two cohorts before and after Prop 209 and are smoothed across percentiles.
Before Prop 209, about 30 percent of median-AI URM applicants enrolled at the three
more-selective UC campuses, while only about 3 percent of similar-AI non-URM applicants did
so. After Prop 209, this gap largely closed, and URM applicants across the entire AI distribution
became less likely to enroll at more-selective UC campuses. Higher-AI URM applicants became
more likely to enroll at the selective and less-selective campuses – likely as a result of their being
rejected from the more-selective campuses – while lower-AI URM applicants’ selective UC
enrollment declined. Meanwhile, the increasing selectivity of UC campuses also led to decreased
enrollment likelihoods of all but the highest-AI non-URM applicants.

Figure 2.3 broadly summarizes how Prop 209 reshaped UC applicants’ enrollment across the

37About 20 percent of URM UC applicants were Black, with nearly all of the rest Hispanic. Only a small share
of URM applicants are Native American. Among Hispanic applicants, about 75 percent were Chicano and the rest
Latino. See Table A.17 for separate descriptive statistics for Black and Hispanic applicants.

38Appendix A.3 presents difference-in-difference analysis showing that URM UC applicants became 4-25
percentage points less likely (on average) to be admitted to each UC campus. While URM applicants were 9.3
percentage points more likely than academically-comparable non-URM applicants to be admitted to at least one
campus before Prop 209, that gap declined by 7.9 percentage points after 1998. Prop 209 had generally-similar impacts
on the admissions likelihood of Black and Hispanic UC applicants: though Black students received somewhat-larger
admissions advantages under affirmative action relative to academically-comparable non-URM applicants, Prop 209
caused slightly larger admissions declines for Hispanic applicants to UC’s more-selective campuses than for Black UC
applicants (see Table A.19).
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public and private sectors of U.S. higher education. Each panel plots the percentage point
difference in enrollment likelihood before and after Prop 209 for URM and non-URM UC
applicants at each URM AI percentile. URM applicants’ relative likelihood of enrollment at
Berkeley and UCLA declined across the AI spectrum.39 UC San Diego exhibits a pattern
common to California’s other public universities: URM enrollment increased relative to
non-URM enrollment for higher-AI applicants (70-95th percentiles) and decreased for those with
somewhat-lower AIs (20-60th percentiles). The same pattern holds at lower AI bands for the
selective and less-selective UC campuses: e.g. URM applicants at the 25th AI percentile became
relatively less likely to enroll at the selective UC campuses but more likely to enroll at the
less-selective campuses. The teaching-oriented CSU system and California community colleges
also absorbed some low-AI URM applicants (relative to changes among non-URM applicants).40

Some high-AI URM applicants were absorbed by the highly-selective Ivy+ universities, and
middle-AI URM applicants became more likely to enroll at other private and out-of-state
universities.41

Overall, these patterns are consistent with a cascade of URM students from more- to
less-selective institutions after Prop 209, with URM students from more-selective schools
enrolling at less-selective universities where they replaced lower-AI URM students now rejected
absent affirmative action.42 This cascade explains why URM enrollment only declines at the
more-selective UC campuses.43

Prop 209’s broad impact on where URM UC applicants’ go to college highlights the importance
of analyzing California student outcomes across all U.S. institutions, since restricting to students at
a smaller set of universities (like the UC system) will generate sample selection bias. The following
section describes this study’s baseline research design, which exploits longitudinal records for all
California-resident UC applicants – following students wherever they enroll – to credibly estimate
the effects of affirmative action on student outcomes.

2.3 Empirical Methodology
I estimate the impact of Prop 209 on URM UC applicants by comparing the change in URM
applicant outcomes after Prop 209 to the change in outcomes of non-URM students with similar
prior academic opportunity and preparation. Treating non-URM applicants as a comparison group
differences out shifts in UC campuses’ reputation and selectivity that shaped all UC applicant
outcomes. However, non-URM UC applicants are not a traditional ‘control’ group; Prop 209
likely increased some non-URM students’ admissions likelihoods at some UC campuses so that

39Figure A.16 shows that the URM students who exited Berkeley and UCLA following Prop 209 also came from
much lower-income households than those who replaced them, generating a net enrollment shift at UC’s more-selective
campuses from students in the bottom three income quartiles (fixed in ‘96-97) to students in the top quartile.

40The increase in community college enrollment and decrease in the number of students with no observed
enrollment in NSC likely reflects community colleges’ entry into NSC reporting; see Appendix A.4.

41Geiser and Caspary (2005) report similar findings for high-testing URM applicants. These out-of-state enrollment
estimates are within the confidence intervals of Hinrichs (2020), who argues that affirmative action bans cause minimal
cross-state migration.

42Figure A.17 shows that this cascade pattern is not reflected in applicants’ UC application portfolios, implying
that the observed patterns result from admissions rather than application decisions.

43See Table A.20.
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those campuses could preserve their net enrollment despite the absence of affirmative action.44 As
a result, the estimates presented below identify the impact of Prop 209 on URM outcomes relative
to its impact on non-URM outcomes. There are about four times as many non-URM UC
applicants as URM applicants, so if UC campuses’ net enrollment did not respond to Prop 209,
every 1 percentage point average decrease in URM applicants’ enrollment likelihood corresponds
to almost a 0.25 percentage point average increase in non-URM applicants’ enrollment
likelihood.45 If universities’ treatment effects for on-the-margin URM and non-URM students are
similar, this implies that as much as 20 percent of the estimates described below could be
explained by improved outcomes among non-URM students. I return to this argument in Section
2.6, presenting evidence that the benefits of Prop 209 to non-URM students likely explain a
smaller share of the presented estimates.

To implement the proposed research design, I estimate difference-in-difference models of the
form:

Yiy = αhi + δy + β0URMi +
2002∑
t=1994

1{t=y}βyURMi + γXiy + εiy (2.1)

where Yiy is an outcome for California-resident freshman applicant i after they applied to UC in
year y. I present results from two model specifications, both estimated by OLS.46 First, I restrict
the sample to 1994-2002 applicants and set β1997 to 0, estimating the difference between URM and
non-URM applicants’ outcomes in the years before and after Prop 209. The β1996 coefficient can be
interpreted as a placebo test that observed post-1998 effects are driven by Prop 209, while the β1994
and β1995 coefficients could possibly reflect changes in applicant outcomes as a result of SP-1 and
Prop 209’s passage (which led some UC campuses to begin phasing out affirmative action in 1996).
To estimate the effect of Prop 209 more concisely, I also estimate a specification further restricting
the sample to 1996-1999 applicants and estimating a single β‘98−99 term, averaging outcomes two
years after 1998 relative to the two years prior. No UC campus implemented any other known
changes in their admissions processes in this period.

Each model includes high school fixed effects αhi , which absorb spurious cross-school
application and outcome variation, and the components used to construct UC’s Academic Index
(Xiy), which absorb variation in applicants’ observed academic preparation.47 Standard errors are

44Figure 2.3 clearly shows that there is no ‘control’ group of URM UC applicants in the period; Prop 209 shifted
URM UC applicants’ college enrollment at every AI , even among the highest-AI URM applicants. Interestingly, it
also shows that the non-URM students shifting into more-selective universities tend to have higher AI than the URM
students exiting those universities, suggesting that if the baseline results below reflected non-URM student outcomes,
they would be driven by high-AI applicants. In fact, most of the estimated effects are driven by low-AI applicants.

45Figure A.12 shows that annual growth in net California university enrollment appears unchanged by Prop 209,
nor did Prop 209 observably impact the overall weighted-average institutional quality of that enrollment, with gains
among non-URM students offsetting declines among URM students.

46All OLS estimation is conducted using the felm and summary.felm(,robust) functions in the lfe R package, version
2.8-5.

47That is, Xiy includes Verbal and Math SAT scores, high school GPA, SAT II Writing score, SAT II Math score
(and an indicator for submitting a Math 2 SAT II score), and a third SAT II score (along with indicators for which score
was submitted). About 15 percent of the sample is missing at least one test score (mostly the third SAT II); dummies
are included for each missing value to preserve the full sample. I test models’ sensitivity to covariate inclusion in
Section 2.5. These detailed covariates (and fixed effects) importantly differentiate the presented enrollment effects
of Prop 209 from previously-published results (Chang and Rose, 2010; Antonovics and Backes, 2014) by absorbing
sample selection and omitted variable biases.
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robust.48

I also estimate three variants on this model to better understand Prop 209’s effects on student
outcomes. First, I separately estimate the model by ‘96-97 URM AI quartile to observe
heterogeneous treatment effects for students with different prior academic opportunities and
preparation. Second, because some UC campuses began phasing out their affirmative action
policies in 1996, I replace the model’s 1996-1997 pre-period with 1994-1995 and re-estimate
post-1998 outcomes relative to those earlier years.49 Finally, I interact β0 and βy with indicators
for whether the student is Black or Hispanic, identifying separate coefficients for each group to
estimate heterogeneity in Prop 209’s impact by URM ethnicity.50

It remains possible that the βy estimates reflect sample selection bias resulting from the impact
of Prop 209 on the composition of UC applicants, since a non-random selection of URM applicants
may have been discouraged from UC application by their decreased likelihood of admission. I
quantify the degree of Prop 209’s URM application deterrence and test the model’s sensitivity to
alternative specifications in Section 2.5.

2.4 The Impact of Affirmative Action on Student Outcomes
Figure 2.4 visualizes the impact of Prop 209 on URM UC applicants with estimates of βy from
Equation 2.1 for a sequence of enrollment, educational attainment, and labor market outcomes, all
estimated relative to 1997. The subsections below discuss each of the measured outcomes in turn.
Given that many URM applicants’ undergraduate enrollment remained unchanged by Prop 209,
the presented reduced-form coefficients likely underestimate impacted students’ treatment effect
of enrolling at less-selective universities after the affirmative action ban.

2.4.1 Institutional Quality
Prop 209 caused URM UC applicants to be 7.6 percentage points less likely to enroll at the more-
selective UC campuses – particularly driven by the second and third URM AI quartiles – and
led to small corresponding enrollment increases across the spectrum of other public and private
higher education institutions.51 Prop 209 led to larger relative enrollment declines at the more-
selective UC campuses for Black applicants, with the top AI quartile of Black applicants facing a
15 percentage point enrollment decline.52

I summarize these changes in university enrollment quality by characterizing each institution
in two ways: (1) using traditional measures of university quality like selectivity and graduation

48Following Abadie et al. (2017), given that the data comprise the full population of UC applicants and that there
is little reason to expect correlated random effects across any particular clusters of applicants, I do not cluster the
reported standard errors.

49All models estimating National Student Clearinghouse outcomes omit 1994 applicants, for whom NSC records
are unreliable.

50I omit Native American applicants from this final specification due to small sample size.
51See Table A.21. The empirical integral of URM students’ relatively changed enrollment at each UC campus by

AI between ‘95 and ‘98-99 – over the ‘98-99 distribution of URM UC applicants – provides a lower-bar estimate
(assuming Prop 209’s monotonicity across UC campuses) for the number of URM students who enter and exit each
campus as a result of Prop 209. Table A.23 shows that at least 1,200 URM UC applicants exited UC campuses – with
more than 800 exiting Berkeley and UCLA – and 800 entered UC campuses after Prop 209.

52See Table A.22.
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rate, and (2) using a set of novel “value-added” (VA) statistics, which estimate each institution’s
average treatment effects on their students’ degree attainment and average wages between ages 30
and 34. I estimate the value-added statistics using fixed effect OLS regression over the 1995-1997
sample of UC applicants matched to their first enrollment institution, absorbing observable
selection across institutions using either students’ UC application and admission portfolios
(following Mountjoy and Hickman (2020); “MH”) or ethnicity indicators and fifth-order
polynomials in SAT score and family income (following Chetty et al. (2020a); “CFSTY”).53

Appendix A.9 provides methodological details and the estimated value-added statistics.
Table 2.2 presents difference-in-difference estimates of how Prop 209 impacted URM UC

applicants’ quality of enrollment institution. The first row shows that prior to Prop 209, URM
students tended to enroll at higher-quality institutions – as measured by lower admissions rates,
higher average SAT scores and graduation rates, and higher estimated “value-added” – than
academically-comparable non-URM UC applicants. The second row shows that Prop 209 caused
URM UC applicants to enroll at less-selective universities with lower average SAT scores and
graduation rates after 1998, with larger observed institutional declines among lower-AI
applicants. Those institutions are also estimated to have lower average “value-added”: Prop 209
caused URM UC applicants to enroll at institutions that (on average) lead their students to lower
likelihoods of Bachelor’s degree attainment by 0.5-0.9 percentage points and whose graduates
earn $400-$900 lower annual early-30s wages, with smaller value-added declines among high-AI
URM applicants.54 The first panel of Figure 2.4 shows that the institutions where URM UC
applicants enrolled remained relatively steady in terms of their “CFSTY” early-30s annual wage
value-added between 1995 and 1997, but sharply and persistently declined by almost $1,000 after
1998. In summary, Prop 209 caused URM UC applicants to enroll at lower-quality colleges and
universities.

2.4.2 Degree Attainment
Next I turn to Prop 209’s effects on URM UC applicants’ educational outcomes: whether they
earned a Bachelor’s degree, an undergraduate STEM degree, and/or a graduate degree.55 Given
that Prop 209 caused the average URM UC applicant to enroll at a lower-quality university more
similar to their academically-comparable non-URM peers’ institutions, the Mismatch Hypothesis
entails that URM applicants’ outcomes will improve after Prop 209. Figure 2.4 presents estimates

53I do not shrink the value-added statistics, and both sets of covariates likely fail to fully absorb selection bias
across universities. Given students’ positive selection across institutional value-added and that most URM students
enroll at lower-VA institutions following Prop 209, both of these factors likely lead toward over-estimation of the
VA decline following Prop 209. Nevertheless, I show below that the wage value-added estimates underestimate the
actual observed change in URM applicants’ wages, suggesting that both value-added procedures understate selective
universities’ treatment effects among the URM students impacted by Prop 209.

54Table A.24 shows slightly-larger estimates when compared to the 1995 pre-209 baseline.
55I define Bachelor’s and STEM degree attainment using the union of UC administrative records and the National

Student Clearinghouse records, while graduate degree attainment is measured only in NSC (within 18 years of UC
application). Bachelor’s attainment and STEM major choice are measured using the union of UC and NSC records
to augment imperfect NSC records from UC Santa Cruz; see Appendix A.4. This may upwardly bias the resulting
estimates, since URM students are less likely to enroll at UC campuses following Prop 209 and thus less likely to have
the opportunity that their degrees are measured in UC administrative data. Estimates for each separate data source
(restricting UC data to UC enrollees) are presented in Table A.26; estimates are somewhat more-negative in NSC data
and less-negative in UC data among UC enrollees.
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from Equation 2.1 for six-year BA attainment among bottom-AI-quartile applicants, unconditional
STEM degree attainment, and graduate degree attainment, instead showing that all three abruptly
and persistently decline in 1998 following Prop 209.

Table 2.3 provides additional details on the impact of Prop 209 on URM UC applicants’ degree
attainment. The first two columns show that URM UC applicants were already less likely to earn
Bachelor’s degrees than academically-comparable non-URM applicants before Prop 209, and if
anything became even less likely to earn degrees after affirmative action was eliminated, with a
95-percent confidence interval of -1.69 to 0.27 percentage point change in average six-year degree
attainment.56 This effect is wholly driven by the bottom AI quartile of URM applicants, whose
enrollment was shown above to largely flow from the more-selective and selective UC campuses
to less-selective public and private California universities.57

The third and fourth columns of Table 2.3 show that URM applicants may have become less
likely to earn STEM degrees conditional on earning a college degree (95-percent c.i. -1.65 to 0.35
percentage points).58 In combination with the decline in overall degree attainment, this provides
strong evidence for Prop 209 causing a decline in unconditional STEM degree attainment by 1.0
percentage point (s.e. 0.4). Table A.27 presents major-specific estimates of changes in URM UC
applicants’ fields of study; the fields with largest increases after 1998 are biology (0.62
percentage points) and miscellaneous humanities fields (0.30), while those with the largest
decreases are economics (-0.39), history (-0.32), and mathematics (-0.29), suggesting substantial
heterogeneity between and within disciplines.

The last three columns of Table 2.3 show the relative impact of Prop 209 on URM students’
likelihood of earning a graduate degree. Graduate degrees tend to offer large labor market returns
(Altonji, Arcidiacono and Maurel, 2016; Altonji and Zhong, 2020) and may represent an important
benefit to more-selective university enrollment. URM applicants became 1.3 percentage points
(s.e. 0.5) less likely to earn graduate degrees after Prop 209 relative to academically-comparable
non-URM applicants, with particularly-large declines among lower-AI applicants. Almost half
of this decline can be explained by a decline in STEM-oriented masters and doctoral degrees, for
which attainment declines 0.58 percentage points (s.e. 0.21).59 There is only weak evidence of a
decline in law degree attainment, and no such evidence for medical degrees.60

56These estimates contrast with those presented by Arcidiacono et al. (2014), whose Table 3 suggests that Prop 209
increased URM UC graduation rates. Bleemer (2020c) shows that those findings reflect selection bias on applicant
characteristics unobserved in those data: replacing the highly-censored SAT score and high school GPA covariates
available in their data with continuous measures of the same metrics fully attenuates the observed effect. The remaining
difference between the two studies is explained by that study’s sample restriction to UC enrollees.

57Applicants’ changed degree attainment is less than half of the change in the six-year graduation rates of the
institutions where they enroll, a lower ratio than those estimated by Cohodes and Goodman (2014) and Bleemer
(2018a) in other contexts. This suggests that the degree attainment of students targeted by affirmative action was
relatively less sensitive to enrollment change. The bottom AI quartile had an estimated ratio closer to 1 (as in those
other studies), while applicants in the other quartiles do not appear to have faced declines in degree attainment despite
enrolling at institutions with lower graduation rates.

58This finding contrasts with a number of previous studies that show that increased university selectivity tends to
decrease students’ likelihood of earning STEM degrees along different margins (Arcidiacono, Aucejo and Hotz, 2016;
Mountjoy and Hickman, 2020; Bleemer, 2018a). I further analyze Prop 209’s effect on UC enrollees’ performance
and persistence in STEM courses in Section 2.7.

59STEM graduate degrees are defined as masters- or doctoral-level degrees in any STEM field; see footnote 22.
60Table A.25 shows that URM UC applicants’ educational declines after Prop 209 are generally somewhat larger

when compared to a 1995 baseline, before some campuses began phasing out affirmative action.
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2.4.3 Employment and Wages
Finally, I turn to the effect of Prop 209 on URM UC applicants’ labor market outcomes. Figure 2.5
shows estimates of β‘98−99 annually estimated for each specified outcome six to sixteen years after
UC application (when most applicants were age 34). The first panel shows that Prop 209 had no
net effect on URM UC applicants’ California labor market participation; 69 percent of applicants
earned covered California wages annually before and after Prop 209.61 Among wage-earning UC
applicants, however, Prop 209 caused URM workers’ wages to persistently decline by an average
of $1,800 (0.05 log points), or $2,400 (0.04 log points) in their early 30s. As late as age 34, there
is no evidence that the average wages of URM applicants impacted by Prop 209 recover to their
earlier levels. Table A.28 shows that these wage declines are proportionally larger for lower-AI
URM applicants, who also faced the greatest educational deterioration.

The last two panels of Figure 2.4 present the dynamics of URM UC applicants’ wages in the
years before and after Prop 209. Panel (e) shows estimated βy coefficients for the average of
observed log wages 6-16 years after UC application. URM applicants’ wages sharply decline
between 1997 and 1998, reflecting the impact of Prop 209, but there is also evidence of a
persistent relative trend of declining URM UC applicants’ wages throughout the period. This
trend is likely the result of ethnicity-specific wage dynamics in the California labor market, with
URM workers’ wage distribution potentially declining relative to the non-URM distribution as a
result of rising inequality in the state (Juhn, Murphy and Pierce, 1991). Following the insight of
that study, I account for these wage dynamics by replacing applicants’ wages with their percentile
in the contemporaneous wage distribution of same-ethnicity college-educated California workers
born between 1974 and 1978, most of whom were already in college prior to Prop 209’s 1998
implementation.62 Panel (f) shows that the resulting percentiles are unchanging in the periods
either before or after Prop 209, successfully removing the time trend, with an approximately 1
percentage point decline observed between 1997 and 1998 caused by Prop 209. On average, a one
percentile change in the 2001-2017 URM wage distributions corresponds to $1,940, closely
matching the estimated decline in URM UC applicants’ wages after Prop 209 shown in Table 2.4
and suggesting that the baseline wage estimates reliably capture the effect of Prop 209.

I examine the wage estimates’ sensitivity to alternative parallel trends assumptions using the
method of Rambachan and Roth (2020), who provide robust confidence intervals for difference-
in-difference statistics in the presence of bounded group-specific trends.63 Figure A.20 shows that
the wage estimates presented in Panel (e) of Figure 2.4 are sensitive to alternative assumptions, but
that the wage percentile estimates in Panel (f) are robust to the assumption of annual differential
trends of up to almost 0.15 percentiles per year.

Table 2.4 summarizes the changes in URM UC applicants’ wages following Prop 209,
showing that academically-comparable URM and non-URM workers earned similar wages before

61Figure A.19 shows that California labor market participation is unchanged after Prop 209 for all four AI
quartiles of URM applicants. Prop 209 could have either increased or decreased URM applicants’ likelihood
of covered California employment: less-selective university enrollment likely decreases applicants’ likelihood of
seeking employment outside the state (since the credential is more geographically-specific), but increased out-of-state
enrollment might have led to out-of-state employment.

62The wage distributions are observed among employed college-educated 2001-2017 ACS respondents (Ruggles
et al., 2018).

63I estimate Rambachan and Roth (2020)’s fixed length confidence intervals using their HonestDiD package,
version 0.1.0.
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Prop 209 but diverged afterwards. The second panel shows striking evidence of heterogeneity
across URM students: while the wages of Hispanic students sharply declined following Prop 209
relative to academically-comparable non-URM applicants, there is little such evidence for Black
applicants (though their smaller sample size results in larger standard errors).64 This widens a
previously-existing gap between the two groups, with Black applicants already earning lower
average wages than academically-comparable Hispanic students (who also earn somewhat higher
wages than academically-comparable non-URM applicants). Figure 2.6 contextualizes this
finding: while Black UC applicants faced similar or larger declines in university quality and
educational outcomes than Hispanic UC applicants after Prop 209, and Hispanic UC applicants’
wage outcomes deteriorated after 1998, there was no observable parallel decline among Black UC
applicants. This suggests that while UC’s affirmative action provided long-run wage returns to
Hispanic students, its average labor market benefits to Black Californians may have been small.

While Prop 209 caused a small number of mostly-Black URM UC applicants to enroll at out-of-
state Ivy+ institutions, the impact of their exit from California on the presented wage statistics can
be narrowly bounded. Consider, for example, the number of years in which URM applicants earn
at least $100,000 in the 6-16 years after UC application. Observationally, URM Ivy+ enrollees are
about 15 percentage points less likely than other top-AI-quartile applicants to work in California
annually, and almost one-third of URM Ivy+ enrollees who work in California earn over $100,000
between 6 and 16 years after UC application. Given the 0.5 (1.0) percentage point increase in Ivy+
enrollment among URM (Black) UC applicants after Prop 209, this implies an expected decline in
the number of years earning over $100,000 of about 0.003 (0.005), small changes relative to the
0.08 fewer high-earning years among URM applicants and the 0.11 year gap between the estimated
effects of Prop 209 on Black and Hispanic applicants reported in Table 2.4.

Contextualizing Prop 209’s Labor Market Impact

While UC does not educate enough of the California workforce for its admissions policies to shift
most moments of the state’s aggregate wage distribution, the high wages earned by its graduates
imply that its policies may meaningfully impact the composition of California’s high-earning
workers. About 56,000 URM students applied to UC between 1998 and 2002. Compared to a
1996-1997 baseline, the difference-in-difference estimates imply that Prop 209 caused each of
those applicants to become about 1.3 percentage points less likely to earn at least $100,000 per
year in California in 2014, 12 to 16 years after college application, though some of that decline
may reflect secular ethnicity-specific wage dynamics in California.65 This implies a decline in the
number of high-earning URM Californians by over 700. American Community Survey estimates
show that there were 27,000 URM Californians earning over $100,000 in 2014, implying that
Prop 209 caused a decline in the number of such workers among UC applicants by about 3
percent.66 Given that 30-to-34 URM workers made up 46 percent of the 2010 California

64Estimating independent effects of Prop 209 on Black and Hispanic outcomes (e.g. dropping non-Black URM
applicants to estimate the effect on Black applicants) does not change the presented results.

65In 2014, $100,000 was approximately the 90th (95th) percentile of wages among California (U.S.) workers aged
30 to 34, though it was earned by more than 20 percent of UC applicants 14 years after application. For annual
estimated URM wage threshold declines relative to each baseline, see Figure A.21.

66The estimated $130-$150 million decline in 2014 wages earned by URM Californians between ages 30 and 34
represents a 0.4-0.5 percent aggregate decline for that group. All ACS statistics calculated using data from IPUMS
(Ruggles et al., 2018).
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workforce but only 14 percent of earners over $100,000, this implies that affirmative action had
been meaningfully mitigating inequality until Prop 209.

Figure A.22 shows that the fraction of early- and mid-30s URM Californians earning wages
above $100,000 indeed disproportionately declined in the years that those cohorts would have lost
selective university access as a result of Prop 209.67 For example, relative to a 2010 baseline, URM
Californians between ages 33 and 37 became about 10 percent less likely to earn over $100,000
between 2012 (when they all would have enrolled at university before Prop 209) and 2017 (when
they all would have enrolled after Prop 209). Members of several comparison groups – including
slightly older URM Californians, similar-aged URM non-Californians, and similar-aged non-URM
Californians – all became slightly more likely to earn over $100,000 over the period. This suggests
that the baseline estimates’ focus on UC applicants may yield an underestimate of the aggregate
labor market effect of Prop 209 for high earners, with further declines likely coming from two
groups: (1) URM non-UC applicants who could have become less likely to earn admission to
the more-selective public CSU universities, which were also bound by Prop 209; and (2) URM
high school graduates deterred from UC application by Prop 209. The next section quantifies the
magnitude of this latter group.

2.5 Application Deterrence and Model Robustness
The primary potential threat to the difference-in-difference design is that Prop 209 may have
deterred some URM students from sending an application to UC, which could have further
contributed to income inequality but may also generate sample selection bias in the baseline
estimates (Long, 2004a; Dickson, 2006; Yagan, 2016).68 I quantify the magnitude of this potential
bias by first estimating the number and character of ‘missing’ URM UC applications. I match the
applicant data to the annual number of 1994-2001 “UC-eligible” graduates from each public
California high school by gender and ethnicity – with UC eligibility indicating that they had
satisfactorily completed accredited college-level coursework – and estimate models of the form:

Asyea
UCsye

=
∑

e′∈{A,B,H}

∑
y′∈{96,98,00}

βe′y′a1e=e′,y∈{y′,y′+1} + ζsea + ηsya + εsyea (2.2)

where Asyea is the number of UC-eligible UC applicants from school s in years {y, y + 1} of
ethnicity e in AI range a, and UCsye is the number of UC-eligible high school graduates in those
years. ζsea and ηsya are school-ethnicity and school-year fixed effects. Years are grouped into four
pairs, from ‘94-95 to ’00-01; ethnicities are grouped into Asian, Black, Hispanic, and white; and
AI bins are defined as 200-point bins from 4,000 to 8,000. I estimate Equation 2.2 by weighted
least squares (weighting to the student level using UCsye) separately for each a, and interpret βe98a

67For this ACS analysis, I define Californians as those born in the state, to identify those likely impacted by Prop
209 and abstract away from post-education cross-state mobility.

68Card and Krueger (2005) use SAT ‘sends’ (measured by College Board) as a proxy for university applications
and present evidence that the decline in UC applications after 1998 was wholly driven by low-testing students unlikely
to be qualified for UC admission. Appendix A.6 replicates their finding using College Board data and shows that
replacing SAT ‘sends’ with actual applications (observed by linking College Board and UC applicant records) reverses
the conclusion; in fact, after Prop 209 many highly-qualified URM public high school graduates sent SAT scores to a
UC campus but nevertheless did not apply.
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as the average change in the proportion of UC-eligible e high school graduates who applied to
UC following Prop 209, implicitly assuming that the true distribution of AI across school-year-
ethnicity cohorts remains unchanged over time.69

Figure 2.7 presents estimates of the Black and Hispanic βe,‘98−99,a coefficients from Equation
2.2, scaled by the average total number of e UC-eligible California high school graduates in the
‘98-99 cohorts. The figure also shows the proportion of those applicants who would have likely
been admitted to some UC campus had they applied, where admission is predicted solely by e and
AI .70 The figure shows that while some deterred Black and Hispanic high school graduates were
unlikely to be admitted to any UC campus, there were also a large number of applicants certain to
be admitted to some campus – indeed, very likely to be admitted to UC’s more-selective campuses
– who were deterred from UC application after Prop 209.71 The sum across the bars suggests that
the number of Black and Hispanic UC applicants declined by 12-13 percent (about 1,200 per year),
most of whom would have likely been admitted to some UC campus.72

Given this shift in the UC applicant pool, I test for the magnitude of sample selection bias in
the baseline difference-in-difference estimates in the previous section by re-estimating the models
with a series of additional covariates that could partially absorb remaining bias. First, I follow Card
and Rothstein (2007) and construct a cross-school Heckit control function treating p =

Asiyea

UCsiye
as

applicant i’s likelihood of applying to UC (Heckman, 1979).73 I also construct an alternative
Heckit function defining p by the leave-one-out percentage of UC-eligible high school graduates
who applied to UC by an applicant’s school, gender, and ethnicity.74 In addition to the inverse
mills ratios of these p statistics, I also collect a detailed set of applicant covariates excluded from
the main specifications: gender, parental education, log family income, parental occupations, UC
eligibility, high school GPA rank, and the number of enrolled 12th-grade honors courses.75

69Table A.29 presents estimated coefficients for a specification of Equation 2.2 across all AI . It shows that URM
application rates following Prop 209 declined by between 4 and 6 percent of all UC-eligible URM public high school
graduates.

70That is, the blue bar is the product of the black bar and the proportion of 1998-1999 URM UC applicants in bin
a who were admitted to at least one campus. See Figure A.11 for evidence that e and AI were highly predictive of
applicants’ admission at most UC campuses, even after 1998. Not every UC-eligible applicant was admitted to a UC
campus; many were rejected from each campus to which they applied, and even the least-selective Riverside campus
rejected low-AI applicants with certain intended majors. Admit estimates implicitly assume that each UC applicant’s
admission is small relative to the size and composition of the applicant pool.

71Table A.23 links these application declines to the AI- and campus-specific enrollment changes presented in
Figure 2.3 to show that application deterrence caused a decline in URM UC enrollment by about 450 students, half
from Berkeley and UCLA. Combined with the estimated enrollment decline among UC applicants, this implies that
Prop 209 caused an annual decline in URM UC enrollment of about 800 students in ‘98-99, or 14 percent. This closely
matches the differently-calculated estimates of Bleemer (2019a).

72Figure A.23 presents additional specifications of Equation 2.2. It shows that URM students were particularly
discouraged from applying to the Berkeley and UCLA campuses, and that UC-ineligible applicants were only slightly
deterred by Prop 209. As a placebo test, it also shows that application rates among Asian students increased by less
than 2 percent relative to white applications.

73This control function formally requires the exclusion restriction that the within-school-ethnicity-cohort choice
to apply to any UC campus is (conditionally) uncorrelated with student outcomes. Its inclusion absorbs cross-group
selection into UC application.

74As expected, including either of these p statistics as covariates in Equation 2.1 yields statistically-significant
negative coefficients (implying negative selection out of UC application), while their inverse mills ratios yield
significant positive coefficients.

75Rank is determined using UC GPA among UC applicants in that school-year. Parental education indicates the
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I conduct a Monte Carlo exercise randomly selecting sets of these additional covariates for
model inclusion (following Card, Fenizia and Silver, 2018) to test the presented estimates’
sensitivity to alternative covariate specifications. In particular, I re-estimate Equation 2.1
specifying Xiy in the following ways: null (no covariates); including only the components of AI
(as in the baseline specification); and then adding between 1 and 9 additional sets of covariates,
selecting those that lead to the largest and smallest estimates of β‘98−99. The resulting estimates
are shown in Figure 2.8 for six main outcomes.

While the AI components are important covariates for several outcome measures, likely
absorbing substantive changes in the composition of UC applicants around 1998, there is no
further combination of these highly-detailed control functions and covariates that meaningfully
changes any of the β‘98−99 estimates, with the exception of six-year degree attainment growing
slightly more negative.76 These results show that the baseline estimates are highly insensitive to
alternative model specifications conditioning on applicants’ academic, demographic, and
socioeconomic status and cross-school application behavior, though they may reflect sample
selection bias on unobservables like orthogonal dimensions of their high school leadership
activities.

2.6 Impact of Prop 209 on Non-URM UC Applicants
Prop 209 did not measurably impact the overall weighted-average institutional value-added of
enrollment at public or all California universities (see Figure A.12); the decline in enrollment
quality among URM students was offset by an improvement among non-URM students. As
discussed in Section 2.3 above, I interpret the baseline difference-in-difference estimates as the
impact of Prop 209 on URM UC applicants, despite the fact that – assuming constant treatment
effects – as much as 20 percent of each estimate may reflect changes among non-URM applicants
caused to enroll at more-selective universities. Two sets of additional evidence suggest that the
per-applicant impact of Prop 209 is smaller for non-URM than URM applicants (as in Dale and
Krueger, 2014; Bleemer, 2018a), implying that non-URM outcomes explain less than 20 percent
of each baseline estimate. First, single-difference estimates show that non-URM wage outcomes
are smooth in the years before and after Prop 209, while URM wage outcomes sharply and
persistently decline in 1998 (see Figure A.24). While this provides suggestive evidence of
relatively small returns to more-selective UC enrollment for “crowding-in” non-URM students,
the absence of an unimpacted comparison group prohibits separate identification of Prop 209’s
effect on non-URM students and secular trends.

Second, I employ an alternative research design to directly estimate the admissions return to
one UC campus – UC Berkeley, the most selective campus and the campus where URM applicants’
relative admissions advantages were largest until Prop 209 – for the non-URM applicants who were

applicants’ parents’ highest education level (with seven codes); parental occupation indicates the parents’ occupation
set (with 172 codes). Covariates with missing values are included with missing value indicators.

76For example, high school fixed effects explain 8.8 percent of variation in six-year degree attainment among
bottom-AI-quartile UC applicants (Panel (a)); the addition of the AI covariates brings the R2 to 12.9 percent; and
adding the full suite of additional covariates raises the R2 to 15.3 percent. Those same three R2’s for conditional
log wages are 3.0, 5.8, and 6.9 percentage points. These increasing R2 values suggest that adding sociodemographic
covariates could have been expected to shift the estimated treatment effect of Prop 209 if the estimates exhibited
sample selection bias on observables.
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on the Berkeley admissions margin in the years before Prop 209. These non-URM students were
likely among those who would have most benefited from Prop 209, since many of them could have
been admitted in the absence of Berkeley’s affirmative action policy.

In 1996 and 1997 Berkeley guaranteed admission to applicants above an annually-determined
AI threshold.77 Admissions officers then admitted some lower-AI applicants based on other
application characteristics. Figure 2.10(a) shows the admissions likelihood of ‘96-97 non-URM
Berkeley applicants at every AI , adding 70 points to 1996 AIs to align the two years’ thresholds
(7,360 and 7,430); admission was near-guaranteed above the threshold and provided to only half
of slightly below-threshold applicants. Because applicants near Berkeley’s admissions threshold
are quasi-randomly distribution on one or the other side of the threshold, differentiated by small
test score or grade differences, I interpret outcome differences on either side of the threshold as
resulting from the above-threshold non-URM applicants’ greater access to UC Berkeley.

I estimate the effects of UC Berkeley admission for on-the-margin non-URM ‘96-97
applicants using local linear regression discontinuity models following Calonico, Cattaneo and
Titiunik (2014).78 Figure 2.10(b) shows that the increased likelihood of Berkeley admission
causes about one-third of newly-admitted on-the-margin non-URM students to enroll. However,
those students would have otherwise enrolled at similar-quality institutions on average; Panel (c)
shows that the “CFSTY” wage value-added of applicants’ enrollment institutions is unimpacted at
the threshold.79 Most of the students would likely have otherwise enrolled at UCLA or UCSD
(6.1 percentage points, s.e. 3.5) or out-of-state universities (8.0 percentage points, s.e. 3.4).

Panels (d) to (f) of Figure 2.10 show that graduate school enrollment, early-30s wages, and
the number of years spent by each applicant in their early 30s earning over $150,000 per year are
smooth across the Berkeley admissions threshold.80 While the estimated standard errors cannot
reject moderate returns to UC Berkeley admission, the observed effects suggest that on-the-margin
non-URM students have access to alternative similar-value universities, and switching enrollment

77See Figure A.13. Berkeley chose its annual threshold so that 50 percent of its admitted applicants had AI
above the threshold. As a result, the threshold could not be chosen until after Berkeley observed all applicants’ AIs,
prohibiting applicants from manipulating their AI to exceed the threshold. Admissions around the threshold was
noisier in ‘94-95; see Figure A.1.

78Estimates are produced using the rdrobust package, version 0.99.8 (Calonico, Cattaneo and Titiunik, 2015). Each
plot visualizes the 6,086 ‘96-97 non-URM Berkeley applicants within 400 AI points of the threshold; regressions
include a 1997 indicator covariate. The distribution of applicants is smooth across the threshold, with the McCrary
(2008) test yielding a p-value of 0.58 at the threshold. Sociodemographic characteristics are also smooth across the
threshold: I predict annual log early-30s wages by gender-ethnicity indicators, log parental income, and parental
education among ‘96-97 freshman UC-eligible UC applicants – omitting in-sample applicants within 400 AI of the
threshold – and find that crossing the threshold yields lower ‘predicted’ income by 0.00027 log points, with standard
error 0.018.

79See Appendix A.9 for value-added definition. The estimated change in institutional six-year graduation rate
across the threshold is -0.2 percentage points, with a 2.1 standard error. About 9 percent of near-threshold students have
no observed four-year enrollment, with only 1 percent enrolling at a community college but no four-year institution
within six years.

80As above, “early 30s” is defined as 12-16 years after UC application, when most applicants are 30-34.
There is no estimated change in likelihood of California employment across the Berkeley access threshold; despite
their increased likelihood of out-of-state university enrollment, applicants’ number of early-30s years employed in
California increases by 0.14 years (s.e. 0.17). I use $150,000 as a threshold instead of $100,000 (as above) because
of the strongly positively-selected sample, with one-third of in-sample applicants (within 400 AI of the threshold)
earning over $100,000 in their early 30s. $150,000 is a better indicator of unusually high wages, achieved in an
average 0.60 out of 5 years for in-sample applicants.
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to UC Berkeley provides little measurable long-run economic return.
Appendix A.10 presents comparable estimates for UC Davis, the only other UC campus to set

a binding AI admissions threshold before Prop 209. It shows that on-the-margin non-URM
applicants rejected from UC Davis enroll at lower-value-added universities but similarly face no
observable change in their educational or wage outcomes, though there is some evidence of
non-random selection into applying to Davis above its admissions threshold. Nevertheless, if
these estimated returns to UC Berkeley and Davis are externally valid for the non-URM students
who crowded into more-selective UC campuses following Prop 209, this suggests that Prop 209
provided minimal benefits to non-URM students.

2.7 STEM Course Performance and Persistence
Having documented Prop 209’s high-level effects on impacted young URM Californians, I next
turn to an investigation of educational mechanisms that could explain these effects. Several
previous studies have hypothesized that students who attend more-selective universities as a result
of affirmative action will earn lower grades and become less likely to persist in demanding
courses, especially in STEM fields, than if they’d enrolled at a less-selective university with
lower-testing peers.81 However, no previous study has directly examined the impact of affirmative
action on URM students’ actual course performance and STEM course progression, instead
focusing on overall grade point averages and major choice.82 Complementing the finding that
Prop 209 failed to increase URM UC applicants’ likelihood of earning a STEM degree – indeed,
it led to the opposite effect – I further test this “Science Mismatch Hypothesis” by estimating the
impact of Prop 209 on URM UC enrollees’ performance and persistence along introductory
STEM course sequences.83

Using five UC campuses’ detailed course enrollment records, I match core introductory
STEM course sequences across these campus (e.g., each campus’s two-course introductory
Physics sequence) and estimate models of students’ performance and persistence along these
sequences using an extension of the baseline difference-in-difference models estimated above:84

81For example, Loury and Garman (1993) argue that “with higher required levels of performance and smaller
offsetting increases in actual performance, blacks at more selective schools will have poorer grades, be less likely to
graduate, and choose less lucrative majors than if they had attended less selective institutions.” Recent scholarship has
frequently proxied “lucrative majors” with the STEM major designation; Arcidiacono, Aucejo and Hotz (2016), for
example, notes that “STEM majors [earn] substantially more than other college degrees with the exception of perhaps
business ... and the STEM premium has increased over time”.

82Differences in overall GPAs are at least as likely to reflect differing grading standards across departments and
between lower- and upper-division courses as they are to reflect student course performance (Arcidiacono, Aucejo
and Spenner, 2012; Bleemer and Mehta, 2020a). Differences in major choice may reflect that students have different
preferences across majors at more- or less-selective institutions in a manner unrelated to course performance.

83The main analysis below tests the Science Mismatch Hypothesis as stated by Griffith (2010) and Arcidiacono,
Aucejo and Hotz (2016). Other studies have tested narrower versions of the Hypothesis, claiming only that URM
students admitted under affirmative action are lower-performing in STEM courses than their non-URM peers,
unconditional (Loury and Garman, 1993; Holzer and Neumark, 2000; Fischer and Massey, 2007) or conditional on
prior academic preparation (Rose, 2005). I further analyze these alternative Hypotheses by examining the course
performance and persistence of UC Berkeley students before and after Prop 209 in Appendix A.7, finding little
evidence to support either.

84Introductory STEM courses include four courses in Chemistry (two introductory, two organic), two in Biology,
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Yiysm = αhi + δy + β0URMi +
2002∑
t=1994

1{t=y}βyURMi + γXiy + εiysm (2.3)

for student i from high school hi in cohort y who takes course s in term m. I define three outcomes
of interest for each completed course: the student’s SAT percentile relative to their peers; the
student’s grade (out of 4 grade points); and the student’s persistence, defined as an indicator for
whether they completed the subsequent course in the sequence (e.g. whether the student completed
Chemistry 2 after completing Chemistry 1).85 The model is stacked over s and estimated across
courses, weighted evenly across students. Covariates Xiy include the components of AI as above.
Standard errors are two-way clustered by student and course.

This definition of persistence mirrors the concept employed in the STEM Mismatch
Hypothesis. Because the regression is weighted evenly across individuals, persistence can be
heuristically understood as ranging from 0 to 100 percent. A student whose only completed
STEM course is Chemistry 1, without ever completing Chemistry 2, would have persistence of 0
percent. A student who takes Chemistry 1, 2, and 3 but not 4 would have persistence 66.6 percent,
since they persisted after two courses but not the third. A student who takes only all 3 Computer
Science courses would have persistence of 100 percent. The STEM Mismatch Hypothesis holds
that URM students admitted by affirmative action have lower STEM persistence than they would
have had at less-selective universities.

In the two years before Prop 209, URM UC enrollees earned lower average grades in
introductory STEM courses by 0.42 GPA points and were less likely to persist along STEM
course sequences by 11.2 percentage points.86 These gaps are fully explained by URM enrollees’
poorer prior academic opportunity and preparation; their performance and persistence was
indistinguishable from those of academically-comparable non-URM students across the five UC
campuses. Relative to academically-comparable non-URM UC students, however, ‘96-97 URM
students were 7.3 percentiles lower in their classes’ SAT distribution, largely reflecting their
enrollment at relatively more-selective UC campuses. The first panel of Figure 2.9 shows that
Prop 209 caused URM students to enroll in STEM courses in which their average SAT percentile
was about 4 percentage points higher, closing the gap by more than half. However, this increase
in class rank did not translate into any observable improvement in those students’ likelihood of
STEM persistence or course grades. URM enrollees STEM performance and persistence were
unchanged when their class rank improved; the 95 percent confidence interval around the
estimated change in STEM persistence narrowly bounds 0, from -2.3 to 3.5 percentage points,
small effects relative to the raw STEM persistence ethnicity gap of 11.2 percentage points before
Prop 209. Figure A.25 shows that Prop 209 similarly impacted Black and Hispanic UC enrollees’
STEM persistence and performance outcomes.

I also estimate a difference-in-difference model of UC enrollees’ likelihood of completing any
STEM major (following Equation 2.1). URM UC enrollees’ STEM major choice is precisely

two in Physics, and three in Computer Science. In nearly all cases, each of these courses requires the previous course
as a prerequisite. When universities on the quarter system include three courses along a sequence, I include the first
and third course. Specific course details are provided in Appendix A.8. Estimates are largely insensitive to omitting
students in Colleges of Engineering, who may face different incentives around completing STEM course sequences.

85Persistence is not defined for the final course in each sequence. Repeated course grades are omitted.
86See Table A.30, and Table A.31 for course-specific estimates.
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unchanged relative to academically-comparable non-URM enrollees after Prop 209, with a 95
percent confidence interval rejecting increases above 1.5 percentage points.87 These findings
suggest that selectivity differences between public research universities are at best a second-order
determinant of URM students’ relative persistence and performance in STEM courses; instead,
they appear largely explained by compositional differences in prior academic opportunity and
preparation. In turn, the absence of changed STEM performance and persistence after Prop 209
suggests that course performance or persistence are not primary explanations for the effect of
Prop 209 on students’ educational and wage outcomes.

2.8 Discussion: Affirmative Action and Efficiency
The evidence presented above have implications for both the equity and efficiency of affirmative
action. While affirmative action may have second-order effects on students whose admission was
unrelated to the policy, such as through peer effects (Sacerdote, 2011) and the effect of campus
diversity (Carrell, Rullerton and West, 2009), to a first approximation the efficiency of affirmative
action can be measured by the net impact of Prop 209 on two groups of students: the URM
students targeted by affirmative action and the non-URM students who would have been admitted
otherwise.88 Since net enrollment at more- and less-selective universities appears roughly
unaffected by Prop 209, this net effect can instead be summarized by the average relative returns
to more-selective university enrollment for these two groups of students.89

The single-difference and regression discontinuity estimates presented in Section 2.6 suggest
that the non-URM students whose enrollment was impacted by Prop 209 received minimal
returns from those changes, in line with the hypothesis that the return to more-selective university
enrollment was relatively larger for the URM students targeted by affirmative action than it was
for the non-URM students who replaced them after Prop 209. Unfortunately, Berkeley’s URM
admissions policies did not generate a sharp change in admissions likelihood at any AI ,
prohibiting parallel analysis for that group of students (See Figure A.1).

That hypothesis is further supported by a comparison between the change in URM students’
early-30s wages and the change in the wage value-added of their enrollment institutions. While
Prop 209 led URM students to enroll at universities with lower early-30s wage value-added by
as much as $1,000, those students’ actual early-30s annual wages fell by more than $2,000 (see
Tables 2.2 and 2.4). Assuming that the presented value-added statistics either approximate or
relatively overestimate the average difference in treatment effects of enrolling at those universities,
this suggests that the wage effect of more-selective university enrollment for the students impacted
by affirmative action is significantly larger than universities’ average treatment effect.90 While

87The overall decline in STEM attainment thus appears driven by students who exit these UC campuses following
Prop 209.

88Pareto efficiency is very unlikely in this context; even a single non-URM student benefiting from more-selective
enrollment as a result of Prop 209 would prove the policy’s inefficiency. This section instead focuses on Kaldor-Hicks
allocative efficiency.

89Figure A.12 shows that enrollment growth at California universities may have slowed in 1997 and 1998, but that
the decline in URM Californians’ average institutional value-added was matched by an increase among non-URM
Californians, resulting in no net change in enrollment quality after Prop 209.

90As discussed above, there is reason to believe that the presented value-added statistics remain somewhat biased
by positive selection into more-selective universities, suggesting that they relatively overestimate differences between
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the local average wage treatment effect for “crowding-in” non-URM students remains unobserved,
that effect is very likely to be lower than the above-average effects for the URM students who
benefited from affirmative action.91 These evidence suggest that affirmative action improved the
allocative efficiency of California higher education.

2.9 Conclusion
Proposition 209 banned race-based affirmative action at public California universities starting in
1998. In the years immediately after the ban, URM UC applicants’ university enrollment sharply
shifted away from UC’s most-selective Berkeley and UCLA campuses, causing a cascade of
students to enroll at lower-quality public institutions and some private universities. Contrary to
the Mismatch Hypothesis, less-selective university enrollment did not lead UC’s remaining URM
students to earn higher grades in challenging courses, but it did cause URM applicants to become
less likely to earn STEM degrees and any graduate degrees, and undergraduate degree attainment
declined among lower-testing URM applicants. These poorer educational outcomes in turn
contributed to a 5 percent average annual decline in Hispanic – but not Black – applicants’
early-career wages, exacerbating inequality by decreasing the number of early-career URM
Californians earning over $100,000 by at least 3 percent. Prop 209 also discouraged thousands of
additional academically-competitive URM students from sending applications to public research
universities, likely leading to additional reductions in California’s high-earning URM workforce.

Affirmative action decreases non-URM student enrollment for each net additional URM
student that it causes to enroll. However, single-difference and regression discontinuity evidence
suggest that those impacted non-URM students – whose more-selective university enrollment
increased following Prop 209 – experienced relatively small long-run educational or wage effects
after Prop 209. URM students, on the other hand, had received above-average wage returns to
more-selective university enrollment under affirmative action, and thus faced disproportionate
declines after Prop 209, suggesting that Prop 209 reduced both the equity and efficiency of
California higher education. White and Asian students were proportionally impacted by Prop
209, with no evidence of disparate impacts for one or the other.

These findings differ from several existing analyses of the impacts of affirmative action, even
those focusing on Prop 209, and highlight the importance of high-quality and detailed
administrative data and a transparent research design to help to account for sample selection and
omitted variable bias. They also contextualize the impact of university affirmative action policies

universities. Moreover, the VA estimates by quartile show that the VA wage estimates generally poorly match the
observed effects of Prop 209, with the true impact more widely distributed across theAI distribution than the expected
effects based on changes in VA. Figure A.26 visualizes these discrepancies, plotting smoothed (but not covariate-
adjusted) difference-in-difference averages for both VA and actual degree attainment and early-30s wages. The two
lines poorly mirror each other, suggesting both that VA poorly-explains and substantially underestimates the observed
labor market effects of Prop 209.

91Table A.13 presents VA and observed degree attainment and early-30s wages for several VA specifications,
aligning samples for missing data. In addition to confirming the discussion above, it shows that extending the “MH”
approach to indicators for the set of all universities to which the applicant applied (as proxied by SAT score sends)
somewhat improves the associated wage VA estimates, while allowing gender- and ethnicity-specific VA coefficients
(using the “CFSTY” approach) yields precise 0’s for the wage VA estimates across all AI quartiles, implying
particularly poor performance.
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relative to other policies aiming to close opportunity gaps for low-income and Black and Hispanic
youths. Some limitations remain. The presented estimates are reduced-form, averaging over many
URM students who were likely unimpacted by the Prop 209 policy change, which means that they
likely underestimate the effect of Prop 209 on students whose enrollment was shifted by UC’s
policy change. They omit the impacts of Prop 209 on URM Californians dissuaded from UC
application by Prop 209, who may have benefited from affirmative action at UC. The estimates
also omit labor market outcomes for (endogenously-selected) non-Californian and self-employed
workers. Nevertheless, this study documents the meaningful potential of affirmative action
policies to promote economic mobility in the U.S. – though perhaps not to close white-Black
mobility gaps – and the equity and efficiency consequences of affirmative action’s prohibition.
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Figure 2.1: ‘Normal’ URM UC Applicants’ Greater Likelihood of Admission by Campus, Year,
and AI

(a) Berkeley (b) UCLA (c) San Diego

(d) Santa Barbara (e) Irvine (f) Davis

(g) Santa Cruz (h) Riverside

Note: The difference between the percent of URM applicants and the percent of non-URM applicants admitted to
each campus by academic index (AI), in each of four two-year periods (1994-2001), with darker lines corresponding
to earlier periods. The two later periods are after the implementation of Prop 209 ended UC’s affirmative action
policies. The displayed statistics show the total annual number of additional URM students admitted to each campus
in each period based on their higher likelihood of admission, calculated as the sum of the products between the
increased admissions likelihood and the number of URM applicants by year and AI . The sample is restricted to
freshman fall California-resident applicants who were “normal,” in that they (a) were UC-eligible, which means that
they satisfactorily completing the required high school coursework, and (b) selected intended majors that did not
have special admissions restrictions (e.g. engineering at some campuses). UC Riverside admitted all such applicants.
“URM” includes Black, Chicano, Latino, and Native American applicants. Source: UC Corporate Student System.
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Figure 2.2: UC Enrollment before and after Prop 209 by Ethnicity and AI Percentile

(a) More-Selective UCs (b) Selective UCs (c) Less-Selective UCs

Note: The percent of all UC applicants who first enroll at each set of UC campuses before (‘96-97 cohorts) and after
(‘98-99 cohorts) the end of affirmative action, by URM status and by percentile of academic index (AI) measured
among 1996-1999 URM UC applicants. First enrollment measured in NSC up to six years after UC application.
Statistics are smoothed with a triangular kernel with bandwidth 15. Source: UC Corporate Student System and
National Student Clearinghouse.
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Figure 2.3: Changes in University Enrollment after Prop 209 by Ethnicity and AI Percentile

(a) UC Berkeley (b) UCLA (c) UC San Diego

(d) Selective UCs (e) Less-Selective UCs

(f) Cal. State Universities (g) Community Colleges (h) No NSC Enrollment

(i) Ivy+ Universities (j) CA Private Universities (k) Non-CA Universities

Note: Difference in percent of UC applicants who first enroll at each postsecondary institution(s) between 1998-
1999 and 1996-1997, by URM status and by percentile of academic index (AI) measured among 1996-1999 URM
UC applicants. First enrollment measured in NSC up to six years after UC application; university groups partition
possible enrollments. Statistics are smoothed with a triangular kernel with bandwidth 15. “Ivy+” universities include
the Ivy League, MIT, Stanford, and U. Chicago; private and non-CA universities exclude those institutions. Source:
UC Corporate Student System and National Student Clearinghouse.
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Figure 2.4: Annual Difference-in-Difference Estimates of URM UC Applicants’ Outcomes after
Prop 209

(a) Institutional Wage “Value-Added” (b) BA Attain., Bottom AI Q. (c) STEM Degree Attainment

(d) Grad. Degree Attainment
(e) Avg. Annual Conditional Log
Wages (f) Avg. Eth-Specific Wage Percentile

Note: OLS difference-in-difference coefficient estimates of Equation 2.1, the change in URM UC applicant outcomes
relative to non-URM applicants, compared to the 1997 baseline. For details on outcomes (a) to (e), see notes to Tables
2.2 (with institutional value-added estimated following Chetty et al. (2020a)), 2.3, and 2.4. Panel (f)’s outcome is
defined as the average annual ethnicity-specific wage percentile between 6 and 16 years after UC application, omitting
zero-wage years; percentiles are defined relative to the empirical distribution of wages earned in that year by same-
ethnicity (URM, Asian, or White/Other) college-educated California ACS respondents born between 1974 and 1978,
few of whom were directly impacted in university enrollment by Prop 209. Models include high school fixed effects,
ethnicity indicators, and the components of UC’s Academic Index (see footnote 47); 1994 NSC data are omitted. Panel
(b) restricts the sample to the bottom AI quartile as measured among ‘96-97 URM UC applicants. Bars show robust
95-percent confidence intervals. Source: UC Corporate Student System, National Student Clearinghouse, California
Employment Development Department, and the American Community Survey (Ruggles et al., 2018).
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Figure 2.5: Annual Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Wage
Outcomes

(a) CA Employment (b) Annual CA Wages (c) Annual Log CA Wages

Note: Estimates of β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC
freshman California-resident applicants’ employment outcomes compared to non-URM outcomes after Prop 209.
Outcomes defined as non-zero California wages (“CA Employment”) and California wages in dollars and log-
dollars (omitting 0’s) as measured in the California Employment Development Department database, which includes
employment covered by California unemployment insurance. Coefficients in each year after UC application are
estimated independently. Models include high school fixed effects and the components of UC’s Academic Index (see
footnote 47). Academic Index (AI) is defined in footnote 25. Annual wages CPI-adjusted to 2018 and winsorized at
top and bottom 1 percent. Robust 95-percent confidence intervals shown. Figure A.18 presents separate estimates for
Black and Hispanic applicants. Source: UC Corporate Student System and the California Employment Development
Department.
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Figure 2.6: Annual Difference-in-Difference Estimates of URM UC Applicant Outcomes by
Ethnicity

(a) Institutional Wage “Value-Added” (b) BA Attain., Bottom AI Q. (c) STEM Degree Attainment

(d) Grad. Degree Attainment
(e) Avg. Annual Conditional Log
Wages (f) Avg. Eth-Specific Wage Percentile

Note: OLS difference-in-difference coefficient estimates of an extension of Equation 2.1 interacting βt with Black
and Hispanic indicators, estimating the change in Black and Hispanic UC applicant outcomes relative to non-URM
applicants compared to the 1997 baseline. For details on outcomes (a) to (e), see notes to Tables 2.2, 2.3, and 2.4;
institutional value-added is estimated following Chetty et al. (2020a). Panel (f)’s outcome is defined as applicants’
average annual ethnicity-specific wage percentile between 6 and 16 years after UC application, omitting zero-wage
years; percentiles are defined relative to the empirical distribution of wages earned in that year by same-ethnicity
(URM, Asian, or White/Other) college-educated California ACS respondents born between 1974 and 1978, few of
whom were directly impacted in university enrollment by Prop 209. Models include high school fixed effects, ethnicity
indicators, and the components of UC’s Academic Index (see footnote 47); 1994 NSC data are omitted. Panel (b)
restricts the sample to the bottom AI quartile as measured among ‘96-97 URM UC applicants. Native American
applicants are omitted. Bars show robust 95-percent confidence intervals. Source: UC Corporate Student System,
National Student Clearinghouse, California Employment Development Department, and the American Community
Survey (Ruggles et al., 2018).
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Figure 2.7: Estimated Declines in Annual 1998-99 Applications and Admissions by Ethnicity

(a) Black (b) Hispanic

Note: Estimates of the change in the annual number of UC applicants (and admits) in 1998-1999 by ethnicity (e)
and 200-point AI bin, relative to 1994-1995. The height of each black bar is the product of βe,98−99,a (estimated
in Equation 2.2) and

∑
s UCs,98−99,e, the average number of UC-eligible California public high school graduates of

ethnicity e in 1998-1999. The height of each overlaying blue bar is the product of the black bar and the percent of
1998-1999 UC-eligible e UC applicants in that AI range admitted to at least one UC campus. The statistics in the
bottom right sum the bars across all AI and report the sums as a share of all e UC applicants. 95-percent confidence
intervals on the black bars from βe,98−99,a robust standard errors. Source: UC Corporate Student System and the
California Department of Education.
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Figure 2.8: Alternative Covariate Specifications of URM UC Applicants’ Post-1998 Estimated
Outcomes

(a) BA Attain., Bottom AI Q. (b) STEM Degree Attainment (c) Grad. Degree Attainment

(d) Avg. Annual Conditional Log
Wages (e) # Above-$100K Years in Early 30s(f) Avg. Eth-Specific Wage Percentile

Note: Estimates of β‘98−99 from Equation 2.1, an OLS difference-in-difference model of the change in six ‘96-99
CA-resident freshman URM UC applicant outcomes after Prop 209 relative to non-URM applicants, with different
specifications of the covariate matrix Xiy . Specification 0 sets Xiy to be null, while Specification 1 includes
the components of UC’s Academic Index (see footnote 47). Specifications 2-10 add additional sets of covariates
progressively, presenting the highest and lowest β‘98−99 estimates from models including 1-9 additional sets of
covariates, respectively: gender indicator, log family income, (7) highest parental education indicators, (289) parents’
occupation indicators, high school GPA rank, number of 12th-grade honors courses, UC eligibility indicator, and
Heckit control functions constructed using two estimates of p: Asiyea

UCsiye
(see Equation 2.2) and the leave-one-out percent

of UC-eligible graduates who applied to UC that year in i’s school, gender, and ethnicity. For details on outcomes, see
notes to Table 2.3 and 2.4. Panel (a) restricts the sample to the bottom AI quartile as measured among ‘96-97 URM
UC applicants. Bars show the union of the robust 95 percent confidence intervals of the two presented estimates.
Source: UC Corporate Student System, National Student Clearinghouse, and California Employment Development
Department.
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Figure 2.9: Difference-in-Difference Estimates of URM UC Enrollees’ STEM Performance and
Persistence

(a) SAT Percentile in STEM Class (b) STEM Course Grade

(c) STEM Persistence (d) STEM Major Completion

Note: Difference-in-difference WLS regression coefficient estimates of UCB, UCSB, UCD, UCSC, and UCR
enrollees’ introductory STEM course performance or persistence, differencing across URM status following Equation
2.3, relative to 1997. In Panels (a)-(c) each observation is a CA-resident freshman student-course pair in an
introductory biology, chemistry, physics, or computer science course (see Appendix A.8) taken within 2.5 years of
matriculation, stacking over courses and weighted evenly across observed students. SAT percentile is the fraction
of other 1994-2002 freshman CA-resident peers who have lower SAT scores than the student; persistence indicates
completing the subsequent course in the introductory STEM course sequence; and course grade is the grade points
received in completed courses. In Panel (d) each observation is a student; the outcome indicates completing any UC
STEM degree. Models include high school fixed effects, ethnicity indicators, and the components of UC’s Academic
Index (see footnote 47). UCSC is omitted from the GPA model because it did not mandate letter grades in the period.
95-percent confidence intervals are two-way clustered by student and course sequence level (e.g. second chemistry
course). Source: UC Corporate Student System and UC-CHP Database (Bleemer, 2018b).
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Figure 2.10: Estimated Return to ‘96-97 UC Berkeley Enrollment for On-the-Margin Non-URM
Applicants

(a) UC Berkeley Admission (b) UC Berkeley Enrollment (c) “CFSTY” Inst. VA

(d) Earned Graduate Degree
(e) Avg. Annual Log Wages in Early
30s (f) # of > $150, 000 Years in Early 30s

Note: Regression discontinuity plots and estimates around the 1996-1997 UC Berkeley guaranteed admission
AI threshold among non-URM applicants, estimated by local linear regression following Calonico, Cattaneo and
Titiunik (2014). See the notes to Tables 2.2, 2.3, and 2.4 for a description of the outcome variables; “CFSTY”
institutional value-added measured relative to CSU Long Beach. Reduced form coefficients from local linear
regressions (conditional on year), with bias-corrected robust standard errors in parentheses. Running variable defined
as AI + (70 × 11997) to align thresholds over years. Source: UC Corporate Student System, National Student
Clearinghouse, and the CA Employment Development Department.
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Table 2.1: Descriptive Statistics of 1990s UC Admissions by Ethnicity

Application Admission Enrollment

‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9

Panel A: Non-URM Applicants

Average Number or Percent of Applicants

More Selective UCs 15,659 18,941 22,262 48.2 43.2 37.7 15.2 13.4 13.2
Selective UCs 12,705 14,383 17,358 77.3 72.7 63.2 19.0 19.2 16.7
Less Selective UCs 7,251 7,827 10,098 83.7 85.5 84.5 15.7 18.4 17.5
All UCs 33,602 37,972 42,268 84.8 83.5 83.9 49.6 49.4 49.6

Average SAT Score

More Selective UCs 1224 1227 1237 1320 1335 1339 1277 1294 1299
Selective UCs 1156 1160 1171 1193 1202 1222 1140 1156 1172
Less Selective UCs 1135 1134 1138 1157 1154 1158 1124 1121 1123
All UCs 1182 1187 1194 1207 1212 1216 1196 1208 1217

Panel B: URM Applicants

Average Number or Percent of Applicants

More Selective UCs 3,843 4,113 4,438 56.7 49.8 27.1 17.8 15.9 10.0
Selective UCs 2,889 2,970 3,356 78.2 74.5 57.2 18.0 16.5 15.6
Less Selective UCs 2,229 2,200 2,757 81.6 79.2 76.2 17.9 16.4 17.9
All UCs 9,478 9,498 9,922 81.3 79.4 73.4 47 44.3 39.6

Average SAT Score

More Selective UCs 1054 1068 1083 1131 1158 1194 1102 1125 1149
Selective UCs 1017 1030 1045 1057 1074 1102 1018 1040 1068
Less Selective UCs 985 993 1006 1008 1019 1034 977 987 1004
All UCs 1025 1039 1048 1054 1071 1081 1052 1071 1077

Note: Count and mean average descriptive statistics of 1994-1999 California-resident freshman UC applicants who
are or are not underrepresented minorities (URM). Statistics are averaged across campuses: Berkeley, UCLA, and
San Diego are More Selective; Santa Barbara, Irvine, and Davis are Selective; and Santa Cruz and Riverside are Less
Selective. URM includes Black, Hispanic, and Native American applicants. SAT score was on the 1600 scale. Percent
admitted and percent enrolled are conditional on applying to that campus. Campus-specific statistics are presented
in Table A.16. Descriptive statistics by ethnicity available in Tables A.17 (Black and Hispanic) and A.18 (white and
Asian). Source: UC Corporate Student System.
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Table 2.2: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 University
Quality

First Four-Year Institution First Institution
Adm. Avg. 6 Yr. "MH" VA1 "CFSTY" VA1

Rate SAT BA Rate BA 6 Earn 30s BA 6 Earn 30s

Panel A: Difference-in-Difference Coefficients

URM (β0) -7.3 37.1 3.5 2.0 1,896 2.8 2,862
(0.2) (1.0) (0.1) (0.1) (75) (0.1) (84)

URM × Prop 209 3.6 -19.7 -1.7 -0.6 -384 -1.0 -922
(β‘98−99) (0.2) (1.3) (0.2) (0.2) (93) (0.2) (105)

Ȳ 51.1 1,187.6 68.2
Obs. 173,958 171,565 169,945 177,365 173,878 176,092 173,591

Panel B: Estimates of URM × Prop 209 (β‘98−99) by AI Quartile

Bottom 1.8 -25.5 -3.3 -1.6 -638 -1.9 -796
Quartile (0.6) (3.7) (0.6) (0.4) (214) (0.5) (246)

Second 5.2 -28.7 -3.0 -0.5 -618 -1.3 -1,547
Quartile (0.5) (3.0) (0.5) (0.4) (197) (0.4) (237)

Third 5.6 -21.1 -1.0 0.1 -374 -0.4 -1,273
Quartile (0.5) (2.7) (0.4) (0.3) (182) (0.3) (218)

Top 2.0 -7.4 -0.7 -0.8 -157 -1.0 -480
Quartile (0.4) (2.4) (0.3) (0.3) (224) (0.3) (233)

Note: Estimates of β0 and β‘98−99 from Equation 2.1, a difference-in-difference model of 1996-1999 URM UC
freshman California-resident applicants’ outcomes compared to non-URM outcomes after the 1998 end of UC’s
affirmative action program. Outcomes defined as characteristics of the first four-year university or the first two-
or four-year institution at which the applicant enrolled within six years of high school graduation as measured in
the NSC. Models include high school fixed effects and the components of UC’s Academic Index (see footnote 47).
Academic Index (AI) is defined in footnote 25; models by AI quartile are estimated independently, with quartiles
defined by the AI distribution of 96-97 URM UC applicants. IPEDS data (first three columns) are linked to NSC
by OPE ID; admission rate and average SAT score (which is averaged across the available 25th and 75th math and
verbal score percentiles) are fixed by institution in 2001, the earliest observed year, while six-year graduation rate is
contemporaneous. Robust standard errors in parentheses. 1Value-added measures are estimated by regressing six-year
BA attainment (in NSC) or average 12-to-16 year conditional wages (in EDD), when most applicants are in their
early 30s, on college indicators, year FEs, and either indicators for each applicant’s set of UC campus applications
and admissions (following Mountjoy and Hickman (2020), “MH”) or ethnicity indicators and quintics in SAT score
and family income (following Chetty et al. (2020a), “CFSTY”) using the 1995-1997 UC applicant pool. Source: UC
Corporate Student System, National Student Clearinghouse, the California Employment Development Department,
and the Integrated Postsecondary Education Data System (IPEDS).
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Table 2.3: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Educational
Outcomes

Earn Bach. Degree Earn STEM Degree Earn Graduate Degree
4 Years 6 Years Uncondit. Condit. All STEM JD

Panel A: Difference-in-Difference Coefficients

URM -1.90 -2.61 0.46 0.44 4.83 0.60 0.92
(0.41) (0.40) (0.31) (0.41) (0.42) (0.17) (0.19)

URM × -0.85 -0.71 -0.98 -0.65 -1.31 -0.58 -0.21
Prop 209 (0.51) (0.50) (0.38) (0.51) (0.53) (0.21) (0.22)

Ȳ 47.8 74.6 22.2 27.1 36.0 5.4 4.9
Obs. 199,321 199,321 199,321 148,771 199,321 199,321 199,321

Panel B: Estimates of URM × Prop 209 (β‘98−99) by AI Quartile

Bottom -2.09 -4.25 -1.23 -1.42 -2.77 -0.86 -0.08
Quartile (1.21) (1.44) (0.65) (1.08) (1.25) (0.33) (0.32)

Second 0.55 -0.52 -1.05 -0.44 -1.11 0.34 -0.65
Quartile (1.23) (1.22) (0.80) (1.03) (1.21) (0.37) (0.42)

Third 0.98 1.22 -0.76 -0.82 -1.26 -0.53 -0.68
Quartile (1.19) (1.05) (0.89) (1.07) (1.16) (0.42) (0.48)

Top -0.71 -0.03 0.81 0.14 -0.14 -0.32 -0.24
Quartile (1.10) (0.88) (0.96) (1.09) (1.13) (0.56) (0.61)

Note: Estimates of β0 and β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM
UC freshman California-resident applicants’ educational outcomes compared to non-URM outcomes after the 1998
end of UC’s affirmative action program. Outcomes defined as having earned a Bachelor’s degree in five or six years,
having earned a Bachelor’s degree in a STEM field (unconditional or conditional on six-year degree attainment), or
having ever earned a graduate degree (any, JD, or MD), all as measured in the union of UC administrative records and
the NSC. Models include high school fixed effects and the components of UC’s Academic Index (see footnote 47).
Academic Index (AI) is defined in footnote 25; models by AI quartile are estimated independently, with quartiles
defined by the AI distribution of 96-97 URM UC applicants. Robust standard errors in parentheses. Source: UC
Corporate Student System and National Student Clearinghouse.
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Table 2.4: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 CA Wage
Outcomes

Average 6-16 Years after UC App. Average 12-16 Years after UC App.

# Years Total Log # > $100K # Years Total Log # > $100
Emp. Wages Wages Wages Emp. Wages Wages Wages

Panel A: Difference-in-Difference Coefficients

URM 0.09 -159 0.01 -0.06 0.05 -807 -0.00 -0.03
(0.04) (359) (0.01) (0.02) (0.02) (531) (0.01) (0.01)

URM × -0.00 -1,822 -0.05 -0.08 0.00 -2,382 -0.04 -0.07
Prop 209 (0.04) (438) (0.01) (0.03) (0.02) (639) (0.01) (0.02)

Ȳ 7.55 60,888 10.69 1.48 3.30 79,064 10.89 1.01
Obs. 199,321 178,156 178,156 199,321 199,321 152,977 152,977 199,321

Panel B: Estimates with Separate Coefficients for Black and Hispanic Applicants

Black -0.60 -2,004 -0.08 -0.16 -0.27 -1,903 -0.09 -0.09
(0.07) (645) (0.02) (0.03) (0.04) (948) (0.02) (0.02)

Hispanic 0.38 596 0.05 -0.02 0.19 -300 0.03 -0.01
(0.04) (403) (0.01) (0.02) (0.02) (595) (0.01) (0.02)

Black × 0.03 -479 -0.03 -0.01 0.02 -581 -0.03 -0.02
Prop 209 (0.09) (856) (0.02) (0.05) (0.05) (1,259) (0.03) (0.03)

Hispanic × -0.04 -2,300 -0.05 -0.12 -0.01 -3,000 -0.05 -0.09
Prop 209 (0.05) (482) (0.01) (0.03) (0.03) (699) (0.02) (0.02)

Ȳ 7.56 60,939 10.69 1.48 3.30 79,136 10.89 1.01
Obs. 197,804 176,825 176,825 197,804 197,804 151,854 151,854 197,804

Note: Estimates of β0 and β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM
UC freshman California-resident applicants’ wage outcomes compared to non-URM outcomes after the 1998 end of
UC’s affirmative action program. Panel B interacts the coefficients with Black and Hispanic indicators to separately
estimate outcomes for each group; Native American applicants are omitted. Outcomes are defined as number of years
of non-zero California wages, average wages and log wages across years with non-zero wages, and number of years
with wages above $100,000, among the years 6-16 or 12-16 years after initial UC application. Outcomes measured
in the California Employment Development Department database, which includes employment covered by California
unemployment insurance. Models include high school fixed effects and the components of UC’s Academic Index (see
footnote 47). Academic Index (AI) is defined in footnote 25; models by AI quartile are estimated independently,
with quartiles defined by the AI distribution of 96-97 URM UC applicants. The years 1996-1997 are omitted in Panel
C because some universities preemptively curtailed their affirmative action programs in those years. Annual wages
CPI-adjusted to 2018 and winsorized at top and bottom 1 percent. Robust standard errors in parentheses. Source: UC
Corporate Student System and the California Employment Development Department.
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Chapter 3

Top Percent Policies and the Return to
Postsecondary Selectivity

In the space of several months I had made desperate attempts, with this and that professor,
to enter as a degree student. Some, with twisted mouth, or even rudely, had responded that
the racial laws prohibited it; others had had recourse to vague and flimsy pretexts. One
night, having politely absorbed the fourth or fifth rejection, I was going home on my bicycle
... The passersby were few and hurried, and then one of them caught my attention ... He was
the Assistant [Professor at the Institute for Experimental Physics]. ... I thought that I risked
nothing but another rejection, and asked straight out if it would be possible to be accepted
for experimental research work in his institute. The Assistant looked at me in surprise, and,
in place of the long speech that I would have expected, he answered with two words of the
Gospel: “Follow me.” ∼Primo Levi, The Periodic Table

3.1 Introduction
Since the 1960s, selective public universities in the U.S. have admitted students mostly using test
scores and other measures of academic preparation.1 Many universities provide admissions
advantages to certain disadvantaged applicants in order to rectify unequal K-12 learning
opportunities and promote socioeconomic mobility, but these ‘access-oriented’ admission policies
are controversial on efficiency grounds: students with lower test scores are generally thought to
derive smaller (or no) benefits from more-elite education when compared to the students admitted
by test-based meritocracy (Arcidiacono and Lovenheim, 2016). This study investigates two open
questions about the allocation of public higher education in the U.S. First, would lower-testing
students benefit from selective university enrollment, and how would their return compare to that
received by higher-testing students? Second, can available policies target lower-testing but
high-value-add students, and how would implementing those policies shape universities’
socioeconomic composition?

I answer these questions by studying an access-oriented admission policy implemented by the
University of California (UC) between 2001 and 2011. Eligibility in the Local Context (ELC)

1Until surging demand for postsecondary education made open access impossible in the late 1950s, public
universities provided low-cost education to any student who satisfactorily completed high school (Douglass, 2007;
Goldin and Katz, 2008).
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was a “top percent” policy that guaranteed selective university admission to applicants whose
grades ranked in the top four percent of their high school class.2 I construct a new UC applicant
administrative dataset and use a regression discontinuity design to estimate ELC’s effect on
barely-eligible applicants’ likelihood of admission and enrollment at each UC campus. I then link
each applicant to national education records and annual California wages and employ an
instrumental variable strategy to estimate the medium-run effects of more-selective university
enrollment for ELC participants. Building on these reduced-form findings, I next estimate and
validate a structural model of university application, admission, and enrollment with an embedded
top percent policy in order to simulate the net effects of top percent policies on universities’
enrollment composition. Finally, I extend both the quasi-experimental and structural research
designs to investigate the relationship between students’ meritocratic standing and their return to
enrolling at a more-selective university.

I show that the admissions advantages conferred by ELC eligibility caused over 12 percent of
barely-eligible applicants from less-competitive high schools to enroll at four selective UC
campuses instead of enrolling at less-selective public colleges. Instrumental variable estimates
show that these barely-eligible ELC ‘participants’ became 30 percentage points more likely to
earn a college degree within five years — approximately matching the increase in graduation rates
of the institutions they attended — and earned higher annual wages by as much as $25,000
between ages 25 and 27. ELC’s roughly 600 annual participants came from lower-income and
more diverse families than the crowded-out students whom they replaced at UC, and model
simulations show that a top percent policy providing equivalent admissions advantages to the top
nine percent of each high school’s graduates would meaningfully increase those UC campuses’
lower-income and underrepresented minority (URM) enrollment (by about 4 and 8 percent,
respectively).3 Complementing reduced-form and institutional value-added evidence showing that
even very low-testing ELC-eligible applicants receive large and above-average wage treatment
effects from more-selective enrollment, the paper concludes with evidence that the model-based
prediction of each student’s meritocratic standing is weakly and negatively correlated with their
estimated return to university selectivity.

I begin below by providing background on the ten-campus University of California and its
2001 Eligibility in the Local Context policy. I then describe the novel dataset used in this study,
which includes far greater detail on 2001-2013 freshman UC applicants’ socioeconomic,
geographic, and academic characteristics than any previously studied records. Each applicant is
linked to the internally-calculated ‘ELC GPA’ used to determine their ELC eligibility as well as
National Student Clearinghouse enrollment and degree records and annual California
Employment Development Department wage records through 2019.4

I next introduce the stacked regression discontinuity research design that I employ to study the
reduced-form effects of ELC eligibility on applicant behavior and outcomes. I present evidence to

2Top percent policies have been implemented in Texas, Florida, and Georgia, and have been considered in several
other states.

3As I discuss below, ELC was indeed “expanded” in 2012 to the top nine percent of applicants from each high
school, but Appendix B.1 shows that every selective UC campus ceased providing admissions advantages to ELC-
eligible students, de facto ending the policy’s effects on the composition of UC enrollment.

4EDD employment records are maintained for state unemployment insurance provision and exclude out-of-state,
federal, and self-employment. Appendix B.3 demonstrates the relative comprehensiveness of the relevant NSC records
in this period.
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support the design’s key identification assumption that applicants’ potential outcomes are smooth
across their high schools’ ELC GPA eligibility thresholds. I then show that ELC eligibility did not
substantially affect admissions decisions at UC’s most- and least-selective campuses, the former
because they did not provide admissions advantages to eligible students and the latter because
they were already admitting nearly all high-GPA applicants. However, the UC campuses at San
Diego, Davis, Irvine, and Santa Barbara all provided large admissions advantages to ELC-eligible
applicants: barely-eligible applicants from the bottom half of California high schools (ranked by
SAT scores) became 10 to 35 percentage points more likely to be admitted to each campus as a
result of their ELC eligibility. Over 12 percent of those applicants switched into enrolling at one
of the four “Absorbing” UC campuses instead of enrolling at a teaching-oriented California State
University, a less-selective UC campus, or a local community college.

Because top graduates from more-competitive high schools had little need for ELC eligibility
to gain UC admission, almost 90 percent of those barely-eligible ELC participants were from the
bottom half of California high schools by SAT. Two-thirds of participants came from families with
below-median household incomes and about 45 percent were URM. Barely-eligible participants’
average SAT scores were at the 12th percentile of their Absorbing UC peers, altogether suggesting
a negatively selected group of students.

Next, I turn to estimation of how ELC eligibility impacted near-threshold ELC participants’
educational and labor market outcomes. I show that ELC eligibility caused substantial
reduced-form increases in five-year degree attainment, seven-year graduate school enrollment,
and early-career annual wages. ELC-eligible applicants became somewhat less likely to earn
degrees in STEM fields, but they became more likely to earn any college degree while
simultaneously spending fewer years enrolled in college (as a result of reductions in
time-to-degree). To identify each of the four Absorbing UC campuses’ treatment effects
experienced by near-threshold ELC participants, I construct four instrumental variables by
interacting the regression discontinuity design with applicants’ distance to each campus. I find
that enrolling at any of the Absorbing UC campuses increased five-year degree attainment by 30
to 34 percentage points and graduate school enrollment by 22 to 47 percentage points. The
estimated effects on wages are noisier: enrolling at UC Davis increased near-threshold
participants’ annual early-career wages by about $25,000, but the positive wage effects at the
other campuses are imprecisely estimated. Near-threshold ELC participants from the bottom
quartile of high schools (who would have otherwise enrolled at institutions with 35 percent lower
graduation rates on average) received benefits at least as large as those received by participants
with better counterfactual enrollments, suggesting large returns to more-selective enrollment even
for very disadvantaged applicants.

Having shown that more-selective university enrollment substantially benefits the low-testing
students on the margin of ELC eligibility, I next turn to general equilibrium estimation of top
percent policies’ net effects on universities’ student composition and average returns. I embed a
top percent policy into a structural model of applicant and university decision-making adapted
from Kapor (2020). The model flexibly characterizes students’ preferences over universities and
models university admissions as maximizing the observed and latent academic caliber of their
student bodies. I estimate the model parameters by simulated maximum likelihood, separately
identifying admission and enrollment preferences by exploiting the ELC policy, its post-2011
cessation, and distance-to-campus instruments. The resulting parameters align with prior research
and successfully replicate the reduced-form effects of ELC eligibility.
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I employ the model to conduct a series of counterfactual exercises. I first simulate how ELC
shifts Absorbing UC campuses’ enrollment composition by switching ELC’s admission advantages
off (on) in 2010-2011 (2012-2013), allowing each university’s regular admissions threshold to
adjust in order to maintain its level of enrollment. This allows me to identify the students who are
crowded out by ELC, a group otherwise inaccessible in my regression discontinuity analysis. Both
strategies provide highly similar results: the 600 annual ELC participants had lower average family
incomes by $20,000 and were 15 percentage points more likely to be URM than their crowded-out
peers. I also simulate the effect of providing ELC’s admissions advantages to the top one, two, and
up to the top nine percent of applicants from each California high school. The simulations show
that top percent policies are indeed “access-oriented”: the nine percent policy increases net lower-
income and URM enrollment at Absorbing UC campuses each by about 350 students, despite the
crowded-out students being negatively-selected relative to the average Absorbing UC student.

Finally, I further exploit the structural model to investigate the broader relationship between
students’ meritocratic standing and their estimated return to more-selective university enrollment.
Abstracting from the ELC policy, I employ a selection-on-unobservables strategy (partially
following Dale and Krueger (2002)) to show that the applicants’ latent ‘application merit’ – or the
preference index used by universities in admissions – is strongly correlated with applicants’
future educational and employment success, but not with their estimated return to university
selectivity; if anything, the average return to selectivity is lower for higher-‘merit’ applicants.
These estimates complement the reduced-form evidence that the return to university selectivity
scales similarly for ELC participants with stronger or weaker measured academic preparation.
They also complement additional evidence showing that the wage return to near-threshold ELC
participants’ Absorbing UC campus enrollment equals or exceeds the average return to enrolling
at those universities, estimating institutions’ average ‘value-added’ following Chetty et al.
(2020a). These findings suggest that the first-order net effect of top percent policies is to
reallocate educational resources to high-GPA (and perhaps high non-cognitive skill)
disadvantaged applicants without efficiency loss.

This study makes three primary contributions. First, it provides the first estimates of the
medium-run impact of selective university admission under an access-oriented admission policy.5

Expanding prior research that focused on the return to selective enrollment for students on the
margin of universities’ test-based admissions thresholds (Hoekstra, 2009; Anelli, 2019; Sekhri,
2020), I find that a broad array of students would earn large medium-run returns from selective
university access, including many students who currently enroll at states’ least-selective
postsecondary institutions.6 This evidence suggests that broadening selective research university
access to many high school graduates with low socioeconomic status, as through low-cost

5One previous study, Bertrand, Hanna and Mullainathan (2010), estimates a positive wage return to caste-based
affirmative action programs at engineering colleges in India, though that context is very different from the present
study. Subsequent to this study, Bleemer (2020a) and Black, Denning and Rothstein (2020) find similar reduced-form
returns to a race-based affirmative action policy in California and a top percent policy in Texas, but neither paper is
amenable to an instrumental variable strategy that identifies effects for policy compliers. I discuss the latter paper in
greater detail below.

6Zimmerman (2014) and Smith, Goodman and Hurwitz (2020) show substantial positive returns to less- or non-
selective university enrollment for students at those institutions’ admissions thresholds. Dale and Krueger (2002,
2014) show evidence of positive returns for disadvantaged students enrolling at highly-selective institutions instead of
other selective institutions, and Cohodes and Goodman (2014) show that more-selective enrollment improves students’
degree attainment.
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access-oriented admission policies, is an impactful and potentially efficient economic mobility
lever available to university administrators and state policymakers. While this has been suggested
in observational and macroeconomic models (e.g. Chetty et al., 2020a; Capelle, 2019) and is
assumed by studies focused on encouraging disadvantaged students’ more-selective enrollment
(e.g. Hoxby and Turner, 2013), it remains contentious in the literature on affirmative action
(Arcidiacono, Aucejo and Hotz, 2016; Bleemer, 2020a).

Second, this study provides evidence on the impact of a college admission policy that admits
students without regard to their standardized test scores (Black, Cortes and Lincove, 2016). Since
at least 1960, when California enshrined standardized tests in its “Master Plan for Higher
Education” to identify “applicants whose educational purposes are properly met by the college
and whose abilities and training indicate probable success,” public universities have used
evidence of tests’ “predictive validity” for college grades and retention to justify their rejection of
lower-testing applicants (Westrick et al., 2019; Rothstein, 2004). I show that the benefits to
more-selective enrollment are at least as large (and likely larger) for high-GPA students whose
low SAT scores would typically have disqualified them from selective universities as they are for
the higher-SAT students currently admitted to those universities. Indeed, despite being
negatively-selected, near-threshold ELC participants’ 75 percent average graduation rate was
roughly equal to the institutional average (77 percent). As many public universities rethink how
their meritocratic admissions policies rank applicants (Saboe and Terrizzi, 2019), these findings
show that targeting high-GPA low-SAT applicants could simultaneously broaden university
access and increase institutions’ economic value-added.

Finally, this study contributes to a nascent structural literature modeling students’ school
application and enrollment decisions (Arcidiacono, 2005; Epple, Romano and Sieg, 2006;
Howell, 2010; Chade, Lewis and Smith, 2014; Walters, 2018; Kapor, 2020), providing new
detailed information about student and university preferences. The estimated model also provides
novel estimates of the relative magnitude and compositional effects of top percent policies with
different eligibility thresholds, facilitating straightforward comparison with other access-oriented
university admissions policies (Long, 2004b).

3.2 Background and Literature
California has three public higher education systems: the University of California, the
teaching-oriented California State University, and the two-year California Community Colleges.
The University of California is tasked with educating the top 12.5 percent of California high
school graduates at its nine undergraduate campuses: the most-selective Berkeley and Los
Angeles (UCLA) campuses, the middle-selective Davis, San Diego, Santa Barbara, and Irvine
campuses, and the least-selective Riverside, Santa Cruz, and Merced (founded in 2005) campuses.
The system’s California-resident freshman enrollment grows in proportion to the state’s high
school graduates, with about 30,000 such students earning degrees in 2011.

UC employed race-based affirmative action in undergraduate admissions until 1997, after
which the practice was banned by ballot proposition. Eligibility in the Local Context was
introduced in 2001 to expand access to UC campuses in a race-neutral manner (Atkinson and
Pelfrey, 2004). Under ELC, graduates of participating California high schools — which by 2003
included 96 percent of public high schools and 80 percent of private high schools — were
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guaranteed admission to at least one UC campus if their grades were in the top four percent of
their class.7 Class rank was determined centrally by UC: high schools submitted students’
transcripts to the UC Office of the President, which calculated UC-specific ‘ELC grade point
averages (GPAs)’ on a four-point scale using certain eligibility-relevant second- and third-year
courses.8 ELC GPAs were weighted — adding one GPA point for each junior-year honors-level
course — and rounded to the nearest hundredth. The 96th percentile of ELC GPAs at each high
school was selected as the school’s “ELC eligibility threshold” in that year, above which students
were deemed ‘ELC-eligible’.

ELC-eligible students received a letter in the fall of their senior year informing them of their
eligibility, along with the guarantee of admission to at least one UC campus (but no guarantee to
any specific campus). Below-threshold students with high GPAs were sent similar letters strongly
suggesting that they would be guaranteed admission to at least one UC campus under another
UC admissions policy.9 In order to maintain eligibility, ELC-eligible students had to pass their
high school’s college-level senior curriculum and take the SAT. Administratively, each UC campus
was informed of their applicants’ ELC eligibility but retained independence in their admissions
decisions.

There was widespread public concern that ELC participants might not be sufficiently prepared
for selective university education: “top students in many high-poverty schools are woefully
unprepared for college ... many of the new students will simply flunk out and the policy will be
discredited” (Orfield, 1998). Nevertheless, though no comprehensive analysis was conducted
following an inconclusive short-run program evaluation in 2002 (University of California, 2002),
ELC was viewed as having succeeded in fulfilling its aims of increasing admitted students’ ethnic
and geographic diversity and was expanded in the 2012 admissions year to the top nine percent of
each high school class. However, every campus ceased providing substantial admissions
advantages to ELC-eligible applicants after this ‘expansion,’ forcing the system to coerce UC
Merced to admit otherwise-rejected ELC-eligible students and rendering the program practically
defunct (see Appendix B.1). As a result, this study focuses on the pre-2012 ELC policy.10

7Cullen, Long and Reback (2013) find that only a small number of students switched high schools in order to
‘game’ this kind of high-school-percentile admissions policy after Texas implemented a similar top percent policy.

8See Atkinson and Pelfrey (2004). The courses included two years of English and Mathematics, one year of
History, Lab Science, a Non-English Language, and four other UC-approved courses. Students or their parents could
opt out of their high school’s providing their transcript to UC at their discretion. This centralized ELC administration
importantly differs from Texas’s program, where high schools were directly responsible for identifying the top ten
percent of students; some high schools purposefully extended "Top Ten" eligibility to a greater proportion of students
(Golden, 2000).

9UC’s “Eligibility in the State-Wide Context” policy provided a de jure similar admissions guarantee for the top
12.5 percent of California seniors based on a publicly available linear combination of high school GPA and SAT
scores. In practice, most UC campuses provided substantially larger admissions benefits to ELC-eligible students than
to those eligible in the state-wide context. It is unknown whether UC applicants were aware of the difference.

10Appendix B.2 exploits this abrupt ELC cessation to replicate the main reduced-form results presented below
using a difference-in-difference design after 2011.
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3.2.1 Prior Literature
A large literature has examined how access to more-selective universities impacts students’
educational and labor market outcomes.11 Several studies have used quasi-experimental research
designs exploiting minimum SAT and GPA admissions thresholds to show that university access
increases on-the-margin enrollees’ wages at less-selective universities (Zimmerman, 2014; Smith,
Goodman and Hurwitz, 2020), for white men at a more-selective university (Hoekstra, 2009), and
for all students at certain selective universities outside the U.S. (Anelli, 2019; Sekhri, 2020),
though none of these studies explicitly observe applicants’ counterfactual enrollment
institutions.12 Several other studies employ selection-on-observables research designs to control
for sample selection bias arising from applicants’ varying admission and taste; while Dale and
Krueger (2002) find no wage return to university selectivity among a set of highly-selective
universities, most studies find that more-selective enrollment conditionally correlates with higher
post-graduate wages (Loury and Garman, 1995; Kane, 1998; Brewer, Eide and Ehrenberg, 1999;
Andrews, Li and Lovenheim, 2016), at least among disadvantaged students (Dale and Krueger,
2014).13 In the closest context to this study, Cohodes and Goodman (2014) examine a
Massachusetts financial aid policy that incentivized students to enroll at less-selective
universities, using a regression discontinuity design to find reduced-form declines in institutional
graduation rate and students’ own four-year degree attainment of 1.5 and 1.9 percentage points,
respectively. The present study contributes by employing a rigorous quasi-experimental research
design to estimate the medium-run return to more-selective university enrollment for notably
disadvantaged applicants, and by explicitly analyzing heterogeneity in the return to
more-selective enrollment for students with higher and lower traditional meritocratic rank.

A second literature has studied the effects of race-based affirmative action — another popular
access-oriented admission policy — on admission, enrollment, and short-run educational
outcomes. Affirmative action causes targeted disadvantaged students to enroll at more-selective
institutions in the U.S. (Arcidiacono, 2005; Howell, 2010; Hinrichs, 2012, 2014; Backes, 2012;
Antonovics and Backes, 2014; Blume and Long, 2014).14 However, differences in setting,
research design, and data availability have led researchers to conflicting conclusions about

11A related literature uses quasi-experimental research designs to examine heterogeneity in the return to higher
education by field of study (e.g. Kirkeboen, Leuven and Mogstad, 2016; Hastings, Nielsen and Zimmerman, 2018;
Bleemer and Mehta, 2020c).

12Hastings, Nielsen and Zimmerman (2018) exploit minimum score admissions thresholds in Chile to identify
positive wage returns to more-selective university enrollment. Zimmerman (2019) shows that disadvantaged Chilean
students are no more likely to become top earners if they are barely admitted to top business schools. Others use
similar research designs to examine on-the-margin students choosing between community colleges and less-selective
four-year universities, finding that enrolling at the four-year universities appears to increase students’ likelihood of
earning a college degree (Reynolds, 2012; Angrist et al., 2016; Goodman, Hurwitz and Smith, 2017) and medium-run
wages (Mountjoy, 2019; Smith, Goodman and Hurwitz, 2020). Abdulkadiroglu, Angrist and Pathak (2014) show that
on-the-margin access to selective high schools does not improve U.S. students’ standardized test scores or university
selectivity.

13Ge, Isaac and Miller (2018) follow the research design of Dale and Krueger (2002) but find that attending
more-selective universities improves female students’ postgraduate labor market outcomes. Griffith (2010) shows that
observably similar students at more-selective universities are less likely to earn STEM degrees. An earlier generation
of literature shows a positive correlation between university selectivity and wages (Wales, 1973; Morgan and Duncan,
1979; James et al., 1989; Behrman, Rosenzweig and Taubman, 1996).

14The same is true of affirmative action policies in India (Bertrand, Hanna and Mullainathan, 2010; Bagde, Epple
and Taylor, 2016) and Brazil (Francis and Tannuri-Pianto, 2012).
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affirmative action’s impact on degree attainment (Cortes, 2010; Arcidiacono et al., 2014;
Bleemer, 2020a) and major choice (Rose, 2005; Arcidiacono, Aucejo and Spenner, 2012;
Arcidiacono, Aucejo and Hotz, 2016; Bleemer, 2020a). Closest to the present study, Bleemer
(2020a) shows that ending race-based affirmative action in California led to decreases in selective
university enrollment among targeted applicants, precipitating declines in undergraduate and
graduate degree attainment and early-career wages.15 This study uses a quasi-experimental and
transparent identification strategy to clearly delineate the specific and heterogeneous effects of
more-selective university enrollment for disadvantaged applicants.

As a result of political and judicial challenges to race-based affirmative action, top percent
policies have become increasingly popular among public university systems: 31 percent of
Americans live in states that have adopted top percent policies at their public universities.
Nevertheless, surprisingly little research has examined their effect on impacted students’
outcomes. In California, this likely results from the widespread belief — despite minimal
evidence — that Eligibility in the Local Context had a negligible effect on eligible students’
enrollment decisions, expressed in academic studies (Rothstein, 2000; Long, 2004b, 2007) and
policy-oriented briefs and books (University of California, 2003; Kidder and Gandara, 2015;
Zwick, 2017).

A larger literature has studied Texas Top Ten (TTT), a top percent policy that guarantees
Texas public university admission to students in the top ten percent of their high school classes by
GPA (as determined by the schools). That literature has largely focused on estimating whether
TTT’s admissions guarantee actually changes high school graduates’ university enrollment
(Long, Saenz and Tienda, 2010; Niu and Tienda, 2010a; Kapor, 2020); this study contributes by
simulating how counterfactual top percent policies with different eligibility thresholds would
affect universities’ student compositions.16 Difference-in-difference analysis of TTT’s effects on
student outcomes are confounded by the state’s near-simultaneous cessation of race-based
affirmative action, likely explaining Black, Denning and Rothstein (2020)’s findings that TTT
appears to largely increase college-going on the extensive margin (switching non-college-goers
into selective university enrollment) and that TTT participants do not appear more disadvantaged
than the students they replace at selective universities. The present study complements Black,
Denning and Rothstein (2020)’s findings on top percent policies’ effects on degree attainment and
wages by employing a more textured research design to show that top percent policies generate
large returns for relatively disadvantaged participants by increasing the selectivity of their
enrollment institutions, and by exploiting those selectivity changes to investigate students’

15Bertrand, Hanna and Mullainathan (2010) find that affirmative action increases impacted students’ medium-run
wages in the Indian contexts. Cestau et al. (2020) show that Black students at West Point have lower test scores but
similar postgraduate achievement as their white peers. Arcidiacono (2005) estimates a structural model suggesting
that the U.S. wage effect is small. The contentious affirmative action literature is reviewed by Arcidiacono and
Lovenheim (2016) and Arcidiacono, Lovenheim and Zhu (2015), with an earlier literature reviewed by Holzer and
Neumark (2006). A related literature examines whether attending a more-selective law school under an access-oriented
admission policy has negative educational and labor market repercussions (Sander, 2004; Rothstein and Yoon, 2008),
coming to contradictory conclusions, though there is general agreement that race-based affirmative action increases
targeted students’ likelihood of more-selective law school enrollment (Yagan, 2016).

16Daugherty, Martorell and McFarlin Jr. (2014) show that enrollees from one large urban school district would have
otherwise enrolled at similarly-selective private universities. Cortes and Lincove (2019) show that TTT encourages
public flagship university enrollment among high-performing low-income high school graduates.
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relative returns to more-selective enrollment.17

Another literature has studied a wide variety of application-oriented policies like direct
information provision (Hoxby and Turner, 2013; Gurantz et al., forthcoming), improved college
counselors (Avery, 2013; Castleman and Goodman, 2017), and changes in testing policies
(Pallais, 2015; Goodman, 2016) that could increase disadvantaged students’ selective university
enrollment by increasing disadvantaged students’ likelihood of applying to selective universities.
I show that low-cost changes in university admission policies provide an alternative policy
mechanism that increases disadvantaged student enrollment.

Finally, this study’s analysis of heterogeneity in the return to university selectivity contributes
to a literature analyzing the role of ‘mismatch’ in university enrollment, or the theory that “those
who attend the most selective colleges and perform less well because of mismatching would have
had higher earnings if they had attended the somewhat less selective group of schools” (Loury and
Garman, 1993). Recent studies have come to conflicting conclusions about the relative magnitude
of ‘mismatch’ effects (Dillon and Smith, 2020; Mountjoy and Hickman, 2020; Bleemer, 2020a).
The present study provides an unusually transparent research design with which to investigate the
relevance of mismatch in the California context of the measurably ‘mismatched’ low-testing (but
high-GPA) applicants targeted by top percent policies.

3.3 Data
I compile three primary data sources to conduct this study. The first, collected contemporaneously
for administrative use by the UC Office of the President, covers all 1995-2013 California-resident
freshman applicants to any of the nine undergraduate University of California campuses. Each
record contains the applicant’s home address at the time of application, high school attended,
gender, 15-category ethnicity, parental education, SAT or ACT score, and family income, as well
as whether they applied to, were admitted to, and/or enrolled at each campus and their intended
majors.18 The UC application data also include ELC eligibility status and ELC GPAs beginning
in 2003. After 2011, an additional field denotes students’ GPA percentile for each of the top nine
percentiles.

I do not directly observe the high-school-specific ELC eligibility thresholds used to determine
students’ ELC eligibility. I estimate the threshold in each high school year in two ways: as the
minimum GPA of an ELC-eligible applicant, or as the threshold that minimizes the number of
applicants whose ELC eligibility is misclassified above or below the threshold.19 In most cases
these two are identical, but a small number of noisy ELC eligibility indicators (which could arise

17Furstenberg (2010) argues that TTT decreased targeted students’ likelihood of degree attainment, but that
study has substantial limitations: outcomes are only observed for enrollees at public universities, the only observed
graduation rate is four-year (and it is only observed for a single cohort, the first that TTT was implemented), and
transfers between universities are treated as non-graduation, all of which is compounded with technical limitations
like a coarse discrete running variable.

18Seven percent of applicants’ addresses cannot be geolocated. Parental education is observed as an index of
maximum parental education for both parents. ACT scores or SAT scores on the 1600 scale are converted to the
2400 SAT scale using a standard cross-walk. Family income is not reported by 12 percent of applicants. Intended
majors are non-binding, and about one-third of applicants select ‘Undeclared’. I assign to each applicant the intended
discipline(s) that they most frequently report across campuses.

19When multiple thresholds minimize eligibility in the latter case, I take their average.

54



from failure to complete the requisite high school courses, faulty data, or other sources) lead to
differences at some schools. I use the latter calculation in the main results presented below, yielding
minimized Type 1 and 2 errors of 1.3 and 2.8 percent respectively, but the presented results are
robust to employing the former calculation instead (as shown in appendix tables).

The second dataset, from the National Student Clearinghouse’s StudentTracker database,
contains UC applicants’ enrollment and graduation records across nearly all U.S. two- and
four-year colleges and universities.20 NSC records are censored by a small number of students
and institutions, but their near-completeness throughout the study period means that it is highly
unlikely that differential NSC reporting could be a substantial factor driving the results presented
below.21 Science, Technology, Engineering, and Mathematics (STEM) majors are categorized by
CIP code following the U.S. Department of Homeland Security (2016).22

Third, I observe UC applicants’ quarterly 2003-2019 wages from the California Employment
Development Department, which maintains employment records for unemployment insurance
administration.23 The wage data were linked by reported social security numbers from UC
applications, and are unavailable for workers outside California, self-employment, and federal
employment.24 Annual wages are measured as the sum of quarterly wages in that year, and are
CPI-adjusted to 2019 and winsorized at five percent. About 55 percent of applicants in the sample
have positive wages in each of seven to nine years after high school graduation.

Each institution in the NSC dataset is geolocated using IPEDS, and distances between
applicants and institutions are calculated (as the crow flies) using the geodesic method. California
high schools are geolocated using street addresses available from the California Department of
Education (with 98 percent success across students) and categorized as rural, urban, or suburban
using shapefiles from the National Center for Education Statistics.25 Additional institutional
characteristics are linked from the Integrated Postsecondary Education Data System (IPEDS) and
Opportunity Insights’s Mobility Report Cards (Chetty et al., 2020a).

20In particular, it contains semesterly enrollment records and graduation records (including degrees, majors earned,
and year of graduation) for all degree-granting institutions that accept federal Title IV funding. Records are linked by
first and last name, middle initial, and birth date, allowing for common nicknames and typos.

21NSC reports that about 4 percent of records are censored due to student- or institution-requested blocks for
privacy concerns (National Student Clearinghouse Research Center, 2017). Enrollment is near-comprehensive for
California public institutions (Dynarski, Hemelt and Hyman, 2015). Appendix B.3 shows that nearly all California
colleges and universities were reporting to NSC by 2003 and that a comparison between UC and NSC records reveals
very low degree attainment and major censorship rates.

22STEM includes the 278 “fields involving research, innovation, or development of new technologies using
engineering, mathematics, computer science, or natural sciences (including physical, biological, and agricultural
sciences)” identified by CIP code. Not all NSC majors have CIP codes; I assign each major to its modal CIP code
(in the full observed NSC database) for categorization. Disciplines are also partitioned into arts, humanities, social
sciences, natural sciences, engineering, professional, and business by hand-coding from NSC records; the discipline
coding is available from the author.

23The most recent wages available are 2019, so every year more than eight years after graduation omits one class
of ELC students from the observed sample. All wage statistics were originally estimated as institutional research (see
Bleemer (2018c)).

24Social security numbers on UC applications are not verified unless the student enrolls at a UC campus. Among
enrollees, the verified social security number differs from that reported on their application in fewer than 0.25 percent
of cases.

25See the CDE Public Schools and Districts Data Files, the CDE’s Private School Directory, and the NCES’s
School Locale Definitions. Rural schools are outside of any Census Urbanized Area; urban schools are inside a
Census Principal City.
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3.3.1 Summary Statistics

Table 3.1 reports summary statistics for 2003-2011 UC applicants.26 The first column presents
demographic characteristics, academic achievement measures, and enrollment decisions for all
California-resident freshman applicants to any UC campus between 2003 and 2011, while the
second summarizes applicants within 0.3 ELC GPA points of their high schools’ ELC eligibility
thresholds, the main sample used in the reduced-form analysis below. The latter applicants are
academically above average, more likely to be female, and less likely to be Black or Hispanic.27

The bottom half of the table shows that these applicants are relatively more likely to attend the
more-selective “Unimpacted” and “Absorbing” UC campuses — these category names will be
discussed below — but less likely to attend the less-selective “Dispersing” UC campuses.

The last four columns of Table 3.1 show summary statistics by high school quartile, ranking
schools by the average SAT scores of near-threshold UC applicants.28 Because the ELC program
admitted four percent of every high school’s applicants, there is reason to expect that its impact will
be larger at lower-performing high schools where high-GPA students have fewer or lower-quality
alternative enrollment options.29 Indeed, applicants from the bottom quartile of high schools have
lower SAT scores by 570 points and are far more likely to attend less-selective state colleges than
applicants from the top quartile. Lower-quartile applicants are also much more likely to be Black
and Hispanic (URM). Below, I refer to applicants from the bottom half and quartile of California
high schools as the “B50” and “B25” samples, respectively.

3.4 ELC and College Enrollment

3.4.1 Empirical Methodology
I estimate the reduced-form effect of ELC eligibility on university enrollment using a regression
discontinuity design (Hahn, Todd and van der Klaauw, 2001). Let Yi(1) and Yi(0) denote
applicant i’s potential outcomes if they are ELC-eligible or ineligible, respectively. The effect of
ELC eligibility on near-threshold applicants is:

LATERD(Y ) = lim
GPA↓0

E[Yi(1)|GPA]− lim
GPA↑0

E[Yi(0)|GPA] (3.1)

26The main sample is restricted to 2003-2011 because ELC GPAs are not observed until 2003.
27Because the number of Black applicants near the ELC eligibility threshold is so low, most of the estimates

below group Hispanic and Black applicants as “underrepresented minorities”, or “URM” along with Native American
applicants.

28 For the purpose of calculating quartiles, high-school-years are ranked by the average SAT score of applicants
within 0.3 ELC GPA points of their school’s ELC eligibility threshold in the given year and then weighted by their
number of applicants within the 0.3 GPA band, resulting in quartiles with approximately the same number of students,
not high schools. All results below are robust to using leave-one-out average SAT scores to measure high school
quartiles, but the aggregate high school averages are used so that each school-year is in a single quartile.

29Cortes and Lincove (2019) find greater takeup of Texas’s top percent policy among students from less-competitive
schools.
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where GPA is the difference between an applicant’s ELC GPA and their school’s ELC eligibility
threshold. I estimate LATERD(Y ) by β̂ from a linear regression model:

Yit = βELCi + f(GPAi) + δXi + αhi + γt + εit (3.2)

where ELCi indicates ELC eligibility, Xi includes gender-ethnicity indicators and a quadratic in
SAT scores to absorb spurious variation in Yit, and αhi and γt are high school and application year
(t) fixed effects.30 I estimate Equation 3.2 stacked across all participating high schools with the
error terms εit clustered by hi × t, the level of treatment assignment.31

I estimate Equation 3.2 using two specifications of f . Because the running variable GPAi is
discrete — ELC GPAs are rounded to the nearest hundredth — my preferred specification is to
include third-order polynomials of GPAi on either side of the eligibility threshold and to estimate
the model by OLS. I obtain highly statistically and substantially similar estimates by local linear
regression with bias-corrected clustered standard errors following Calonico, Cattaneo and
Titiunik (2014).32 In both cases, I restrict the sample to freshman fall California-resident UC
applicants within 0.3 GPA points of the eligibility threshold, resulting in the main sample of
171,411 applicants. Because the ELC eligibility threshold is slightly fuzzy, the baseline estimates
instrument ELCi with an indicator for having an above-threshold ELC GPA (1GPAi≥0).

The key identifying assumption justifying the regression discontinuity design is that
E[Yi(1)|GPA] and E[Yi(0)|GPA] are smooth at GPA = 0. I discuss and test the potential
threats to this smoothness assumption in detail in Appendix B.2. The primary threat to the
smoothness assumption is the possibility of applicants’ selection into UC application as a result of
being informed of ELC eligibility (which occurred before UC’s application deadline). However,
as noted above, nearly all students just below the eligibility threshold also received letters
encouraging UC application, and high-GPA students were very likely to be admitted to many UC
campuses even without the ELC policy. Tests of the smoothness assumption fail to reject several
of its implications. First, Appendix Table B.14 shows that a detailed set of applicant
characteristics — including gender, ethnicity, parental income and education, and SAT score —
are smooth across the threshold among all, B50, and B25 UC applicants. Figure B.12 visualizes
this smoothness for applicants’ predicted five-year degree attainment based on all observed
socioeconomic and academic characteristics.33 Second, there is no evidence of an increase in
applicant density above the eligibility threshold that would suggest that above-threshold students
bunched into UC application. Third, I successfully replicate the baseline regression discontinuity
estimates with a difference-in-difference design comparing above- and below-threshold students
before and after 2011, when their admissions advantages ceased.

30Controls are omitted when they are collinear with the outcome variable, as when Yit is the applicant’s SAT score.
Nearly all of the results presented below are quantitatively and statistically unchanged if these controls are selectively
or completely omitted, or if high school fixed effects are omitted.

31Because the number of running variable values on each side of the threshold is relatively large, I cluster by
treatment level instead of running variable bin following Kolesar and Rothe (2018).

32OLS estimation was conducted using the felm command in R’s lfe package. Local linear regressions were
estimated using the rdrobust package in R (Calonico, Cattaneo and Titiunik, 2015). The latter does not permit fixed
effects; instead, I include indicator variables for all high schools with more than 50 applicants in the sample as controls.

33Five-year degree attainment is predicted by OLS using gender-ethnicity indicators, family income, max parental
education indicators, year indicators, SAT score, and high school GPA using the full 1995-2013 sample of UC
freshman California-resident applicants, excluding the estimation sample.
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I also investigate another potential threat to the smoothness assumption: the possible presence
of a student ‘type discontinuity’ at ELC eligibility thresholds. If ELC eligibility thresholds tended
to occur at exactly 4.0 GPA, then above-threshold students could be positively selected as a result
of grades being censored from above. Appendix B.2 provides evidence from Caetano (2015) tests
suggesting that this threat is empirically small. I omit all schools with measured thresholds
between 3.96 and 4.00 from the main specifications out of an abundance of caution, but the
resulting estimates are substantively unchanged.

3.4.2 Admission and Enrollment
Figure 3.1 plots the likelihood of admission to each UC campus (conditional on applying to that
campus) by the ELC GPA running variable, overall and applicants from the bottom half (B50) or
quartile (B25) of high schools by SAT. Admission to UC’s most-selective Berkeley and UCLA
campuses appears unchanged on either side of the ELC eligibility threshold, implying that those
two campuses provided no observable admissions advantage to ELC-eligible applicants. Four other
campuses, however — San Diego, Irvine, Davis, and Santa Barbara — provided large admissions
advantages to above-threshold students, with larger advantages for students from lower-testing
high schools. Near-threshold B25 applicants became an average of 40 percentage points more
likely to be admitted to UC Davis and UC Irvine as a result of ELC eligibility. The three least-
selective UC campuses, on the other hand, were already granting admission to nearly all applicants
just below the ELC eligibility threshold; ELC eligibility could hardly impact applicants’ likelihood
of admission at those schools.34

Table 3.2 presents estimates of ELC’s effect on barely-eligible applicants’ enrollment at UC
and other postsecondary institutions.35 Panel A shows near-threshold applicants’ baseline
likelihood of enrollment, while Panel B shows the β̂ coefficients associated with ELC eligibility.
At baseline, about 55 percent of near-threshold B50 students enrolled at a UC campus. Fourteen
percent enrolled at Berkeley and UCLA, which are referred to as “Unimpacted” because
admissions and net enrollment at those campuses were unchanged at the eligibility threshold.
Another 33 percent enrolled at the four UC campuses that provided ELC-eligible applicants with
large admissions advantages, termed “Absorbing” because net enrollment increased by 12.2
percentage points (40 percent) at the eligibility threshold. While nine percent of applicants
enrolled at the three less-selective “Dispersing” UC campuses at baseline, their enrollment
declined by 3.6 percentage points across the threshold as applicants switched into the

34Appendix B.5 shows that ELC eligibility had generally consistent effects on admissions at each UC campus in
each year between 2003 and 2011. ELC eligibility also shifted UC applicants’ relative likelihoods of applying to
each campus, with barely-eligible applicants becoming slightly more likely to apply to campuses that provided ELC
admissions advantages and slightly less likely to apply to the less-selective campuses. However, the application effects
are an order of magnitude smaller than the changes in admissions likelihood, suggesting that the latter largely account
for the resulting enrollment shifts (an interpretation confirmed by the structural model estimates below). See Figure
B.13 and Table B.16.

35Coefficients are estimated using Equation 3.2 for enrollment in the fall semester following UC application.
Baseline estimates are estimated following Abadie (2002), which requires the monotonicity assumption that no near-
threshold ELC-eligible student became less likely to enroll at the Absorbing UC campuses. Non-UC institutions could
not observe or infer applicants’ ELC eligibility, implying that any enrollment changes at non-UC institutions resulted
from changes in applicants’ UC admission.
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more-selective Absorbing campuses.36

The remaining columns of Table 3.2 show that barely ELC-eligible B50 applicants’ enrollment
declined by 6.0 percentage points at the CSU system and by 1.8 percentage points at community
colleges. There is no observable change in private or out-of-state university enrollment.37 These
estimates show that near-threshold ELC-eligible applicants became less likely to enroll at less-
selective public colleges and universities and more likely to enroll at the Absorbing campuses. This
shift in enrollment is larger among B25 applicants, whose Absorbing UC enrollment increased by
16 percentage points, and smaller across all applicants; there is no evidence of net enrollment
changes for applicants from the third or fourth high school quartiles.

3.4.3 Characteristics of Compliers
Who are the near-threshold applicants who enroll at Absorbing UC campuses as a result of their
ELC eligibility? Following Abadie (2002), the average fixed characteristic Wi of ELC
near-threshold “compliers” can be estimated by LATERD(Absorbi×Wi)

LATERD(Absorbi)
, where Absorbi indicates

enrolling at an Absorbing UC campus, under two technical assumptions:

• Random assignment to ELC eligibility. This follows from the regression discontinuity
setting.

• Monotonicity: Absorbi(1) − Absorbi(0) ≥ 0 ∀i s.t. |GPAi| < ε, for some small
bandwidth ε. This is justified by the admissions patterns shown in Figure 3.1.

I estimate ELC compliers’ characteristics by replacing the endogenous variable in Equation 3.2
with Absorbi. Table 3.3 presents β̂ estimates for a series of characteristics, overall and by school
subsample. The last line of each panel shows the mean characteristic of 2003-2011 California-
resident freshman enrollees at the four Absorbing UC campuses, allowing comparison between
ELC compliers and their eventual peers.

Panel B shows that 58 percent of compliers came from the bottom SAT quartile of high schools
and almost 90 percent came from the bottom two SAT quartiles. This sharply contrasts with
Absorbing UC campus student bodies, almost 60 percent of whom graduated from schools in
the top two quartiles. Because so few near-threshold students from the top half of high schools
participated in ELC, the analysis of student outcomes below exclusively focuses on students from
the bottom two quartiles.

Panel A presents estimates of compliers’ demographic and geographic characteristics.
Compliers were more than twice as likely as their future peers to be underrepresented minorities
(URM) and were 15 percentage points more likely to come from families with below-median
incomes. ELC had less impact on the geographic diversity of UC’s student body; about 8 percent
of compliers were from rural California relative to 5.3 percent of Absorbing campus students.
ELC compliers had far lower SAT scores than their eventual peers, by almost 300 SAT points

36Appendix Table B.15 presents estimated changes in admission and enrollment at each UC campus for barely
above-threshold applicants, showing that these aggregated changes at the threshold are mirrored at each of the
respective campuses.

37There is statistically insignificant evidence of a small above-threshold decline in non-enrollment. Students who
take gap years following high school are categorized here as non-enrollees, as are students or institutions with masked
records; see Appendix B.3.
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overall and by 400 points among bottom-quartile applicants. Bottom-quartile ELC compliers had
average SAT scores at the fifth percentile of Absorbing campus students. However, as a result of
the structure of the ELC program, compliers’ average high school GPA was comparable to that of
their Absorbing campus peers. Near-threshold ELC compliers are thus best understood as
relatively disadvantaged students with far lower standardized test scores than their average
Absorbing UC peers, though they were top performers at their less-competitive high schools prior
to enrollment.

3.5 Educational and Labor Market Outcomes

3.5.1 Reduced Form Estimates
ELC eligibility caused many barely-eligible UC applicants — from the bottom half (B50) or
quartile (B25) of California high schools — to enroll at one of four Absorbing UC campuses
instead of enrolling at less-selective public California colleges and universities. Panel (a) of
Figure 3.2 visualizes the sharp increase in Absorbing UC campus enrollment for barely
ELC-eligible B50 and B25 applicants.

Panel (b) of Figure 3.2 shows that above-threshold B50 (B25) students enrolled at institutions
with higher graduation rates by 3.3 (5.4) percentage points, indexing institutions’ selectivity using a
novel five-year graduation rate defined over both two- and four-year institutions.38 Appendix Table
B.17 shows that these institutions are also more measurably selective across a host of alternative
selectivity metrics. It also shows that the Absorbing UC campuses have higher sticker prices but
similar estimated net prices for students with the family incomes of near-threshold applicants,
though Absorbing UC campus enrollment may have increased those students’ college costs by
decreasing their likelihood of living at home through college.39

Panel (c) of Figure 3.2 shows a sharp increase in B50 and B25 applicants’ own likelihood
of undergraduate degree attainment within five years of graduating high school. The trends in
Panels (b) and (c) appear to mirror each other fairly closely, with a similar flattening of applicants’
institutional and own graduation rates just below the eligibility threshold — likely a feature of the
college market unrelated to ELC — followed by sharp increases of 3-5 percentage points at the
threshold. Panel (d) shows that applicants’ likelihood of graduate school enrollment — defined as
post-graduate university enrollment within seven years of high school graduation — also jumps
at the eligibility threshold, which likely bodes well for applicants’ long-run wages (Altonji and
Zhong, 2020). Appendix Figure B.14 and Table B.23 show β̂ estimates for additional reduced-form
educational outcomes across the ELC eligibility threshold, presenting evidence that barely above-
threshold students spend fewer years enrolled in undergraduate programs (despite their increased
degree attainment) but may be less likely to earn a degree in a STEM field.

Panels (e) and (f) of Figure 3.2 show the average annual covered California wages and log
wages earned by applicants between seven and nine years following high school graduation.40 The

38Graduation rates are defined by linking all UC applicants to their first enrollment institution and measuring their
five-year Bachelor’s degree attainment from any institution, even if they transfer elsewhere. See Appendix B.4.

39Appendix Table B.18 shows similar conditional differences across the ELC eligibility threshold in the selectivity
of the institutions where degree-attainers earn their undergraduate degrees.

40Average log wages omit years in which no California wages were earned.
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plot shows reduced-form increases in annual wages of about $2,300 (or 0.10 log points), with some
variation in the statistical significance of the various estimates in the polynomial and local linear
specifications. Given that ELC only shifts students between California institutions and that there is
no measurable change in applicants’ number of years of California employment in either sample, it
is unlikely that these estimates are explainable by the wage data’s restriction to covered California
employment.

3.5.2 Instrumental Variable Estimation
The admission and enrollment patterns discussed above imply that ELC eligibility could cause
one of two changes in barely-eligible students’ university enrollment: (1) it could lead students to
enroll at an Absorbing UC campus instead of a less-selective public institution, or (2) it could
lead students to enroll at an Absorbing UC campus instead of another Absorbing UC campus. As
a result, the most natural instrumental variable strategy for measuring the effect of Absorbing UC
campus enrollment – using ELC eligibility as an instrument for Absorbing UC enrollment
following Equation 3.2 – could be biased by changes in student outcomes resulting from
between-Absorbing-campus switches, which violate the strategy’s monotonicity assumption.
While I nevertheless report those estimates in Table 3.4, I also implement a more robust
instrumental variable strategy that separately identifies ELC’s treatment effect on the UC
applicants who enrolled at each of the four Absorbing UC campuses because of ELC,
constructing four instrumental variables by interacting the regression discontinuity design with
distance-to-campus measures for each applicant (Card, 1993).41 In particular, I estimate models
of the form:

Yit =
∑
c∈Abs

(
βc ˆENRic + fc(GPAi)×Distic

)
+ δXi + γt + εit (3.3)

where Distic is the as-the-crow-flies distance from i’s home address to the four UC campuses
c ∈ Abs and the four ˆENRic enrollment indicators are instrumented by (1GPAi≥0 × Distic), the
interaction between distance-to-campus and having an above-threshold ELC GPA.42 I omit high

41This research design relies on the plausible exogeneity of which Absorbing campus each near-threshold UC
applicant lives closest to. For example, it requires that the potential outcomes of near-threshold applicants who will
attend Davis (iff they are ELC-eligible) because they live near to Davis must be equivalent to those of the near-
threshold applicants who will attend Irvine (iff they are ELC-eligible) because they live near to Irvine. This assumption
is testable on observables: the first row of Table 3.4 shows that there is no observable cross-campus difference in the
observed academic preparedness of the students who enroll at one campus instead of another, measuring preparedness
by their predicted likelihood of college graduation. The research design also assumes constant treatment effects in the
relationship between students’ outcomes and their Absorbing UC campus enrollment caused by their distances to each
of the four UC campuses, though Table B.20 shows that enrollment at each campus is largely predicted by their log
distance to that campus, not their distances to the other campuses.

42The last two rows of Table 3.4 show that the instrumental variables easily satisfy weak-instrument tests; the first-
stage F -statistics range from 13 to 107 (Stock and Yogo, 2002), and the conditional first-stage F -statistics (Sanderson
and Windmeijer, 2016) range from 33.6 to 104.1, all far above suggested minima. To improve the instrument’s
strength, I interact the Santa Barbara distance measure with an indicator for t < 2011, exploiting Santa Barbara’s
increasing popularity among applicants over time (it rose over the sample period from the lowest- to highest-ranked of
the Absorbing UC campuses in the U.S. News & World Report rankings). Appendix Table B.19 shows the unadjusted
estimates.
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school fixed effects because they absorb key geographic variation across applicants, and continue
to cluster εit by school-year.

The second row in Table 3.4 shows that the ELC participants who enroll at each of the four
Absorbing UC campuses experienced similar increases in the five-year graduation rates of their
enrollment institution, between 24 and 34 percentage points (p = 0.24 from a F -test of the
coefficients’ equality), with an overall average increase of 27 percentage points. Because the four
campuses all have highly similar measured graduation rates — ranging from Davis’s 74.3 percent
to San Diego’s 79.4 percent — this implies that each campus’s enrollees’ counterfactual
enrollment would have been strikingly similar, with mean graduation rates around 50 percent.
Between 46 and 54 percent of enrollees would have otherwise enrolled at CSU campuses and 21
to 28 percent would have enrolled at community colleges, depending on the Absorbing UC
campus, with the remainder coming from the Dispersing UC campuses.

The same is true for applicants’ own likelihood of graduation, which uniformly increases by
between 30 and 34 percentage points (F -stat p = 0.99). Though the UCSB estimate is somewhat
noisy, these coefficients’ apparent equality suggests that the four campuses had highly similar
attainment treatment effects for ELC participants, with the magnitude of the effect mirroring that
of the change in institutional graduation rates. There is some evidence that UCSB caused a
relatively greater decline in ELC participants’ likelihood of earning a STEM degree than the other
UC campuses, but their treatment effects on graduate school enrollment are also similar across
institutions.43

The bottom half of Table 3.4 shows campus-specific instrumental variable estimates of the
effect of ELC participation on early-career labor market outcomes. There is no evidence that
enrollment at any of the campuses changed the number of years in which ELC participants are
employed in California, and there is some heterogeneity in the wage effects across Absorbing
campuses: there is clear evidence that UC Davis increased its students’ annual early-career wages
by about $25,000, but the estimated coefficients are positive but imprecise for the other three
Absorbing campuses, ranging from $2,000 to $16,000.

In total, this evidence suggests that ELC participants were very substantially benefited by

43There are at least two possible explanations for this decline in STEM major selection at the ELC eligibility
threshold. The first, put forward by Sander and Taylor (2012), argues that less-prepared students likely earn lower
grades in introductory science courses when their peers as a result of their peers’ stronger academic preparation,
discouraging them and leading them to less-challenging majors in other disciplines. However, Bleemer (2020a)
shows that a natural experiment that led disadvantaged students to enroll in introductory STEM courses with less
academically-prepared peers did not improve their performance or persistence in those courses. Alternatively, students
who might have otherwise been pressured to earn STEM degrees (perhaps by parents or others advocating for higher-
average-wage degrees) could face less (external or internal) pressure after enrolling in a more-selective university,
leading them to earn non-STEM degrees. Indeed, Appendix Table B.21 shows noisy reduced-form evidence suggests
that barely ELC-eligible students may have been less likely to report the intention of earning a Natural Science or
STEM degree on their UC application. ELC-eligible applicants also because substantially more likely to earn a degree
in their “intended” discipline (as reported on their UC applications), which increases in the reduced-form among B50
applicants by 2.6 percentage points (s.e. 1.2). Finally, additional speculative evidence can be found in Appendix Table
B.22, which presents a ‘transition table’ showing reduced-form estimates of barely-eligible applicants’ major choice
changes by intended field of study (as reported on the UC application). The table shows that the largest observable
cross-discipline switches among barely ELC-eligible applicants were of intended social science and STEM majors
switching into social science degrees and undeclared majors switching from the natural sciences into business degrees,
with clear evidence of intended STEM majors switching out of STEM degrees.
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enrolling at Absorbing UC campuses instead of less-selective universities.44 The next section
further analyzes effect heterogeneity by comparing outcomes for students from more- or
less-competitive California high schools.

3.5.3 Outcome Heterogeneity by Applicant Characteristics
The efficiency of the ELC policy requires that ELC not only provide substantial benefits to
targeted participants, but also that those benefits be comparable in magnitude (or larger than) the
benefits that would have been derived from Absorbing UC campus enrollment by the
“crowded-out” applicants who would have enrolled at those campuses absent the ELC policy. The
next section turns to a structural model of university application, admissions, and enrollment in
order to characterize those students and their return to more-selective enrollment. Before doing
so, this section presents reduced-form evidence on how the return to Absorbing UC campus
enrollment differs for different subgroups of near-threshold ELC participants.

Panel A of Figure 3.3 graphs reduced-form estimates of the impact of ELC eligibility on
near-threshold applicants’ university selectivity (measured by institutional graduation rate) and on
three measured outcomes for applicants from different quantiles of California high school. The
figures show that students from lower high school quantiles tended to experience larger increases
in university selectivity across the eligibility threshold and also tended to face larger increases in
educational and labor market outcomes in the following years. These figures reiterate that the
ELC policy’s benefits almost exclusively obtained for applicants from California’s
least-competitive high schools.

This pattern of increasing returns may just reflect the higher number of near-threshold ELC
participants at less-competitive California high schools. In order to isolate the relative effects of
ELC eligibility for different ELC participants, I restrict the sample to the bottom half of California
high schools and reestimate Equation 3.2 separately for each quartile, replacing the endogenous
variable with an indicator for Absorbing UC campus enrollment (Absorbi).45 Panel B shows that
second-quartile near-threshold ELC participants faced a smaller increase in university graduation
rate (15 percentage points) than first-quartile participants (35 percentage points). Despite this
tremendous institutional shift — the average bottom-quartile applicant switched from an average
local comprehensive university (or above-average community college) into a top-ranked public
research university — the return to Absorbing UC campus enrollment for those applicants was
nearly as large or slightly larger than the return for the second-quartile students who switched, on
average, from somewhat less-selective public universities. The standard errors on these estimates

44Appendix Table B.23 presents estimates from alternative specifications of these regression discontinuity
and instrumental variable outcome models, including (1) showing reduced-form coefficients from local linear
specifications following Calonico et al. (2019) and with an alternative definition of high school eligibility thresholds,
and (2) exploiting the assumptions justifying treating Absorbing UC campus enrollment as the endogenous variable
in order to estimate potential outcomes for barely below- and above-threshold ELC compliers. It shows, for example,
that ELC eligibility increased B50 ELC participants’ enrollment institution’s graduation rate (likelihood of graduating
within five years) from 50 (46) to 77 (75) percent.

45This instrumental variable strategy requires the exogeneity assumption that the only reason that applicant
outcomes shift across the eligibility threshold is as a result of their Absorbing UC campus enrollment, which in
turn requires that either applicants did not switch between Absorbing UC campuses across the threshold or that those
applicants who did switch would have obtained similar outcomes at either of those campuses, with Table 3.4 providing
some evidence for the latter claim.
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are quite large, challenging clean parameterization of the relationship between counterfactual
enrollment and the return to university selectivity, but this evidence strongly suggests that the
value of more-selective university enrollment remains large (and perhaps growing in institutional
selectivity) even for students who would have enrolled at non-selective institutions absent the
ELC policy. I will return to this relationship below in the context of the structural model.

Appendix Table B.24 provides additional estimates of heterogeneity in the return to
more-selective university enrollment under ELC, treating first enrollment institutions’ graduation
rates as an alternative endogenous variable in Equation 3.2 (a linear projection as in, e.g., Kling
(2001)).46 It shows that the returns to more-selective university enrollment appear statistically and
substantively indistinguishable for URM and non-URM students and for male and female
students, though many of the estimates have relatively large confidence intervals.

3.6 Structural Model of University Enrollment
More-selective university enrollment substantially benefits the low-testing high-GPA students
targeted by ELC. However, while the reduced form analysis above showed that near-threshold
ELC participants were lower-income and from less-competitive high schools than their Absorbing
UC campus peers, its focus on partial equilibrium outcomes may ignore important general
equilibrium effects like universities’ dynamic admissions responses to ELC admissions
advantages. As a result, the previous analysis cannot characterize compositional or outcome
differences between the average “winners” or “losers” of the ELC policy; that is, the students who
enrolled at Absorbing UC campuses as a result of ELC and those who were “crowded out” by
ELC but otherwise would have enrolled at Absorbing UC campuses.47 These characterizations —
as well as characterizations of the “winners” and “losers” of counterfactual top percent policies
with alternative eligibility thresholds — are central to the determination of top percent policies’
efficiency, but require estimation of how the policies broadly shift applicants’ and universities’
decisions.

I analyze those decisions by constructing a three-period model of university applications,
admissions, and enrollment adapted from Kapor (2020). First, California-resident high school
seniors apply to a portfolio of universities (Ai), including at least one UC campus. Second, each
university observes its applicant pool and determines which students to admit. Third, applicants
observe which institutions have admitted them (Bi), as well as previously unobserved preference
shocks, and choose where to enroll (Ci).

The model spans colleges j ∈ 1, ..., J, CC,CSU , where CC is the California community
college system and CSU the California State University system. I assume that all students apply
and are admitted to CC and CSU . Each college is characterized by average quality δj , with δCC
normalized to 0. The following subsections explain the model by proceeding backward, from
enrollment to admission to application.

46Appendix Table B.25 performs a series of linearity tests that provide suggestive evidence favoring this
instrumental variable design, which imposes a linear relationship between university selectivity and applicant
outcomes.

47I borrow this “winners” and “losers” terminology from Black, Denning and Rothstein (2020).
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3.6.1 Student preferences
After receiving admissions offers, student i ∈ I chooses to enroll at her most-preferred university
j. Her utility of enrolling at j is given by

Uij = δj + xijβ
x
j + νij + εij (3.4)

where xij are student characteristics, νij ∼ N(0, σ2
νj

) are i.i.d. preference shocks always observed
by students, and εij is a previously unobserved idiosyncratic preference shock modeled by the Type
I extreme value distribution (perhaps resulting from post-admission campus visits).48 Student i
enrolls at

Ci = max
j∈Bi

Uij

after being admitted Bi. Following from the distribution of εij (Train, 2003), i’s expected utility
from being admitted to Bi is given by

UiB = log
(∑
j∈B

exp(δj + xijβ
x
j + νij)

)
and her conditional likelihood of enrolling at C after being admitted to B is

P (Ci = C|B) =
exp(δC + xiCβ

x
C + νiC)∑

j∈B exp(δj + xijβxj + νij)
.

3.6.2 University preferences
Selective universities prefer to enroll the highest-quality class of students, defining students’
quality by

πij = ziβ
z
j + qi + µAdmitij (3.5)

where zi is a vector of student characteristics, qi is a caliber characteristic of student i unobserved
by the student, and µAdmitij is a normally-distributed error term capturing preference variation across
application readers and other factors. Universities admit students B(j) to maximize the quality of
their enrollment class:

B(j) = max
B⊂A

∑
i∈B

E[1{Ci=j}πij] = max
B⊂A

∑
i∈B

P (Ci = j|Bi)πij s.t.
∑
i∈B

P (Ci = j|Bi) ≤ kj

where universities’ expected enrollment is capped at kj .49 Kapor (2020) shows that, under technical
assumptions limiting universities’ strategic behavior, this results in each university choosing an
admissions threshold

¯
πj such that it admits all applicants with πij >

¯
πj .

48While the relationship between Uij and the financial return to i enrolling at j is not explicitly modeled,
the βxj terms can be understood as potentially partially capturing student-university match effects on observable
characteristics, with students of a particular type preferring enrollment at j because of their relatively large return
to enrollment.

49This model excludes universities from ‘balancing’ their classes to maintain quotas of certain student types.
Balancing classes by gender and/or ethnicity was legally prohibited at public California institutions throughout the
study period.

65



Figure 3.4 presents an internal 2002 UC Davis admissions document explaining their
admissions protocols. It shows how closely the presented model maps to the actual admissions
practices of most UC campuses during the sample period: Davis assigned each applicant a score
based on their characteristics, including a large boost for ELC eligibility, and then admitted all
applicants with scores above a threshold determined on the basis of expected enrollment.

3.6.3 University applications
When students choose which universities to apply to, they do not observe εij , the post-admissions
preference shock; µAdmitij , universities’ preference shocks over students; or qi, a measure of
students’ own ‘caliber’ only observed by universities. Instead of directly observing qi, students
observe a signal of their caliber denoted si, which is jointly normally distributed with qi
(independently across applicants) by

(
qi
si

)
∼ N

((
0
0

)
,

(
σ2
q (wi)

σ2
s(wi) σ2

s(wi)

))

where σ2
s(wi) is the variance of students’ signals, σ2

q (wi) is the variance of students’ actual qi, and
wi ⊂ zi are i’s sociodemographic characteristics. As in Kapor (2020), the covariance between si
and qi is normalized (without loss of generality) to equal σ2

s(wi) in order to decompose qi into two
interpretable components, one known by students (si) and the other unobserved. This allows the
marginal distribution of qi|si, the information known by students at the time of application, to be
written as

qi|si ∼ N
(
si, σ

2
q|s(wi)

)
where σ2

q|s(wi) = σ2
q (wi)− σ2

s(wi). These variances are parameterized as

σ2
s(wi) = log(1 + exp(wiγ

s))

σ2
q|s(wi) = log(1 + exp(wiγ

q|s))

to constrain them to positive values.
Instead of interpreting qi as a latent student ‘ability’ feature, it is best understood as an index

of universities’ preference for certain students that is unobserved by the econometrician and only
partly observed by students. For example, students’ applications might contain information — like
athletics participation, extracurricular leadership positions, and essay-writing style — the value
of which in university admissions is unknown to them. High-qi students are those who submit
unobserved application components that are valued in university admissions. Low-σ2

s(wi) students
are those with strong knowledge of the value of their unobserved application components.

Applicants expect benefits of applying to each university that are proportional to their
likelihood of admission to the university and the utility of their being admitted to it, but face costs
associated with applying to each additional university. As a result, their maximization problem
can be stated as

max
A⊂J

Vi(A) =
(∑
B⊂A

Pi(Bi = B|A)UiB

)
− |A|wiγc (3.6)

where Pi(Bi = B|A) is i’s perceived likelihood of admission to university set B given application
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set A and γc parameterizes i’s cost of applying to |A| universities. Following from the distribution
of µAdmitij , i’s perceived probability of admission to B is

Pi(Bi = B|A) =

∫ ∏
j∈B

(
Φ(ziβ

z
j + qi −

¯
πj)
) ∏
j∈A\B

(
1− Φ(ziβ

z
j + qi −

¯
πj)
)
φ(qi|si;σ2

q|s)dqi.

3.6.4 Estimation
I define each of the covariate sets xij , zi, and wi to include a female gender indicator, three
ethnicity indicators (Asian, URM, and other), and log family income.50 Student preferences (xij)
and university preferences (zi) also include SAT score, high school GPA, and the estimated
value-added of the closest community college as a measure of the quality of students’ regional
educational availability.51 Universities’ preferences over students also vary by a set of ELC
covariates, including an ELC eligibility indicator, the ELC GPA running variable interacted with
ELC eligibility (within a narrow bandwidth), and indicators for having a running variable above
or below the bandwidth and for whether the ELC program is operative in that year. Finally,
students’ preferences also vary by a set of distance-to-university covariates — including the
distance and squared distance between i’s home and j as well as distance interacted with the
covariates in wi — which allow students to have heterogeneous preferences over enrolling at
more-distant institutions. I assume that ELC covariates enter into university admissions decisions
but not students’ preferences over institutions, while (following a long literature) distance
covariates enter into students’ preferences but not university admissions decisions, each of which
helps to separately identify student and university preferences. A Constant term is absorbed in the
specifications of xij and zi but is included in wi.

I allow βxj to vary for each j for most covariates, but model the effects of distance and its
interactions uniformly across universities. I allow separate βzj terms for each of the ELC
covariates, but otherwise treat university preferences as uniform. All coefficients are
deterministic. The socioeconomic covariates wi enter into students’ application costs (γc), the
variance of their informational signal about their caliber (γs), and the variance of the gap between
their signal and their true caliber (γq|s).

I estimate model parameters θ = {βxj , βzj , γc, γs, γq|s, δj, σ2
νj
,
¯
πj} ∈ Θ ⊂ R99 by simulated

maximum likelihood using the quasi-Newton method.52 Following the reduced-form findings on
the function of the ELC policy, I group UC campuses into four sets: two sets of Absorbing UC
campuses (UCD/UCI and UCSD/UCSB, allowing their different ELC admissions advantage
magnitudes), the Unimpacted campuses (UCB and UCLA), and the Dispersing campuses (UCSC,
UCR, and UCM). Because enrollment at private and out-of-state universities is observably
unchanged as a result of ELC, and because I do not observe application or enrollment to those
institutions, I omit those institutions from the model and restrict the estimation sample to UC
applicants who enroll at a public California institution. Students can apply to any combination of

50For applicants without observed family income, I predict income using high school and Zip code fixed effects,
gender-ethnicity indicators, parental education and occupation indicators, and SAT and HS GPA.

51See section 3.8.1 for a discussion of these value-added statistics.
52Estimation is conducted using MATLAB’s fminunc function with the BFGS algorithm and default

parameterization.
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the four combined UC universities (with 15 possible combinations), and all students are also able
to enroll at either community college or CSU (each modeled as a single institution).

In order to compare admission and enrollment outcomes in the presence and absence of ELC,
I restrict the sample to 2010-2013 UC applicants, the final two years of the ELC policy and the
first two years of its absence (see Appendix B.1). It is useful to include non-ELC years both
for parameter identification and because UC identified the within-school GPA centile (from first
to ninth) of each applicant starting in 2012, permitting counterfactual analysis of alternative top
percent thresholds. The resulting estimation sample includes 219,876 applicants.

3.6.5 Likelihood
For each student i, the likelihood of all observables in the data is:

li(θ) =

∫
s

∫
νi

lAi (θ, νi, s)l
B|A
i (θ, s)l

C|B
i (θ, νi)dFi(s; θ)dGi(νi; θ) (3.7)

where lAi is the likelihood of i applying to Ai, l
B|A
i is her likelihood of being admitted to Bi if she

applied to Ai, and lC|Bi is her likelihood of enrolling at Ci after being admitted to Bi. Following
the structural assumptions described above, these terms take the following forms:

l
C|B
i (θ, νi) =

exp(δC + xiCβ
x
C + νiC)∑

j∈B exp(δj + xijβxj + νij)

l
B|A
i (θ, s) =

∫ ∏
j∈B

(
Φ(ziβ

z
j + qi −

¯
πj)
) ∏
j∈A\B

(
1− Φ(ziβ

z
j + qi −

¯
πj)
)
dFi(q|s;σ2

q|s)

lAi (θ, νi, s) =
exp 1

λ
Vi(A)∑

A′⊂J exp 1
λ
Vi(A′)

where the smoothing parameter λ is set to 0.1 (see Train (2003)).

3.6.6 Estimated Parameters
Tables 3.5, 3.6, and B.27 present the model’s estimated equilibrium parameters, with standard
errors from the inverse of the empirical Hessian matrix. The βxj and δj parameters shown in Table
3.5 are scaled relative to students’ preferences for community college; all continuous variables
are standardized, so the baseline applicant is a white male with mean attributes. Higher-income
students prefer against community college enrollment. While high-SAT applicants have strong
preferences for UC’s most-selective campuses, high-GPA low-SAT students show a preference
for CSU enrollment. Applicants’ average preferences align with the UC campuses’ selectivity
— applicants generally prefer to enroll at more-selective schools — though the average applicant
prefers CSU or CC enrollment to enrollment at the Dispersing UC campuses.

The final column in Table 3.5 shows that universities strongly prefer applicants with higher
GPAs and SAT scores. With applicants’ socioeconomic characteristics proxying other unobserved
application components, the UC campuses appear to slightly prefer lower-income, female, Asian,
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and URM applicants. All of the applicant and university preference parameters are estimated with
high precision.

Table 3.6 shows how ELC is embedded into the estimated UC admissions model.53 As in the
reduced-form analysis, the Davis and Irvine campuses provided the largest admissions advantage
to ELC-eligible students, followed by the San Diego and Santa Barbara campuses. The Dispersing
and Unimpacted campuses are precisely estimated to have only provided very small admissions
advantages to ELC-eligible students.

The final row of Table 3.6 shows the model estimates of campuses’ admissions thresholds
(
¯
πj). The thresholds align with campuses’ actual selectivity during the period; the Unimpacted

campuses have the highest admissions threshold, followed by UCSD/UCSB, then UCD/UCI, and
finally the Dispersing campuses.54

Appendix Table B.27 reports the remaining model parameters. Applicants faced positive costs
for each additional application, and applicants preferred to enroll at less-distant institutions (with
smaller distance costs for higher-income applicants). Lower-income and URM students had
substantially more-negative signals of their unobserved caliber q, and applicants generally had
strong knowledge of their caliber. Finally, it shows that the magnitudes of students’ taste shocks
are relatively large across institutions (σ2

νj
between 1.5 and 4, with standard errors around 0.75),

especially for the Unimpacted UC campuses.

3.6.7 Model Validation
The previous subsection showed that the model parameters match widely-held beliefs about the
direction and relative magnitude of relationships between observed applicant characteristics and
their preferences and admissions outcomes. I further validate the model by testing the success
with which it replicates the effects of near-threshold ELC eligibility on applicants’ admissions and
enrollment outcomes. I restrict the sample to 2010-2011 applicants in the model sample and use
the model to estimate each applicant’s unconditional likelihood of admission and enrollment at
each set of UC campuses. I then compare the binned averages of those likelihoods with the binned
averages of those applicants’ actual admissions and enrollment outcomes among near-threshold
applicants.

These comparisons are visualized in Figure 3.5. While the information provided to the model
only includes the ELC GPA running variable within a narrow bandwidth on either side of the
threshold, the figures show remarkable alignment between near-threshold applicants’ simulated
and actual admissions and enrollment outcomes, though applicants’ admission to the San Diego
and Santa Barbara campuses is underestimated for lower-GPA applicants. The estimated effects
of ELC eligibility on UC admission at the eligibility threshold are closely matched by the model,
while the effect of ELC eligibility on Absorbing UC campus enrollment is slightly under-predicted
by the model. In general, the model effectively simulates the near-threshold effects of ELC relative
to reduced-form estimates.

53Because Davis, Irvine, and the Dispersing UC campuses admit nearly all above-threshold applicants, the slope
of their above-threshold running variable is only weakly identified. I assume those parameters to be 0.

54In 2011, the UC campuses’ admissions rates were 21 and 26 (Berkeley and UCLA), 38 and 45 (San Diego and
Santa Barbara), 46 and 45 (Davis and Irvine), and 64, 76, and 89 (Santa Cruz, Riverside, and Merced).
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3.7 The Impact of Top Percent Policies on UC Enrollment
Composition

3.7.1 “Winners” and “Losers” of ELC Implementation
In this section, I employ the previous section’s model to quantify top percent policies’ economic
mobility potential by estimating the net effects of top percent policies on selective universities’
enrollment composition, focusing on the net enrollment of socioeconomically-disadvantaged
students. First, I estimate how the students who enrolled at Absorbing UC campuses because of
ELC (“ELC participants”) differed from the crowded-out students who were unable to enroll at
those universities as a result of the ELC policy. I conduct this counterfactual enrollment exercise
in two ways: by eliminating ELC from 2010-2011 admissions in the model (by setting
βELCAbs1 = βELCAbs2 = 0) and by adding ELC to 2012-2013 admissions (by setting ELC = 1 for
applicants in the top four percent of their high school class).55 I then allow universities to adjust
their admissions thresholds

¯
πj so that their annual expected enrollment remains unchanged,

assuming that each Absorbing campus would fill the same number of enrollment seats in one of
two ways: through ELC or through their regular freshman admissions process.56

In both of these counterfactual exercises, the
¯
πj parameters adjust as expected: the

Unimpacted and Dispersing campuses’ admissions thresholds hardly adjust, while
¯
πAbs1 and

¯
πAbs2 decrease in the former exercise (to expand enrollment absent ELC) and increases in the
latter exercise (to shrink non-ELC enrollment); see Appendix Figure B.28. Moreover, the two
counterfactual exercises provide very similar estimates for the impact of ELC. The first and third
columns of Table 3.7 show that ELC shifted Absorbing UC campus enrollment by about 600
students per year: there are about 600 annual ELC participants and 600 annual crowded-out
students.57 ELC participants’ counterfactual enrollments look very similar to the counterfactual
enrollments of near-threshold participants estimated above: about half would have otherwise
enrolled at CSU, with the remainder split between the Dispersing UC campuses and community
colleges.58 A comparison between the characteristics of simulated ELC participants and those of
the estimated local compliers (replicated in column 5 from Table 3.3) shows near-identical URM
shares (44-47 percent) and average family incomes ($63,000-$67,000). The average simulated
ELC participants had somewhat higher SAT scores and high school GPAs than the barely
above-threshold compliers.

The second and fourth columns of Table 3.7 show that the characteristics of the students
crowded out by ELC appear more similar to the average Absorbing UC campus student, though
they are also somewhat negatively-selected (as a result of their being the first students to be
rejected in the presence of the ELC policy). Their household incomes were slightly lower than the
Absorbing UC average, and about 30 percent were URM (compared to 20 percent overall). While

55I set βELCUnimp = βELCDisp = 0 in the latter exercise to isolate the admissions effects at the Absorbing UC campuses.
56In the counterfactual compositions presented below, I characterize ELC participants as anyone whose likelihood

of Absorbing UC enrollment increases in the presence of ELC (and crowded-out applicants as anyone whose likelihood
of Absorbing UC enrollment declines), weighted by their change in enrollment likelihood.

57That is, the sum of the differences in applicants’ enrollment likelihoods in the presence or absence of ELC,
conditional on those differences being positive, is 550 in the first simulation and 720 in the second. The sum of the
negative differences is the same by construction (after

¯
πAbs1 and

¯
πAbs2 adjust).

58The reduced-form estimates report a somewhat higher relative share coming from the Dispersing UC campuses.
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the crowded-out students had below-average SAT scores and high school GPAs, their average
SAT scores remained substantially higher than ELC participants’.

Figure 3.6 compares the family income distributions of ELC winners and losers. It shows that
the ELC policy increased annual Absorbing UC net enrollment among students with log family
incomes between 9 and 11 and decreased annual net enrollment among students with log family
incomes over 11.2. However, it also shows substantial overlap between the two distributions; by
increasing selective university enrollment among top students from less-competitive California
high schools, ELC increased lower-income enrollment at Absorbing UC campuses but also
decreased many other lower-income applicants’ likelihood of Absorbing UC enrollment through
regular admissions channels.

3.7.2 Top Percent Policies and University Enrollment Composition
Next, I estimate how top percent policies with alternative percentile thresholds would impact the
composition of the Absorbing UC campuses. As discussed above, 2012 and 2013 applicants were
categorized by UC as being in the top one, two, and down to top nine percent of their high school
classes, but UC campuses generally provided negligible admissions advantages to students using
these class ranks. I simulate counterfactual enrollments as if the Absorbing UC campuses had
provided the same admissions advantage to 2012-2013 applicants with GPAs above each rank-
specific threshold that they had provided to ELC-eligible students prior to 2012. I estimate these
simulations by setting ELC = 1 for applicants above each alternative rank-specific threshold and
then allowing for

¯
πj adjustments to equalize expected enrollment.

In 2012-2013, lower-income (URM) students made up about 9,500 (4,700) of the 17,200
freshman California-resident enrollees at the Absorbing UC campuses. Figure 3.7 shows that
these net enrollments would increase by about 1 and 2.5 percent (respectively) if the campuses
had continued providing similar-magnitude admissions advantages to the top four percent of each
high school’s graduates after 2011. However, those impacts would have been much larger —
about 4 and 8 percent, respectively — if the Absorbing campuses had provided parallel
admissions advantages to the top nine percent of each high school’s graduates.59 In sum, these
simulations show that top percent policies can substantively increase universities’ net enrollment
of socioeconomically-disadvantaged students, with larger increases from lower thresholds.

59This equates to increases of lower-income and URM enrollment by about 2 percentage points each. Note that
it is not obvious a priori whether top percent policies with lower percentile thresholds will have the same, larger, or
smaller proportional effects on the proportion of lower-income or URM students at a selective university. On the one
hand, as the policy provides admissions advantages to students with lower high school GPAs, those students are more
likely to be disadvantaged, and as the number of policy losers increases the on-the-margin student is also less likely to
be disadvantaged. On the other hand, the on-the-margin student will be coming from a more-advantaged high school
(since broadening a top percent policy will increase the number of schools where students will want to take advantage
of that policy), which may imply that they will be less likely to be lower-income or URM. However, Figure 3.7 shows
that the former trends are dominant: the net effect is that the percentage point gap between the lower-income and/or
URM share of ELC winners and losers grows as the policy’s admissions threshold declines.
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3.8 Discussion: Who Benefits Most from More-Selective
Enrollment?

Having shown that top percent policies can meaningfully increase selective universities’ net
enrollment of disadvantaged students, I conclude by discussing reduced-form and structural
evidence on the relative return to more-selective university enrollment for applicants with higher
or lower traditional meritocratic rank.

3.8.1 Reduced-Form Evidence
Section 3.5.3 presents reduced-form evidence showing that the benefits of selective university
enrollment remain large even for students who would have otherwise enrolled at very
low-selectivity institutions. While the reduced-form setting prohibits direct comparison of the
return to university selectivity for students crowded out by ELC, I employ estimated
“value-added” statistics for each college and university to conduct an alternative comparison: how
does the effect of Absorbing UC enrollment for barely-eligible ELC participants compare to those
institutions’ average treatment effect for their enrolled students?

I estimate three measures of institutional value-added: the degree to which each institution
tends to increase enrollees’ five-year degree attainment, early-career wages, and early-career log
wages. Value-added statistics are estimated using 2003-2011 UC applicants (holding out the main
estimation sample) in a fixed effect specification following Chetty et al. (2020a), controlling for
applicant ethnicity and fifth-order polynomials in SAT score and family income.60

Figure 3.8 shows how applicants’ first enrollment institutions’ estimated value-added varies
near the ELC eligibility threshold. Panel (a) shows that the change in five-year degree attainment
value-added at the eligibility threshold closely matches the change in applicants’ actual five-year
degree attainment (see Figure 3.2), suggesting that ELC applicants’ educational value derived from
the Absorbing UC campuses matched the value derived by average UC students. Panels (b) and (c),
however, show that ELC participants’ increase in institutional wage value-added is far smaller than
the increases in early-career wages observed in Figure 3.2: Barely above-threshold B25 applicants
enrolled at universities with $730 (0.02) higher (log) wage value-added but actually earned higher
annual wages by about $2,200 (0.08) in their early careers. While the estimates on wages and
wage value-added are not all statistically distinguishable, this suggests that the wage return to
Absorbing UC campus enrollment for ELC participants may (substantially) exceed the average
return to enrolling at those universities.

3.8.2 Structural Evidence
The structural model estimated above facilitates a more direct test of whether deviations from
selective universities’ regular meritocratic admissions procedures generate inefficiencies by
admitting students who benefit relatively less from selective university enrollment, abstracting
from the particulars of UC’s ELC policy. Consider applicants’ qi caliber terms observed by UC

60For details on value-added estimation for each institution, see Appendix G.1 of Bleemer (2020a). Chetty et al.
(2020a) argue that about 80 percent in the variation of these value-added statistics is ‘causal,’ implying that differences
in the presented value-added statistics may overstate differences in institutions’ average treatment effects.
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campuses in the model. As described above, qi indexes the latent characteristics of applicants that
are valued by UC admissions offices but are unobserved by the econometrician; applicants with
high qi are those whose admissions outcomes are stronger than what would be expected given
their test scores, grades, and other characteristics. Similarly, we can define

Qi = ziβ
z + qi

(omitting the ELC terms) as the application ‘merit’ of applicant i as observed by UC campuses.
By selecting high-Qi or high-qi applicants, are universities admitting students who are generally
better able to benefit from their admission? Using a similar selection-on-observables methodology
to Dale and Krueger (2002) and Dillon and Smith (2020), I investigate this question by estimating a
series of linear regression models relating applicant outcomes to the interaction between university
selectivity and either Q̂i or q̂i.

Among the model sample of applicants — that is, 2010-2013 freshman California-resident UC
applicants who first enroll at a public California institution — I estimate each applicant’s q̂i from
the posterior distribution implied by the estimated structural model parameters.61 The estimated
q̂i statistics are normally distributed with mean 0 and standard deviation 0.15. I then estimate
Q̂i = ziβ̂

z + q̂i, excluding the ELC terms, and standardize Q̂i for interpretability. I estimate linear
regressions of the form

Yi = β1GRi + β2Q̂i + β3(GRi × Q̂i) + γXi + εi (3.8)

where GRi is i’s first enrollment institution’s five-year graduation rate and Xi takes one of three
forms: (1) null; (2) includes detailed covariates, including gender-ethnicity indicators, SAT score,
HS GPA, log income, parental education and occupation indicators, ELC eligibility, and high
school, Zip code, and year fixed effects; and (3) those same covariates in addition to fixed effects
for every portfolio of UC applications and admissions across campuses (as in, e.g., Mountjoy
and Hickman (2020)). These covariate sets are intended to absorb selection bias arising from
applicants’ non-random enrollment across more- or less-selective institutions. I estimate these
models for two outcomes: five-year degree attainment and early-career wages (seven to eight years
after high school graduation), with the latter models restricted to pre-2012 applicants (since wages
for later applicants are not yet observed). I also estimate similar models replacing Q̂i with either
q̂i or (standardized) SAT score and high school GPA, as well as models that allow GRi to be a
polynomial expansion of institutional graduation rate. The robust standard errors assume Q̂i and
q̂i to be accurate.

Table 3.8 shows that enrolling at an institution with a higher graduation rate by 1 percentage
point increases applicants’ own five-year degree attainment by about 0.8 percentage points,
matching the reduced-form relationship estimated for ELC participants. Applicants’ measured Q̂i

is also strongly associated with positive outcomes: applicants with a 1 standard deviation higher
Q̂i tend to have higher five-year degree attainment by 16 percentage points and have higher
early-career wages by $10,000. However, there is no evidence that the return to more-selective
university enrollment is larger for high-Q̂i applicants; instead low-Q̂i applicants benefit slightly

61In particular, I draw 1,000 sets of preference shocks, si’s, and qi|si values, calculate each applicant’s qi and the
likelihood of those values given the estimated parameters for each set, and then take the likelihood-weighted average
of the resulting qi’s.

73



more from enrolling at more-selective institutions. In the most restrictive specifications —
comparing applicants at different institutions with highly similar socioeconomic and academic
backgrounds who had identical UC application and admission outcomes — enrolling at a
more-selective institution provides broadly similar attainment and wage benefits to higher- or
lower-Q̂i applicants. Replacing Q̂i with q̂i results in smaller but still-negative β̂3 estimates,
suggesting that the component of universities’ applicant preferences orthogonal to socioeconomic
and academic characteristics also does not identify higher-value-add students. Including
interactions with both SAT score and HS GPA again results in negative interaction terms between
university selectivity and each measure of college preparedness (with GPA correlating much more
strongly with applicant outcomes than SAT).62,63

Taken together, these findings leverage the advantages of the structural model of public
California university enrollment to provide evidence against the claim that traditional meritocratic
admissions procedures identify the selective university applicants who would most benefit from
that education. Instead, the kinds of students admitted under ELC or alternative access-oriented
admission policies appear likely to obtain as high or higher benefits of selective university
enrollment.

3.9 Conclusion
This study uses a novel comprehensive database of university applications linked to educational
and wage outcomes to provide the first quasi-experimental estimates of the impact of
more-selective university enrollment on the lives of the high-GPA low-SAT students targeted by
top percent policies and other policies that curtail the influence of standardized test scores in
university admissions. The University of California’s 2001-2011 Eligibility in the Local Context
program provided substantial UC admissions advantages to graduates in the top four percent of
their high school class. Implementing a regression discontinuity design across high schools’
eligibility thresholds, I find that ELC shifted university enrollment among barely-eligible
applicants from much less-selective California public colleges and universities into four
highly-selective UC campuses. As a result of this shift, barely ELC-eligible applicants became
more than 30 percentage points more likely to earn a college degree within five years, graduate
school enrollment increased by about 20 percentage points, and early-career annual wages
(between seven to nine years following high school graduation) increased by as much as $25,000.

The study then turns to the general equilibrium effects of top percent policies like ELC,
estimating a structural model of university application, admission, and enrollment for California
public universities. The 600 ELC participants each year were well-characterized by the policy’s
near-threshold participants: about 65 percent came from families with below-median household
incomes, almost half were Black or Hispanic, and their average SAT scores were at the 12th

62All results are very similar in direction and magnitude when replacing (winsorized) income with log income.
Estimates are presented in dollars for interpretability.

63Appendix Figure B.15 visualizes estimates from an alternative version of Equation 3.8, with fifth-order
polynomials in GRi interacted with in-sample tercile indicators for qi, SAT, and HSGPA. Plots of the derivatives
of the resulting polynomials (which represent the gains in degree attainment associated with the increase in GRi at
each GRi) show substantial uniformity across most of the distribution of GRi where each of the terciles has support
in the data.
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percentile of their Absorbing UC peers. Compared to the “crowded-out” students replaced by
ELC participants, the participants were about 15 percentage points more likely to be
underrepresented minorities (URM) and had lower average family incomes by 0.3 log points. A
potential expansion of the ELC policy to the top nine percent of UC applicants from each
California high school is estimated to increase lower-income and URM Absorbing UC enrollment
by 4 and 8 percent, respectively (each about 350 students per year). Finally, both reduced-form
and structural evidence are brought to bear on the efficiency of top percent policies, with both
suggesting that the returns to more-selective enrollment experienced by the targeted
disadvantaged applicants are no lower — and may be considerably higher — than they would
have been for the regular-admissions students who would have otherwise enrolled in their place.

This study presents the first quasi-experimental analysis of the medium-run impact of
selective university admission under an access-oriented admission policy, finding that broadening
selective university access is an impactful and potentially-efficient economic mobility lever
available to policymakers. It also provides unique analysis of how high-GPA low-SAT students
perform at selective research universities that typically would have rejected them because of their
poor standardized test scores, showing that the students likely to be advantaged by test-optional or
no-test admissions policies would be substantially benefited (though selective universities’
graduation rates may decline as they enroll more-disadvantaged students). Finally, this study
challenges a central tenet supporting test-based meritocratic university admissions policies — that
the policies efficiently allocate educational resources to students who will best be able to take
advantage of them — by identifying a group of low-testing (perhaps high-noncognitive-skill) and
low-opportunity applicants who appear to earn greater benefits from selective university
enrollment than the higher-testing applicants who are typically admitted in their place.
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Figure 3.1: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to each UC
Campus

(a) UC Berkeley (b) UCLA (c) UC San Diego

(d) UC Irvine (e) UC Davis (f) UC Santa Barbara

(g) UC Riverside (h) UC Santa Cruz (i) UC Merced

Note: Applicants’ likelihood of admission to each UC campus by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Beta estimates are from cubic regression discontinuity
models following Equation 3.2 for the B25 sample, with standard errors in parentheses clustered by high-school-
year. Each panel conditions on applying to that UC campus. Applicants from high schools with approximated ELC
eligibility thresholds between 3.96 and 4.00 are omitted. ‡ indicates reduced-form estimates with p > 0.1 for the
null hypothesis (β̂ = 0) when estimated using a local linear model with bias-corrected and cluster-robust confidence
intervals following Calonico et al. (2019). Source: UC Corporate Student System.
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Figure 3.2: Local Effect of ELC Eligibility on UC Applicants’ Education and Wage Outcomes

(a) Absorbing UC Campus Enrollment (b) Institution’s Five-Year Grad. Rate (c) Five-Year Deg. Attainment

(d) Grad. School Enrollment (e) Early-Career Annual Wages (f) Log Early-Career Annual Wages

Note: Regression discontinuity plots of applicants’ measured outcomes by ELC GPA distance from their high
school’s ELC eligibility threshold, among applicants from the bottom half (B50) or quartile (B25) of high schools
by SAT. Points are binned averages; lines are cubic fits. Beta estimates are from cubic regression discontinuity
models following Equation 3.2, with standard errors in parentheses clustered by high-school-year. Absorbing campus
enrollment is measured in the fall semester following UC application. Institutions’ graduation rates are defined for
institution of first enrollment (within six years after graduating high school); see Appendix B.4 for details. Graduate
school enrollment is defined as enrollment at a four-year institution following Bachelor’s attainment within seven years
of graduating high school. Early-career wages are averaged over California covered wages seven to nine years after
high school graduation; log wages omit zeroes, and wages are winsorized at 5 percent. Applicants from high schools
with approximated ELC eligibility thresholds between 3.96 and 4.00 are omitted. ‡ indicates reduced-form estimates
with p > 0.1 for the null hypothesis (β̂ = 0) when estimated using a local linear model with bias-corrected and
cluster-robust confidence intervals following Calonico et al. (2019). Source: UC Corporate Student System, National
Student Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).
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Figure 3.3: Local Effect of ELC Eligibility on UC Applicants’ Outcomes by High School Quantile

Panel A: Reduced-Form Outcomes by HS Quantile

(a) Five-Year Deg. Attainment (b) Enroll in Grad. School (c) Avg. Early-Career Wages

Panel B: Instrumental Variable Outcomes by Quartile, with Endogenous Variable Absorbi
(d) Five-Year Deg. Attainment (e) Enroll in Grad. School (f) Avg. Early-Career Wages

Note: Estimates of β̂ from Equation 3.2 (Panel A) and replacing the endogenous variable with Absorbing UC campus
enrollment (Panel B) by high school SAT quantile (where 1 indexes the lowest quantile). The x-axis plots estimates
for enrollment institution’s graduation rate; the y-axis plots five-year degree attainment, enrollment in graduate
school within seven years of UC application, and average California covered wages 7-9 years after high school
graduation, winsorizing wages at 5 percent. Confidence intervals are clustered by school-year and are estimated
independently by axis. Panel B restricts the sample to the bottom two quartiles. Applicants from high schools with
ELC eligibility thresholds between 3.96 and 4.00 are omitted. Source: UC Corporate Student System, National Student
Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).
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Figure 3.4: 2002 Admissions Protocol used by UC Davis

Note: This photograph shows an internal archival UC Davis admissions document visualizing Davis’s 2002 freshman
admissions protocol. Students were assigned points on the basis of applicant characteristics, and those with scores
above a designated threshold were admitted to the campus. Source: Fall 2002 UC Davis Selection Criteria, Admissions
Office Slide Collection, AR-123, Special Collections, UC Davis Library.
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Figure 3.5: True and Simulated UC Admission and Enrollment for Near-Threshold B50 UC
Applicants

(a) Admission to UCSD/UCSB (b) Admission to Davis/Irvine (c) Enrollment at Abs. UC Campus

Note: Binned scatterplots and third-order polynomial best-fit lines of 2010-2011 UC applicants’ (black) unconditional
admission or enrollment at each set of UC campuses and (gray) simulated likelihoods of unconditional admission or
enrollment at each set of UC campuses using the estimated parameters from Equation 3.7, by their ELC GPA distance
from their high schools’ ELC eligibility threshold. Sample restricted to 2010-2011 UC freshman California-resident
applicants who (1) enroll at a public California institution in the fall after high school graduation, (2) who have ELC
GPAs within 0.3 of their high school’s eligibility threshold, and (3) graduated from the bottom half (B50) of high
schools by SAT. Source: UC Corporate Student System and the National Student Clearinghouse.
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Figure 3.6: Log Family Incomes of Simulated ELC Participants and Crowded Out Students

Note: Distribution of family incomes of annual ELC participants and crowded-out students under a simulation
(employing the estimated parameters of the model described in Equation 3.7) in which 2010-2011 UC applicants
were no longer provided an admissions advantage at the Absorbing UC campuses (βELCAbs1 = βELCAbs2 = 0). ELC
participants are defined as applicants whose simulated likelihood of Absorbing UC campus enrollment increases, and
crowded-out applicants those whose likelihood decreases; applicants are weighted by their net change in likelihood
and halved to scale annually. Missing family incomes are imputed — see footnote 50 — and incomes are winsorized
at 8.4 and 12.6. Sample restricted to 2010-2011 UC freshman California-resident applicants who enroll at a public
California institution in the fall after high school graduation. Source: UC Corporate Student System and the National
Student Clearinghouse.
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Figure 3.7: Simulated Changes in Absorbing UC Enrollment under Counterfactual Top Percent
Policies

Note: Estimated percent changes in the number of low-income and URM Absorbing UC campus students under top
percent policies in which those campuses provide their estimated ELC admissions advantage to the top x percent
of graduates from each high school, with x ranging from 1 to 9, relative to no top percent policy. Estimates from
simulations employing the estimated parameters of the model described in Equation 3.7. Each simulation assigns
ELC eligibility to the top x percent of each high school’s graduates; Absorbing campus enrollment characteristics are
determined by weighting each applicant by their estimated likelihood of enrolling at those campuses. Missing family
incomes are imputed — see footnote 50 — and low income is defined as applicants with family incomes below the
California median. The sample is restricted to 2012-2013 UC freshman California-resident applicants who enroll at
a public California institution in the fall after high school graduation. Source: UC Corporate Student System and the
National Student Clearinghouse.
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Figure 3.8: Local Effect of ELC Eligibility on UC Applicants’ First Institutions’ Estimated Value-
Added

(a) Five-Year Deg. Attain. VA (b) Early-Career Wage VA (c) Log Early-Career Wage VA

Note: Regression discontinuity plots of the estimated value-added of applicants’ initial enrollment institution (within
6 years of high school graduation) by ELC GPA distance from their high school’s ELC eligibility threshold, among
applicants from the bottom half (B50) or quartile (B25) of California high schools by SAT. Points are binned averages;
lines are cubic fits. Beta estimates are from cubic regression discontinuity models following Equation 3.2, with
standard errors in parentheses clustered by high-school-year. Institutional value-added estimated for degree attainment
and wages and log wages (averaged 7-9 years after graduating high school, omitting zeros in the log and winsorizing
at 5 percent) using 2003-2011 UC applicants (holding out applicants in the main estimation sample) conditional on
ethnicity and fifth-order polynomials in family income and SAT score following Chetty et al. (2020a). Applicants
from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are omitted. ‡ indicates
reduced-form estimates with p > 0.1 for the null hypothesis (β̂ = 0) when estimated using a local linear model with
bias-corrected and cluster-robust confidence intervals following Calonico et al. (2019). Source: UC Corporate Student
System, National Student Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).
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Table 3.1: Descriptive Statistics of 2003-2011 UC Applicants

By SAT Quartile of High School1
CA Freshman Near ELC

Applicants Threshold Bottom Second Third Top

% Female 52.5 61.0 64.4 61.8 59.6 58.2

% White 31.9 35.7 13.0 38.1 48.8 43.0
% Asian 31.9 33.0 25.4 34.2 31.7 40.9
% Hispanic 24.2 21.0 50.5 18.2 9.9 5.6
% Black 5.2 3.2 6.9 3.1 1.6 1.0

SAT Score 1706 1843 1533 1787 1941 2104
HS GPA 3.67 4.03 3.81 4.01 4.11 4.19

Parent Income (Median) 60,000 68,700 34,000 70,000 95,000 118,300
% Missing Inc. 11.9 20.9 7.2 16.6 24.2 35.5

Enrollment Rates (%)
Unimpacted UC 11.2 22.9 12.5 17.2 26.2 35.8

UCLA 5.6 11.0 7.2 8.3 12.8 15.6
Berkeley 5.6 11.9 5.3 8.9 13.4 20.1

Absorbing UC 21.4 29.1 31.7 37.3 30.6 16.8
San Diego 5.0 8.2 6.7 10.3 9.4 6.5
Santa Barbara 5.1 6.6 8.2 7.9 6.9 3.4
Irvine 5.5 6.9 8.2 9.1 7.0 3.1
Davis 5.8 7.4 8.6 10.0 7.2 3.7

Dispersing UC 9.6 5.2 10.9 6.0 3.1 0.8
Santa Cruz 4.0 2.0 2.5 2.7 2.1 0.7
Riverside 4.6 2.6 6.7 2.7 0.8 0.1
Merced 1.0 0.6 1.6 0.6 0.2 0.0

CSU 15.7 11.5 19.7 13.8 9.1 3.2
Community Coll. 7.9 3.9 7.5 5.0 2.5 0.8
CA Private Univ. 7.4 9.7 5.6 8.5 11.4 13.1
Non-CA Univ. 9.7 10.6 3.4 6.7 11.1 21.1
No NSC Enrollment 17.1 7.2 8.6 5.6 6.0 8.5

N 1,751,719 171,441 42,904 42,821 42,900 42,808

Note: Characteristics of 2003-2011 CA-resident freshman UC applicants overall and within 0.3 ELC GPA points
of their high schools’ ELC eligibility threshold (‘Near’). SAT scores out of 2400; converted from ACT or 1600-
point SAT if otherwise unavailable. Income is “Missing” when applicant does not report it on their UC application.
Enrollment is measured in the fall semester following high school graduation; categories partition all applicants.
1Applicant-weighted school-year quartiles by the SAT scores of applicants within 0.3 GPA points of their school’s
ELC eligibility threshold; statistics restricted to near-threshold applicants. Source: UC Corporate Student System and
National Student Clearinghouse
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Table 3.2: Local Effect of ELC Eligibility on First Enrollment Institution

University of California Campuses
Unimpacted Absorbing Dispersing CSU Comm. Coll. CA Priv. Non-CA No Coll.

Panel A: Baseline Enrollment Likelihood (%)

All 26.1 25.8 4.9 11.1 3.4 10.2 11.3 7.2

B50 14.0 32.9 9.0 18.8 6.4 7.1 5.1 6.6

B25 11.5 27.9 12.9 21.7 8.7 5.4 3.2 8.8

Panel B: Local Change in Enrollment Likelihood Caused by ELC Eligibility (p.p.)

All 0.2 5.9 -1.7 -3.0 -0.8 -0.3 0.4 -0.7
(0.7) (0.8) (0.4) (0.5) (0.3) (0.5) (0.5) (0.4)

B50 1.0 12.2 -3.6 -6.0 -1.8 -0.4 -0.2 -1.1
(0.9) (1.3) (0.7) (1.0) (0.6) (0.7) (0.6) (0.7)‡

B25 1.2 15.6 -5.1 -7.3 -3.4 0.6 -0.3 -1.3
(1.2) (1.8) (1.2) (1.6) (1.0) (0.9) (0.7) (1.1)

Note: Reported coefficients are the estimated baseline (ELC-ineligible) proportion of near-threshold applicants who
enroll at each group of institutions in the fall semester following UC application, and the estimated change in
enrollment for barely above-threshold ELC-eligible applicants (β). Values in percentages; estimates overall and for
students from the bottom half (B50) and quartile (B25) of high schools by SAT. Estimates from cubic regression
discontinuity models following Equation 3.2; standard errors are clustered by school-year and omitted for baseline
estimates (which are estimated following Abadie (2002)). ‡ Indicates estimates with p < 0.1 for the null hypothesis
such that p ≮ 0.05 (insignificant at conventional levels) when estimated using a local linear model with bias-corrected
and cluster-robust confidence intervals following Calonico et al. (2019). Source: UC Corporate Student System and
National Student Clearinghouse.
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Table 3.3: Characteristics of Near-Threshold ELC Compliers

Panel A: Student Characteristics
Rural High SAT Family Below-Med.

Female (%) URM (%) School (%) Score HS GPA Income1 ($) Fam. Inc.1 (%)

All 68.3 43.9 8.1 1524 3.87 66,900 65.4
(7.9) (7.2) (3.9) (47.0) (0.04) (12,100) (8.4)

Bottom 70.7 60.9 3.0 1396 3.76 45,900 78.9
Quartile (7.0) (7.0) (3.5) (31.0) (0.03) (5,700) (6.0)

Second 59.0 10.3 20.76 1700 3.97 116,000 25.0
Quartile (12.5) (10.4) (6.7) (45.0) (0.04) (20,900) (15.5)

Abs. Mean2 56.0 20.1 5.3 1796 3.80 87,300 49.8

Panel B: High School SAT Quartiles

Bottom Second Third Top
Quartile Quartile Quartile Quartile

All 57.5 31.0 2.1 9.3
(7.6) (7.0) (7.4) (5.1)

Abs. Mean2 20.0 22.2 24.6 33.2

Note: Reported coefficients are estimated characteristics of near-threshold ELC compliers, or the barely above-
threshold students who enroll at Absorbing UC campuses as a result of their ELC eligibility. Estimates for
characteristic Wi follow Equation 3.2, replacing the endogenous variable with an indicator for Absorbing UC
enrollment (Absorbi) and defining the outcome as Absorbi × Wi. Standard errors in parentheses are clustered by
school-year. See the text for definition of high school quartiles. ACT scores and 1600-point SAT scores are converted
to 2400-point SAT scores using contemporaneous standard formulas. Rural high schools defined following designation
from the National Center for Education Statistics. Applicants from high schools with ELC eligibility thresholds
between 3.96 and 4.00 are omitted. 1Family income is missing if not reported on the UC application (12 percent of
applicants). Median California household income defined at $76,000 in 2019 dollars; missing-income families are
assumed to have above-median income. 2The true average for freshman CA-resident students who first enrolled at
an Absorbing UC campus between 2003 and 2011. Source: UC Corporate Student System and National Center for
Education Statistics.
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Table 3.4: Instrumental Variable Estimates of the Effect of Absorbing UC Enrollment for ELC
Participants

Absorbing Campus-Specific IVs
Campus IV Davis UCSD UCSB Irvine F 1

Predicted -0.37 -0.38 0.65 -0.46 0.561
Grad.2 (0.52) (0.79) (0.91) (0.66)

Institution’s 5-Year 26.78 24.1 34.3 33.8 24.0 0.235
Grad. Rate (3.83) (4.78) (7.32) (8.76) (6.36)

Grad. Within 28.59 32.80 30.47 33.59 30.19 0.987
5 Years (%) (9.92) (11.42) (17.56) (22.19) (15.13)

Earn STEM -14.28 -7.64 -6.69 -45.63 -20.00 0.060
Degree (%) (8.81) (10.94) (17.27) (20.25) (14.31)

Enr. At Grad School 20.94 31.08 21.86 46.68 39.42 0.653
within 7 Yrs. (%) (9.78) (11.84) (18.11) (22.23) (15.67)

Num. Yrs. 0.47 0.33 0.19 -0.14 0.43 0.898
Pos. CA Wages3 (0.30) (0.35) (0.48) (1.01) (0.45)

Avg. Early-Career 20,341 24,819 16,095 1,555 7,788 0.049
Wages3 (8,199) (10,581) (13,836) (28,973) (12,635)

Avg. Early-Career 0.76 0.82 0.20 0.13 0.24 0.011
Log Wages3 (0.33) (0.30) (0.48) (0.64) (0.32)

First Stage F 91.6 106.5 12.8 21.2 62.7
Conditional F 67.9 53.5 48.2 62.8

Note: Estimates of the effect of Absorbing UC campus enrollment on educational and labor market outcomes for near-
threshold ELC-eligible students, following Equation 3.2 replacing the instrumented ELCi variable with an indicator
for Absorbing UC campus enrollment in the first column and following Equation 3.3 for campus-specific effects.
Institutions’ graduation rates are defined for institution of first enrollment (within six years after graduating high
school); see Appendix B.4. Graduate school enrollment is defined as enrollment at a four-year institution following
Bachelor’s attainment within seven years of graduating high school. Log distance to Santa Barbara is set to 0 after 2010
to increase instrument strength; see Appendix Table B.19 for unadjusted estimates. Applicants from high schools with
ELC eligibility thresholds between 3.96 and 4.00 are omitted. Conditional F statistic estimated following Sanderson
and Windmeijer (2016). 1F -test of the null hypothesis of equality among the four campus enrollment coefficients.
2The predicted values from an OLS regression (across the full sample of 1995-2013 UC freshman California-resident
applicants, excluding the study’s primary sample) of five-year NSC graduation on gender by ethnicity indicators,
maximum parental education indicators (7 categories), family income, missing income indicator, SAT score, HS GPA,
and year indicators. 3The number of years between 7 and 9 years after high school graduation in which the applicant
has positive covered California wages, and the applicants’ unconditional average annual wages and conditional average
log wages in the period, winsorizing wages at 5 percent. Source: UC Corporate Student System, National Student
Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).
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Table 3.5: Main Applicant and University Preference Model Parameters

Applicant Preferences (βxj ), Relative to CC Univ. Pref. (βzj )

Unimp. UC UCSD/UCSB UCD/UCI Disp. UC CSU All UC

Log Inc. 0.15 0.26 0.19 0.06 0.20 -0.12
(0.03) (0.02) (0.02) (0.02) (0.01) (0.004)

Female -0.42 -0.03 0.02 0.00 0.11 0.10
(0.06) (0.03) (0.03) (0.03) (0.03) (0.01)

Asian 0.93 -0.18 -0.31 0.02 -0.02 0.23
(0.09) (0.05) (0.05) (0.04) (0.03) (0.01)

URM 2.55 1.00 1.82 0.28 -0.23 0.04
(0.08) (0.04) (0.04) (0.04) (0.03) (0.01)

SAT 1.07 0.50 -0.11 -0.19 -0.18 0.53
(0.05) (0.02) (0.02) (0.02) (0.02) (0.005)

HS GPA -0.87 -0.81 -0.79 -1.02 0.27 1.15
(0.07) (0.03) (0.03) (0.02) (0.01) (0.01)

CC VA -0.01 -0.04 -0.02 -0.32 -0.13 -0.04
(0.03) (0.02) (0.02) (0.02) (0.01) (0.003)

δj 4.97 2.18 2.13 -0.47 0.76
(0.10) (0.04) (0.04) (0.04) (0.03)

Note: Parameter estimates from maximum simulated likelihood (maximized by the BFGS Quasi-Newton algorithm) of
Equation 3.7. Parameters measure applicant preferences for each set of universities (see Equation 3.4) and universities’
preferences for applicants (see Equation 3.5). Continuous variables are standardized in-sample. ‘CC VA’ is the
estimated value-added of the nearest community college to applicants’ home address, estimated following Chetty
et al. (2020a); see Appendix G.1 of Bleemer (2020a). Reported standard errors from the inverse of the empirical
Hessian matrix. Missing family incomes are imputed; see footnote 50. Sample restricted to 2010-2013 UC freshman
California-resident applicants who enroll at a public California institution in the fall after high school graduation.
Source: UC Corporate Student System and the National Student Clearinghouse.
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Table 3.6: ELC and Admissions Model Parameters

Unimpacted UCSD/UCSB UCD/UCI Dispersing

ELC Eligibility 0.15 0.80 1.69 0.40
(0.06) (0.08) (0.08) (0.17)

ELC GPA × Above 0.60 -0.53 0 0
(0.87) (1.47)

ELC GPA × Below 1.39 0.79 1.09 -0.69
(0.92) (1.14) (1.16) (2.83)

Above Bandwidth 0.23 -0.08 -0.47 -0.19
(0.04) (0.07) (0.08) (0.17)

Below Bandwidth -0.14 -0.28 -0.31 0.10
(0.04) (0.05) (0.05) (0.13)

No ELC -0.18 -0.28 -0.33 -0.51
(0.04) (0.05) (0.05) (0.13)

¯
πj 1.95 0.46 0.15 -1.63

(0.04) (0.05) (0.05) (0.13)
Note: Parameter estimates from maximum simulated likelihood (maximized by the BFGS Quasi-Newton algorithm)
of Equation 3.7. Parameters measure universities’ preferences for applicants (see Equation 3.5) with regard to their
ELC GPAs and eligibility. ‘ELC GPA’ running variable is set to zero outside a 0.08 GPA bandwidth from the eligibility
threshold; ‘above’ and ‘below’ bandwidth indicates applicants with ELC GPAs outside that bandwidth above or below
the threshold, with ‘below bandwidth’ including all applicant without ELC GPAs. ‘No ELC’ indicates students who
applied to UC after 2011; all other ELC variables are 0 after 2011. The ‘ELC GPA×Above’ coefficients for UCD/UCI
and Dispersing campuses are set to 0 since those schools admit nearly all above-threshold applicants. Reported
standard errors from the inverse of the empirical Hessian matrix. Sample restricted to 2010-2013 UC freshman
California-resident applicants who enroll at a public California institution in the fall after high school graduation.
Source: UC Corporate Student System and the National Student Clearinghouse.
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Table 3.7: Simulated Counterfactual UC Enrollment with and without ELC Admissions

Remove ELC, ‘10-11 Add ELC, ‘12-13
ELC Part. Crowded Out ELC Part. Crowded Out

Annual Enr.
Absorbing UC -549 549 717 -717
Unimpacted UC 30 -30 77 -77
Dispersing UC 98 -98 -124 124
CSU 277 -254 -443 405
CC 143 -166 -227 265 LATE Absorbing

Compliers UC Average
URM 44.1 27.2 46.9 32.8 43.9 20.1
Family Income 62,900 85,200 63,100 83,200 66,900 87,300
SAT 1625 1729 1627 1693 1524 1796
HS GPA 3.98 3.66 4.01 3.66 3.87 3.80

Note: Characteristics of applicants who become more likely (ELC participants) or less likely (crowded out) to enroll at
the Absorbing UC campuses as a result of those campuses’ implementation of ELC, on the basis of two counterfactual
simulations employing the estimated parameters of the model described in Equation 3.7. The first simulation restricts
the sample to pre-2012 and sets βELCAbs1 = βELCAbs2 = 0, eliminating the Absorbing UC campuses’ ELC admissions
advantage; the second simulation restricts the sample to post-2011 and assigns ELC eligibility to the top four percent
of applicants from each high school. Applicants are weighted by half of their net change in Absorbing UC enrollment
likelihood to scale annually. Complier characteristics and Absorbing UC student averages from Table 3.3 are presented
for comparison. Missing family incomes are imputed; see footnote 50. Sample restricted to 2010-2013 UC freshman
California-resident applicants who enroll at a public California institution in the fall after high school graduation.
Source: UC Corporate Student System and the National Student Clearinghouse.
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Table 3.8: Estimated Relationship between Student ‘Merit’ and Return to University Selectivity

Var: Q̂ Q̂ q̂ SAT
Yi: Five-Year Deg. Attain. Early Wages (7-8 Yr.) Deg. Wages Deg. Wages

Inst. Grad. 0.77 0.77 0.81 220 199 207 0.81 207 0.80 206
Rate (0.01) (0.01) (0.01) (15) (17) (20) (0.01) (20) (0.01) (20)

Var 15.68 -3.80 -0.39 9851 3060 1788 2.23 334 2.66 1423
(0.40) (1.63) (2.33) (789) (3337) (4936) (0.47) (985) (0.49) (1033)

Var × Inst. -0.11 -0.10 -0.05 -116 -98 -63 -0.04 -6 -0.05 -29
Grad. Rate (0.01) (0.01) (0.01) (13) (14) (18) (0.01) (15) (0.01) (16)

HS GPA 9.73 6537
(0.48) (1036)

HS GPA × Inst. -0.01 -40
Grad. Rate (0.01) (19)

Det. Covariates X X X X X X X X
Adm. Portfol. X X X X X X

Observations 110,114 107,300 107,300 51,144 49,339 49,339 107,300 49,339 107,300 49,339

Note: Estimates of Equation 3.8 for 2010-2013 freshman California-resident UC applicants who first enroll at a public
California institution. Institutions’ graduation rates are defined for each applicant’s institution of first enrollment
(within six years after graduating high school); see Appendix B.4 for details. Applicants’ university-observed caliber
q̂i — a latent index of universities’ preferences for certain applicants on the basis of unobservables — is estimated
using the posterior distribution of qi’s resulting from the structural model parameters described above, and applicant
summed admissions merit Q̂i is estimated by ziβ̂z + q̂i, excluding the ELC covariates. q̂i, Q̂i, SAT, and HSGPA
are standardized. Detailed covariates include gender-ethnicity indicators, SAT score, HS GPA, log income, parental
education and occupation indicators, ELC eligibility, and high school, zip code, and year fixed effects; admissions
portfolios include indicators for every combination of UC campuses to which the applicant applies and UC campuses
to which they are admitted. Five-year degree attainment indicates earning a college degree within five years of
high school graduation. Early-career wages are measured as average observed wages 7-8 years after high school
graduation; wages are winsorized at 5 percent and are unobserved for post-2011 applicants. Robust standard errors
in parentheses assume that q̂i and Q̂i are accurately measured. Source: UC Corporate Student System, the National
Student Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).
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Chapter 4

Major Choice Restrictions and Student
Stratification

4.1 Introduction
Undergraduate major selection has substantial long-run labor market implications: students earn
higher post-graduate wages if they earn degrees in ‘high-return’ professional degrees (Deming and
Noray, 2020; Bleemer and Mehta, 2020c) or degrees in their preferred field of study (Kirkeboen,
Leuven and Mogstad, 2016; Daly and Le Maire, 2019). Underrepresented minority (URM) and
lower-income university students are underrepresented in many high-earning fields like computer
science and economics, which likely exacerbates income inequality (Monarrez and Washington,
2020). Meanwhile, many universities impose restrictions – like minimum GPA requirements and
competitive internal applications – on which fields of study are available to enrolled students, with
restrictions particularly prevalent in those same high-demand fields. This study analyzes whether
and how major restrictions contribute to the socioeconomic stratification of university students
across fields of study.

Prior studies on major selection has largely focused on student preferences; a recent survey
does not mention major restrictions in its discussion of the ‘supply side’ of choosing a college
major (Altonji, Arcidiacono and Maurel, 2016).1 However, major restrictions are widely
implemented at selective public universities in the United States. Table 4.1 shows the restrictions
imposed on five of the highest-wage college majors at the 25 top-ranked US public universities
(according to US News & World Report). These universities enroll about 750,000
undergraduates, or half of all students at top-100 American universities (and 7 percent of all
American undergraduates).2 Half of these schools restrict their computer science majors –

1Stange (2015), Andrews and Stange (2019), and Denning and Turley (2017) discuss major-specific price
discrimination and incentive payments, which are important – though presently less-common – supply-side
contributors to major choice. Stinebrickner and Stinebrickner (2014) show that even students at a small private
university without major restrictions are over-optimistic about their likelihood of earning STEM majors, though they
attribute major switching to demand-side factors. Rask (2010) argues that low grades in STEM courses explain a
small portion of lower persistence in STEM courses (see also Butcher, McEwan and Weerapana (2014)). Altonji,
Arcidiacono and Maurel (2016) do mention major restrictions as a potential source of identifying variation to estimate
major-specific returns, an approach implemented by Bleemer and Mehta (2020c).

2Wage statistics as reported by Altonji, Blom and Meghir (2012).
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typically to students who earn high grades (minimum 2.5-3.75 GPAs) in introductory computer
science courses – while 10 have restricted economics majors. Only two schools do not restrict
their finance majors, and only Georgia Tech does not restrict Mechanical Engineering. Every
university with a Nursing school restricts entry to that major.3

This study analyzes the impact of major restrictions using a new dataset of demographic and
course records for the over 900,000 students who enrolled between 1975 and 2018 at four selective
public universities: UC Berkeley, UC Davis, UC Santa Barbara, and UC Santa Cruz. It employs
difference-in-difference event study designs at the departmental and student level to estimate the
effect of the 29 new major restrictions imposed during the period. It then examines Economics as
a case study, comparing students’ persistence in required courses by socioeconomic characteristics
at two universities, one of which had a minimum grade restriction.

We find that major restrictions lead to an 10-20 percent decline in the number of students
declaring that major on average. URM students and students with poorer academic preparation
are much more likely to exit restricted majors than their peers. Major restrictions impede major
choice for students with absolute academic disadvantage, not comparative disadvantage in the
field; the students who exit restricted majors earned similarly-low first-quarter grades across all
disciplines, not just in the restricted field. On average, restrictions cause female and URM
students intending restricted majors to instead enroll in relatively lower-return fields of study. The
case study shows that URM and lower-income students become less likely to earn degrees in a
restricted field because of their lower average grades in introductory courses, which is explained
in part by their lower SAT scores and more-limited prior access to related AP and IB high school
courses. This evidence implies that major restrictions inefficiently limit student choice on the
basis of students’ pre-enrollment educational opportunity and demographically stratify students
across majors by average wages.

We begin in section 2 with a discussion of the setting and data analyzed in this study. The four
universities in the analysis–UC Berkeley, UC Santa Barbara, UC Davis, and UC Santa Cruz–are
highly-ranked public research universities in California. Comprehensive student records since the
1970s–including students’ complete transcripts as well as demographic and geographic
information–were collected by separate agreements with each university’s Office of the Registrar,
collated into a single database, and merged with students’ post-1993 application records
maintained by the University of California Office of the President. We identified major
restrictions using paper and digitized versions of the four universities’ historical course catalogs,
which provide annual records of the conditions under which each major can be declared.

Section 3 presents difference-in-difference analysis at the university-major level of the impact
of newly-implemented major restrictions on which students declare the major. We combine majors
offered by the same department with comparable restrictions and omit short-lived restrictions,
restrictions imposed on new majors, and restrictions imposed too early or too recently to estimate
their impact with the observed data, ending up with 24 major restriction ‘events’ in the sample
period. The resulting panel is defined at the cohort-major level over time, where cohort is defined
by students’ first year of enrollment. We find that restrictions tend to be imposed after a period
of enrollment growth, resulting in an immediate and persistent enrollment decline of about 12

3Grade restrictions of C+ (2.3) or below are excluded, as they are generally put in place to prevent students who
cannot pass upper-division courses from beginning technical majors, not to manage demand among students capable
of passing introductory courses.
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percent. There is no observed impact on the proportion of declared majors who are female, but the
proportion of URM majors falls by about 2.7 percentage points, or a 20 percent decline from the
14 percentage point baseline. Majors’ average SAT score increases by over 30 points. Restricting
to the freshman fall grades received by declared majors, normalized across courses to correct for
differing standards in different disciplines, we find that majors’ grades in related and unrelated
courses improve by 0.15 and 0.13 standard deviations, respectively, suggesting the absence of
selection on comparative advantage.

Section 4 turns to a student-level event study design to assess which majors are chosen by
students who lose access to restricted majors. We characterize students who ‘intend’ restricted
majors using a projection of their first-quarter courses estimated by LASSO. Female students
become less likely to intend majors after they are restricted, but there is no evidence of an effect
on the average academic aptitude of intended majors, overall or by subgroup. However, we find
that female and URM students who intend restricted majors tend to earn relatively lower-return
majors than their male and non-URM peers after the restriction is implemented, generating
stratification across fields likely to exacerbate existing inequities.

We investigate the mechanisms by which major restrictions stratify students using a case
study of the Department of Economics at UC Santa Barbara (UCSB), which has a 2.85 minimum
GPA requirement in introductory courses between 2010 and 2016. Section 5 shows that female,
URM, and lower-income students are less likely than their peers to enroll in Economics 1, the
department’s mandatory first course, and earn substantially lower grades in the course. Holding
other socioeconomic characteristics equal, students who attended high schools that did not offer
AP Micro- or Macroeconomics earned about 0.16 fewer grade points on average. Students’
socioeconomic characteristics and measured preparedness (SAT score and high school GPA)
explain 11-18 percent of grade variation in economics students’ introductory courses; even
holding SAT score and ethnicity fixed, students who completed Economics 2 were less likely to
declare the economics major if they were Female (5.5 p.p.) or Hispanic (5.83 p.p.), with a notable
positive correlation between major declaration and having attended a high school that taught
college-level economics.

While some of these trends likely reflect the impact of UCSB’s major restriction, they may
also reflect student preferences or other ‘soft’ restrictions imposed by the department (like low
introductory course grades and high workloads). In order to better isolate the effect of UCSB’s
major restriction, we compare UCSB’s covariate estimates with those of UC Davis, which requires
a similar introductory course curriculum but does not impose a minimum GPA restriction. In this
single-difference framework, we interestingly find that URM students actually appear slightly more
likely to enroll in Economics 1 at UC Santa Barbara and earn higher grades than non-URM students
on average. Nevertheless, URM students who take Economics 1 are 11 percentage points less likely
to declare the economics major under the major restriction, and lower-income students (proxied
by their not reporting family income) are 26 percent less likely to declare the major at UC Santa
Barbara than their higher-income peers. College-level economics course availability at students’
high schools is also a much stronger predicter of major declaration at UC Santa Barbara, reflecting
those students’ performance advantages in introductory economics courses, as are SAT scores
and high school GPAs (reflecting the major restriction’s focus on absolute-advantage students).
In general, this case study shows that even after these students were screened and admitted to
a selective public research university, GPA minima are more likely to discourage students with
fewer previous educational opportunities, and appear to have differentially-large negative effects
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on URM and lower-income students’ likelihood of declaring the major.
Course catalogs provide imprecise information about which student cohort was the first to

experience new major restrictions. While we assume that restriction first binds the cohort that
begins one year prior to the restriction’s first appearing in the catalog, we treat the years
immediately to each side of that year as ‘transition’ years and focus our analysis on average
changes before and after that period. As a result, we conduct pre-trend analysis relative to three
years prior to each major restriction ‘event’, and find no notable evidence of pre-trends in the four
preceding years on demographics or preparedness. We do observe steady growth in majors’ log
total enrollment leading up to the restriction’s imposition.

This study makes three main contributions. First, it contributes to an equity-oriented literature
interested in socioeconomic stratification across (MacLeod and Urquiola, 2015; Chetty et al.,
2020a; Arcidiacono, Kinsler and Ransom, 2019a,b) and within (Schultz et al., 2011; Arcidiacono,
Aucejo and Hotz, 2016; Mourifie, Henry and Meango, 2020; Brenoe and Zolitz, 2020; Card and
Payne, 2021) universities, providing the first known evidence that a popular university policy
magnifies stratification. Major restrictions likely have substantive implications for impacted
students’ postgraduate outcomes: Kirkeboen, Leuven and Mogstad (2016) show evidence of large
postgraduate wage declines among students prohibited from earning degrees in their preferred
discipline, and Bleemer and Mehta (2020c) show that falling just below an economics
department’s GPA major restriction substantially decreases rejected students’ early-career wages.4

Second, this study documents an important determinant of student major selection that has
been largely omitted from the large academic literature on major choice.5 While that literature
has largely focused on the demand-side of major choice – particularly students’ preferences and
subjective expectations (Arcidiacono, Aucejo and Spenner, 2012; Zafar, 2013; Kinsler and Pavan,
2015; Wiswall and Zafar, 2015, 2018) – this brief describes a widely-implemented supply-side
policy that substantially limits many students’ access to high-average-wage majors. This study
also documents an important source of selection bias in the estimation of major-specific returns;
majors (like engineering and nursing) that many universities restrict are likely to yield substantially
upwardly-biased estimates of major-specific returns absent sample selection corrections, especially
for relatively-disadvantaged students.6

Finally, this study contributes to a literature immediately interested in the aggregate number of
STEM degrees awarded by American universities (Ehrenberg, 2010; National Academies, 2007;
Wang, 2013; Sjoquist and Winters, 2015a,b; Castleman, Long and Mabel, 2018). Half of the
major restrictions imposed by the four universities discussed below were imposed in STEM fields,
and major restrictions generally impose a previously-unreported ceiling on STEM major growth
in many fields at many universities, particularly discouraging URM and less-relatively-prepared
students from earning high-demand STEM majors.

4Griffith (2010) shows that students with lower measured preparedness are less likely to earn STEM majors, while
Arcidiacono, Aucejo and Hotz (2016) and Bleemer (2020a) come to different conclusions about whether enrollment
at more-selective universities under affirmative action decreases URM students’ STEM degree attainment.

5See Altonji, Blom and Meghir (2012) and Altonji, Arcidiacono and Maurel (2016) for surveys.
6E.g. see Carnevale, Cheah and Hanson (2015). In his study of the contribution of sample selection bias to

cross-major differences in mean wages, Arcidiacono (2004) argues in favor of “large differences in preferences that
high ability individuals have for the more lucrative fields”. These could be demand-side preferences, but also appear to
reflect supply-side access to lucrative restricted majors. Interestingly, Bleemer and Mehta (2020c) do not find evidence
of this upward bias in the context of UC Santa Cruz’s economic major.
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4.2 Background and Data
As shown in Table 4.1, major restriction policies are widely-implemented at selective public
universities in the U.S.7 Major restrictions at U.S. universities take one of three forms: (1) an
average grade requirement in introductory courses; (2) an internal application favoring
performance, extracurricular participation, and professed interest; or (3) an external application,
such that students can only earn a degree in the field if they had directly applied to the major prior
to enrollment. We refer to the first of these types as ‘mechanical’ restrictions and the second two
as ‘discretionary’, since the latter restrictions facilitate more-nuanced decisions over who is
permitted into restricted majors.footnoteThese restrictions are often complemented by ‘soft’
restrictions like low introductory course grades and verbal discouragement, but empirical
tractability leads us to focus exclusively on easier-to-observe mechanical and discretionary
restrictions.

This paper focuses on the connection between major restriction policies and student
stratification across majors. Table 4.2 presents observational evidence suggesting the potential of
a relationship between the two. Focusing on the selective public universities and lucrative majors
listed in Table 4.1, the table presents estimates from fixed-effect linear regressions of the share of
2019 graduates from each major who were underrepresented minorities (defined as Black or
Hispanic) on the presence of mechanical and discretionary major restriction policies. It shows
that about 11 percent of graduates from those universities’ lucrative majors were URM, but
among restricted majors only 8 percent (over 25 percent fewer) were URM. The second column
shows that this gap is wholly driven by mechanical restrictions; there is no measurable
relationship between the presence of discretionary restrictions and majors’ URM shares.

As a result, we present a series of analyses below focusing on the stratification ramifications
of mechanical restriction policies. As a result of data availability, we examine the restrictions
implemented by the four observed University of California campuses: at Berkeley, Davis, Santa
Barbara, and Santa Cruz.8 This study focuses on the restrictions imposed by four selective public
universities in California: the University of California campuses at Berkeley, Davis, Santa Barbara,
and Santa Cruz. For reference, these are among the country’s most selective institutions; their
2008 U.S. News & World Report rankings across all U.S. universities were 21, 42, 44, and 79,
respectively.

We observe student outcomes at these campuses using a novel student enrollment database
collected as part of the UC ClioMetric History Project (Bleemer, 2018b). The sample includes all
undergraduate students who first enrolled at each of four University of California campuses in the
observed sample period: UC Berkeley (1975 to 2016), UC Davis (1980 to 2018), UC Santa Barbara
(1986 to 2018), and UC Santa Cruz (1975 to 2018).9 The data include first year of enrollment,

7Major restrictions are generally justified by either capacity constraints resulting from temporary over-demand
– though many remain in place for decades – or on the pedagogical grounds that lower-performing (but passing)
students cannot succeed in challenging fields of study. Thinly-stretched resources from ‘over-enrollment’ could
negatively-impact educational quality (Bound and Turner, 2007; Bound, Lovenheim and Turner, 2010), in part by
through increased class sizes (Bettinger and Long, 2017). They may also result from an increasing interest in ‘prestige’
departments.

8All but one of the UC restrictions implemented in our study period were mechanical restrictions, so below we
estimate the overall average effects of major restriction policies.

9Ethnicity is observed after 1975 (Berkeley and Santa Cruz), 1987 (Santa Barbara), or 1990 (Davis).
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gender, ethnicity, and California residency; underrepresented minorities (URM) are defined to
include Black, Hispanic, and Native American students. The data also cover each of the courses
completed by each student and their grades in each course. For students who enrolled after 1993,
we link the data to UC Office of the President undergraduate application records that include
SAT score, high school GPA, family income, and (for California-resident freshmen) high school.10

Finally, we observe students’ pre-college access to college-level coursework by linking public
California high schools to 1997-2016 California Department of Education school records, which
identify school-years in which each Advanced Placement or International Baccalaureate course
was available.11

Table 4.3 shows every formal major restriction policy that has been implemented by the four
UC campuses since the 1970s, before which no restriction has been identified. Each restriction’s
first year is defined as the year prior to the major restriction first appearing in the school’s course
catalog, since that entering cohort is typically the first that would face the new binding major
requirement. For major restrictions that are no longer implemented, a ‘Last Year’ is also recorded,
again referring to the final cohort that likely faced the restriction. Restrictions with GPA caps at
or below 2.3 (a C+ average in the requisite courses) are omitted, both because of their prevalence
and because they are unlikely to bind in most cases. Each campus has imposed about 12 restricted
majors over the past 50 years, though Davis’s restrictions tend to be more-numerous and shorter-
lived than those at other campuses. Berkeley and Davis’s Computer Science departments have
implemented restrictions twice.

One possibly-important effect of major restrictions is to stratify students by their university
course performance, with higher-performing students permitted to enroll in restricted fields of
study. Student grade point averages (GPAs) are often used to measure university course
performance, but GPA is biased by differences in grading standards across academic disciplines.
Figure 4.1 displays average course GPAs by division at UC Berkeley throughout the sample
period, showing large and growing gaps in average grades by discipline: Science and Engineering
courses had average grades about 0.2 GPA points below the Humanities in 1970, but the gap had
grown to almost 0.4 GPA points by the mid-2010s. The distributional shape of available grades
may also differ by discipline.

In order to abstract away from cross-field differences in grade availability, a new “Normed
GPA” measure is calculated as follows:

nGPAi =
1

|Ci|
∑
c∈Ci

GPAic −GPAc
sd(GPA)c

(4.1)

where student i’s GPA is defined as the average number of standard deviations by which their grade
was greater or less than the average grade in each course they completed (set Ci). Students with
high Normed GPAs are those who consistently out-perform their peers in their chosen courses. We
also characterize students’ average academic performance in college by their individual GPA fixed
effect (“GPA FE”), estimated from a two-way fixed effect model that regresses GPA on individual
and course fixed effects (following Abowd, Kramarz and Margolis, 1999).

Table 4.4 presents descriptive statistics of the majors offered at each of the four UC campuses.

10All statistics produced using UCOP data are replicated from Bleemer and Mehta (2020b).
11California Department of Education course-level school information available at

http://www.cde.ca.gov/ds/sd/df/filesassign.asp.
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Each campus offered an average of 54 majors in each year of the sample period, with an annual
average of 86 students per major (s.d. 115). The average major was 53 percent female and 20
percent URM. There were 29 newly-imposed major restrictions during the period covered by the
data – with 5-10 at each of the four campuses – and 25 restrictions imposed in the period when
ethnicity is observed. The total sample includes about 900,000 students who enrolled in 6,300
major-cohort pairs.

Table 4.4’s last column shows characteristics of majors soon to implement major restrictions.
Those majors are twice the size of average majors, averaging 203 annual students, and only 14
percent of their students are URM.

4.3 Department-Level Event Study

4.3.1 Empirical Methodology
We identify the effect of major restrictions on departments’ student composition by using a
difference-in-difference event study design to estimate the effect of imposing a new restriction on
the restricted major’s student composition. Each newly-imposed major restriction in the sample
period is considered an ‘event’. Restrictions that were imposed within two years of the major’s
creation (prohibiting pre-period estimation) or for fewer than four years (prohibiting estimation of
longer-run effects) are omitted, and mechanical restrictions are limited to those with GPA
thresholds exceeding C+ (2.3). Using the resulting 29 events, models of the following form are
estimated over the unbalanced panel of all majors in all available years at the four campuses:

Ycmy = αcm + γcy +
8∑

t=−7

βt1{y+t=Pcm} + εcmy (4.2)

where Ycmy is a feature of campus c’s major m in cohort year y (like log number of students), αcm
and γcy are campus-major and campus-cohort fixed effects, and Pcm is the first cohort-year that
faced major m’s restriction at c. For example, YUCB,Econ,1990 could represent the log number of
1990-cohort students (that is, students whose first year of enrollment was 1990) who declared an
economics major (whether or not they ultimately earned a degree) at UC Berkeley. Standard errors
are clustered by campus-major.

Year of first implementation is noisily measured for major restrictions; course catalogs typically
do not specify which cohort will be the first to face the major restriction, and timing of restrictions’
catalog inclusion may differ by campus or department. As a result, β−3 is set to 0 but care should
be taken to not over-interpret β0 through β−2, which likely represent transitional years for the
imposition of each restriction; the discussion below will highlight changes between the pre-period
before t = −3 and the period after t = 0.

4.3.2 Results
Panel (a) of Figure 4.2 shows β estimates and 95-percent confidence intervals from Equation 4.2
for the log number of students who declare newly-restricted majors before and after the imposition
of the restrictions. The estimates suggest that major restrictions are put into place about five years
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after a major begins growing relative to other fields. Imposing the restriction causes an immediate
cessation of this growth in the average department, with longer-run enrollment stabilizing around
20 percent below peak enrollment (similar to the pre-growth enrollment level), despite the observed
increased student demand in that major.

What were the characteristics of the students denied from the major as a result of
newly-implemented major restrictions? The next two panels of Figure 4.2 shows that the
proportion of female students in newly-restricted majors remained unchanged, but that the
average proportion of URM students declined by 3 percentage points. Given the 20 percentage
point decline in all major declarations, this implies that URM students were over twice as likely
to exit the major as a result of the restriction than non-URM students (about 17 vs. 37 percentage
points).12

How did major restrictions differentially impact students with different levels of measured
academic aptitude? The left panel of Figure 2 shows that newly-restricted majors’ enrollees had
higher average SAT scores by almost 40 points (on the 2400 scale), with the increase occurring
over the three-year transitional period of the new restriction. This suggests that the students who
exited the restricted major had average SAT scores of about 200 points (over half of a nationwide
standard deviation) lower than the average student declaring the major.

Panel (b) of Figure 4.3 shows that major restrictions yield students whose normed GPAs
averaged across their first-quarter courses in the same discipline as the restricted major were
higher. This is partly by construction, since some of these courses may have been used to
calculate the introductory course GPA used to determine access to restricted majors. Panel (c),
however, shows a near-identical effect on the average first-quarter Normed GPA earned by
students in the major when calculated only over courses in other disciplines.13 These results
imply that students who exit restricted majors had average normed first-quarter GPAs about 0.75
standard deviations lower than the major’s average, even when their GPA is calculated using only
courses outside the major’s discipline. The similarity between Panels (b) and (c) suggests that
major restrictions do not target students based on their comparative advantages – that is, students
with particular academic strengths in the restricted field – but instead target students whose
academic performance is generally stronger across all fields (absolute advantage).

These results, summarized in Table 4.5, indicate that major restrictions reduce the number of
students who declare the restricted major, with URM students far more likely to exit the major than
non-URM students. The restrictions appear to select students with general academic advantages as
opposed to students with advantages specific to the field of study. The next section devolves this
analysis to the student level in order to understand where students flow when they exit restricted
majors.

12This and similar estimates below of the characteristics of major restriction ‘compliers’ – that is, students who
would have declared the major if not for the restriction – require assuming that the major restriction did not impact the
likelihood of major declaration of students who would otherwise have not declared the major. If the major restriction
immediately encouraged positively-selected students to declare that major (perhaps believing that the restriction would
increase the major’s educational quality or postgraduate return), then these estimates could be overestimates of the true
effect.

13Mathematics and Statistics courses are omitted from all majors’ “Outside Normed GPA”, since those courses are
often required by (and included in the restriction GPA calculations of) majors in nearly all disciplines.
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4.4 Student-Level Event Study
Characterizing the effects of major restriction policies on students’ stratification across majors
requires knowledge of the alternative majors students choose as a result of the restrictions. We
identify these alternative major choices by observing the major choices of students who intend to
earn restricted majors before and after the restrictions are implemented.

4.4.1 Empirical Methodology
While a small number of previous studies have proxied University of California students’ major
intentions using the ‘intended majors’ reported on their undergraduate applications (e.g.
Arcidiacono, Aucejo and Hotz, 2016), these self-reported intended majors are generally
non-binding, can be strategically selected, and are not reported by about one-third of students
(who report an ‘undeclared’ intended major). As a result, students’ self-reported intended majors
likely poorly characterize students actual major choice intentions. Instead, we develop a
revealed-preference proxy of students’ major intentions using students’ freshman Fall courses,
which students select in the first weeks after they arrive on campus. Because a large number of
courses are available to students in their first quarter, their choices reveal substantial information
about their intended majors. Let Mim indicate if student i majors in field m, with m reflecting a
campus-major pair. We predict students’ intention to major in m by separately estimating the
following model for each m by penalized (LASSO) regression:

Mim = αm +
∑
c∈Ci

βcmiFFic + γXi + εim (4.3)

where FFic indicates whether i took course c (out of all available courses Ci) in their freshman
fall quarter. We allow βcmi to differ either by gender or by URM ethnicity and include those two
indicators as Xi. To avoid biased M̂im’s resulting from by changes in student behavior after the
imposition of major restriction policies, equation 4.3 is estimated for each major over a training
sample of students who arrived on campus three or four years prior to the policies’ implementation
in that major.14 Students with higher M̂im took courses that more strongly suggest their intention
to major inm. Since universities have a large number of majors, the distribution of M̂im is strongly
left-skewed.

We use these individual-level M̂im estimates to answer two questions. First, we measure the
degree to which students’ revealed major intentions shift as a result of major restriction policies by
estimating the following single-difference model over a stacked sample across majors:

M̂im = ζm +
6∑

t=−6

βit1{yi+t=Rm} + εim (4.4)

with the number of times each student appears in the sample equal to the number of restricted
majors imposed at their university within six years of their matriculation (and thus the number of

14The training sample consists of half of eligible students, and is omitted from the second-stage regression analysis
below.
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available M̂im’s).15 We estimate specifications in which the coefficients of interest βit are fixed
across all students and specifications where fixed βit varies by either the student’s gender or
ethnicity. We set β−3 = 0 for all i and estimate Equation 4.4 by weighted least squares, with
weights equal to the inverse number of students at that campus so that each major is equally
weighted in the analysis (matching the previous section). The standard errors εim are clustered by
major and by student.16

Second, we use these predicted intentions of earning restricted majors to identify the major
choices of students who intend majors in the years before and after their restrictions. Our
estimation strategy extends this event study design in a difference-in-difference framework,
estimated by WLS over the same stacked dataset:

Yim = ζmyi + γM̂im +
6∑

t=−6

βit1{yi+t=Rm} × M̂im + εim (4.5)

These regressions include major-cohort indicators ζmyi to flexibly absorb within-campus major
choice trends, exploiting variation between students with stronger and weaker intentions of earning
the restricted major m relative to the baseline year. As above, βit is estimated either overall or by
gender or ethnicity, with β−1 = 0 for all i.

We summarize the ‘quality’ of students’ resulting major choices by the mean wage earned by
college graduates with that major (conditional on gender, ethnicity, and age) as observed in the
American Community Survey (Ruggles et al., 2020), relative to the lower-wage “General
Agriculture” major (see Table C.1).17 If major restrictions tend to stratify campuses by leading
URM students to enroll in lower-average-wage majors, Equation 4.5 would reveal ethnicity
differences in the average wage-by-major of the majors received by students who intend restricted
majors.

4.4.2 Results
Figure 4.4 shows that in the years leading up to new major restrictions, university course
enrollment shifts in such a way as to indicate a 0.3 percentage point increase in students’ intention
to earn those restricted majors. Once the restrictions are in place, overall major intentions
stabilize around 0.2 percentage points below their peak, wholly drive by a larger decline among
female students. There is no observable heterogeneity in average major intentions by ethnicity.
These estimates indicate that female students are discouraged from ever trying to earn restricted
majors, though there is no parallel effect for male students. Given the department-level estimates
presented above, this suggests that major restrictions have dissimilar dynamics by gender and
ethnicity: female students are discouraged from intending restricted majors but are not ultimately
less likely to complete them, whereas URM students continue to take the requisite introductory
courses but are nevertheless less likely to complete restricted majors.

Panel (a) of Figure 4.5 shows that students who intend restricted majors become much less
likely to earn those majors after the restrictions’ implementation. A student with a predicted 50

15The data includes 21 restricted majors in this section, since we do not observe Berkeley course records three
years prior to that campus’s economics major restriction (prohibiting estimation of M̂im).

16The presented 95-percent confidence intervals treat M̂im as if it were observed without noise.
17A crosswalk between ACS majors and the data’s 525 UC majors is available from the authors.
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percent chance of earning the restricted major – on the basis of their demographics and freshman
fall courses – becomes about 20 percentage points less likely to earn the major as a result of
the restriction, on average. Panel (b) shows that students who intend restricted majors have similar
GPA FE’s in the years before and after the restrictions’ implementation, suggesting no sharp swings
in the academic aptitude of the students who intend restricted majors as a result of the restriction.
Figure C.4 shows that both of these estimates are broadly similar by gender and ethnicity.

Finally, Figure 4.6 presents estimates of how the implementation of major restrictions impacts
the ‘quality’ of majors earned by students who intended those majors by gender and ethnicity,
following Equation 4.5 and measuring major quality by average wages by major (WBM).
Interestingly, it shows that on average, the major restrictions implemented by the four analyzed
University of California campuses led intended students to earn higher-WBM majors on average,
in part a reflection of the many low-WBM majors restricted at UC in the period. However, the
restrictions appear to generate substantial WBM gaps by both gender and ethnicity, with female
and URM intended majors earning relatively lower-WBM majors than their male and non-URM
intended-major peers. An interaction of the terms in Equation 4.5 with the restricted major’s
WBM suggests that hgiher-WBM restricted majors tend to lead students to lower-WBM majors
on average, but that both low-WBM and high-WBM major restrictions generate gender and ethnic
stratification across majors by WBM.

The evidence presented thusfar suggests that major restrictions differentially impact
disadvantaged students and lead them to select less-lucrative college majors. The next section
provides greater detail about one specific major restriction – imposed by the Department of
Economics at UC Santa Barbara – in order to provide some insight into why restrictions function
in this manner.

4.5 Analysis of Mechanisms: A Case Study of Economics
To shed light on how major restrictions influence the majors that students enter, we compare entry
into the high-return economics majors at UC Santa Barbara (UCSB) and UC Davis between 2010
and 2016.18 These majors provide a useful case study for several reasons:

1. UC Davis and UC Santa Barbara were similarly-selective institutions; both were ranked
between 38 and 42 in every annual US News & World Report national university ranking in
the period.

2. Each campus had a similarly-structured progression of introductory courses that students
were required to take prior to major declaration: two quarters of calculus, introductory
micro- and macroeconomics (Economics 1 and 2), and one or two additional courses
depending upon students’ chosen track.

18Economics is among the highest-WBM majors ovvered by UC campuses; see Table C.1. UC Berkeley’s
economics major is omitted because Berkeley’s semester schedule (instead of UCSB and Davis’s quarter schedules)
yields a different lower-division economics curriculum, with introductory micro- and macroeconomics combined into
a single course. This prohibits direct comparison with the other campuses. UCSC economics also provides a limited
test case, since its restriction was non-binding in its early years of implementation Bleemer and Mehta (2020c).
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3. All economics tracks at Santa Barbara had a 2.85 grade point average restriction (over 3-5
introductory economics courses), while the Davis economics major was unrestricted.19

4. The Santa Barbara restrictions (and Davis’s non-restriction) did not change in the sample
period.

5. Despite UCSB’s restriction, the economics majors at each school graduated more students
than any other major in the period, suggesting substantial demand.

As a result, we investigate the mechanisms driving major restrictions’ effect on campus
stratification by examining differences in students’ economics course grades, course enrollment,
and major declaration at each campus u ∈ {D,SB} using a series of linear regression models:

Yiyct = αct + γy + βcXi + εiyct (4.6)

Yiyct = αct + γy + βcXi + β′cXi × UCSBi + εiyct (4.7)

where each outcome Yiyctu for student i in cohort y who completed course c in term t is modeled
as a function of students’ demographic, socioeconomic, high school opportunity, and academic
preparedness characteristics.20 Cohort and course-term fixed effects are included for each
campus, and standard errors are clustered by high school. Propensity weights ensure that the
Davis and Santa Barbara student samples are balanced on observed covariates, including the full
set of covariates described above as well as county fixed effects for Californians.21 Our preferred
interpretation of these models is that between-campus differences students’ propensity to declare
the major mainly reflect the effect of UCSB’s economics major restriction.

The first two regression models presented in Table 4.6 examine which of the students who
enrolled in ECON 1 eventually declared economics majors, where ECON 1 enrollment is a signal
of students’ potential interest in majoring in economics.22 The first model includes only
demographic and socioeconomic characteristics as covariates, directly testing whether UCSB’s
major restriction induces social stratification. The baseline Davis estimates, where any student is
permitted to declare an economics major after passing the introductory courses, reveal how
“preferences” for the major differ by race and income.23 They reveal a significant relative
preference for the subject among Asian students, but not among URM students. There is some

19UC Davis’s Managerial Economics track, like many business-oriented economics majors, had a 2.8 GPA major
restriction prior to 2013. That track catered to almost half of the students in economics-based majors at UC Davis.
While Davis’s ‘partial’ major restriction could attenuate the results discussed below, the coefficient estimates are
similar (but less-precise) if the sample is split prior to 2014 and models are re-estimated separately in both periods
(available from the authors).

20These characteristics include gender, ethnicity, log parental income, SAT score, high school GPA, California
residency, California public school enrollment, and the presence of AP and IB economics for students from public
CA high schools. An indicator for missing income marks students who omitted their family income on their college
application, usually connoting above-average income or wealth (Bleemer, 2020a).

21In particular, each observation is weighed by the student’s inverse likelihood of enrolling at that campus,
recovering the average treatment effect for students at both campuses.

22Economics major declaration includes both Economics and Economics & Accounting at UCSB and both
Economics and Managerial Economics at UC Davis.

23By “preference” here, we mean simply students’ relative desire to complete different majors given their own
aptitudes, inclinations and personal circumstances.
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evidence that preference for economics increases with income; the high-income students who do
not report family income statistics are much more likely than average to declare the major.24

At Santa Barbara, by comparison, Asian students who took ECON 1 are not significantly more
likely to declare an Economics major, while URM students are 10 percentage points less likely to
declare an economics major. The magnitude of this URM difference is appreciable relative to an
average declaration propensity of 26.4 percent at UCSB.25 The difference between the campuses
in URM students’ propensity to declare an economics major is similarly large and statistically
significant. Income also appears to have stronger effects on enrollment at Santa Barbara. This
is consistent with the major restriction muting student preferences, and doing so in a way that
stratifies students on race and income, as students who exit the economics major are very likely to
instead earn lower-return majors (Bleemer and Mehta, 2020c).

The second regression model in Table 4.6 includes academic opportunity and preparation
covariates. In contrast to the previous results, racial differences between similarly-prepared
students are much smaller than the unconditional gaps, though URM students remain somewhat
less likely to declare an economics major at UCSB than at Davis, by 3.1 (s.e. 2.0) percentage
points.26 This suggests that the primary stratifying effect of the major restriction is to induce
selection on the basis of prior preparation.

The other coefficients in this regression confirm that impression. At Davis, ECON 1 students
with higher SAT scores and high school GPAs are less likely to select an economics major, while
the opposite is true at UCSB. This suggests that economics tends not to be the top choice of
the most-prepared (ECON 1) students, but that the major restriction systematically prevents less-
prepared students from declaring the major at UCSB.27 Second, while exposure to economics in
high school does not predict major declaration at Davis, it does at UCSB. This suggests that the
restriction induces selection on prior general preparation and on prior exposure to economics.

The final model in Table 4.6 examines selection (conditional on prior opportunity and
preparation) along a different margin: enrollment in a student’s first economics course. The
UCSB outcomes differ significantly from those at Davis in three respects. First, female students
are less likely to take ECON 1 at UCSB, in line with the student-level event study estimates from
Section 4.4 and again suggesting that the major restriction mutes preferences. Second, students
with lower SAT scores and high-school GPAs are more likely take ECON 1 at Davis, while those
who attended private school are not. In contrast, high SATs and high school GPAs are not
associated with taking ECON 1 at UCSB, and private high-school attendance is. Each of these
results are consistent with the major restriction inducing significant positive self-selection into the
first course in the major based on prior preparation, perhaps because students who feel they are

24The coefficient on missing income has been adjusted to reflect the difference in outcome propensity between
missing-income students and a student with average log family income.

25Major declaration propensity among plausibly-interested students is significantly lower at UCSB (26.4%) than it
is at Davis (32.2%). This difference is similar in magnitude to the effects of major restrictions on major size reported
in Section 4.3.

26In fact, only SAT score (not HS GPA or courses) partially absorbs URM students’ lower likelihood of major
declaration at UCSB. If SAT scores are poorer predictors of URM students’ academic performance than they are for
non-URM students Vars and Bowen (1998), then the URM student effect would be over-absorbed in this context.
Indeed, interacting SAT score with URM status estimates a sharply negative coefficient for URM students at UCSB
and yields a baseline URM coefficient (at mean SAT) of -4.5 (s.e. 2.2) percentage points.

27The major restriction may also make the economics major more appealing to highly-prepared students for other
reasons, e.g. by shrinking class sizes (and increasing peer academic aptitude) or improving the major’s signal quality.
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less likely to qualify for the major do not attempt it. Finally, students who have taken AP Micro
and are therefore eligible to opt out of ECON 1 tend to do so at Davis, but not at UCSB, where
the major restriction only considers ECON 1 grades from courses taken at UCSB.

The results presented in Table 4.6 reveal more positive selection and self-selection into the
economics majors at UCSB than at Davis, that selection is on prior academic preparation and
exposure to economics in high school, and that this selection results in stratification on race and
income. Our preferred interpretation is that the greater observed positive selection at UCSB arises
from that campus’s major restriction. The following subsection investigates alternative
interpretations of the presented statistics.

4.5.1 Robustness
One alternative explanation for the patterns described above is that quantitative aptitude covaries
with prior preparation to a greater degree among UCSB students. If this were the case, and
students’ course and major choices responded to it, this could explain the higher degree of
selection on prior preparation and economics experience at UCSB. However, the first two models
presented in Table 4.7 – which model ECON 1 students’ performance in the first two calculus
courses – show that this is not the case for quantitative skills. The baseline (Davis) coefficients
confirm significant variation in math-preparation with observables, including prior preparation:
higher SAT scores, high school GPAs and family incomes predict better mathematical
performance, as do being Asian and female, while URM students had worse math grades.
However, there is almost no evidence of a stronger relationship between student characteristics
and math performance at UCSB than at Davis in either of the first two calculus courses.

Another alternative explanation for the observed patterns is that UCSB might provide lower
grades to less-prepared students in its introductory courses, discouraging those students using ‘soft’
restrictions rather than relying on its mechanical restriction policy. The next two columns in Table
4.7 show that in fact, the opposite is the case: higher SAT scores are more weakly associated with
ECON 1 grade gains at UCSB than at Davis, and the URM grade penalty is smaller at UCSB
than at Davis. This implies that UCSB provides somewhat more-lenient grades in its introductory
courses, but its major restriction nevertheless deters disadvantaged and lower-preparation students
from earning the major.

The final three columns of Table 4.7 illuminate how UCSB’s major restriction – which selects
on socioeconomic status, prior academic opportunity, and measured academic preparation –
generates larger racial and income gaps in major declaration. While racial grade gaps are less
pronounced at UCSB than at Davis, the restriction makes every grade gap more consequential at
UCSB. UCSB students with higher high school GPAs and SAT scores obtain much higher grades
in ECON 1, 2 and 10A, and those who had access to IB or AP economics perform much better in
ECON 1 and 2. URM students also obtain lower grades in these threshold courses than their
equally prepared counterparts, clarifying why prior preparation does not fully explain URM
students’ lower likelihood of economics major declaration.

These results confirm major restriction filtering as the most likely interpretation for differences
in the stratifying role of ethnicity, exposure to economics, and prior preparation between Davis and
Santa Barbara.
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4.6 Conclusion
UC Berkeley, UC Davis, UC Santa Barbara, and UC Santa Cruz have imposed 45 significant
policies restricting students’ major choice in the past 50 years, in line with similar behavior at
selective public universities across the country. These restrictions, most of which require students
to earn high grades in specific introductory courses before being permitted to declare a major,
tend to decrease the number of students in the major by 10-20 percent, with URM students about
twice as likely to exit the major than non-URM students. Despite only targeting relevant
coursework, the restrictions push out students with absolutely poorer early university
performance, not students who perform poorly in the targeted courses, and tend to discourage
female students from attempting the restricted major in the first place. As a result, major
restrictions have the net effect of leading URM (and female) students to enroll in less-lucrative
majors, even when implemented by relatively low-return majors.

Major restrictions’ systematic stratification of students by pre-enrollment characteristics can
be explained by the close correlation between introductory course performance and prior student
opportunity and preparation. Underrepresented minority students, lower-income students, and
students whose high schools did not offer related advanced courses earn substantially lower
grades in introductory courses and become less likely to persist in restricted majors.

Like most public universities, each UC campus has explicit undergraduate admissions policies
in place targeting disadvantaged applicants and encouraging their enrollment. Mechanical major
restrictions systematically restrict those applicants’ access to many fields of study – including
many of the campuses’ most-lucrative majors and many STEM fields. In the same way that
meritocratic admissions policies limit selective universities’ access to applicants with poorer
academic qualifications, the stratification generated by major restriction policies exacerbates
equity gaps between high- and low-SES families, with negative implications for economic
mobility.
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Figure 4.1: Average UC Berkeley Grades by Discipline over Time

Note: Average grade points earned by undergraduate students in Humanities, Social Science, Natural Science, and
Engineering courses at UC Berkeley annually from 1955 to 2016. Departments categorized by the authors. Source:
UC ClioMetric History Project Student Database.
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Figure 4.2: Department-Level Event Study: Student Demographics

(a) Log Number of Students (b) Percent Female (c) Percent URM

Note: Event study β estimates of demographic characteristics of students who declare restricted majors before and
after the implementation of the restriction, relative to other majors in that campus-year. Outcomes are averages by
declared major and cohort-year, defined by students’ first year of enrollment. β−3 is omitted, and standard errors
are clustered by campus-major. Students can be included in more than one major estimate (e.g. as double-majors).
Source: UC ClioMetric History Project Student Database.
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Figure 4.3: Department-Level Event Study: Student Academic Characteristics

(a) SAT Score (b) In-Discipline Q1 Normed GPA (c) Out-of-Disc. Q1 Normed GPA

Note: Event study β estimates of the measured aptitude of students who declare restricted majors before and after the
implementation of the restriction, relative to other majors in that campus-year. Outcomes are averages by declared
major and cohort-year, defined by students’ first year of enrollment. β−3 is omitted, and standard errors are clustered
by campus-major. Students can be included in more than one major estimate (e.g. as double-majors). Normed GPA is
defined above in Equation 4.1; out-of-discipline courses include those taken outside the major’s discipline (Humanities,
Social Sciences, Natural Sciences, Engineering, and Professional) and excluding Mathematics and Statistics courses,
while in-discipline courses include those in the major’s discipline. Source: UC ClioMetric History Project Student
Database and UC Corporate Student System.
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Figure 4.4: Estimated Changes in Students’ Intentions for Restricted Majors

(a) Overall (b) By Gender (c) By Ethnicity

Note: Event study βit estimates – overall and by gender and URM ethnicity – of the average degree to which students
exhibit their intention to earn newly-restricted majors (M̂im) before and after the implementation of the restriction,
following Equation 4.4 and estimated over a stacked dataset of students i’s major intentions in field m. βi,−3 is
omitted, and standard errors are two-way clustered by campus-majors m and by students i. Models include m fixed
effects. Asterisks reflect p-values from hypothesis tests of equality in each period by gender or ethnicity: ∗ fifteen
percent, ∗∗ five percent, and ∗ ∗ ∗ one percent. Source: UC ClioMetric History Project Student Database.
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Figure 4.5: Estimated Changes in Major Choice and Composition of Students Who Intend
Restricted Majors

(a) Earn the Restricted Major (b) Student GPA FE

Note: Difference-in-difference event study βit estimates of the relationship between students’ intending the restricted
major (M̂im) and their major choice or student characteristic before and after the implementation of the restriction,
following Equation 4.5 and estimated over a stacked dataset of students i’s major intentions in field m. Outcomes are
defined as whether the student earns the restricted major and the student’s GPA FE, their individual fixed effect from
a two-way fixed effect model of GPA on student and course effects. β−3 is omitted, and standard errors are two-way
clustered by campus-majors m and by students i. Models include campus-major-cohort fixed effects. Source: UC
ClioMetric History Project Student Database.
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Figure 4.6: Estimated Changes in the WBM of Students who Intend Restricted Majors

(a) By Ethnicity (b) By Gender

Note: Event study βit estimates of the relationship between students’ intending the restricted major (M̂im) and their
major choice or student characteristic before and after the implementation of the restriction, following Equation 4.5
and estimated over a stacked dataset of students i’s major intentions in field m. β−3 is omitted, and standard errors
are two-way clustered by campus-majors m and by students i. Models include campus-major-cohort fixed effects.
Asterisks reflect p-values from hypothesis tests of equality in each period by gender or ethnicity: ∗ fifteen percent,
∗∗ five percent, and ∗ ∗ ∗ one percent. Source: UC ClioMetric History Project Student Database and the American
Community Survey.
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Table 4.1: Binding Major Restrictions at the Top 25 US&WR Ranked Public Universities, Fall
2019

Undergrad. Computer Mechanical
Univ. Students Science Economics Finance Engineering Nursing

Cornell 14,907 2.5 2.7 3.3; A 2.5; A *
UCLA 31,002 3.5; A 2.5 3.3 3.5; A HS
UC Berkeley 30,853 3.3 3.0 A 3.0; A *
Virginia 16,655 - - A 2.5 A
Michigan 29,821 - - A A A
UC Santa Barbara 22,186 3.2 2.85 2.85 A *
UNC – Chapel Hill 18,862 - - 3.0; A * A
UC Irvine 29,307 3.0 2.5 3.0; A 3 A
Georgia Tech 15,573 - - - - *
Florida 35,247 - 3.0 3.0 2.8 3.3
William and Mary 6,285 - - 2.5; A * *
UC Davis 30,145 3 - * 2.8 *
UC San Diego 28,587 3.3; A 2.5 * A *
Georgia 28,848 - A A A *
UI – Urbana-Champaign 33,955 3.75; A - A 3.75; A *
UT – Austin 40,492 A - 3.25; A 3.0; A 3.0; A
UW – Madison 32,196 - - 2.75; A A 2.75; A
Ohio State 45,946 3.2 - 3.0; A 3.4 A
Purdue 31,006 - 2.75 - 3.2; A 2.75
Rutgers 35,641 - - A A HS
Penn. State – Univ. Park 40,835 HS - 3.2 HS HS
Washington 31,331 A A 2.5; A A 2.8; A
Connecticut 19,241 3.0; A - A 3.0; A 3.0; A
UMD – College Park 29,868 - - A 2.7 3.0; A
Clemson 19,402 - - - HS A
Texas A&M 53,065 2.75; A 3.0 3.5; A 3.5; A A

Note: The Fall 2019 minimum major admissions requirements for enrolled students at the top 25 public universities
as ranked by US News and World Report in 2019, in addition to Cornell University (which is part-public). A
number indicates the minimum GPA required in department-specified courses for current students to declare the major,
omitting restrictions of C+ or lower. Chosen majors are the top-earning majors reported in Altonji, Blom and Meghir
(2012) averaged between male and female students, Table 3, omitting Electrical Engineering due to its similarity with
Computer Science. Finance includes Business Administration, Business Economics, and Economics and Accounting
majors when otherwise unavailable.
HS: Students must be directly admitted from high school to the major (with elevated admissions standards). A:
Students must submit a successful internal application after initial enrollment in order to earn the major. *: Major is
unavailable.
Source: University and department websites and US News & World Report, August 2019
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Table 4.2: Observational Relationship between Major Restrictions and URM Stratification

URM Share in Major

Any Restriction -2.8
(1.3)

Mechanical -3.1
Restriction (1.1)

Discretionary 1.0
Restriction (1.6)

Institution FE X X
Field of Study FE X X

Ȳ 11.1
N 98

Note: Estimates from an OLS linear regression of a major’s 2019 URM (Black or Hispanic) graduate share on whether
the major is restricted, over the 26 institutions and five majors presented in Table 4.1. Mechanical restrictions limit
access to students with below-threshold introductory grades; discretionary restrictions limit access to students on
the basis of detailed applications, generally including both measured academic preparation along with essays and
other materials. Each model includes institution and major fixed effects. Standard errors clustered by institution in
parentheses. Source: The Integrated Postsecondary Education Data System.
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Table 4.3: Fifty Years of Major Restrictions at Four Universities

Years Years
Major First Last Rule Major First Last Rule

UC Berkeley

Business◦ 1970 - A Art 1993 - A/3.3
Economics 1976 - 3.0 Psychology 2003 - 3.2
Computer Science 1979 2007 3.0 Public Health 2004 - A/2.7
Political Economy 1980 2004 3.0-3.2 Oper. Research† 2005 - 3.2
Media Studies† 1980 - A/3.2 Env. Econ. & Pol. 2009 - 2.7
Biochemistry* 1988 1989 2.7 Computer Science* 2013 - 3.0-3.3

UC Davis

Statistics 1982 2004 3.0 Communication 2001 2013 2.5
Land. Architecture 1986 - A Human Dev. 2001 - 2.5
Psychology 1989 - 2.5 Managerial Econ. 2001 2011 2.8
Int. Relations 1992 2013 2.5 Biotechnology 2007 - 2.5
Computer Science 1997 2004 2.75 Design* 2011 2013 2.6
Exercise Science* 1997 2000 2.5 Mechanical Eng.* 2011 2014 2.8
Vit. and Enology 1998 - 2.5 Computer Science* 2016 - 3.0
Ferment. Science* 1998 2000 2.5

UC Santa Barbara

Computer Science◦ <1983 2014 A/3.2 Political Science 1988 - 2.6
Communication◦† 1983 - 2.5-3.0 Biology 1996 - ‡
Economics◦ 1984 - 2.7-2.85 Law and Society 1997 2006 2.5
Psychology◦ 1985 - 2.5-2.75 Biopsychology 2001 - 2.7-2.75
Mathematics◦ 1985 - 2.5 Computer Eng. 2003 2013 3
Electrical Eng. 1986 1996 3 Fin. Math. and Stat. 2005 - 2.5

UC Santa Cruz

Economics 2002 - 2.8 Chemistry 2011 - 2.5
Physics 2008 - 2.7 Cognitive Science† 2011 - 2.5
Psychology 2011 - 2.7 Applied Linguistics∗ 2016 - 2.7

Note: Eligible major restrictions include GPA requirements for specified courses exceeding a C+ (2.3) or an internal
competitive application. Does not include majors that are open to admits to a specific college but closed to admits
to different colleges, like most Engineering majors; in any case, those policies have little changed in this period. †

indicates that the major has had restrictions since within two years of its creation; ∗ indicates that the restriction only
lasted (or has only lasted) for a small number of years, either of which lead the major to be omitted from analysis
below; and ◦ indicates that the major was implemented prior to the beginning of our data. The reported years are one
year prior to the first or last year in which the restriction is mentioned in the campus’s course catalog. A: Students must
submit a successful internal application after initial enrollment in order to earn the major. ‡UCSB Biology implements
a complex and highly-stratified major restriction that requires several course-catalog pages to explain (with dozens of
alternative paths leading to different major specialties), though ultimately never requires GPA performance over 2.0 in
any course. Source: University Course Catalogs.
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Table 4.4: Descriptive Statistics of UC Campus Majors

Santa Santa 3 Years Prior to
All Berkeley Davis Barbara Cruz Major Restrict.

Number of 216 77 91 54 40
Majors [73] [5] [13] [3] [5]

# Students 86 92 60 107 113 203
[115] [111] [91] [138] [132] [196]

% Female 53 52 55 54 53 51
[22] [21] [23] [23] [22] [21]

% URM 20 18 20 23 22 14
[17] [17] [17] [20] [15] [7]

Sample Size, Overall

Events 29 7 10 7 5
Major-Years1 6,263 2,222 1,855 1,113 1,073

Sample Size, Observe Demographics

Events 25 7 7 6 5
Major-Years1 5,648 2,222 1,455 1,039 932

Note: Descriptive statistics of the average number of departments at each covered university, average number of
students per department, and average percent of female and URM students across departments, for all departments
and for departments three years prior to instituting major restrictions. Standard deviations in brackets. Events indicate
number of new observable major restrictions (see Table 4.3) and major-year observations, in the full sample and in the
sample where student demographic characteristics (like ethnicity) are observed. 1 Only includes major-years with at
least 20 observations; smaller departments are omitted from analysis. Source: UC ClioMetric History Project Student
Database.
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Table 4.5: Summary of Department Difference-in-Difference Estimates around Major Restriction
Implementation

Log Num. Percent Percent SAT GPA Q1 GPA1

of Students Female URM Score FE In Disc. Out of Disc.

4-7 Yrs. Before -0.09 1.46 1.17 -6.89 -0.00 -0.01 -0.01
Restriction (0.07) (1.36) (1.01) (12.10) (0.03) (0.02) (0.03)

Transition Years 0.02 1.72 -0.33 10.91 0.08 0.07 0.05
(0.05) (0.96) (0.94) (11.38) (0.02) (0.03) (0.03)

1-5 Yrs. After -0.08 1.43 -2.20 29.44 0.12 0.14 0.12
Restriction (0.06) (1.54) (1.01) (14.20) (0.03) (0.04) (0.03)

Campus-Major FE X X X X X X X
Campus-Year FE X X X X X X X

Observations 6379 5749 5749 4224 6199 4803 5775
R2 0.88 0.90 0.84 0.90 0.98 0.71 0.59

∆ (Post-Pre)2 0.02 -0.02 -3.37 36.33 0.13 0.15 0.13
(0.08) (1.37) (0.87) (13.77) (0.03) (0.03) (0.03)

Note: Event study β estimates of the measured characteristics of students who declare restricted majors before and
after the implementation of the restriction, relative to other majors in that campus-year. Standard errors clustered
by campus-major in parentheses. Outcomes are averages by declared major and cohort-year, defined by students’
first year of enrollment. “Before” indicates 3-7 years prior to initial restriction implementation; “Transition” includes
the year of implementation and two years earlier; and “After” includes 1-5 years following implementation. β−3 is
omitted. Students can be included in more than one major estimate (e.g. as double-majors). 1First-quarter normed
GPA is defined above in Equation 4.1; “Outside Area” normed GPA is calculated only using first-quarter courses
taken outside the major’s division (Humanities, Social Sciences, Natural Sciences, Engineering, and Professional) and
excluding Mathematics and Statistics courses. 2 The difference between “After” and “Before” Major Restriction β
coefficients, with standard error in parentheses.
Source: UC ClioMetric History Project Student Database and UC Corporate Student System.
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Table 4.6: 2010-2016 Economics Major Enrollment Propensities at UC Davis and UCSB

Dep. Var: Earn Economics Major, Conditional on ECON 1 Enroll in ECON 1

Davis UCSB Diff. Davis UCSB Diff. Davis Diff.

Female -8.68 -5.84 2.85 -8.57 -5.94 2.63 -9.09 -4.49
(1.25) (1.30) (1.55) (1.24) (1.27) (1.54) (0.56) (0.88)

Asian 6.06 3.07 -2.99 5.69 4.11 -1.58 6.90 -0.18
(1.22) (1.47) (1.92) (1.21) (1.37) (1.80) (0.79) (1.02)

URM 0.60 -10.07 -10.68 -0.84 -3.92 -3.08 -7.00 3.56
(1.40) (1.40) (1.93) (1.45) (1.41) (1.96) (0.72) (0.97)

Log Fam. Inc. 0.64 1.96 1.32 0.86 0.28 -0.58 0.83 -0.29
(0.45) (0.43) (0.61) (0.49) (0.40) (0.62) (0.24) (0.34)

Miss. Income 4.40 6.55 2.15 4.76 2.26 -2.50 3.06 -1.21
(1.83) (1.92) (2.62) (1.87) (1.90) (2.64) (1.07) (1.47)

Out-of-State -4.50 -4.30 0.20 -4.74 0.69 5.43 4.34 -2.45
(2.30) (2.58) (3.41) (2.43) (2.63) (3.52) (1.52) (2.06)

International 0.96 -0.23 -1.19 0.26 5.64 5.38 17.02 14.09
(1.79) (2.22) (2.62) (2.06) (2.22) (2.78) (5.45) (3.15)

CA Private HS 4.07 -0.59 -4.66 1.35 1.66
(1.85) (1.83) (2.44) (1.13) (1.42)

High School Offered1:

AP Macro 0.34 4.76 4.42 -1.23 -0.27
(1.96) (2.04) (2.82) (1.18) (1.51)

AP Micro 1.49 4.25 2.76 -5.25 4.18
(2.81) (2.95) (4.16) (1.26) (2.06)

IB Economics -4.37 2.96 7.34 0.27 -0.75
(3.07) (4.04) (5.24) (2.07) (3.74)

SAT Score2 -1.78 6.96 9.55 -1.12 1.45
(0.55) (0.56) (0.83) (0.37) (0.49)

HS GPA2 -1.44 5.47 7.42 -2.59 0.85
(0.66) (0.53) (0.86) (0.41) (0.50)

Course-Term FEs X X X
Campus-Cohort FEs X X X

R2 0.02 0.04 0.06
Observations 16,974 16,974 62,512
Mean of Y 32.2 26.4 - 32.2 26.4 - 29.0

Note: Propensity-score-weighted WLS regression models among 2010-2016 freshman-applicant Santa Barbara and
Davis students of economics major declaration and ECON 1 enrollment on student characteristics. Major declaration
models conditional on having earned a grade in ECON 1. Main effects estimated for Davis and Santa Barbara;
‘Diff’ is estimated as the difference between Santa Barbara and Davis. Standard errors clustered by high school in
parentheses. Inverse propensity score weights estimated using the full set of listed covariates as well as California
county indicators. Family income is missing for the ∼ 13 percent of students who did not report family income on
their application; estimates relative to the mean observed log income. 1High school course offerings are only observed
for public CA high schools. 2Normalized to mean 0, s.d. 1.
Source: UC ClioMetric History Project Student Database, UC Corporate Student System, and California Department
of Education.
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Table 4.7: Robustness Table: Other Aspects of Economics Major Qualification at Davis and Santa
Barbara

Grade in Calc. I Grade in Calc. II Difference in: UCSB-only determinants of:
ECON 1 ECON 2 ECON 1 ECON 2 ECON 10A

UCD Diff. UCD Diff. Grade Grade Grade Grade Grade

Female 0.06 -0.05 0.12 -0.03 0.09 -0.01 -0.14 -0.13 -0.03
(0.03) (0.04) (0.03) (0.05) (0.03) (0.03) (0.02) (0.02) (0.03)

Asian 0.17 -0.07 0.21 -0.14 -0.06 -0.15 0.02 -0.04 0.01
(0.03) (0.05) (0.03) (0.05) (0.03) (0.04) (0.02) (0.02) (0.04)

URM -0.11 -0.05 -0.17 -0.05 0.09 0.06 -0.11 -0.12 -0.12
(0.04) (0.06) (0.04) (0.06) (0.04) (0.04) (0.02) (0.02) (0.04)

Log Fam. Inc. 0.02 -0.01 0.00 0.02 -0.02 0.00 0.01 0.02 0.01
(0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Miss. Income -0.09 0.08 -0.07 0.09 -0.01 0.04 -0.02 0.01 -0.01
(0.05) (0.07) (0.06) (0.07) (0.05) (0.05) (0.02) (0.03) (0.05)

Out-of-State -0.08 0.33 0.02 0.17 -0.00 -0.10 0.10 0.11 0.25
(0.07) (0.09) (0.07) (0.09) (0.07) (0.07) (0.04) (0.05) (0.07)

International 0.42 0.32 0.46 0.07 0.02 -0.12 0.48 0.40 0.41
(0.05) (0.06) (0.07) (0.08) (0.06) (0.06) (0.06) (0.04) (0.08)

CA Private HS -0.07 0.13 -0.02 0.02 -0.01 -0.08 0.02 0.01 0.01
(0.04) (0.06) (0.06) (0.06) (0.04) (0.05) (0.03) (0.03) (0.05)

High School Offered1:

AP Macro 0.02 0.04 0.03 0.06 0.06 0.13 0.07 0.13 0.06
(0.05) (0.07) (0.05) (0.07) (0.05) (0.05) (0.03) (0.04) (0.05)

AP Micro -0.00 0.06 -0.08 0.12 0.19 0.08 0.06 0.04 0.02
(0.07) (0.10) (0.08) (0.09) (0.07) (0.07) (0.04) (0.05) (0.07)

IB Economics -0.08 -0.07 0.03 0.09 0.03 0.09 0.09 0.15 0.13
(0.13) (0.18) (0.14) (0.13) (0.08) (0.12) (0.05) (0.08) (0.12)

SAT Score2 0.24 0.03 0.21 -0.04 -0.08 -0.01 0.23 0.27 0.19
(0.01) (0.03) (0.02) (0.02) (0.01) (0.02) (0.01) (0.01) (0.02)

HS GPA2 0.16 0.01 0.17 0.04 -0.03 -0.03 0.14 0.15 0.16
(0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.01) (0.01) (0.02)

Course-Term X X X X X X X X X
Campus-Cohort X X X X X X X X X

R2 0.16 0.11 0.21 0.18 0.18 0.18 0.08
Observations 10,168 11,554 16,974 13,884 7,829 6,216 3,565
Mean of Y 2.89 2.75 2.61 2.58 2.56 2.55 2.76

Note: Propensity-score-weighted WLS regression models among 2010-2016 freshman-applicant Santa Barbara and
Davis students of grades earned in first and second quarters of calculus, ECON 1 and 2, and the subsequent ECON
10A course at Santa Barbara on student characteristics. Mathematics grades are conditional on ECON 1 enrollment.
Main effects estimated for Davis and Santa Barbara; ‘Diff’ estimated as the difference between Santa Barbara and
Davis. Standard errors clustered by high school in parentheses. Inverse propensity score weights estimated using the
full set of listed covariates as well as California county indicators. Family income is missing for the ∼ 13 percent of
students who did not report family income on their application; estimates relative to the mean observed log income.
Calculus I and II courses are MATH 2A/B, 3A/B, or 34A/B at UCSB and 16A/B and 21A/B at Davis. 1High school
course offerings are only observed for public CA high schools. 2Normalized to mean 0, s.d. 1.
Source: UC ClioMetric History Project Student Database, UC Corporate Student System, and California Department
of Education.
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Chapter 5

Will Studying Economics Make You Rich?
A Regression Discontinuity Analysis of the
Returns to College Major

5.1 Introduction
Forty-year-old U.S. workers with undergraduate degrees in economics earned median wages of
$90,000 in 2018. By comparison, those who had majored in other social sciences earned median
wages of $65,000, and college graduates with any major other than economics earned $66,000.
Relative to workers with lower-wage majors, the observational premiums earned by workers with
high-wage majors like engineering, nursing, and economics are similar in size to the wage gap
between college graduates and non-graduates (Altonji, Blom and Meghir, 2012). These gaps have
motivated a large literature examining the determinants of students’ major choices (Zafar, 2013;
Stange, 2015; Arcidiacono, Aucejo and Hotz, 2016; Wiswall and Zafar, 2018; Patnaik et al., 2020).
However, average wage differences between majors do not necessarily reflect the causal effect of
choosing one major over another. This study directly analyzes the treatment effects of earning an
undergraduate degree in the popular high-earning field of economics.1

Estimating the causal effects of earning specific college majors is challenged by students’
non-random assortment across majors: most students self-select their college major, and many
universities and departments use admissions and grade requirements to restrict entry into certain
majors. As a result, observational wage differences across majors may reflect selection bias. We
overcome this challenge by using a regression discontinuity design that exploits a fuzzy
discontinuity in economics major access at a large moderately-selective public university (Angrist
and Lavy, 1999).2 We implement this design to estimate the effect of studying economics on
students’ early-career earnings and industries, as well as how the major’s effect on earnings is
mediated by changes in students’ other educational outcomes, career preferences, and
early-career industries. We then characterize and estimate the biases that arise when using

1Economics is a particularly popular major at highly-selective universities. The 2020 federal College Scorecard
shows that economics was the most-earned major at 11 of the top 20 highest-ranked American universities (as ranked
by U.S. News & World Report), and was among the top five majors at 34 of the 50 highest-ranked universities.

2This design was recommended (but not implemented) by both Altonji, Blom and Meghir (2012) and Altonji,
Arcidiacono and Maurel (2016).
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observational average wage difference between economics and other majors as a proxy for the
treatment effect of majoring in economics.

The specific case we analyze is the Department of Economics at the University of California,
Santa Cruz. UCSC Economics imposed a GPA restriction policy in 2008: students with a grade
point average below 2.8 in Economics 1 and 2 were generally prevented from declaring an
economics major.3 Students who just met the GPA threshold were 36 percentage points more
likely to declare the economics major than those who just failed to meet it. Most of these students
would have otherwise earned degrees in other social sciences. Students just above the threshold
who majored in economics were surprisingly representative of all UCSC economics majors on
observables; for example, their average SAT scores was at the 41th percentile of economics
majors.

Comparing the major choices and average wages of above- and below-threshold students
shows that majoring in economics caused a $22,000 (46 percent) increase in the annual
early-career wages of barely above-threshold students. It did so without otherwise impacting their
educational investment – as measured by course-adjusted average grades and weekly hours spent
studying – or outcomes like degree attainment and graduate school enrollment. The effect is
nearly identical for male and female students, may be larger for underrepresented minority
students, and appears to grow as workers age (between ages 23 and 28). About half of the wage
effect can be explained by the effect of majoring in economics on students’ industry of
employment: relative to students who did not qualify for the major, economics majors became
more interested in business and finance careers and were more likely to find employment in
higher-wage economics-related industries like finance, insurance, and real estate (FIRE) and
accounting. Most of the barely above-threshold economics majors would have otherwise earned
degrees in lower-earning fields like psychology and sociology, and differences in either
OLS-estimated average wages by major (with or without controls) or median wages by major
(estimated at the university, state, or national level) slightly underestimate the estimated local
average treatment effect. This suggests that the net magnitude of selection bias and treatment
effect heterogeneity is small in this context.4

Our data include comprehensive 2000-2014 UCSC student and course records linked to
biannual administrative student surveys, National Student Clearinghouse educational outcomes,
and annual California UI employment records. These highly-detailed records allow us to test
several alternative explanations for above-threshold students’ higher postgraduate earnings. We
show that detailed student characteristics are smooth across the GPA threshold and that grade
distributions in economics courses remained unchanged in the period. There is no evidence of
students bunching above the threshold, as might be expected if threshold-crossing was somehow
manipulated. We also show that wages were smooth across the grade threshold prior to the
policy’s implementation but slightly discontinuous during an interstitial period with a
less-binding major restriction policy, generating similar (but noisier) instrumental variable
estimates to the main specification. While our main empirical strategy estimates linear regression

3Like many universities, UCSC has multiple “tracks” for its economics major. Students just above the GPA
threshold mostly chose its “Business Management Economics” track, in which about one-third of required courses are
taken in business- and finance-related subdisciplines.

4Our results mirror the well-known finding that causal estimates of the return to schooling slightly exceed the mean
differences recovered from OLS (Angrist and Keueger, 1991; Card, 1999), with our study focusing on heterogeneity
in the return to schooling.

121



discontinuity models with standard errors clustered by GPA (Lee and Card, 2008), we confirm the
estimates using a number of other specifications, including “Honest RD” estimates following
Kolesar and Rothe (2018).5

This is one of the first studies to employ a quasi-experimental research design to identify labor
market returns to college major choice in the U.S.6 A small number of previous studies have
analyzed major-specific returns in other countries by exploiting centralized field-specific
enrollment assignment rules (Kirkeboen, Leuven and Mogstad, 2016; Hastings, Nielsen and
Zimmerman, 2018; Daly and Le Maire, 2019). However, the external validity of those estimates
in the U.S. may be limited: American universities offer a broader core liberal arts curriculum,
permit students to choose their majors years after their initial enrollment, and provide students
with more discretion over their courses, all of which could narrow field-specific returns. A large
literature has employed selection-on-observables methods and structural estimation to identify
major-specific returns (James et al., 1989; Rumberger and Thomas, 1993; Black, Sanders and
Taylor, 2003; Arcidiacono, 2004; Hamermesh and Donald, 2008), generally arguing that selection
bias explains a substantial portion of U.S. wage variation across majors.

This study’s reduced-form regression discontinuity design provides unusually transparent
evidence of postsecondary education’s heterogeneous and persistent role in shaping students’
labor market outcomes. Our estimated early-career wage return to economics rivals the baseline
return to a college degree, implying that major choice is a first-order heterogeneity component in
the return to higher education.7 A related literature has used quasi-experimental research designs
to highlight university selectivity as another important dimension of heterogeneous university
treatment effects (Hoekstra, 2009; Zimmerman, 2014; Cohodes and Goodman, 2014; Bleemer,
2018a, 2020a). However, even students who are quasi-randomly switched to enrolling at
universities with 25 percentage points higher graduation rates – a large increase in selectivity –
receive an early-career wage return 30 percent lower than the return to majoring in economics at
UCSC (Bleemer, 2018a).8 These findings imply that widespread but understudied university
policies that shape student major choice – like GPA restrictions, variable tuition, and grade
inflation – have important long-run efficiency and social mobility ramifications.9

5Because of the small number (20) of discrete GPAs available to students, these latter estimates are likely
conservative.

6The only known quasi-experimental study to previously identify heterogeneous returns by college major in the
U.S. is Andrews, Imberman and Lovenheim (2017), who analyze the return to majoring in business by exploiting a
GPA threshold policy at several University of Texas campuses. Their suggestive finding of a large wage return to
business majors closely parallels our own estimates with regard to economics.

7One reason for the economics major’s large return is the relatively-low return to economics majors’ second-
choice social science fields, highlighting the importance of counterfactual student choices in measuring educational
returns (Kirkeboen, Leuven and Mogstad, 2016).

8As in nearly all previous studies on the return to education and university selectivity, we are unable to distinguish
whether the observed returns result from changes in human capital or signaling. We discuss this further in Section 5.
Other recent papers on heterogeneous university returns by university quality include Sekhri (2020) and Canaan and
Mouganie (2018).

9The close correspondence between observational and causal estimates of major-specific returns also suggests the
potential for private pecuniary gains resulting from providing students with locally-relevant information about average
wages by majors, which has been shown to increase students’ enrollment in high-wage majors (Berger, 1988; Beffy,
Fougère and Maurel, 2012; Hastings, Neilson and Zimmerman, 2015; Wiswall and Zafar, 2015). See Bleemer and
Mehta (2020a) on GPA restrictions, Andrews and Stange (2019) on variable tuition, and Ahn et al. (2019) on grade
inflation. Policies encouraging economics major choice (e.g. Porter and Serra (2020)) are particularly likely to provide
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This is also the first study to present quasi-experimental evidence that major choice causally
affects students’ career preferences or industry of employment, though prior studies have
documented that students select majors partly on the basis of career preferences (Wiswall and
Zafar, 2018). The correlation between college graduates’ majors and their occupations and
industries of employment is notably weak: fewer than 60 percent of most majors’ students work
in the top ten highest-employment (five-digit) occupations for that major (Altonji, Blom and
Meghir, 2012).10 Nevertheless, majoring in economics causes students to report a stronger
preference for business and finance careers prior to labor market entry – likely in part as a result
of perceived job availability – and to be more likely to ultimately work in related industries like
FIRE and accounting. These changed industry preferences could reflect the fact that knowledge
and skills acquired in the economics major may be particularly useful in these industries,
providing students with industry-specific human capital (Altonji, Kahn and Speer, 2014; Kinsler
and Pavan, 2015).

5.2 Background
The University of California, Santa Cruz is a moderately-selective public research university in
northern California. In 2010 UCSC admitted 64 percent of freshman applicants, resulting in a
3,290-student class largely split between white (38%), Asian (27%), and Hispanic (24%)
students. Nearly all (98%) of its students were California residents. In many ways, UCSC is
relatively representative of the average U.S. university; among four-year U.S. universities in the
2010 IPEDS database (weighted by enrollment), UCSC is at the 42nd percentile in admissions
rate, the 59th percentile in average student SAT scores, the 42nd percentile in middle-income
students’ average net price of attendance, and the 53rd percentile in student-to-faculty ratio.11 The
UCSC Department of Economics had 25 ladder-rank faculty and 7 lecturers in 2010 and taught
8,800 student enrollments that academic year, implying that each faculty-member taught an
average of 91 students per quarter, among the highest loads at the university.12

The UCSC Department of Economics’s 2003 GPA restriction was the university’s first policy
limiting enrolled students’ access to a particular college major (Bleemer and Mehta, 2020a). The
restriction was first recorded in UCSC’s 2003 Course Catalog, which stated that students with a
GPA in Economics 1 and 2 (EGPA) below 2.8 would only be allowed to declare the major “at
the discretion of the department”. If students re-took one of the courses, only the initial grade was
used to calculate EGPA. This policy hardly changed de jure over the following ten years, though
the 2012 course catalog is the first to note that for students with below-2.8 EGPAs, “appeals are
rarely granted”. Starting in 2013, calculus grades were added to the EGPA calculation.

However, the Department’s “discretion” left substantial room for year-over-year de facto

students with substantial pecuniary returns.
10A substantial academic literature studies how university policies shift students toward science and engineering

majors (Sjoquist and Winters, 2015b; Denning and Turley, 2017; Castleman, Long and Mabel, 2018), though none
directly investigate whether this actually bolsters the STEM labor force.

11Calculations from the Integrated Postsecondary Education Data System. Average SAT calculated as the summed
averages of the 25th and 75th percentiles of each SAT test component. Average net price defined over federal financial
aid recipients with family incomes between $48,000 and $75,000.

12Altonji and Zimmerman (2019) show that economics and business degrees have below-average educational costs.
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differences in below-2.8 students’ access to the major.13 The difference in the probability of
majoring in economics above and below the EGPA threshold remained small (below 15
percentage points) until the 2008 entering cohort, and then ranged from 25 to 60 percentage
points until 2012.14 As a result, this study focuses on these latter five cohorts of freshman UCSC
students.

5.3 Data
The student database analyzed in this study (UC-CHP, 2020) was collected from the UCSC Office
of the Registrar as part of the UC ClioMetric History Project (Bleemer, 2018b). The sample
covers all freshman-admit students who first enrolled at UCSC between 1999 and 2014.15 For
each student, we observe gender, ethnicity, cohort year, (pre-enrollment) home address, California
residency status, high school, and SAT score as well as UCSC course enrollments and grades.16

The EGPA running variable is calculated by averaging students’ grade point averages in
Economics 1 and 2, using their earliest letter grades if they retook either course.

These student records are linked by name and birth date to the National Student Clearinghouse
StudentTracker database (NSC, 2019), which contains undergraduate and graduate enrollment and
degree attainment records for nearly all American colleges and universities, and by social security
number to UI employment records from the CA Employment Development Department (EDD,
2019), which include annual wages and six-digit NAICS industry code.17 We proxy family income
by the mean adjusted gross income in the student’s home ZIP Code in their first year of enrollment
(IRS, 2018).18

UCSC students are also linked to survey responses from the biannual UC Undergraduate
Experience Survey (UCUES), conducted online in the spring of even-numbered years (SERU,
2019). The 2nd/3rd and 3rd/4th year response rates among the 2008-2012 students in the main
sample were 29 and 28 percent, with the response rates and respondent characteristics smooth
across the GPA threshold.19 Among the survey’s many questions are responses about number of
hours per week spent studying and students’ intended careers.20

Non-economics majors are categorized into four disciplines: humanities, social sciences,
natural sciences, and engineering. Combining the three tracks of the economics major —

13Figure D.1 shows 2000-2014 UCSC students’ likelihood of majoring in economics by EGPA for each cohort.
14This change was likely driven by increased demand after the 2007-2008 financial crisis; see Figure D.2.
15Community college transfer students are omitted from our analysis because they followed a different admission

rule into the economics major.
16ACT test scores (submitted by 4% of applicants instead of SAT scores) and SAT scores on a 1600 point basis are

converted to 2400-point SAT scores using standard concordance tables.
17NSC match quality is near-complete but missing for some students who opt out of coverage. For example, 97

percent of UCSC undergraduate degrees awarded to the 2008-2012 cohorts appear in NSC (see Appendix 1 of Bleemer
(2018a)). EDD NAICS code reflects the industry of employment from the year’s latest non-missing quarter (Census,
2019). UI employment records exclude out-of-state, federal, and self-employment. All EDD-related analysis was
originally conducted for the purpose of institutional research (see Bleemer and Mehta (2020b)).

18Income statistics are from the IRS Statistics of Income (SOI). Wage and income statistics are winsorized at the
top and bottom 2% and CPI inflation-adjusted to 2019 (BLS, 2019).

19See Figure D.3. UCUES data were provided by the Survey Experience in the Research University (SERU)
Consortium at UC Berkeley’s Center for Studies in Higher Education and linked by student ID.

20Full questions and responses are provided in Appendix A.
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economics, business management economics, and global economics — it was the
second-most-popular major at UCSC for the 2008-2012 cohorts (11.7 percent of students), below
psychology (12.9 percent) but ahead of environmental studies (6.1 percent) and sociology (6.0
percent).

Table 1 presents descriptive statistics for 2008-2012 UCSC freshman-admit students. Relative
to the full sample of 15,400 UCSC students, the 3,053 students who complete Economics 1 and 2
are more likely to be male and Asian and come from slightly higher-income neighborhoods. Of
those students, the 55 percent who actually declare the Economics major are 41 percent female
(compared to 56 percent across UCSC), 44 percent Asian (compared to 27 percent), and have
similar average SAT scores to the average UCSC student (1716 out of 2400).

5.4 Empirical Design
We identify the relationship between economics major choice (the treatment) and resulting
outcomes (Y ) by exploiting a discrete fuzzy grade discontinuity in economics major access
(Hahn, Todd and van der Klaauw, 2001). Figure 5.1 shows the first stage estimate of the impact of
meeting the 2.8 GPA threshold on economics major choice for the 2008-2012 cohorts.
Above-threshold students were about 36 percentage points more likely to declare the economics
major. Some below-threshold students were nevertheless able to declare the major — “at the
discretion of the department” — and about 20 percent of above-threshold students chose not to
declare the major. Each bubble is scaled by the proportion of students who earned that EGPA;
because the EGPA is calculated over only two letter grades, students could earn one of only 14
common or 6 uncommon EGPAs.

Let Yi(1) denote the outcome that UCSC student i would experience if they majored in
economics, and Yi(0) denote the outcome they would experience if they did not. Outcomes of
interest include (for example) post-graduation earnings, industry of employment, study time, and
graduate school attendance. Let C be the group of policy compliers: the subset of students who
major in economics if they are above the GPA threshold but not if they are below it. The effect of
the major on policy compliers whose EGPA was near the threshold (the local average treatment
effect) is given as:

LATERD(Y ) ≡ lim
EGPA↓2.8

E[Yi(1)|EGPA, i ∈ C] − lim
EGPA↑2.8

E[Yi(0)|EGPA, i ∈ C] (5.1)

so long as E[Yi(1)|EGPA, i ∈ C] and E[Yi(0)|EGPA, i ∈ C] are smooth at EGPA = 2.8.
We test several implications of this smoothness assumption. First, we find that the empirical

grade distribution does not spike at or near the 2.8 EGPA threshold, and the 2008-2012
distribution is highly similar to the 2003-2007 grade distribution, years when the EGPA
threshold was loosely enforced.21 This pattern implies that students did not manipulate their
course grades to meet the GPA threshold. Second, we find that detailed student socioeconomic
characteristics are smooth across the GPA threshold, as is a one-dimensional summary of student
characteristics generated by flexibly predicting each student’s 2017-2018 average wages by

21See Figure D.4. Both distributions share the same shape as the 2000-2002 grade distribution (prior to the EGPA
restriction’s implementation), though average EGPAs trended downward over time. Students’ Economics 2 grades
are smooth across the threshold.
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socioeconomic observables. This indicates that effects estimated across the threshold are unlikely
to be driven by anything other than qualification for the major. 22 Finally, as a placebo test, we
find that economics major selection and early-career wages are smooth across the 2.8 EGPA
threshold in 2000-2002, before the GPA restriction was introduced.23

Our baseline specification for estimating Equation 5.1 is linear in the running variable
(EGPA) on either side of the threshold and clusters standard errors by the 20 observed EGPAs
above 1.8 (Lee and Card, 2008). We also check that our results are robust to using a number of
alternative specifications. These include (1) allowing quadratic running variable terms, (2) adding
demographic controls and high school fixed effects, (3) narrowing the bandwidth to 0.5 EGPA
points on either side of the threshold, and (4) estimating “honest” local linear RD coefficients
with optimal bandwidth and triangular kernel following Kolesar and Rothe (2018).24 We note
below the rare occasions in which any of the alternative specifications result in coefficients that
differ substantially or statistically from those presented in the figures.25

The last columns of Table 1 present estimated characteristics of the students who majored
in economics as a result of their barely above-threshold EGPAs (estimated following Abadie
(2002)). These students’ observable characteristics are surprisingly similar to those of the average
UCSC economics student: 36 percent are female, 41 percent are Asian, and essentially all of them
are California residents. Despite their low introductory course grades, there is no indication that
they were much less prepared for success than other economics majors: their mean SAT score is at
the 41th percentile of all economics majors, while the mean income of their ZIP Codes of residence
is at the 48th percentile of their economics peers.26 The representativeness on observables of our
above-threshold policy compliers suggests that our estimated local average treatment effects may
be similar to the average treatment effect of majoring in economics at UCSC.

5.5 Baseline Return to the Economics Major
Figure 5.2 shows that 2008-2012 UCSC students with above-threshold EGPAs had far higher
early-career wages than their below-threshold peers.27 Measuring average California wages in
2017 and 2018 – when students in the sample were 23 to 28 years old – above-threshold students

22See Figure D.5. Predicted wages are estimated by OLS on the 2017-2018 wages of 2008-2012 UCSC students
who did not complete Economics 1 and 2. Predicted wages are imputed only for students with observed 2017-2018
wages to match our main labor market estimation sample.

23See Figure D.6. We also exploit the small increase in economics major choice across the less-binding 2003-2007
GPA threshold to noisily replicate the instrumental variable wage results in the main specification below (first-stage
6.2 percentage points (2.9 s.e.), IV $32,500 ($19,600)).

24The small number of running variable values suggests that these last estimates will be conservative. Tables D.1
to D.4 present regression coefficients from these alternative specifications for all main results.

25All OLS and IV regressions are estimated using the felm function in the lfe R package, version 2.8-5. Honest
local linear regressions are estimated by the RDHonest R package, version 0.3.2.

26This absence of significant positive selection may result from the substantial noise in introductory course grades,
which reflect a host of professor, TA, and extracurricular determinants (e.g. Sacerdote (2001); Fairlie, Hoffmann
and Oreopoulos (2014)). A linear regression of EGPA on high school fixed effects and gender-ethnicity indicators
interacted with SAT score, mean ZIP Code GPA, and cohort provides an adjusted R2 of only 0.15.

27Impacted students mostly graduated between 2012 and 2016, implying that their early-career earnings and
industries were not shaped by a postgraduate recession (Altonji, Kahn and Speer, 2016).
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earned about $8,000 higher wages than below-threshold students, with a standard error of $1,900.28

Given that they were also 36 percentage points more likely to major in economics, the IV estimator
suggests that students who just met the GPA threshold earned higher early-career wages by about
$22,000 if they declared the economics major, rising from $37,000 to over $59,000. Measuring
wages in log dollars provides a similar 0.58 log dollar estimated treatment effect, though that
estimate is statistically noisy in the Kolesar and Rothe (2018) specification.

The estimated returns to majoring in economics are nearly identical when estimated
separately by student gender: $21,700 (s.e. $8,800) for men, $22,600 ($5,700) for women. The
unexpectedly high observed earnings of students with EGPA = 2.35 visible in Figure 5.2
obtains only for male students, driving those estimates’ higher standard errors. The return is also
similar in magnitude among underrepresented minority (Black, Hispanic, and Native American)
students: $27,600 ($13,500).29

These estimates do not appear to be solely driven by college graduates’ first employment after
graduation. Figure 5.3 presents estimates of the annual wage return to majoring in economics 4-9
years after graduating high school for three partitions of our baseline sample: the 2008-2009
cohorts, 2010 cohort, and 2011-2012 cohorts. It shows suggestive evidence that the wage return
grows larger as workers age from 23 to 28, though the small number of cohorts challenges
separate identification of age and cohort effects. Figure D.8 contextualizes this finding by using
American Community Survey wage data (Ruggles et al., 2020) to visualize the median wages of
U.S. economics majors annually from ages 22 to 62 along with the weighted median wages of
U.S. college graduates who earned the second-choice majors that UCSC’s policy-complying
economics majors would have earned if economics had been unavailable (discussed further
below). The relative observational return to economics increases with age in workers’ 20s and 30s
and remains large throughout workers’ careers, resulting in a $536,000 observational net present
value of majoring in economics.30

5.6 Why do Economics Majors Earn Higher Salaries?

5.6.1 Educational Performance, Resources, and Attainment
Figure 5.4 shows how the characteristics of UCSC students’ postsecondary education differed as
a result of being provided access to the economics major. Panels (a) and (b) show that access to
the economics major does not change students’ likelihood of earning a college degree or enrolling
in a graduate degree program (within seven years of matriculating).31 Above-threshold students

28Students with earnings in only one of the two averaged years are assigned their observed year’s wages; students
with no observed wages in either year are dropped. Some RD specifications provide somewhat larger wage return
estimates.

29See Figure D.7. California wages are observed for 80-90 percent of the sample, likely the result of nearly all
UCSC freshman students being California residents. There is some evidence that students’ likelihood of 2017-2018
California employment rises at the GPA threshold, though the estimates are not robust across different specifications;
see Figure D.9.

30The observational wage return to economics shrinks (though remains large) after age 50, possibly reflecting
informational obsolescence (Deming and Noray, 2020).

31Near-threshold students had a 96 percent Bachelor’s attainment rate – including degrees earned at other
institutions by 2018 – compared to 94 percent across the 2008-2012 UCSC freshman cohorts.
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also have similar time-to-degree as below-threshold students. Economics major access does not
provide students with smaller class sizes; if anything, average class sizes grow larger.32 It does
not lead students to earn higher or lower grades when adjusted for course difficulty (c), nor does it
change the weekly amount of time students report studying outside of class.33

Instead, the primary estimable difference in students’ postsecondary education is the content
of that education. Barely above-threshold economics majors completed 13 more economics
courses than non-majors, for a total of 17 economics courses on average. This caused the
economics majors to take 9 fewer courses in other social sciences and about 4 fewer courses
across other disciplines. About 7 of the additional economics courses were in traditional
economics sub-disciplines, while almost 6 were in sub-disciplines related to business, finance,
and accounting also offered by UCSC’s economics department. Access to the economics major
did not change the number of mathematics and statistics courses that students completed, but they
did complete an average of two additional courses in quantitative methodology.34

If there was no signal value of economics degree attainment, then these estimates would imply
a wage elasticity of economics course-taking of about 0.3.35 However, this estimate is likely
upwardly-biased by the potentially high signal value of economics degrees relative to students’
second-choice majors. We are unable to distinguish between the degree’s signal value and the
value of additional human capital accumulation in this setting.36

5.6.2 Industrial Composition
Majoring in economics causally impacts the industries in which students are employed in their
early careers. This could reflect either industry-specific human capital formation or changes in
students’ preferences across industries. Panel (a) of Figure 5.5 suggests that part of the effect
arises from student preferences; survey responses from students’ sophomore and junior spring
quarters (prior to labor market entry) show that barely above-threshold economics majors became
more than 50 percentage points more likely to report an interest in a business or finance career
than non-majors, though this could in part reflect increased employment opportunity in those

32For plots showing estimates for additional educational outcomes like time to degree and class size, see Figure
D.10.

33Above-threshold students earn slightly lower unadjusted grade point averages than below-threshold students as a
result of relatively lower grading standards in UCSC’s economics department; see Figure D.10.

34Quantitative methodology courses include any course that mentions ‘statistics’, ‘econometrics’, ‘psychometrics’
or ‘quantitative/math/research/information methods’ in its title. See Figures D.11 and D.12.

35Arteaga (2018) finds that, in the setting of a Colombian university, a policy change that resulted in a 15 percent
reduction in course-taking among economics majors caused a 16 percent decline in students’ early-career wages,
implying a unit wage elasticity of economics course-taking. It is unsurprising that we estimate a lower elasticity,
given that: (1) below-threshold UCSC students excluded from the economics major took other courses instead of
economics courses, whereas the Colombian students graduated having completed fewer aggregate courses; and (2)
below-threshold UCSC students earned a different college major instead, which could change the signal value of their
degree.

36One potential strategy to directly estimate the signal value of UCSC’s economics degree would be to compare the
wages of economics majors and non-majors who took comparable numbers of economics courses. Unfortunately, as at
many U.S. public universities, many UCSC economics courses were de facto or de jure restricted to economics majors.
Figure D.13 shows that there is essentially no overlap between the distribution of economics courses completed by
2008-2012 UCSC economics majors and non-majors, thwarting that design.
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industries.37 Panel (b) shows that economics major access increases students’ early-career
likelihood of working in the most-impacted finance, insurance, and real estate (FIRE) and
accounting industries by 25 percentage points, split two-thirds/one-third between the two.
Economics majors became 17 percentage points less likely to work in the education, healthcare,
and social assistance industries in 2017-2018.38

Panel (c) of Figure 5.5 shows the effect of majoring in economics on the average wages
earned in students’ industries of employment. Industries are defined by six-digit NAICS codes,
and industry mean wages are measured using the 2017-2018 wages of all 2008-2012 UCSC
students. Barely above-threshold economics majors work in industries with higher mean wages
by about $10,000, implying that just under half of the $22,000 wage return to majoring in
economics can be explained by economics majors working in higher-paying industries.39

5.7 Average Wage-by-Major Statistics
Differences in the average wages earned by college graduates with different majors are often
presented as useful for students’ major selection (Carnevale, Cheah and Hanson, 2015; U.S.
Department of Education, 2019), but they could be misleading as a result of self-selection into
majors. To examine this concern empirically, this section compares the causal return to majoring
in economics at UCSC to observational differences in wages by major estimated using data from
various reference populations (e.g., all UCSC graduates or college graduates in California).

Denote the average wage of college graduates in reference population R who completed major
m by w̃Rm. Among students at UCSC who have taken Econ 1 and 2, let mi be student i’s chosen
major, wi(m) be the latent wages they would have earned if they had selected major m, and wi =
wi(mi) be their observed wage given that they chosemi. T is the treatment major (economics). Let
P 0
m be the probability of choosing non-economics major m for the barely below-threshold students

who would have earned economics majors if theirEGPAs had been slightly higher (that is, below-
threshold policy compliers); PR

m be the probability of a student in R selecting m conditional on not
selecting economics; and w0

m and w1
m be the expected latent wages in major m of UCSC policy

compliers just below and above the GPA threshold. We can then estimate Equation 5.1 in our
sample of UCSC Econ 1 and 2 takers either using each student’s observed wage as the dependent
variable, or replacing it with the w̃Rm of their chosen major. These regressions yield estimates,
respectively, of:

37First-year career-intention survey responses (prior to majoring in economics) are smooth across the threshold. We
examine sophomore and junior responses because those students have (likely) already declared the economics major
but have not yet been hired into postgraduate employment. Six 2012 sophomore respondents – economics majors with
2.7 EGPAs – are omitted from estimation as outliers; see Figure D.14.

38See Table D.5, which shows estimated changes for each two-digit NAICS code. Accounting – in which UCSC
Economics offers several courses – is the most-impacted six-digit NAICS code outside of FIRE industries.

39This conclusion is supported by a $15,400 estimated IV wage coefficient in the presence of 6-digit-NAICS fixed
effects, though that estimate is statistically noisy (s.e. $8,000). If industries are partitioned into just three groups –
FIRE, accounting, and all other industries combined – the two can explain only a $2,300 (IV) wage increase at the
threshold. Mean industry wages calculated using earlier UCSC cohorts and 2009-2010 wages provide nearly identical
estimates, suggesting this information could have been partly known by students. NAICS codes with fewer than 10
observed workers are omitted.
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LATERD(w) = w1
T −

∑
m 6=T

P 0
mw

0
m (5.2)

LATERD(w̃Rm) = w̃RT −
∑
m 6=T

P 0
mw̃

R
m (5.3)

These equations show that wage-by-major statistics from R can be used to predict the treatment
effect of earning an economics major for barely above-threshold UCSC students if they are similar
to policy compliers’ latent wages by major near the GPA threshold.

Figure 5.6 shows the average early-career wages by major for barely above-threshold
economics majors’ ten most common second-choice majors — led by psychology (20%),
environmental studies (14%), and “technology and information management” (TIM, 12%) — and
for UCSC’s three economics tracks.40 Average wages by major (w̃Rm) are calculated in three ways:
by linear regression of UCSC students’ early-career wages on major dummies with and without
detailed student controls, and by the median wages of all early-career college graduates in
California.41 The figure also shows estimates of LATERD(w̃Rm) for each set of average wage
statistics as the difference between two dashed horizontal lines. These are estimates of Equation
5.3, which implicitly weights the average wage in each counterfactual major by the likelihood that
a below-threshold policy complier would select it. They are juxtaposed, at the far right, with the
causally-identified return to majoring in economics — our estimate of Equation 5.2.42

At UCSC and across the state, economics majors have substantially higher average wages than
college graduates who earned the observed counterfactual majors.43 Using either OLS estimates or
median wages, the difference between the average wages of economics majors and the weighted-
average wage among the counterfactual majors underestimates the causally-estimated return to
majoring in economics by up to 21 percent.

Why might wage-by-major estimates differ from the treatment effect of majoring in
economics? To see the possible sources of bias, note that linear regression of observed wages on
treatment in population R estimates βROLS(w) ≡ w̃RT −

∑
m6=T P

R
mw̃

R
m, and that it is generically

true in a Rubin Causal Model that

βROLS(w) =

Average Treatment Effect on Treated in R (ToTR)︷ ︸︸ ︷
E(wi(T )|mi = T )− E(wi(∼ T )|mi = T )]

+ [E(wi(∼ T )|mi = T )− E(wi(∼ T )|mi 6= T )]︸ ︷︷ ︸
Selection Bias

(5.4)

40Above-threshold policy compliers are more likely to choose the business management economics track than the
average economics major. The fraction of economics majors on the BME track only increases slightly and statistically-
insignificantly across the GPA threshold (10.5 percentage points, s.e. 6.1), suggesting that the large share of policy
compliers on that track largely results from local student demand, not department policy. See Figure D.15.

41National wage-by-major medians display a similar pattern; see Table D.6. CA and U.S. statistics from the
American Community Survey (Ruggles et al., 2020). See Table D.7 for a UCSC-ACS major crosswalk.

42The imputed wage estimates partition students by their set of majors to calculate averages, whereas the major-
specific estimates assign multi-major students to their higher-earning major; see Figure D.16. Estimates of below- and
above-threshold UCSC policy compliers’ imputed and actual wages follow Abadie (2002).

43Business management economics (BME) majors have somewhat higher average wages than other economics
majors at UCSC, but not elsewhere. UCSC’s high-wage TIM major includes the economics department’s core course
sequence as required courses.
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Equation 5.4 shows that OLS overestimates economics majors’ true wage gains if those selecting
economics would have earned more in non-economics majors than those who did not select
economics — due to, e.g., stronger prior quantitative training or stronger preferences for high
wages. Combining Equations 5.2, 5.3, and 5.4 yields

LATERD(w̃Rm)−LATERD(w)

= [LATERD(w̃Rm)− βROLS(w)]︸ ︷︷ ︸
Counterfactual Major Correction

+ [ToTR − LATERD(w)]︸ ︷︷ ︸
Treatment Effect Heterogeneity

+[Selection Bias]

(5.5)

Equation 5.5 decomposes the difference between the observational difference in average wages
by major in population R and our estimated treatment effect of majoring in economics at UCSC.
The counterfactual major correction is positive whenever the majors selected by below-threshold
UCSC policy compliers are systematically higher-earning than those selected by non-economics
majors in R - as is clear from comparing the definition of βROLS(w) to Equation 5.3. The treatment
effect heterogeneity term is positive whenever economics majors in R have larger latent treatment
effects than those of policy compliers near the GPA threshold. Selection bias is positive when
economics majors inRwould have earned higher wages in non-economics majors than non-majors
in R.

The left-hand side of Equation 5.5 is negative and small when R consists of all UCSC
graduates, and the counterfactual major correction is very small. This implies that the treatment
effect heterogeneity and selection bias terms must roughly cancel each other out.44 Figure 5.6
shows this clearly: above-threshold policy compliers have lower average earnings than the
average UCSC students on their economics tracks, but their wages would have been even lower
— to an even greater degree than the difference in average wages by major — if they’d earned
their second-choice majors instead.45,46 Combined with the fact that selection bias resulting from
observable characteristics is positive ($19, 247 − $17, 461 > 0), this suggests that
ToTUCSC < βUCSCOLS < LATERD(w): the average economics major earned a return smaller than
the observational wage difference, while students who were barely unable to declare the
economics major may have earned a return larger than the observational wage difference.

Together, these results suggest that OLS and wage-by-major medians well-approximate, and
in fact slightly underestimate, the causal effect of majoring in economics identified by our
instrumental variable design.

44With all UCSC graduates as R, we estimate LATERD(w̃Rm) = $19, 427 (Figure 6), LATERD(w) = $22, 123
(Figure 6), and βROLS(w) = $20, 039 (Table D.6). The LHS is then -$2,876, the counterfactual major correction is
-$792, and the heterogeneity and selection terms sum to -$2,084 — less than 10% of the estimated treatment effect by
magnitude.

45This is consistent with students having comparative advantage in their preferred major (Kirkeboen, Leuven and
Mogstad, 2016), one dimension of treatment effect heterogeneity.

46Using the CPI-adjusted 2009-2010 wage-by-major medians of earlier UCSC cohorts to impute the 2008-12
cohorts’ wages yields LATERD(w̃Rm) estimates strikingly similar to the true local average treatment effect (Figure
D.17), suggesting that those effects are relatively stable over time.

131



5.8 Conclusion
The UC Santa Cruz Department of Economics’s 2008-2012 binding major restriction policy
provides an unusual opportunity to transparently identify the personal early-career wage return to
earning an economics major in college. We show that the wage return to economic education is
very high relative to education in students’ second-choice social science disciplines, causing a 46
percent increase in mid-20s earnings despite no change in educational investment or degree
attainment. About half of the observed effect can be attributed to economics majors’
specialization in particular high-wage industries, in part reflecting changes in students’ reported
preferences across professions. Mirroring a similar finding from studies of the return to additional
years of education (Card, 1999), we show that major-specific OLS estimates and differences in
median wages by major both slightly underestimate the observed wage return to economics. For
reference, a comparison between the national median wages of college graduates with economics
degrees and those of graduates with degrees in UCSC economics students’ second-choice majors
suggests that majoring in economics raises the net present value of a student’s college education
by $536,000, with the early-career annual wage difference widening over time.

These findings imply that students’ major choices could have financial implications roughly as
large as their decision to enroll in college (Autor, 2014), highlighting the centrality of
heterogeneity in the private returns to higher education. They also point to students’ college major
choice as a key decision point where policy-makers can intervene to substantially impact youths’
long-run labor market outcomes.47 Finally, these findings highlight the relationship between
major-specific returns and industrial composition, suggesting an important role for preferences
and industry-specific human capital acquisition in postsecondary education.

These findings come with four caveats. First, our results are estimated for students at a
moderately-selective public university — at the 60th percentile of the university average SAT
distribution — where nearly all students eventually earn a Bachelor’s degree (at UCSC or
elsewhere); the findings may not be representative of the average university student. Second, our
analysis is restricted to students who already choose to take introductory economics courses, and
may not extend to other students. Third, there are many U.S. states (unlike California) where
economics majors do not earn above-average early-career wages, suggesting an important role for
local labor demand in shaping major-specific returns.48 Finally, higher education’s broad public
and non-pecuniary returns imply that wage returns are insufficient in themselves for drawing
conclusions about the efficiency of educational policies (e.g. see McMahon (2009)).

47Indeed, Bleemer and Mehta (2020a) show that GPA-based major restrictions regressively shape students’ major
choices, tending to decrease disadvantaged students’ access to universities’ high-demand majors.

48For example, in the 15 states where industries’ employment shares among college graduates are least similar
to California’s, 2017-2018 ACS statistics show that economics majors do not have higher median wages than other
college graduates, and earn lower wages than non-majors in most two-digit industries. See Figure D.18.
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Figure 5.1: The Effect of the UCSC Economics GPA Threshold on Majoring in Economics

Note: Each circle represents the percent of economics majors (y axis) among 2008-2012 UCSC students who earned
a given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students who
earned that EGPA. EGPAs below 1.8 are omitted, leaving 2,839 students in the sample. Fit lines and beta estimate
(at the 2.8 GPA threshold) from linear regression discontinuity specification; standard error (clustered by EGPA) in
parentheses. Source: The UC-CHP Student Database.
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Figure 5.2: The Effect of the UCSC Economics GPA Threshold on Annual Wages

Note: Each circle represents the mean 2017-2018 wages (y axis) among 2008-2012 UCSC students who earned a
given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students who
earned that EGPA. 2017-2018 wages are the mean EDD-covered California wages in those years, omitting zeroes.
Wages are CPI-adjusted to 2018 and winsorized at 2% above and below. EGPAs below 1.8 are omitted, leaving
2,446 students with observed wages. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression
discontinuity specification and instrumental variable specification (with majoring in economics as the endogenous
variable); standard errors (clustered by EGPA) in parentheses. Sources: The UC-CHP Student Database and the CA
Employment Development Department.
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Figure 5.3: Estimated Wage Return to Economics Major by Age

Note: This figure shows regression discontinuity instrumental variable β estimates at the 2.8 GPA threshold of the
effect of majoring in economics on earnings in each of 4-9 years after high school graduation, splitting the sample
into the 2008-2009, 2010, and 2011-2012 UCSC incoming-class cohorts. The bars show 95% confidence intervals
from standard errors clustered by EGPA. The black line shows the difference between the national median wages of
economics majors and those of college graduates with majors in barely above-threshold UCSC students’ second-choice
majors, as measured in the ACS; see Figure D.8. Wages are CPI-adjusted to 2018 and winsorized at 2% above and
below. Sources: The UC-CHP Student Database, the CA Employment Development Department, and the American
Community Survey (Ruggles et al., 2020).
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Figure 5.4: The Effect of Economics Major Access on Education and Attainment

(a) Degree Attainment (b) Grad. Sch. Enrollment (c) Course-Adj. GPA

Note: Each circle represents the mean educational characteristic (y axis) among 2008-2012 UCSC students who earned
a given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students who
earned that EGPA. Undergraduate degree attainment is measured in 2018. Graduate school enrollment indicates
enrollment at a four-year university after undergraduate degree attainment within seven years of UCSC matriculation.
Course-Adjusted College GPA is calculated as the mean of the differences between students’ grades and each course’s
fixed effect from a two-way student-course fixed effect model (see Figure D.10). EGPAs below 1.8 are omitted,
leaving 2,839 students in the sample. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression
discontinuity specification and instrumental variable specification (with majoring in economics as the endogenous
variable); standard error (clustered by EGPA) in parentheses. Sources: The UC-CHP Student Database and the
National Student Clearinghouse.
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Figure 5.5: Effect of Economics Major Access on Industry Preferences and Employment

(a) Intend Career in Bus/Fin. (b) Emp. in FIRE or Accounting (c) Imputed Wages by Industry

Note: Each circle represents the mean outcome measure (y axis) among 2008-2012 UCSC students who earned a
given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students who
earned that EGPA. Intended career in business/finance indicates selecting “Business, finance-related professions”
on a survey asking “Career hope to eventually have after education complete” (see Appendix A) among the 834 in-
sample second- and third-year UCUES respondents. Employment in FIRE and accounting indicates 2017 or 2018
employment in the finance, insurance, and real estate (NAICS codes 52 and 531) or accounting (541211) industries;
see Figure D.5. Imputed wages by industry (6-digit NAICS) are calculated as the mean 2017-2018 wages of all 2008-
2012 freshman-admit UCSC students. Imputed wages are CPI-adjusted to 2018 and winsorized at 2% above and
below. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression discontinuity specifications and
instrumental variable specifications (with majoring in economics as the endogenous variable); standard error (clustered
byEGPA) in parentheses. Six 2012 sophomore respondents were omitted from estimation; see Figure D.14. Sources:
The UC-CHP Student Database, the SERU database, and the CA Employment Development Department.
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Figure 5.6: Average Wage Differences between Economics and Counterfactual Majors

Note: This figure shows average early-career 2017-2018 wages by major of UCSC students (estimated by OLS, with
and without control variables) and all California college graduates (ACS medians) for UCSC’s three economics tracks
and for the ten most common counterfactual majors earned by below-threshold UCSC policy compliers, juxtaposed
with the causally-identified local average treatment effect on early-career wages for below- and above-threshold UCSC
policy compliers (following Abadie (2002)). The black dotted lines show the average wages of the majors chosen
by below- and above-threshold policy compliers, calculated by assigning each 2008-2012 UCSC student to their
corresponding majors’ average wage – leave-one-out in the UCSC no-controls sample – and using the linear RD IV
model on the resulting imputed wages. Counterfactual major shares are estimated by the linear RD IV model predicting
an indicator for earning that major; the shares sum to over 100% because below-threshold policy compliers earn more
multiple majors. Bar widths are proportional to the major shares. UCSC statistics from 2008-2012 UCSC students
matched to 2017-2018 wages; California statistics calculated from age 23-28 2017-2018 ACS respondents. OLS
coefficients from regressions of wages on major indicators with or without covariates (gender-ethnicity, SAT score,
ZIP Code average AGI, cohort year, and high school fixed effects), partitioning students by their highest-earning major.
See Figure D.7 for UCSC-ACS major mapping. Wages and wage-by-major averages are CPI-adjusted to 2018 and
winsorized at 2% above and below. Sources: The UC-CHP Student Database, the CA Employment Development
Department, and the American Community Survey (Ruggles et al., 2020).
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Table 5.1: Descriptive Statistics of 2008-2012 UCSC Enrollment Cohorts

Freshman Econ 1 & 2 Economics Near-Threshold
Students Enrollees Majors Econ. Majors (s.e.)

Female (%) 55.7 41.3 40.9 35.6 (7.3)

White (%) 40.8 32.4 32.8 27.9 (6.5)
Asian (%) 26.5 41.4 43.7 41.1 (8.1)
Hispanic (%) 24.3 19.2 16.7 18.3 (7.1)
Black (%) 2.9 1.9 1.7 6.2 (1.8)

CA Resident (%) 97.1 97.4 97.2 99.7 (2.5)

SAT Score (2400 scale) 1720 1697 1716 1667 (14)

Mean ZIP Code Inc. ($) 92,060 95,819 99,477 86,770 (7,309)

Number of Students 15,423 3,053 1,689
Note: This table presents mean demographic and socioeconomic statistics for 2008-2012 UCSC freshman-admit
students, those who take Economics 1 and Economics 2, and those who then declare the economics major. The
final columns present the average characteristics of the students who majored in economics because of their barely
above-thresholdEGPAs, estimated following Equation 5.1 by treating the interaction between each characteristic and
economics major indicator as the outcome (Abadie, 2002). Mean ZIP Code Income measures the mean adjusted gross
income of tax-filers in the student’s home ZIP Code in the year they graduated high school. Sources: The UC-CHP
Student Database and IRS Statistics of Income (SOI).
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Appendix A

Appendix to Chapter 2

A.1 Appendix A: Public Universities Practicing Affirmative
Action in 2020

Many public and private universities are non-transparent about their undergraduate admissions
policies. However, most universities publish annual “Common Data Set” reports that provide a
response to the question: What is the “relative importance of each of the following academic and
nonacademic factors in first-time, first-year, degree-seeking (freshman) admission decisions: ...
Racial/ethnic status: Very Important, Important, Considered, and Not Considered”.

The following is a list of states with public universities where race/ethnic status is at least
considered in undergraduate admissions – according to their most recent common data set available
in July 2020 – naming the university in parentheses if it differs from the state’s flagship public
university: CO, CT, DE, GA (Georgia Tech), IL, IN, LA (Grambling State), ME (University of
Southern Maine), MD, MA, MI, NJ, NY, NC, OH, OR, PA, RI, SC, TN, TX, UT, VT, VI, and WI.
The University of New Hampshire reports considering race in admissions, but is prohibited by law
from providing preference to applicants based on their race. The University of New Mexico does
not report whether or not it considers race in admissions.

A.2 URM and Non-URM Admissions by UC Campus and AI ,
1994-2001

The figures below show the raw admissions likelihood and application distribution of URM and
non-URM applicants to each UC campus by Academic Index from 1994 to 2001. The figures
clarify how affirmative action was practiced by different UC campuses before 1998, and how
Prop 209 changed the admissions likelihood of URM applicants (and, to some degree, non-URM
applicants).1 For example, UC Davis and UC Santa Cruz guaranteed admission to nearly all UC-
eligible URM applicants before 1996, while UC Berkeley extended their admissions guarantee to
URM students with AI more than 1,000 points lower than the guarantee extended to non-URM

1Latino UC applicants – who made up about one in five URM UC applicants in the period – received somewhat
smaller admissions advantages than American Indian, Black, and Chicano UC applicants in some years at some
campuses (e.g. see Figure A.13). They are omitted from the figures in this Appendix.

149



students. The URM and non-URM admissions rates sharply converged after Prop 209, though
at most campuses URM applicants at nearly every AI remained more likely to be admitted than
non-URM applicants. The differences between the admissions likelihoods of URM and non-URM
UC applicants in different years are summarized in Figure 2.1.

The AI distribution of applicants was most-dissimilar by ethnicity at the Berkeley and UCLA
campuses, which had far higher shares of low-AI URM applicants than low-AI non-URM
applicants, reflecting the large admissions advantages provided by those campuses to even
lower-AI URM applicants under affirmative action. The distribution of applicant AI rose over
time at most campuses, likely driven both by grade inflation and growing cross-campus interest in
UC enrollment among high-AI California high school graduates.
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Figure A.1: Annual “Normal” Admissions at UC Berkeley

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC Berkeley admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC Berkeley applicants by
Academic Index and ethnicity. Raw percent of URM and non-URM students admitted to UC Berkeley by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT II
scores – each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants by AI (right axis). Admission rates and distributions are smoothed
with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they
satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses.
Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and
Chicano applicants. Source: UC Corporate Student System.
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Figure A.2: Annual “Normal” Admissions at UCLA

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UCLA admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UCLA applicants by Academic Index and
ethnicity. Raw percent of URM and non-URM students admitted to UCLA by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT II scores – each year from
1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants by AI (right axis). Admission rates and distributions are smoothed with a uniform kernel
of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they satisfactorily completed
UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses. Latino (but not Chicano)
applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and Chicano applicants.
Source: UC Corporate Student System.
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Figure A.3: Annual “Normal” Admissions at UC San Diego

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC San Diego admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC San Diego applicants by
Academic Index and ethnicity. Raw percent of URM and non-URM students admitted to UC San Diego by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT
II scores – each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants byAI (right axis). Admission rates and distributions are smoothed
with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they
satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses.
Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and
Chicano applicants. Source: UC Corporate Student System.
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Figure A.4: Annual “Normal” Admissions at UC Santa Barbara

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC Santa Barbara admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC Santa Barbara applicants
by Academic Index and ethnicity. Raw percent of URM and non-URM students admitted to UC Santa Barbara by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and
three SAT II scores – each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants by AI (right axis). Admission rates and distributions
are smoothed with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible,
meaning that they satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering
at some campuses. Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African
American (Black), and Chicano applicants. Source: UC Corporate Student System.
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Figure A.5: Annual “Normal” Admissions at UC Irvine

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC Irvine admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC Irvine applicants by Academic
Index and ethnicity. Raw percent of URM and non-URM students admitted to UC Irvine by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT II scores
– each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants by AI (right axis). Admission rates and distributions are smoothed
with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they
satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses.
Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and
Chicano applicants. Source: UC Corporate Student System.
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Figure A.6: Annual “Normal” Admissions at UC Davis

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC Davis admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC Davis applicants by Academic
Index and ethnicity. Raw percent of URM and non-URM students admitted to UC Davis by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT II scores
– each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants by AI (right axis). Admission rates and distributions are smoothed
with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they
satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses.
Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and
Chicano applicants. Source: UC Corporate Student System.

156



Figure A.7: Annual “Normal” Admissions at UC Santa Cruz

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC Santa Cruz admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC Santa Cruz applicants by
Academic Index and ethnicity. Raw percent of URM and non-URM students admitted to UC Santa Cruz by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT
II scores – each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants byAI (right axis). Admission rates and distributions are smoothed
with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they
satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses.
Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and
Chicano applicants. Source: UC Corporate Student System.
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Figure A.8: Annual “Normal” Admissions at UC Riverside

(a) 1994 (b) 1995 (c) 1996 (d) 1997

(e) 1998 (f) 1999 (g) 2000 (h) 2001

Note: This figure shows the 1994-2001 annual UC Riverside admissions rate for URM and non-URM applicants by Academic Index, as well as the annual distribution of UC Riverside applicants by
Academic Index and ethnicity. Raw percent of URM and non-URM students admitted to UC Riverside by Academic Index (AI) – the sum of (top-censored) high school GPA, SAT I score, and three SAT
II scores – each year from 1994 to 2001 (left axis). The lines show the probability density function of URM and non-URM UC applicants byAI (right axis). Admission rates and distributions are smoothed
with a uniform kernel of bandwidth 50; AI below 4900 and above 7900 are omitted. The sample is restricted to freshman fall California-resident applicants who (a) were UC-eligible, meaning that they
satisfactorily completed UC’s minimum high school coursework requirement, and (b) reported an intended major that did not have special admissions restrictions, like engineering at some campuses.
Latino (but not Chicano) applicants received slightly smaller admissions advantages (see Figure A.13) and are omitted from these figures; URM includes American Indian, African American (Black), and
Chicano applicants. Source: UC Corporate Student System.
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Table A.1: Difference-in-Difference Estimates of Post-1998 URM Admissions by UC Campus

Campus: UCB UCLA UCSD UCSB UCI UCD UCSC UCR Total

URM 37.3 26.8 23.8 17.0 10.1 27.5 7.0 4.2 9.3
(0.6) (0.5) (0.5) (0.5) (0.6) (0.5) (0.6) (0.6) (0.3)

URM × -24.5 -16.0 -18.7 -6.3 -3.1 -18.6 -5.8 -3.7 -7.9
Prop 209 (0.7) (0.6) (0.6) (0.6) (0.7) (0.7) (0.8) (0.7) (0.4)

Ȳ 32.3 35.1 51.8 65.2 65.8 70.1 81.8 85.0 82.3
Obs. 88,905 108,327 93,238 82,061 70,343 73,834 45,053 45,396 199,321

Note: OLS coefficient estimates of β0 and β‘98−99 from Equation 2.1, a difference-in-difference model of 1996-1999
URM UC freshman California-resident applicants’ UC admission compared to non-URM applicants after Prop 209.
Models are conditioned on applying to that UC campus. Models include high school fixed effects and the components
of UC’s Academic Index (see footnote 47), and are estimated independently by campus or “Total” (all applicants to
any UC campus). Robust standard errors in parentheses. Source: UC Corporate Student System.

A.3 UC Admissions and Yield after Prop 209
Table A.1 presents estimates of Equation 2.1’s β0 and β‘98−99 for admission to each UC campus,
estimated on the 1996-1999 sample of applicants to that campus. While URM applicants were
37 and 27 percentage points more likely than comparable non-URM applicants to be admitted to
Berkeley and UCLA under affirmative action, these advantages fell to 13 and 11 percentage points
after Prop 209.2 URM applicants faced similar-magnitude declines in their admissions likelihood at
San Diego and Davis, and their admissions advantage fell at every campus. Among all applicants to
any UC campus, URM applicants’ admissions advantage over non-URM applicants (to be admitted
to at least one campus) fell from 9.3 to 1.4 percentage points.

Table A.20 shows that admitted URM applicants became more likely to enroll at every UC
campus after Prop 209, though URM applicants who were admitted to some UC campus became
less likely to enroll at UC, a case of Simpson’s Paradox reflecting the decline in the number of
UC campuses to which URM applicants were admitted. Antonovics and Sander (2013) argue that
this “warming effect” across UC campuses resulted from an increase in the signaling value of
attending UC for URM applicants. As in that study, conditioning on the set of UC campuses to
which applicants were admitted flips the sign of the UC-wide coefficient (to 2.8 percentage points);
compared to academically-similar students admitted to the same UC campuses, post-1998 URM
students are more likely to enroll at some UC campus. Admissions and enrollment statistics are
slightly larger when estimated relative to the ‘94-95 baseline; see Table A.2.

2Note that these models do not control for family income or other measures of pre-college opportunity likely
correlated with URM status. Since those factors remained part of UC admissions, it is unsurprising that the presented
models still identify advantages for URM applicants despite Prop 209.
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Table A.2: Difference-in-Difference Estimates of Post-1998 URM Admissions by UC Campus,
Compared to ‘94-5 Baseline

Campus: UCB UCLA UCSD UCSB UCI UCD UCSC UCR Total

Application conditional on UC application (%)

URM 11.8 9.9 -1.8 -8.6 -8.9 -4.8 -3.2 -8.2
(0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.3)

URM × -2.9 -5.7 -1.3 3.1 -0.8 1.5 0.9 5.9
Prop 209 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)

Ȳ 43.9 53.5 48.1 40.8 35.7 37.8 23.1 23.8
Obs. 190,540 190,540 190,540 190,540 190,540 190,540 190,540 190,540

Admission conditional on application (%)

URM 43.5 37.8 23.5 10.8 20.3 32.6 13.2 15.2 13.4
(0.6) (0.5) (0.6) (0.5) (0.6) (0.6) (0.6) (0.6) (0.3)

URM × -29.6 -26.8 -19.7 -1.4 -14.0 -24.0 -12.9 -15.2 -12.4
Prop 209 (0.7) (0.6) (0.7) (0.7) (0.7) (0.8) (0.8) (0.7) (0.4)

Ȳ 34.5 38.5 52.8 67.8 68.2 69.7 81.9 84.1 82.9
Obs. 82,637 100,991 91,227 77,640 67,320 70,424 43,987 44,165 190,540

Enrollment conditional on application (%)

URM 14.6 12.9 0.3 -1.5 -1.6 4.4 -1.6 2.0 8.3
(0.6) (0.5) (0.5) (0.6) (0.6) (0.7) (0.7) (0.8) (0.4)

URM × -10.6 -10.6 -2.2 2.8 -1.5 -4.4 -1.3 -4.5 -11.6
Prop 209 (0.7) (0.6) (0.6) (0.7) (0.7) (0.8) (0.9) (0.9) (0.5)

Ȳ 16.4 14.8 13.0 16.4 18.0 18.7 17.1 17.2 49.6
Obs. 83,559 101,940 91,720 77,804 67,980 72,062 44,031 45,302 190,540

Enrollment conditional on admission (%)

URM -20.8 -17.9 -17.3 -7.8 -14.2 -12.0 -6.6 -3.5 1.6
(1.1) (0.9) (0.8) (0.7) (0.8) (0.8) (0.8) (0.9) (0.5)

URM × 10.9 9.2 10.7 5.2 5.1 6.2 3.2 0.8 -6.3
Prop 209 (1.5) (1.3) (1.2) (1.0) (1.1) (1.1) (1.1) (1.1) (0.6)

Ȳ 42.7 38.5 24.7 24.1 26.6 27.3 20.8 21.0 59.7
Obs. 28,497 38,849 48,126 52,669 45,891 49,074 36,025 37,155 157,881

Note: This table shows that URM declines in UC admissions and enrollment were larger after Prop 209 when compared
to ‘94-95 as a baseline. OLS coefficient estimates of β0 and β‘98−99 from Equation 2.1, a difference-in-difference
model of 1994-1995 and 1998-1999 URM UC freshman California-resident applicants’ UC applications, admissions,
and enrollment compared to non-URM applicants after the 1998 end of UC’s affirmative action program. The years
1996-1997 are omitted because some universities preemptively curtailed their affirmative action programs in those
years. Models include high school fixed effects and the components of UC’s Academic Index (see footnote 47),
and are estimated independently by campus or “Total” (all applicants to any UC campus). Robust standard errors in
parentheses. Source: UC Corporate Student System and National Student Clearinghouse.
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A.4 Data Quality

A.4.1 Applicants who Decline to Report Ethnicity
The percent of UC applicants who declined to report ethnicity on their application increased from
4.1 percent in ‘96-97 to 10.5 percent in ‘98-99, potentially challenging the identification of URM
applicants.3 To identify the ethnicity of missing-ethnicity applicants, I estimate a multinomial
logistic regression of ethnicity (Asian, Black, Hispanic, and white) on the leave-one-out ethnicity
shares of each known-ethnicity applicant for applicants’ first name, middle name, last name, high
school, zip code, and Census block, holding out a randomly-selected 10 percent of applicants. I
then predict each missing-ethnicity applicant’s likelihood of being each ethnicity, classifying them
if their estimated likelihood of being that ethnicity exceeds 75 percent.4

In ‘96-97, I find that among the 88 percent of missing-ethnicity applicants whose ethnicity can
be classified, 68 percent are white, 29 percent are Asian, 2.5 percent are Hispanic, and 0.6 percent
are Black. The URM shares are hardly higher in ‘98-99; of the 87 percent classified, whites and
Asians make up 65 and 29 percent, while Hispanics and Blacks make up 4.2 and 1.3 percent.
Thus, while the decline in URM reporting incentives may have disproportionately increased
non-reporting among URM university applicants (Antman and Duncan, 2015), the very large
majority of non-reporters remains non-URM. These results justify the assumption in the baseline
analysis that missing-ethnicity applicants are non-URM. No presented result changes statistically
or qualitatively if predicted-URM applicants are re-assigned as URM.

A.4.2 National Student Clearinghouse Coverage
Dynarski, Hemelt and Hyman (2015) show that national NSC enrollment coverage at four-year
institutions was below 50 percent in 1996, rising to over 80 percent by 2000.5 Coverage at the
somewhat-selective institutions at which UC applicants tended to enroll was much higher.
Appendix A in Bleemer (2018a) shows that while some California community colleges were not
reporting enrollment statistics to NSC by the mid-1990s, only a small number of universities may
not have been reporting graduation statistics by 1999 (the earliest year that 1996 applicants could
plausibly earn a four-year degree), the largest of which was 2,100-student
adult-education-oriented Brandman University. The same trend likely holds for other states; Table
A.21 shows that only 6.2 percent of the baseline sample did not have observed enrollment in
NSC, some of whom likely enrolled at community colleges before the colleges’ NSC
participation (and others who actually choose against postsecondary enrollment).

3Throughout this study, applicants are categorized as “Black” if they self-report their ethnicity as “Black/African
American”; as “Hispanic” if they self-report as “Chicano/Mexican-American” or “Latino/Other Spanish-American”;
and as “Asian” if they self-report their ethnicity as “Chinese/Chinese-American,” “East Indian/Pakistani,”
“Japanese/Japanese-American,” “Korean,” “Pilipino/Filipino,” “Thai/Other Asian,” or “Vietnamese”.

4Types 1 and 2 error by ethnicity, measured using the 10 percent of hold-outs, are: 13.2% and 15.2% (white),
3.9% and 12.4% (Asian), 0.3% and 55.5% (Black), and 1.2% and 27% (Hispanic). I replace non-reported ethnicity
with predicted ethnicities in Figures 2.4(f) and 2.7 to avoid dropping data.

5NSC reports that about 4 percent of records are censored due to student- or institution-requested blocks for
privacy concerns, and that the only public university in California with censorship greater than 10 percent is UC
Berkeley (National Student Clearinghouse Research Center, 2017).
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Table A.3: Difference-in-Difference Estimates of Asian UC Applicants’ Post-1998 Enrollment

UC Campuses by Selectivity Comm. CA Non-CA Not in
Most Middle Least CSU Coll. Ivy+ Priv. Univ. NSC

Asian 6.5 -1.7 -1.3 -2.1 2.2 0.8 -1.6 -3.6 0.5
(0.3) (0.3) (0.2) (0.3) (0.3) (0.1) (0.2) (0.2) (0.2)

Asian × -0.2 0.1 1.5 -0.1 -1.1 0.0 -0.6 0.8 -0.5
Prop 209 (0.4) (0.4) (0.2) (0.3) (0.3) (0.2) (0.3) (0.3) (0.2)

Ȳ 22.6 20.6 6.4 12.7 11.7 2.8 8.8 9.1 5.8
Obs. 150,968 150,968 150,968 150,968 150,968 150,968 150,968 150,968 150,968

Note: Estimates of β0 and β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 Asian
UC freshman California-resident applicants’ enrollment outcomes compared to non-Asian outcomes after the 1998
end of UC’s affirmative action program (restricting the sample to non-URM applicants). Outcomes defined as the
first institution of enrollment by college or university type within six years of graduating high school, as measured in
the NSC. Models include high school fixed effects and the components of UC’s Academic Index (see footnote 47).
Academic Index (AI) is defined in footnote 25; models by AI quartile are estimated independently, with quartiles
defined by the AI distribution of 96-97 URM UC applicants. “Ivy+” universities include the Ivy League, MIT,
Stanford, and the University of Chicago; private and non-CA universities exclude those institutions. Robust standard
errors in parentheses. Source: UC Corporate Student System and National Student Clearinghouse.

A comparison between UC and NSC graduation records suggests that only UC Santa Cruz
failed to report a substantial number of earned degrees among the late 1990s graduation cohorts,
while a comparison between NSC and UC major reporting (measured by which students earned
STEM degrees) shows that NSC routinely captures more than 90 percent of STEM degree
attainment at all campuses throughout the period (conditional on degree reporting in both data
sets). The six-year graduation and STEM major choice estimates presented in Panel A of Table
2.3 are robust when restricted to NSC records only or to NSC records augmented by only UCSC
degrees (see Table A.26). As a result, differential NSC non-reporting by URM applicants is
unlikely to explain the observed degree attainment patterns. Moreover, this concern does not
extend to the graduate degree estimates; most such degrees are not earned at the same institutions
where applicants earned their undergraduate degrees, and NSC coverage was very wide by the
time applicants in the sample were earning graduate degrees.

A.5 Differential Impact of Prop 209 on Asian UC Applicants
The baseline difference-in-difference analysis in the main text does not differentiate between
groups of non-URM UC applicants, but there is some speculation that affirmative action policies
differentially impact Asian applicants relative to white applicants (Arcidiacono, Kinsler and
Ransom, 2020). I test for heterogeneity in Prop 209’s effect on non-URM students by restricting
the UC applicant sample to non-URM students and re-estimating versions of Equation 2.1 with
Asian students as the treated group (replacing URM).6 Table A.3 presents estimates of Prop 209’s
effect on Asian students’ enrollment institutions. The coefficients on Asian students’ enrollment
at more-selective and selective UC campuses are precisely-estimated zeroes: ending UC’s

6Table A.18 presents descriptive statistics for white and Asian UC applicants before and after Prop 209, with both
showing similar admissions trends after 1998.
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affirmative action program did not lead to a relative increase in Asian UC applicants’ enrollment
at those campuses. There is a small measurable enrollment shift from community and private
California colleges into non-California universities and the less-selective UC campuses, though
the effects’ magnitudes are a small fraction of those observed for URM students. Figure A.9
shows that Prop 209 also caused no estimable change in Asian applicants’ longer-run wage
outcomes relative to other non-URM applicants. I conclude that there is little reason to treat white
and Asian applicants as having been differently-treated by Prop 209, conditional on prior
academic opportunities and preparation as measured by the components of AI .

A.6 Selection into Application: Reanalyzing Card and
Krueger (2005)

Figure 2.8 shows that the annual proportion of URM California high school graduates who
applied to some UC campus declined (relative to non-URM applications) after 1998 among both
low- and high-AI students. This contrasts with the evidence presented by Card and Krueger
(2005) (hereafter CK), who use a difference-in-difference design to show that the annual
proportion of URM California SAT-takers who send their scores to UC campuses – an oft-used
proxy for university application, since score-sending is a mandatory component of many
universities’ applications – declined overall, but remained steady (or perhaps increased) among
the high-SAT and/or high-GPA URM test-takers who were competitive candidates for selective
university admission.

I reconcile these findings by matching the College Board SAT-takers database – only available
for California public high school students, whereas CK includes private high schools – to the UC
application database by name, birthdate, and high school.7 While the College Board data show that
more than 90 percent of UC Berkeley or UCLA applicants sent their SAT scores to those campuses,
fewer than 60 percent of students who send their SAT scores to each of those campuses actually
apply to them. This suggests that SAT-sending may be a poor proxy for university application in
some contexts.

Table A.4 shows that among students at all California high schools (reported by CK) or at
public California high schools, California URM SAT-takers who reported A and A+ average high
school grades were no less likely to send their scores to any UC campus or to the more-selective
Berkeley and UCLA campuses after 1998 relative to non-URM SAT-takers; indeed, URM send
rates increased in 1995 and 1996 and only slightly declined in 1998. However, the pattern in actual
university applications appears quite different: high-GPA URM students’ relative likelihood of UC
and Berkeley/UCLA application declined sharply in 1996 – when the application deadline was only
a few months after the passage of Prop 209 – recovered in 1997, and then sharply (and somewhat-
persistently) declined again in 1998 when the proposition went into effect. Models restricted to
high-SAT test-takers reveal a similar pattern.8

7The match rate of public-HS SAT-submitting freshman UC applicants to the College Board – matching any six
of the seven pieces of available information (three names, three birthdate components, and high school) and dropping
a small number of possible duplicate matches – is 93 percent among 1994-2001 applicants.

8See Tables A.5 and A.6. Table A.7 shows that score-sending to Berkeley and UCLA became a poor proxy
for URM students’ applications to those schools in 1996 (and worse still in 1999), when URM score-senders across
the SAT distribution became less likely to apply to either, though after 1998 it became a particularly poor proxy for
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Figure A.9: Difference-in-Difference Estimates of Asian and URM UC Applicants’ Post-1998
Wage Outcomes

Panel A: Employment and Wages

(a) CA Employment (b) Annual CA Wages (c) Annual Log CA Wages

Panel B: Minimum Wage Thresholds

(d) Wages > $75, 000 (e) Wages > $100, 000 (f) Wages > $150, 000

Note: This figure shows simultaneous difference-in-difference estimates for URM and Asian labor market outcomes
relative to white students, showing that Asian students’ long-run labor market outcomes closely-tracked white
students’ outcomes while URM students’ outcomes deteriorated. Estimates of β‘98−99 from an extension Equation
2.1 adding indicators for Asian students and Asian interacted with post-209 (β′1998−1999), an OLS difference-in-
difference model of 1996-1999 URM and Asian UC freshman California-resident applicants’ educational outcomes
compared to other non-URM students’ outcomes after the 1998 end of UC’s affirmative action program. Outcomes
defined as non-zero California wages (“CA Employment”), California wages in dollars and log-dollars (omitting 0’s),
and unconditional indicators for having wages above specified wage thresholds ($75,00, $100,000, and $150,000)
as measured in the California Employment Development Department database, which includes employment covered
by California unemployment insurance. Coefficients in each year after UC application are estimated independently.
Models include high school fixed effects and the components of UC’s Academic Index (see footnote 47). Academic
Index (AI) is defined in footnote 25; models by AI quartile are estimated independently, with quartiles defined by the
AI distribution of 96-97 URM UC applicants. Annual wages CPI-adjusted to 2018 and winsorized at top and bottom
1 percent. Robust 95-percent confidence intervals shown. Source: UC Corporate Student System and the California
Employment Development Department.

In total, URM UC relative application rates declined by 1.9 percentage points between 1998
and 2000 (relative to 1994-1995), and relative application rates to the Berkeley and UCLA
campuses declined by 1.8 percentage points. These patterns are consistent with Figure 2.8, which
shows a decline in high-AI URM application rates, and suggests that academically-strong URM

low-SAT students.
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Table A.4: Replication of Table 4 in Card and Krueger (2005) with New Specifications: “Changes
in the Relative Probability that Minority Students Send SAT Scores to Selective and Most Selective
State Universities”

All UC Campuses Berkeley and UCLA Only
Dep. Var.: Send Send Apply Send Send Apply

URM × 1995 0.021 0.009 -0.002 0.023 0.011 -0.008
(0.010) (0.012) (0.014) (0.012) (0.014) (0.013)

URM × 1996 0.027 0.016 -0.029 0.030 0.015 -0.035
(0.010) (0.012) (0.013) (0.011) (0.014) (0.013)

URM × 1997 0.028 0.015 -0.006 0.037 0.029 -0.007
(0.009) (0.011) (0.013) (0.011) (0.013) (0.013)

URM × 1998 0.025 0.009 -0.028 0.029 0.011 -0.032
(0.009) (0.011) (0.013) (0.011) (0.013) (0.013)

URM × 1999 0.032 0.015 -0.019 0.026 0.013 -0.032
(0.009) (0.011) (0.013) (0.011) (0.013) (0.013)

URM × 2000 0.033 0.013 -0.038 0.039 0.017 -0.037
(0.009) (0.011) (0.013) (0.011) (0.013) (0.013)

URM × 2001 0.036 0.006 -0.002 0.045 0.025 -0.001
(0.009) (0.011) (0.012) (0.011) (0.013) (0.012)

CK Controls1 X X X X X X
A/A+ GPA Only X X X X X X
Public HS Only X X X X
Source CK Replication CK Replication

Average(1999-2001) - Average(1994-1995)2

Estimate 0.018 0.006 -0.019 0.019 0.013 -0.018
(Std. Err.) (0.007) (0.007) (0.008) (0.008) (0.008) (0.008)

Obs. - 179,682 179,682 - 179,682 179,682
Note: Difference-in-difference OLS regression coefficient estimates across all California 1994-2001 SAT-takers (or
restricted to those from public high schools) of URM students’ likelihood of either sending SAT scores or applying to
any UC campus or the Berkeley and UCLA campuses, relative to 1994 and non-URM students. Models correspond
to columns (3) and (6) in Card and Krueger (2005), with the sample restricted to SAT-takers who report A or A+
high school average grades. Test-taking and applicant records merged by name, birthdate, and high school. 1 “CK
Controls” include indicators by year, ethnicity, SAT score category (< 1150, 1150− 1300, and > 1300), father’s and
mother’s education, reported high school GPA (A or A+), and 8 class rank indicators (including missing). 2 Estimates
from CK include 1994-1996 instead of 1994-1995, but the results suggest that URM application rates began falling
in 1996 (following the passage of SP-1 and Prop 209). Standard errors (in parentheses) are robust. Source: College
Board and UC Corporate Student System.

students were dissuaded from UC application by Prop 209 despite sending their SAT scores to
UC campuses (which they may have done many months earlier, on the day they took the test).
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Table A.5: Replication of Card/Krueger (2005), Table 4, for All UC Campuses

Any UC Campus

Send Apply Send Apply Send Apply Apply

URM × 1995 0.005 -0.012 0.002 -0.007 0.009 -0.002 -0.004
(0.004) (0.004) (0.013) (0.015) (0.012) (0.014) (0.013)

URM × 1996 -0.002 -0.033 0.016 -0.012 0.016 -0.029 -0.032
(0.004) (0.004) (0.013) (0.015) (0.012) (0.013) (0.013)

URM × 1997 -0.010 -0.040 0.011 -0.026 0.015 -0.006 -0.008
(0.004) (0.004) (0.013) (0.015) (0.011) (0.013) (0.013)

URM × 1998 -0.019 -0.044 -0.010 -0.054 0.009 -0.028 -0.029
(0.004) (0.004) (0.013) (0.015) (0.011) (0.013) (0.013)

URM × 1999 -0.020 -0.049 0.001 -0.027 0.015 -0.019 -0.022
(0.004) (0.004) (0.013) (0.015) (0.011) (0.013) (0.013)

URM × 2000 -0.022 -0.047 0.012 -0.030 0.013 -0.038 -0.040
(0.004) (0.004) (0.012) (0.015) (0.011) (0.013) (0.013)

URM × 2001 -0.028 -0.038 0.004 -0.014 0.006 -0.002 -0.006
(0.004) (0.004) (0.012) (0.014) (0.011) (0.012) (0.012)

CK Controls1 X X X X X X X
Pred. Eth. X

Sample Full High SAT High GPA
R2 0.20 0.31 0.12 0.18 0.09 0.17 0.17
N 891,254 891,254 208,765 208,765 179,682 179,682 179,682

Note: This table shows that while the proportion of competitive URM applicants sending their SAT scores to UC only
slightly declined after Prop 209, there is a larger decline in actual URM applications to those schools, suggesting that
score-sending is a poor proxy in this context. Difference-in-difference OLS regression coefficient estimates across all
California 1994-2001 public-HS SAT-takers of URM students’ likelihood of either sending SAT scores or applying to
any UC campus, relative to 1994 and non-URM students. Models are either unrestricted, restricted to SAT-takers with
scores above 1150, or restricted to SAT-takers who report A or A+ GPAs, following the first three columns of Table
4 of Card and Krueger (2005). Test-taking and applicant records merged by name, birthdate, and high school. The
final column augments reported ethnicity by predicting the ethnicities of non-reporters using name and high school;
see Appendix A.4 for details. Standard errors (in parentheses) are robust. 1 “CK Controls” include indicators by year,
ethnicity, SAT score category (< 1150, 1150 − 1300, and > 1300), father’s and mother’s education, reported high
school GPA (A or A+), and 8 class rank indicators (including missing). Source: College Board and UC Corporate
Student System.

A.7 Course Performance and Persistence at Berkeley after
Prop 209

Section 2.7 shows that the STEM performance and persistence of URM students across five UC
campuses does not improve following Prop 209, despite those students’ enrollment at
less-selective campuses. Following previous literature, I also test whether the persistence and
performance of URM students at UC Berkeley – the campus where Prop 209 most impacted
URM students’ likelihood of admission – improved after 1998, when Prop 209 caused a decline
in the URM share of the student body by more than half. I restrict the sample to 1996-1999
Berkeley students and estimate Equation 2.3 with and without academic covariates (αhi and Xiy).
The last column of Table A.8 shows that before Prop 209, Berkeley’s URM students earned lower
average grades by 0.84 grade points and were 19 percentage points less likely to persist along
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Table A.6: Replication of Card/Krueger (2005), Table 4, for UC’s Most-Selective Campuses

Berkeley and UCLA

Send Apply Send Apply Send Apply Send Apply Apply

URM × 1995 0.002 -0.004 0.000 -0.013 0.011 -0.008 -0.006 -0.018 -0.019
(0.004) (0.003) (0.016) (0.015) (0.014) (0.013) (0.011) (0.012) (0.012)

URM × 1996 -0.005 -0.026 0.024 -0.006 0.015 -0.035 0.002 -0.021 -0.022
(0.004) (0.003) (0.015) (0.015) (0.014) (0.013) (0.011) (0.012) (0.011)

URM × 1997 -0.007 -0.030 0.012 -0.021 0.029 -0.007 -0.004 -0.035 -0.038
(0.004) (0.003) (0.015) (0.015) (0.013) (0.013) (0.011) (0.011) (0.011)

URM × 1998 -0.016 -0.032 -0.007 -0.047 0.011 -0.032 -0.007 -0.035 -0.037
(0.004) (0.003) (0.015) (0.015) (0.013) (0.013) (0.010) (0.011) (0.011)

URM × 1999 -0.018 -0.041 -0.005 -0.027 0.013 -0.032 -0.008 -0.075 -0.076
(0.004) (0.003) (0.015) (0.015) (0.013) (0.013) (0.011) (0.011) (0.011)

URM × 2000 -0.020 -0.033 0.016 -0.011 0.017 -0.037 -0.006 -0.028 -0.031
(0.004) (0.003) (0.015) (0.015) (0.013) (0.013) (0.010) (0.011) (0.011)

URM × 2001 -0.020 -0.027 0.021 -0.003 0.025 -0.001 0.014 -0.007 -0.007
(0.004) (0.003) (0.015) (0.015) (0.013) (0.012) (0.010) (0.011) (0.011)

CK Controls1 X X X X X X X X X
Pred. Eth. X

Full High SAT High GPA AI 5500-7000
R2 0.24 0.30 0.21 0.23 0.17 0.21 0.12 0.11 0.11
N 891,254 891,254 208,765 208,765 179,682 179,682 212,133 212,133 212,133

Note: This table shows that while the proportion of competitive URM applicants sending their SAT scores to Berkeley
and UCLA only slightly declined after Prop 209, there is a larger decline in actual URM applications to those schools,
suggesting that score-sending is a poor proxy in this context. Difference-in-difference OLS regression coefficient
estimates across all California 1994-2001 public-HS SAT-takers of URM students’ likelihood of either sending SAT
scores or applying to either UC Berkeley or UCLA, relative to 1994 and non-URM students. Models are either
unrestricted, restricted to SAT-takers with scores above 1150, restricted to SAT-takers who report A or A+ GPAs,
restricted to SAT-takers with academic indices between 5500 and 7000 (who faced the most-dramatic decline in
admissions likelihood at Berkeley and UCLA), following the last three columns of Table 4 of Card and Krueger
(2005). Test-taking and applicant records merged by name, birthdate, and high school. The final column augments
reported ethnicity by predicting the ethnicities of non-reporters using name and high school; see Appendix A.4 for
details. Standard errors (in parentheses) are robust. 1 “CK Controls” include indicators by year, ethnicity, SAT score
category (< 1150, 1150− 1300, and > 1300), father’s and mother’s education, reported high school GPA (A or A+),
and 8 class rank indicators (including missing). Source: College Board and UC Corporate Student System.

STEM course sequences. These gaps are broadly present across most introductory STEM
courses. If admissions mismatch is a primary cause of these large ethnicity gaps, then Prop 209
would be expected to sharply narrow them. In fact, Prop 209 does lead Berkeley’s (higher-testing)
URM students to earn slightly higher STEM grades (by 0.18 grade points), but if anything their
STEM persistence slightly declined.

Panel B of Table A.8 adds academic covariates and shows that, as was the case across the five
UC campuses, cross-high-school and AI differences wholly explain URM students’ low
persistence and performance before Prop 209; in the period when Berkeley was implementing
affirmative action, URM students earned similar grades and were (if anything) more likely to
persist in some of Berkeley’s STEM fields than their academically-comparable non-URM peers.
Unlike at those other campuses, however, ending affirmative action led to relative declines in
URM students’ persistence and (perhaps) performance across most STEM courses. Why would
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Table A.7: The Relationship between SAT Send Rates and Most-Selective UC Application

Coef. St. Err. p Coef. St. Err. p

Send 0.371 (0.003) 0.000 Send×SAT 0.189 (0.003) 0.000
URM 0.020 (0.002) 0.000 URM×SAT 0.007 (0.002) 0.000
Norm. SAT -0.001 (0.001) 0.371 Send×URM×SAT -0.035 (0.006) 0.000
Send×URM 0.023 (0.006) 0.000

Se
nd
×

U
R

M
× 1995 -0.005 (0.009) 0.572

In
di

ca
to

r

1995 -0.001 (0.001) 0.479 1996 -0.032 (0.009) 0.000
1996 0.002 (0.001) 0.155 1997 -0.041 (0.009) 0.000
1997 0.003 (0.001) 0.015 1998 -0.042 (0.009) 0.000
1998 0.002 (0.001) 0.027 1999 -0.058 (0.009) 0.000
1999 0.008 (0.001) 0.000 2000 -0.052 (0.009) 0.000
2000 0.007 (0.001) 0.000 2001 -0.045 (0.009) 0.000
2001 -0.003 (0.001) 0.011

Se
nd
×

SA
T
× 1995 0.001 (0.004) 0.886

Se
nd
×

1995 0.032 (0.005) 0.000 1996 0.009 (0.004) 0.021
1996 0.042 (0.004) 0.000 1997 0.016 (0.004) 0.000
1997 0.026 (0.004) 0.000 1998 0.012 (0.004) 0.001
1998 0.030 (0.004) 0.000 1999 -0.002 (0.004) 0.619
1999 0.042 (0.005) 0.000 2000 -0.001 (0.004) 0.773
2000 0.046 (0.005) 0.000 2001 0.003 (0.004) 0.482
2001 0.080 (0.005) 0.000

U
R

M
×

SA
T
× 1995 0.001 (0.003) 0.682

U
R

M
×

1995 0.001 (0.003) 0.875 1996 -0.001 (0.003) 0.615
1996 -0.004 (0.003) 0.253 1997 0.001 (0.003) 0.775
1997 -0.001 (0.003) 0.706 1998 -0.003 (0.003) 0.362
1998 0.000 (0.003) 0.942 1999 -0.006 (0.003) 0.032
1999 -0.007 (0.003) 0.026 2000 -0.002 (0.003) 0.484
2000 -0.001 (0.003) 0.849 2001 -0.000 (0.003) 0.965
2001 0.002 (0.003) 0.434

Se
nd
×

U
R

M
×

SA
T
× 1995 0.008 (0.008) 0.320

1996 0.015 (0.008) 0.061

SA
T
×

1995 -0.001 (0.001) 0.337 1997 0.004 (0.008) 0.572
1996 0.002 (0.001) 0.139 1998 0.000 (0.008) 0.959
1997 0.003 (0.002) 0.053 1999 0.021 (0.008) 0.007
1998 0.007 (0.002) 0.000 2000 0.021 (0.008) 0.007
1999 0.012 (0.002) 0.000 2001 0.029 (0.008) 0.000
2000 0.009 (0.002) 0.000
2001 -0.000 (0.001) 0.865

CK Controls1 X
R2 0.51
N 841,358

Note: This regression shows that score-sending to Berkeley and UCLA became a poor proxy for URM students’
applications to those schools in 1996, when URM score-senders across the SAT distribution became less likely to
apply to either, though after 1998 it became a particularly poor proxy for low-SAT students. Quadruple-difference
OLS regression of an indicator of applying to either UC Berkeley or UCLA on interactions between score-sending
to one of those schools, URM status, normalized SAT score, and year (holding out 1994), restricting the sample to
1994-2001 SAT-takers from California public high schools. All coefficients are from the same regression. Standard
errors are robust; p-values report statistical tests from the null hypothesis. 1 “CK Controls” include indicators by year,
ethnicity, SAT score category (< 1150, 1150 − 1300, and > 1300), father’s and mother’s education, reported high
school GPA (A or A+), and 8 class rank indicators (including missing). Source: College Board and UC Corporate
Student System.

URM Berkeley students’ relative STEM performance and persistence decline after Prop 209,
instead of remaining steady as it did across the UC system? Table A.9 shows that the effects of
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Prop 209 on URM persistence were tightly-estimated 0’s at the other four other observed UC
campuses. One hypothesis is that Berkeley’s post-209 ‘holistic review’ admissions policy
inefficiently targeted under-performing students as a result of its inability to provide direct
race-based admissions advantages (Chan and Eyster, 2003; Fryer, Loury and Yuret, 2008). Under
that hypothesis, the decline would likely be (partly) absorbed by family background covariates
like parental income, education, and occupation; however, adding those covariates does not
change the estimated coefficient. An alternative hypothesis is that SAT scores are relatively
negatively-biased measures of low-testing URM students’ academic preparation, such that
Berkeley’s selection away from those students causes a decline in URM enrollees’ relative
overperformance (Vars and Bowen, 1998; Niu and Tienda, 2010b). This hypothesis is supported
by the finding that the relative decline in URM performance is driven by URM students in the
bottom two terciles of SAT scores, with no observed declines among high- or low-GPA high-SAT
students (see Table A.9). However, the question remains open for future research.

A.8 Introductory STEM Courses at UC Campuses
Section 2.7 estimates changes in URM UC students’ persistence and performance in introductory
STEM courses after Prop 209. I identify those introductory courses – four courses in Chemistry
(two introductory, two organic), two in Biology, two in Physics, and three in Computer Science –
using contemporaneous course catalogs and the student transcript data.9 I chose these fields
because they are uniformly available across campuses, offer similarly-structured introductory
course sequences, and are not generally required for non-STEM majors (like Mathematics and
Statistics, in which many non-STEM fields often require partial course sequence completion).
Some schools had multiple versions of a given introductory course, all of which are included in
the analysis. Where schools on quarter systems required three courses in a sequence instead of
two, I define the sequence by its first and third courses. Here is the full list:

• Intro. Chem.: UCB CHEM 1A/B, UCD CHEM 2A/C, UCR CHEM 1A/B, UCSC CHEM
1B/C, UCSB CHEM 1A/B
• Organic Chem.: UCB CHEM 3A/B or 112A/B, UCD CHEM 8A/B or 118A/B, UCR CHEM

112A/B, UCSC CHEM 108A/B or 112A/B, UCSB CHEM 6A/B or 107A/B
• Biology: UCB BIO 1B/A, UCD BIO 1A/C, UCR BIO 5A/C, UCSC BIOL 10-12 or 20A/C,

UCSB MCDB/EECB/BIOL 1A/4A/5A and 1C/4C/5C/2
• Physics: UCB PHYSICS 8A/B, UCD PHYSICS 1A/B or 5A/C or 7A/C or 9A/C, PHYSICS

PHYS 2A/C, UCSC PHYS 5A/C or 6A/C or 7A/B, UCSB PHYS 6A/C
• Computer Science: UCB COMPSCI 61A/B/C, UCD ECOMPSCI 20-or-30/40/50, UCR

EEC 10/12/14, UCSC CMPS 12A/B/C-or-101, UCSB CMPSC 10/20/30

Berkeley allowed students to take BIO 1A before BIO 1B, but only 25% of students did so.
Berkeley also allowed many students to skip CHEM 1B; persistence to CHEM 1B is defined to
include students who complete CHEM 3A or 12A.

9Catalogs for UC Berkeley available from the Berkeley Library, and for other campuses from CollegeSource
Online.
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A.9 Value-Added Statistics
In order to characterize the change in institutional quality faced by URM UC applicants after
Prop 209, I estimate university and college value-added statistics for two student outcomes – six-
year degree attainment (as measured in the union of NSC and UC records) and average wages
12-16 years after UC application, when most applicants are in their early 30s – using the 1995-
1997 sample of UC California-resident freshman fall applicants who enroll at a postsecondary
institution. Applicants’ early-30s wages are averaged over years in which they have observed
EDD-covered wages, and the wages are CPI-adjusted to 2018 and winsorized at the top and bottom
one percent. The value-added statistics are estimated using a fixed effect specification:

Yiy = ζy + αUi
+Xi + εiy (A.1)

where Ui is the first institution where applicant i enrolled (in NSC) after applying to enroll in y,
within six years of y. Value-added coefficients αU are estimated using year fixed effects ζy and
three sets of Xi covariates, which are intended to absorb the sample selection bias that arises from
applicants’ non-random enrollment across postsecondary institutions. First, following Mountjoy
and Hickman (2020) (“MH”), I define Xi to include indicators for every combination of UC
campuses to which the applicant applied and UC campuses to which they were admitted.10

Second, I augment this approach by estimating a much higher-dimension version of this model
including indicators for every combination of postsecondary institutions to which the applicant
applies, proxying application by SAT sends (as in Card and Krueger (2005)) by matching the
applicant pool to College Board’s SAT database by name and birthdate (“MH+”). This approach
limits the sample size to public high school graduates matched in the available College Board data
and as a result of the high-dimensionality of applicants’ score-send set, with unique sets dropped
from the sample. Third, following Chetty et al. (2020a) (“CFSTY”), I define Xi to include (15)
ethnicity indicators and quintics in both SAT score and family income.11 I also estimate a version
of “CFSTY” value-added statistics for the interaction between institution indicators αUi

and
applicant ethnicity: white, Asian, Black, or Hispanic. For interpretative simplicity (and because
they already prove too conservative), I do not shrink the value-added coefficients or otherwise
account for noise in their estimation.

Value-added coefficients are not calculated for institutions with fewer than 50 in-sample
enrollees. Effective sample sizes differ across specification – for example, students who apply and
are admitted to a unique set of UC campuses are omitted from “MH” value-added estimation –
and wage VA measures omit the 26 percent of applicants with no observable wages 12-16 years
after UC application. The total samples for the “CFSTY” value-added measures after omissions
are 112,707 for six-year graduation and 82,807 for early-30s wages. More than half of in-sample
applicants (66,400) enroll at a UC campus, with the remainder enrolling at CSU campuses
(14,800), California community colleges (10,800), and private and out-of-state universities
(20,700, with 3,900 at USC and 1,500 at Stanford). The sample size statistics in the tables below

10This strategy was first proposed by Dale and Krueger (2002), and is implemented by Mountjoy and Hickman
(2020) using applications and admissions to schools in the University of Texas system.

11Chetty et al. (2020a) measure incomes in age-specific rank instead of dollars. I include a dummy for applicants
without observed family income – winsorizing family income at the top and bottom 1 percent – but omit the few
applicants without observed SAT scores.
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show the number of students who enroll at each school and have observable early-30s wages.
In order to evaluate the quality of these estimated value-added statistics, I also estimate a

version of Equation A.1 replacing the outcome with applicants’ high school GPAs (on a weighted
5 point scale). GPAs are not included as a covariate in any value-added specification, and thus
provide a useful placebo to test whether the covariate sets are fully absorbing the sample selection
bias that arises from both universities’ admissions decisions and applicants’ subsequent
enrollment choice. Effective value-added statistics should likely largely absorb cross-institution
differences in applicants’ high school GPAs.

Tables A.10, A.11, and A.12 present “MH” and “CFSTY” value-added coefficients for the
full set of available institutions, omitting coefficients with insufficient sample sizes. “CFSTY”
coefficients are presented overall and for Hispanic applicants (as well as Black applicants at UC
and CSU campuses, where their sample size is sufficiently high). For UC and CSU campuses, I
also present an additional series of statistics: “Raw” estimates of αUi

from a version of Equation
A.1 with null Xi and estimates of high school GPA “value-added”. All value-added coefficients
are estimated relative to CSU Long Beach (LB), a high-enrollment teaching-oriented California
public university.

Panel A of Table A.10 shows that the students who enroll at UC campuses are 20-40 percentage
points more likely to earn a college degree within 6 years than those who enroll at LB. Some of
this gap – around 10-15 percentage points in most cases – is absorbed by both sets of covariates,
with the “MH” covariates tending to absorb more of the gap. Similarly, the students who enroll at
the most-selective UC campuses have higher average early-30s wages than LB enrollees by 25 to
30 thousand dollars, though about half of the gap is absorbed by covariates. UC campuses’ wage
VA statistics are uniformly lower for Hispanic students, especially at the more-selective campuses,
but highly varying for Black students, whose wage VA is above-average at half of UC campuses.

The final columns of Table A.10 show that there is substantial high school GPA variation
across UC campuses, with UC Berkeley enrollees having higher average GPAs than UC Santa
Cruz enrollees by almost a half of a letter grade. The “MH covariates” fully absorb this variation,
while the “CFSTY” covariates absorb only absorb about half of the variation on average, with
poorer performance at the more-selective UC campuses. This suggests that “CFSTY” value-added
statistics likely still incorporate a degree of sample selection bias, with the coefficients strongly
suggesting that the bias is positively correlated with university selectivity. As discussed in the text,
this likely implies that the baseline difference-in-difference in URM UC applicants’ “CFSTY”
institutional value-added measures are somewhat upwardly-biased relative to the actual average
difference in average treatment effects across those institutions.

The highest wage VA coefficients among public universities were estimated for the California
Polytechnic Institute (Cal Poly), a teaching-oriented university in the CSU system. Panel B of
Table A.10 shows that most CSU campuses had degree and wage VA estimates similar to CSU
Long Beach, lower than most UC campuses, but that three CSU campuses – Cal Poly, CSU
Sacramento, and San José State – appear comparable to UC. Those three also have notably-high
ethnicity-specific VA coefficients for Hispanic students. Sample sizes are generally too small to
estimate ethnicity-specific VA coefficients for Black students outside of the UC system. Even
though the “MH” application and admission partition does not include outcomes at the CSU
campuses, the “MH” procedure nevertheless largely eliminates cross-campus average differences
in enrollees’ high school GPAs, while the “CFSTY” estimates continue to identify some
cross-campus GPA variation.
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Table A.8: Difference-in-Difference Estimates of URM Berkeley Students’ Post-1998 STEM
Outcomes

Chemistry Biology Physics Comp. Science

1 2 3 4 1 2 1 2 1 2 3 Combined

Panel A: Unconditional Difference-in-Difference

Grade in Course (if earned grade)

URM -0.75 -0.96 -0.98 -0.64 -0.93 -0.73 -0.86 -0.63 -0.64 -0.57 -0.00 -0.84
(0.05) (0.08) (0.09) (0.10) (0.09) (0.11) (0.09) (0.17) (0.19) (0.27) (0.16) (0.08)

URM × 0.18 0.34 0.26 0.21 0.31 0.09 0.01 -0.02 -0.12 0.03 -0.76 0.18
Prop 209 (0.08) (0.14) (0.15) (0.17) (0.14) (0.21) (0.15) (0.27) (0.31) (0.41) (0.45) (0.08)

Ȳ 2.85 2.64 2.53 2.74 2.71 2.63 2.69 2.90 2.90 3.05 3.19 2.76
Obs. 4,837 3,339 3,270 2,348 2,392 2,263 2,504 1,307 1,757 1,238 1,139 26,394

Indicator for Persistence to Next Course (%)

URM -11.6 -11.4 -23.4 -30.4 -27.1 -25.9 -13.7 -18.6
(2.6) (2.6) (3.3) (3.9) (3.8) (7.4) (9.2) (2.8)

URM × -6.1 -5.0 0.1 -5.2 9.6 6.1 1.3 -3.1
Prop 209 (4.2) (4.8) (5.8) (6.5) (6.4) (12.2) (15.9) (2.6)

Ȳ 60.2 87.8 68.5 70.2 48.0 67.9 81.2 68.0
Obs. 4,949 3,393 3,321 2,418 2,542 1,777 1,256 19,656

Panel B: Conditional on Academic Preparation

Grade in Course (if earned grade)

URM 0.15 0.01 0.04 0.14 -0.00 0.23 0.04 -0.05 -0.12 -0.05 0.09 0.05
(0.05) (0.10) (0.10) (0.13) (0.09) (0.12) (0.10) (0.20) (0.22) (0.28) (0.22) (0.05)

URM × -0.13 -0.09 -0.06 -0.04 -0.02 -0.09 -0.14 -0.08 -0.14 -0.19 0.46 -0.04
Prop 209 (0.07) (0.15) (0.16) (0.21) (0.13) (0.21) (0.15) (0.35) (0.32) (0.61) (0.52) (0.04)

Acad. Prep. X X X X X X X X X X X X

Ȳ 2.85 2.64 2.53 2.74 2.71 2.63 2.69 2.90 2.90 3.05 3.19 2.76
Obs. 4,837 3,339 3,270 2,348 2,392 2,263 2,504 1,307 1,757 1,238 1,139 26,394

Indicator for Persistence to Next Course (%)

URM 5.8 -4.4 0.1 -0.1 2.2 -8.0 0.4 3.1
(3.2) (2.9) (4.4) (5.0) (5.3) (10.3) (12.0) (2.2)

URM × -9.9 -9.4 -12.9 -16.5 1.7 -4.3 -15.3 -10.1
Prop 209 (4.6) (5.4) (6.6) (7.9) (8.0) (15.3) (20.0) (2.2)

Acad. Prep. X X X X X X X X

Ȳ 60.2 87.8 68.5 70.2 48.0 67.9 81.2 68.0
Obs. 4,949 3,393 3,321 2,418 2,542 1,777 1,256 19,656

Note: This table shows course-specific and stacked regression coefficients showing evidence of deteriorated
unconditional URM course persistence in Chemistry and Biology courses at Berkeley after Prop 209, and widespread
deterioration in performance and persistence relative to academically-similar non-URM students. Difference-in-
difference OLS regression coefficient estimates across 1996-1999 UC Berkeley CA-resident freshman enrollees’
introductory STEM courses, differencing across URM status and post-1998 using Equation 2.3. The final column
stacks across courses, weights equally across students, and clusters standard errors by student and course; clustered
standard errors may be downward-biased as a result of few clusters (15). Persistence indicates completing the
subsequent course in the introductory STEM course sequence; course grade is the grade points received in completed
courses. Academic covariates include high school fixed effects and the components of UC’s Academic Index (see
footnote 47). Standard errors (in parentheses) are robust. The specific courses comprising each sequence can be seen
in Appendix A.8; courses taken after the first 2.5 years of matriculation are omitted. Source: UC Corporate Student
System and UC-CHP Database (Bleemer, 2018b). 172



Table A.9: Additional Specifications of Difference-in-Difference Models of Science Persistence

Other Campuses Restricted Samples, UC Berkeley
Santa Santa Berkeley High SAT Scores Low SAT Scores

Barbara Davis Cruz Riverside Add’l Cov. High GPA Low GPA High GPA Low GPA

URM 1.4 1.0 -3.6 0.6 6.1 -5.3 -4.9 7.3 12.4
(4.4) (2.7) (1.4) (2.2) (2.0) (4.2) (4.3) (7.8) (2.9)

URM × -0.3 -0.3 2.9 -1.0 -10.0 -5.4 12.6 -9.4 -9.0
Prop 209 (4.6) (1.8) (2.0) (3.7) (2.7) (5.5) (5.4) (10.1) (6.1)

Acad. Prep. X X X X X X X X X
Parental Cov. X

Ȳ 50.1 56.8 60.5 55.7 68.0 76.0 65.0 62.2 49.7
# of Obs. 6,857 29,470 15,149 14,072 19,656 9,808 5,441 1,647 2,712

Note: This table helps to arbitrate between competing explanations for the relative decline in URM Berkeley students’
STEM persistence after Prop 209. The table provides evidence against the hypothesis that holistic review negatively-
selected URM students, and evidence favoring the hypothesis that the enrollment decline among lower-SAT URM
students caused selection away from students whose academic capabilities are underestimated by standardized tests.
Difference-in-difference OLS regression coefficient estimates across 1995-2000 UC Berkeley or other UC campus
enrollees’ introductory STEM courses (excluding out-of-state, transfer, and engineering students), differencing across
URM status and post-1998 using Equation 2.3. The outcomes indicates whether the student completes the following
course in the specified course sequence; see Appendix A.8. Academic covariates include high school fixed effects
and the components of UC’s Academic Index (see footnote 47). Parental covariates include parental income (with an
indicator for missing income), (289) parental occupation fixed effects, and (7) max parental education fixed effects.
The last four columns partition students by whether their high school GPAs and SAT scores are in the top tercile
of 1996-1999 URM Berkeley students’ grades and scores. Standard errors (in parentheses) are robust. Source: UC
Corporate Student System and UC-CHP Database (Bleemer, 2018b)
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Table A.10: 1995-1997 Value-Added Estimates for Public California Universities

6-Yr. Grad. Wages in Early 30s High School GPA

Raw MH CFSTY Raw MH CFSTY CFSTY Raw MH CFSTY Sample
Inst. All All All All All All Black Hisp. All All All Size

Panel A: University of California System

Berkeley 34.5 19.8 24.0 30,100 12,900 16,800 3,900 4,400 0.66 0.04 0.37 9,078
Davis 31.7 18.7 22.2 20,800 10,100 12,400 18,100 9,500 0.45 0.02 0.28 5,927
Irvine 29.1 18.0 20.6 14,900 7,200 7,000 16,400 1,300 0.37 0.01 0.21 5,730
UCLA 35.7 20.1 25.8 24,900 8,900 15,000 5,200 4,200 0.61 0.01 0.39 8,271
Riverside 33.2 25.1 28.1 9,000 6,400 4,700 11,700 1,000 0.21 0.01 0.12 1,204
San Diego 36.3 20.4 25.4 21,800 8,400 11,100 15,200 4,800 0.62 0.03 0.38 5,648
Santa Barbara 29.1 19.2 19.6 12,800 7,600 6,900 1,300 -1,400 0.24 -0.00 0.11 8,104
Santa Cruz 21.7 14.6 12.9 -2,600 -1,900 -9,000 -1,100 -10,500 0.19 -0.02 0.04 3,976

Panel B: California State University System

Cal Poly. 21.8 12.8 12.3 25,600 19,100 19,500 21,800 10,600 0.34 0.06 0.20 2,626
Cal Poly. Pom. 0.5 0.3 -2.8 7,100 6,500 3,800 -1,200 0.02 0.00 -0.03 1,031
Chico 21.3 17.8 12.9 7,800 7,200 2,900 200 0.01 0.03 -0.04 372
Dom. Hills -8.1 -8.6 0.2 -5,400 -6,400 3,800 -1,400 -1,300 -0.10 -0.15 0.03 137
East Bay 5.6 2.9 4.8 5,700 1,100 5,200 -7,600 0.07 -0.06 0.07 216
Fresno 9.5 4.8 9.3 6,700 2,600 5,000 2,500 0.19 0.03 0.22 311
Fullerton 4.2 5.2 3.7 1,400 1,800 900 2,800 -1,100 -0.05 -0.02 -0.06 835
Long Beach 0.0 0.0 0.0 0 0 0 0 0 0.00 0.00 0.00 1,286
Monteray Bay 10.1 10.8 8.6 -6,700 -2,800 -6,100 -0.10 -0.04 -0.09 60
Northridge -3.8 -4.1 -2.3 -900 -700 -700 -5,600 -3,400 -0.09 -0.05 -0.05 995
Sacramento 5.3 2.1 2.4 13,000 8,800 10,200 9,100 0.11 -0.00 0.06 453
San Bern. -0.8 -1.0 1.8 100 1,900 3,900 0 -0.01 0.00 0.03 270
San Marcos 2.4 0.4 -0.3 -3,800 -4,100 -6,400 -3,800 0.08 0.00 0.07 112
Stanislaus 8.1 2.9 2.9 7,800 3,500 5,900 0.20 0.01 0.13 69
Humboldt St. 2.3 -1.2 -5.0 -11,300 -10,900 -15,300 0.10 0.02 -0.02 204
San Diego St. 3.4 2.2 1.4 400 -300 500 1,000 -3,800 -0.02 -0.01 -0.04 1,677
San Fran. St. -0.1 -0.3 -3.9 3,000 1,300 300 -4,100 -2,200 -0.03 -0.05 -0.07 918
San Jose St. -0.5 -1.0 -3.1 16,800 14,700 13,800 -6,300 14,700 -0.03 -0.04 -0.05 728
Sonoma St. 11.4 7.8 0.4 -5,100 -7,400 -8,600 0.06 -0.01 -0.03 88

Note: This table shows value-added estimates for the University of California and California State University public
university systems. Value-added estimates from Equation A.1 using 1995-1997 UC CA-resident freshman fall
applications. See text for outcome definitions and covariate definitions “MH” (following Mountjoy and Hickman
(2020)) and “CFSTY” (following Chetty et al. (2020a)). “Raw” coefficients estimated with nullXi. Ethnicity-specific
coefficients estimated by interacting Ui with five ethnicity buckets: white, Black, Hispanic, Asian, and other. Sample
size for “CFSTY” wage value-added coefficients. Estimates are not shrunk or otherwise adjusted for noise. Source:
UC Corporate Student System, National Student Clearinghouse, and the CA Employment Development Department.
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Table A.11: 1995-1997 Value-Added Estimates for California Community Colleges

6-Yr. Grad. Wages in Early 30s 6-Yr. Grad. Wages in Early 30s

MH CFSTY MH CFSTY Samp. MH CFSTY MH CFSTY Samp.
Inst. All All All All Hisp. Size Inst. All All All All Hisp. Size

Allan H. -17.6 -13.5 -6,100 -3,300 61 LA Valley -20.0 -17.0 -300 -1,400 51
Am. River -17.1 -16.9 -7,300 -5,000 85 MiraCosta -2.7 -1.8 5,100 500 86
Cabrillo -25.6 -29.0 7,700 9,200 63 Moorpark -5.7 -8.3 6,300 4,800 168
Canada 5.9 0.0 Mt. SA -14.5 -13.9 -2,000 -3,900 -7,500 451
Cerritos -21.1 -15.6 -4,200 -2,300 -10,100 185 Mt. SJ -15.6 -13.4 1,600 2,600 69
Chabot -1.8 -1.1 7,900 8,800 2,600 174 Ohlone -9.0 -12.3 16,600 13,400 94
Chaffey -20.3 -17.3 -12,100 -9,000 -4,800 81 Or. Coast -31.2 -34.1 -12,200 -16,900 65
SF 2.8 -0.5 6,900 4,300 -9,200 405 Palomar -11.1 -13.9 -4,100 -7,700 105
San Mateo 1.7 -2.6 17,300 15,200 259 Pasadena -14.6 -15.0 -3,100 -6,100 -13,200 369
C. of Des. -18.5 -9.4 -1,100 6,400 6,400 67 Riverside -11.6 -5.1 1,500 3,100 -800 583
Cuesta -14.4 -18.2 400 -1,400 129 Sac. -15.4 -10.0 -200 2,800 174
Cypress -14.5 -14.5 -2,700 -7,200 112 Saddleback -7.0 -11.6 5,500 2,600 213
De Anza -0.6 -2.4 15,000 12,600 13,700 651 SB Valley -2.8 6.7 2,300 6,000 700 77
Diab. Vall. 0.5 -3.3 9,300 8,700 1,400 478 SD -26.0 -26.3 -18,400 -17,100 56
East LA -32.5 -23.3 -9,700 -6,300 -12,500 50 SD Mesa -13.0 -12.4 -1,100 -2,400 -8,000 295
El Camino -18.1 -16.4 -6,000 -5,400 -7,700 308 SD Mir. -11.2 -10.8 3,000 1,700 75
Foothill -3.6 -5.1 10,000 9,500 258 SJ Delta -20.3 -22.0 -3,500
Fresno -23.4 -23.3 -13,500 -14,800 87 Santa Ana -18.8 -17.9 -5,200 -3,100 -7,700 156
Fullerson -12.0 -11.7 -5,800 -7,800 -11,200 154 S. Barb. -28.9 -33.9 -8,100 -10,700 72
Hartnell -14.4 -7.5 4,400 5,700 6,600 56 S. Monica -12.7 -12.9 -1,000 600 -9,200 671
Irv. Vall. -11.6 -17.3 1,200 -1,900 213 S. Rosa -6.5 -8.9 -5,000 -4,200 91
Laney -4.2 -3.8 4,500 4,100 86 Sierra -14.8 -15.7 -2,900 -2,600 108
Las Positas -10.8 -14.3 6,600 7,800 55 Skyline 4.0 2.0 17,900 18,000 141
L. Beach -20.4 -18.9 -2,900 -1,900 -7,600 184 Solano -4.4 0.2 28,100 31,400 52
LA Pierce -15.2 -17.1 -4,600 -8,400 75 Ventura -15.0 -9.6 -3,500 -2,500 -2,100 101

Note: This table shows value-added estimates for estimable California Community Colleges. Value-added estimates
from Equation A.1 using 1995-1997 UC CA-resident freshman fall applications, excluding colleges with fewer than
50 in-sample enrollees (or 30 enrollees for ethnicity-specific estimates). See text for outcome definitions and covariate
definitions “MH” (following Mountjoy and Hickman (2020)) and “CFSTY” (following Chetty et al. (2020a)).
Ethnicity-specific coefficients estimated by interacting Ui with five ethnicity buckets: white, Black, Hispanic, Asian,
and other. Sample size for “CFSTY” wage value-added coefficients. Estimates are not shrunk or otherwise adjusted for
noise. Source: UC Corporate Student System, National Student Clearinghouse, and the CA Employment Development
Department.
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Table A.12: 1995-1997 Value-Added Estimates for Private and Out-of-State Universities

6-Yr. Grad. Wages in Early 30s 6-Yr. Grad. Wages in Early 30s

MH CFSTY MH CFSTY Samp. MH CFSTY MH CFSTY Samp.
Inst. All All All All Hisp. Size Inst. All All All All Hisp. Size

American 32.4 27.5 27,500 22,500 52 Pitzer 30.6 31.3 -800 -2,100 -3,400 113
Arizona 6.7 -0.2 7,900 3,600 101 P. L. Naz. 20.9 16.7 -6,900 -9,300 87
AZ State 22.3 21.0 Pomona 28.9 32.9 13,400 14,200 6,200 299
Asuza Pac. 25.6 25.8 -2,300 -600 84 Port. State 1.2 -0.6
Biola 24.2 23.3 -14,500 -15,300 101 Princeton 32.3 35.9 36,700 35,800 166
Boston C. -20.8 -20.0 12,500 13,100 127 Rice 10.3 12.6
Boston U. 23.2 20.9 3,200 300 245 St. Mary’s 26.4 25.3 11,700 12,700 4,300 333
Brandeis 26.8 28.3 8,500 7,800 59 Santa Clara 32.2 31.7 31,000 31,400 27,700 545
BYU -10.3 -11.2 400 2,200 159 Scripps 28.4 28.3 3,700 -2,300 92
Bryn Mawr 27.8 30.4 S. Meth. 26.3 23.3
CA Luth. 24.3 23.0 12,400 7,400 87 Spelman 34.2 46.0 -7,300† 32
Carleton 28.4 29.1 Stanford 28.2 32.0 37,100 36,800 23,300 1,116
CMU 19.7 18.8 Swarthmore 33.1 35.7
Clar. Mc. 28.3 30.4 27,700 25,900 11,800 239 Syracuse 30.5 30.0 19,300 20,600 113
CO State 24.8 21.3 6,700 4,400 50 Tufts 28.9 29.8 4,900 500 80
Columbia 23.9 27.6 12,000 12,700 189 Tulane 28.9 27.6 20,000 17,500 80
Cornell 26.3 28.8 18,300 19,200 320 Colorado 24.9 20.2 17,700 14,900 472
Creighton 26.7 24.0 26,800 22,400 59 Michigan 30.2 30.9 29,500 31,800 99
Dartmouth -57.8 -55.5 26,500 24,600 119 Nevada 10.8 8.5
Duke -21.2 -18.7 40,300 42,900 167 Oregon 26.2 18.6 2,100 -6,400 253
Georgetown 29.3 33.3 37,400 40,300 18,100 169 U. Penn. 28.0 30.7 38,200 39,700 271
Gonzaga 26.5 25.7 Puget Sound 24.6 21.9 700 -5,600 90
Harvard -37.2 -32.9 20,100 19,000 89 Redlands 28.6 29.2 -700 -2,700 1,900 157
H. Mudd 24.5 26.7 27,500 27,200 109 USF 27.2 24.3 12,100 12,600 9,500 460
J. Hopkins 22.1 25.3 25,500 26,100 121 USC 20.8 21.7 17,400 18,100 5,900 3,192
La Sierra 4.9 8.0 -100 -4,600 75 U. Pacific 24.2 25.5 26,100 26,300 7,000 421
Lew. & Clk. 30.7 25.6 -2,400 -12,100 62 Virginia 32.6 33.2
Loyola M. 22.0 21.6 11,700 12,700 9,800 853 Washington 24.9 25.7
Mills 29.3 27.6 -9,200 -10,400 72 Wisconsin 24.0 23.3 5,800 3,500 106
Mt. Holyoke -48.8 -48.8 Vanderbilt 28.4 29.7 16,800 19,200 101
Mt. St. M. 23.8 28.2 4,300 6,800 1,900 129 Wash. In SL 21.8 24.8
NYU 23.2 21.8 -7,700 -10,500 242 Wellesley 30.0 33.9 9,100 12,000 88
N. Arizona 24.7 17.0 4,500 Wesleyan 34.7 34.2
Northwest. 24.4 27.5 20,100 20,900 210 Westmont -42.6 -44.4 -8,300 -12,000 123
Oberlin 0.9 -0.1 Whitman 32.7 33.1
Occidental 33.6 34.5 1,800 3,900 -4,100 194 Whittier 26.2 29.3 6,900 9,600 5,600 147
Penn. State 21.8 17.5 Williams 33.0 35.1
Pepperdine 29.3 27.3 4,700 6,000 3,200 316 Yale 29.0 33.8 39,100 39,300 13,400 260

Note: This table shows value-added estimates for all estimable private and non-California colleges and universities.
Value-added estimates from Equation A.1 using 1995-1997 UC CA-resident freshman fall applications, excluding
colleges with fewer than 50 in-sample enrollees (or 30 enrollees for ethnicity-specific estimates). See text for outcome
definitions and covariate definitions “MH” (following Mountjoy and Hickman (2020)) and “CFSTY” (following
Chetty et al. (2020a)). Ethnicity-specific coefficients estimated by interacting Ui with five ethnicity buckets: white,
Black, Hispanic, Asian, and other. Sample size for “CFSTY” wage value-added coefficients. Estimates are not shrunk
or otherwise adjusted for noise. † Spelman is a historically Black college; this estimate is for Black students. Source:
UC Corporate Student System, National Student Clearinghouse, and the CA Employment Development Department.
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Table A.13: Comparison Between Various Value-Added Estimates and Student Outcomes for Matched Samples

“MH” VA1 “MH+” VA1 “CFSTY” VA1 Eth.-Specific “CFSTY” VA1

Six-Year Deg. Early-30s Wage Six-Year Deg. Early-30s Wage Six-Year Deg. Early-30s Wage Six-Year Deg. Early-30s Wage
VA Obs. VA Obs. VA Obs. VA Obs. VA Obs. VA Obs. VA Obs. VA Obs.

Panel A: Difference-in-Difference Coefficients

URM 2.0 -2.8 1,860 -786 3.0 -3.2 2,378 -1,010 2.8 -2.9 2,818 -805 1.7 -2.2 1,359 -808
(0.1) (0.4) (83) (573) (0.1) (0.5) (84) (633) (0.1) (0.4) (94) (574) (0.1) (0.4) (91) (601)

URM × -0.6 -0.5 -447 -2,239 -1.2 0.0 -1,032 -2,039 -1.0 -0.5 -952 -2,243 0.1 -0.1 57 -2,115
Prop 209 (0.2) (0.5) (102) (691) (0.2) (0.6) (104) (765) (0.2) (0.5) (115) (692) (0.2) (0.5) (110) (723)

Obs. 177,365 177,365 136,237 136,237 145,690 145,690 112,205 112,205 176,092 176,092 136,032 136,032 169,534 169,534 129,477 129,477

Panel B: Estimates of URM × Prop 209 (β‘98−99) by AI Quartile

Bottom -1.6 -3.6 -591 -2,152 -2.3 -3.7 -883 -1,169 -1.9 -3.6 -734 -2,152 -1.1 -3.1 97 -1,485
Quartile (0.4) (1.6) (235) (1,579) (0.5) (1.8) (262) (1,797) (0.5) (1.6) (270) (1,582) (0.5) (1.7) (288) (1,685)

Second -0.5 -0.7 -448 -1,384 -1.4 -0.1 -1,493 -316 -1.3 -0.6 -1,269 -1,382 0.2 0.0 454 -1,512
Quartile (0.4) (1.3) (219) (1,450) (0.4) (1.4) (232) (1,585) (0.4) (1.3) (264) (1,451) (0.4) (1.3) (253) (1,500)

Third 0.1 1.8 -468 -2,160 -0.7 2.1 -1,291 -2,648 -0.4 1.9 -1,372 -2,117 0.9 1.9 85 -1,899
Quartile (0.3) (1.1) (202) (1,451) (0.3) (1.2) (206) (1,598) (0.3) (1.1) (242) (1,452) (0.3) (1.1) (219) (1,515)

Top -0.8 -0.1 -387 -2,637 -0.5 0.4 -726 -2,624 -1.0 -0.3 -708 -2,641 0.1 -0.3 284 -2,517
Quartile (0.3) (0.9) (248) (1,648) (0.2) (1.0) (231) (1,788) (0.3) (0.9) (257) (1,648) (0.3) (0.9) (223) (1,707)

Note: This figure tests the performance of several institution and institution-gender-ethnicity value-added estimates against actual changes in student outcomes after Prop 209, with some measures
performing relatively-well in measuring degree attainment but all measures generally underestimating (and poorly explaining the patterns in) declines in early-30s wages. Estimates of β0 and β‘98−99

from Equation 2.1, a difference-in-difference model of 1996-1999 URM UC freshman California-resident applicants’ outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative
action program. Outcomes defined as estimated value-added of the first two- or four-year institution at which the applicant enrolled within six years of UC application as measured in the NSC, or actual
student outcomes matching the value-added measures: six-year Bachelor’s degree attainment or average conditional California wages between 12 and 16 years after UC application. Outcome samples
are restricted to observations with observed VA (implying that the student first enrolled at an institution with sufficient sample size to estimate VA), and wage VA samples restricted to observations with
observed early-30s wages (omitting observations with no California employment in that period, 12-16 years after UC application). Models include high school fixed effects and the components of UC’s
Academic Index (see footnote 47). Robust standard errors in parentheses. 1Value-added measures are estimated by regressing six-year BA attainment (in NSC) or 15-year conditional wages (in EDD)
on college indicators, year FEs, and either indicators for each applicant’s set of UC campus applications and admissions (following Mountjoy and Hickman (2020), “MH”), indicators for each applicant’s
complete set of institutions to which they sent their SAT scores (using matched College Board testing data; an extension of Mountjoy and Hickman (2020), “MH+”) or ethnicity indicators and quintics in
SAT score and family income (following Chetty et al. (2020a), “CFSTY”) using the 1995-1997 UC applicant pool. Ethnicity-specific coefficients estimated by interacting Ui with five ethnicity buckets:
white, Black, Hispanic, Asian, and other. Source: UC Corporate Student System, National Student Clearinghouse, and the California Employment Development Department.
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Table A.11 shows that California’s community colleges have estimated degree VA below most
of the institutions in the UC or CSU systems, but there is substantial variation in community
colleges’ wage VA estimates, with many colleges having wage VA estimates comparable to CSU
or UC campuses. The high-wage-VA community colleges are clustered in the high-wage and
high-cost-of-living “South Bay” of northern California, like Ohlone College in Fremont, Skyline
College in San Bruno, De Anza in Cupertino, and Foothill College in Los Altos. Though the
table does not show it, the estimates show that there is relatively little variation across community
colleges in their UC-applicant enrollees’ average high school GPAs: the standard deviation of raw
average high school GPA coefficients is 0.09 across community colleges, whereas the standard
deviation across “MH” estimates of high school GPA is 0.04 (and 0.09 for “CFSTY”).

Table A.12 shows that the private and out-of-state universities where UC applicants tend to
enroll have degree VA estimates as larger or larger than the UC system, and many have wage VA
estimates higher than UC, though there is a great deal of variation.12 With many of these
institutions among the nation’s more-selective, Wage VA estimates are highest at many of the
nation’s more-selective universities, including Ivy League institutions like Princeton, the
University of Pennsylvania, and Yale as well as Duke and Stanford. Out-of-state flagship public
universities tend to have similar VA estimates to the UC system, while California’s less-selective
private institutions vary widely, from the high-VA Santa Clara University to lower-VA Mills
College (though even the lower-VA California institutions have high degree VA estimates relative
to less-selective public institutions). As in the case of the UC campuses, there is substantial
variation in average high school GPAs across these institutions (s.d. 0.25), but most is absorbed
by “MH” value-added estimates (s.d. 0.08; 0.15 using “CFSTY”).

Figure 2.3 shows that Prop 209 tended to shift URM UC students’ enrollment from the more-
selective UC campuses into the less-selective campuses, CSU campuses, and some private and out-
of-state institutions. Students also cascaded out of the moderately and less-selective UC campuses
into other institutions, yielding unchanged URM enrollment at all but the more-selective UCs. The
estimates presented in these tables specify the way in which these switches led students to enroll
at institutions with lower estimated value-added in terms of degree attainment and early-career
wages, as summarized in Table 2.2.

There has been minimal quasi-experimental validation of university value-added statistics. I
conclude by testing the degree to which value-added measures explain the observed changes in
URM applicant outcomes after Prop 209. Table A.13 presents VA and observed degree attainment
and early-30s wages for several VA specifications, aligning samples for missing data. It shows
that changes in URM applicants’ university enrollment’s estimated value-added statistics yield
relatively-accurate predictions of the decline in degree attainment by AI quartile, but
underestimates of the actual changes in observed early-30s wages. The “MH” value-added
statistics yield the most compressed distribution of value-added statistics across universities, as
would be expected given their near-complete absorption of cross-school variation in high school
GPAs, but this yields poorer performance in explaining outcome variation after Prop 209.
Allowing gender- and ethnicity-specific VA coefficients (using the “CFSTY” approach) yields
precise 0’s for the wage VA estimates across all AI quartiles, implying particularly poor
performance.

12A small number of institutions, like Duke University and Dartmouth College, may have low degree VA estimates
as a result of incomplete NSC degree reporting in the sample period.
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Figure A.10: Estimated Return to ‘96-97 UC Davis Enrollment for On-the-Margin Non-URM
Applicants

(a) UC Davis Admission (b) UC Davis Enrollment (c) “CFSTY” Inst. VA

(d) Earned Graduate Degree
(e) Avg. Annual Log Wages in Early
30s (f) # of > $150, 000 Years in Early 30s

Note: This figure shows that on-the-margin 1996-1997 non-URM applicants to UC Davis would have otherwise
enrolled at lower-value-added institutions but experienced similar educational and wage outcomes, though
interpretation is challenged by the increase in above-threshold students likelihood of applying to Davis. Regression
discontinuity plots and estimates around the 1996-1997 UC Davis guaranteed admission AI threshold among non-
URM applicants, estimated by local linear regression following Calonico, Cattaneo and Titiunik (2014). See the notes
to Tables 2.2, 2.3, and 2.4 for a description of the outcome variables; “CFSTY” institutional value-added measured
relative to CSU Long Beach. Reduced form coefficients from local linear regressions (conditional on year), with bias-
corrected robust standard errors in parentheses. Running variable defined asAI+(250×11997) to align thresholds over
years. Source: UC Corporate Student System, National Student Clearinghouse, and the CA Employment Development
Department.

A.10 Return to UC Davis Enrollment for On-the-Margin Non-
URM Applicants

Figures A.1 to A.8 show that only two UC campuses exhibited discontinuities in their applicants’
likelihood of admission before Prop 209 when ordered by AI: the campuses at Berkeley and
Davis. As a result, UC Davis’s admissions policies admit a regression discontinuity design that
could provide additional evidence, along with Section 2.6, on the return to UC admission for the
on-the-margin non-URM students who may gain access to the campus following Prop 209.

The challenge in interpreting the return to enrollment at UC Davis for on-the-margin non-
URM 1996-1997 applicants is that the discontinuities themselves – at exactly 6,000 in 1996 and
6,250 in 1997 – appear to have been known by some applicants. McCrary (2008) tests fail at
both thresholds (p=0.016 and p=0.025) as a result of a 13 percent increase in students’ likelihood
of applying to UC Davis at the campus’s AI admissions threshold. As in Section 2.6, I test for
selection on observables at the UC Davis AI admissions threshold by characterizing each applicant
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by their expected log wages on the basis of demographic and socioeconomic features and find
weak evidence of negative selection above the threshold, with lower predicted wages by 0.025 log
points (s.e. 0.020 log points) immediately above the threshold.

Despite these limitations to the research design, Figure A.10 shows how UC Davis’s
applicants above and below that school’s AI admissions threshold differ in terms of educational
and employment outcomes. Above-threshold students are 40 percentage points more likely to
attend Davis, and excluding a small group of applicants immediately above the threshold, take-up
appears to be close to half, with enrollment increases around 20 percentage points. Unlike in the
Berkeley context, UC Davis is a higher-value-added institution than on-the-margin applicants’
counterfactual enrollments, leading to an estimated $1,000 increase in wage value-added at the
threshold, about four times the average increase in value-added for non-URM enrollees at
California public universities after Prop 209 (see Figure A.12). But as in the case of UC Berkeley,
enrolling at UC Davis does not generate returns for on-the-margin non-URM students, who are no
more likely to earn a graduate degree or earn higher wages if they have access to UC Davis;
indeed, all three point estimates are negative (and statistically indistinguishable from 0).

The smoothness of the resulting wage trends suggests that these findings are not just limited
to the differentially-selected students close to the eligibility threshold, but also reflect broader
negligible treatment effects of access to UC Davis on non-URM student outcomes prior to Prop
209. This evidence further supports the main text’s claim that non-URM students on the margin
of admission to UC campuses prior to Prop 209 appear to derive small benefits from enrolling at
those campuses, particularly in comparison with the estimated costs faced by URM students who
lost access to selective universities following Prop 209.

A.11 Other Appendix Figures and Tables
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Figure A.11: Annual Explanatory Power of Academic Index and Ethnicity for UC Admission

(a) Berkeley (b) UCLA (c) San Diego

(d) Santa Barbara (e) Davis (f) Irvine

(g) Santa Cruz (h) Riverside

Note: This figure shows that a large share of UC campuses’ admissions, especially before 1998 but also after, can be
explained strictly by students’ Academic Index, with a large additional share explained by ethnicity before 1998. The
R2 coefficients of annual OLS regressions of admission on the leave-one-out likelihood of admission for students with
the same Academic Index (AI), SAT score, high school GPA (rounded to the nearest hundredth), or AI and ethnicity,
among ‘normal’ UC freshman fall applicants to each campus. ‘Normal’ applicants are freshman fall California-
resident applicants who (a) were UC-eligible, which means that they satisfactorily completing the required high school
coursework, and (b) who selected intended majors that did not have special admissions restrictions (e.g. engineering
at some campuses). Figure A.15 shows the differences between the first and second line for each campus. Source: UC
Corporate Student System.
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Figure A.12: Annual Changes in Undergraduate Enrollment at California Institutions

Panel A: Annual Change in Freshman Fall Undergraduate Enrollment

(a) Public California Universities (b) California Universities

Panel B: Annual Change in Undergraduate Enrollment “CFSTY” Value-Added

(c) Public California Universities (d) California Universities

Note: This figure shows that while Prop 209 may have slightly depressed the growth of California public universities in
1997 and 1998, it had no measurable net effect on either the growth of all California institutions or the relative number
of students enrolled at higher- or lower-value-added California institutions, with sharp declines in the value-added of
URM students’ enrollment institutions compensated for by increases among non-URM students in 1998. Year-over-
year changes in freshman fall undergraduate enrollment and the enrollment-weighted average value-added of public
and all California universities, overall and for URM and non-URM freshman students. Universities include all four-
year institutions in California. See Appendix A.9 for methodological details and the estimated “CFSTY” value-added
statistics; value-added measured relative to CSU Long Beach. Source: The Integrated Postsecondary Education Data
System, UC Corporate Student System, and the CA Employment Development Department.
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Figure A.13: Archival Example of UC Berkeley Pre-1998 Admissions Policy

Note: This figure presents an example of UC Berkeley’s pre-1998 admissions policy. The table shows that the
university guaranteed admission to all applicants above a designated Academic Index threshold, where that threshold
was set every year to admit 50 percent of all Berkeley admits. The university then set lower AI guarantee thresholds
for other groups of students, including disadvantaged ethnic groups, disabled students, and students with “low socio-
economic status”, though it is unclear how the latter were defined. The specific numbers presented at the top of the
page do not match the admissions data in any specific year, suggesting that this document (found with minimal context
in UC Berkeley’s Bancroft Library) was presented as an example rather than a specific year’s policy. Further archival
documentation suggests that most other campuses used highly-comparable admissions rules. Source: UC Berkeley
Bancroft Library: CU-558, Box 2, Page 8-942.
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Figure A.14: Annual Difference-in-Difference Estimates of Post-1998 URM Admissions by UC
Campus

Panel A: More-Selective UC Campuses

(a) Admission (b) Enrollment

Panel B: Selectivity UC Campuses

(c) Admission (d) Enrollment

Panel C: Less-Selective UC Campuses

(e) Admission (f) Enrollment

Note: This figure shows that URM UC applicants’ admissions likelihood sharply and persistently declined at every
UC campus in exactly 1998, but that some campuses also exhibited declines in 1996. OLS difference-in-difference
coefficient estimates of the change in URM applicants’ likelihood of admission or enrollment at each UC campus
relative to non-URM applicants’ respective likelihood, compared to the 1997 baseline. Campuses are ordered by their
mid-1990s admissions rate. Models include high school fixed effects and the components of UC’s Academic Index
(see footnote 47). Bars show 95-percent confidence intervals from robust standard errors. Admission is conditional
on applying to that campus; enrollment is conditional on applying to any UC campus. Source: UC Corporate Student
System.
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Figure A.15: Estimated Annual First-Order Contribution of Ethnicity to UC Campuses’
Admissions Decisions

Note: This figure shows that the share of variation in admissions at each UC campus that could be explained by
ethnicity (above that explained byAI) fell across all campuses in 1998, though it had begun to fall at some campuses by
1996. Each point measures the difference inR2 coefficients between two linear models of admission to each respective
UC campus among ‘normal’ UC applicants. The first model predicts admission based on the leave-one-out likelihood
of admission for students with the same academic index and ethnicity, which explains 40-70 percent of variation in
most campuses’ admissions decisions before 1996. The second model predicts admission based on the leave-one-out
likelihood of admission for all students with the same academic index. The models are visualized separately in Figure
A.11. The difference can be understood as a proxy for the annual magnitude of the first-order contribution of ethnicity
to UC admission by campus. ‘Normal’ applicants are freshman fall California-resident applicants who (a) were UC-
eligible, which means that they satisfactorily completing the required high school coursework, and (b) who selected
intended majors that did not have special admissions restrictions (e.g. engineering at some campuses). UC Riverside
admitted all such applicants. Source: UC Corporate Student System.
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Figure A.16: Average Family Income of Berkeley and UCLA Students by Ethnicity Before and
After Prop 209

(a) Distribution of Incomes (b) Change in Distributions After Prop 209

Note: This figure shows that the URM students who enrolled at UC Berkeley and UCLA under affirmative action had
lower average incomes than the non-URM students who crowded into those campuses following Prop 209, leading to
a net shift of students from the bottom three income quartiles (fixed in ‘96-97) to the top quartile after 1998. Shares of
1996-1999 UC Berkeley and UCLA students by income and ethnicity before and after Prop 209, differences of those
shares by income and ethnicity, and the summed net enrollment change by income. The y-axis is scaled per $10,000
for readability; e.g. there was a net decline in UC Berkeley and UCLA students with family incomes of ∼$30,000 by
about 0.5 percent of total enrollment after Prop 209. Dashed lines in Panel (b) show the 25th, 50th, and 75 percentiles
of in-sample ‘96-97 family incomes. Figures are smoothed by a uniform kernel with bandwidth $20,000. Family
incomes are not reported by 15 percent of the sample, increasing from 11 percent in ‘96-97 to 18 percent in ‘98-99;
I impute incomes for these students by OLS regression of log family income on high school indicators, Zip code
indicators, parental occupation indicators, max parental education indicators, standardized test scores, and gender in
the full ‘96-97 CA-resident freshman UC applicant pool with observed family incomes. Imputed incomes are available
for 95 percent of students with missing income; the regression’s adjusted R2 is 0.48, and the predicted values have
a correlation with observed in-sample family income of 0.59. The distribution of predicted incomes among non-
reporters is highly similar to the reported income distribution, with true (predicted) moments first quartile $29,500
($41,100), median $60,000 ($60,200), mean $74,200 ($68,000), and third quartile $100,000 ($90,000). Source: UC
Corporate Student System.
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Figure A.17: Changes in UC App. and Admission after Prop 209 by Eth. and AI Percentile

Panel A: Changes in UC App. Likelihood by AI and Ethnicity, Among UC Applicants

(a) UC Berkeley (b) UCLA (c) UC San Diego

(d) Selective UCs (e) Less-Selective UCs

Panel B: Changes in UC Campus Admission Likelihood by AI and Ethnicity, Among Applicants

(f) UC Berkeley (g) UCLA (h) UC San Diego

(i) Selective UCs (j) Less-Selective UCs

Note: This figure shows that changes in application patterns among URM UC applicants did not closely mirror changes
in those applicants’ UC admissions likelihood following Prop 209; for example, high-AI URM applicants were
(relatively) no less likely to apply to UCLA after Prop 209 despite sharp declines in admissions likelihood at that
campus. Difference in the percent of UC applicants who apply to or are admitted to each UC campus(es) between
1998-1999 and 1996-1997, by URM status and by percentile of academic index (AI) measured among all 1996-1999
URM UC applicants. Admit statistics are conditional on application to that campus. Statistics are smoothed with a
triangular kernel with bandwidth 15. Source: UC Corporate Student System.
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Figure A.18: Difference-in-Difference Estimates of Black and Hispanic UC Applicants’ Post-1998
Wage Outcomes

(a) CA Employment (b) Annual CA Wages (c) Annual Log CA Wages

(d) Wages > $75, 000 (e) Wages > $100, 000 (f) Wages > $150, 000

Note: This figure shows that Hispanic UC applicants faced persistent labor market deterioration following Prop
209, while estimates for Black UC applicants’ wage deterioration are noisy but generally appear smaller. Estimates
of β0 and β‘98−99 from an extension Equation 2.1 splitting the URM indicator into separate Black and Hispanic
indicators interacted with post-209. The model is an OLS difference-in-difference model of 1996-1999 URM and
Asian UC freshman California-resident applicants’ educational outcomes compared to other non-URM students’
outcomes after the 1998 end of UC’s affirmative action program. Outcomes defined as non-zero California wages (“CA
Employment”), California wages in dollars and log-dollars (omitting 0’s), and unconditional indicators for having
wages above specified wage thresholds ($75,00, $100,000, and $150,000) as measured in the California Employment
Development Department database, which includes employment covered by California unemployment insurance.
Coefficients in each year after UC application are estimated independently. Models include high school fixed effects
and the components of UC’s Academic Index (see footnote 47). Academic Index (AI) is defined in footnote 25;
models by AI quartile are estimated independently, with quartiles defined by the AI distribution of 96-97 URM UC
applicants. Annual wages CPI-adjusted to 2018 and winsorized at top and bottom 1 percent. Robust 95-percent
confidence intervals shown. Source: UC Corporate Student System and the California Employment Development
Department.
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Figure A.19: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Labor
Market Outcomes

Panel A: Covered California Employment

(a) Bottom Quartile (b) Second Quartile (c) Third Quartile (d) Top Quartile

Panel B: Annual California Log Wages

(e) Bottom Quartile (f) Second Quartile (g) Third Quartile (h) Top Quartile

Panel C: > $100, 000 Wage Threshold by AI Quartile

(i) Bottom Quartile (j) Second Quartile (k) Third Quartile (l) Top Quartile

Note: This figure shows that URM applicants’ California employment was largely unchanged among all four AI
quartiles, but that all experienced log wage declines and all but the bottom quartile became less likely to earn at
least $100,000 annual California wages, with larger estimated declines relative to the ‘94-95 baseline. Estimates
of β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ wage outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative action
program. Outcomes defined as non-zero California wages (“CA Employment”), average log wages (excluding zeroes),
and unconditional indicators for having wages above specified wage thresholds ($75,00, $100,000, and $150,000) as
measured in the California Employment Development Department database, which includes employment covered
by California unemployment insurance. Coefficients in each year after UC application are estimated independently.
Models include high school fixed effects and the components of UC’s Academic Index (see footnote 47). Academic
Index (AI) is defined in footnote 25; models by AI quartile are estimated independently, with quartiles defined by the
AI distribution of 96-97 URM UC applicants. Panel C replaces the 1996-97 pre-209 UC applicants with 1994-95 UC
applicants, showing coefficients from both sets of models. Annual wages CPI-adjusted to 2018 and winsorized at top
and bottom 1 percent. Robust 95-percent confidence intervals shown. Source: UC Corporate Student System and the
California Employment Development Department.
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Figure A.20: Difference-in-Difference Robustness to Non-Parallel Trends

(a) Avg. Annual Conditional Log Wages (b) Avg. Eth-Specific Wage Percentile

Note: This figure shows that while the difference-in-difference log wage estimates are sensitive to loosening the
parallel trends assumption, replacing wages with ethnicity-specific wage percentiles generates estimates relatively
insensitive to assumptions allowing bounded pre-trends of up to almost 0.15 percentiles per year. Estimates of
β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ wage outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative action
program, by varying assumptions over the maximal annual degree to which the parallel trends assumption may be
violated (following Rambachan and Roth, 2020). The blue bars show the baseline estimates; the black bars present
fixed length confidence intervals permitting ∆SD(M) (the x-axis) deviations from the parallel trends assumption.
Source: UC Corporate Student System and the California Employment Development Department.
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Figure A.21: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Labor
Outcomes

Panel A: Annual Differences in Eth-Specific Wage Percentile

(a) Wage Percentile

Panel B: Wage Threshold Estimates Using ‘96-97 and ‘94-95 Baselines

(b) Wages > $75, 000 (c) Wages > $100, 000 (d) Wages > $150, 000

Note: This figure shows that URM UC applicants faced a long-run decline in their average wage percentile relative
to same-ethnicity college-educated workers not impacted by Prop 209, and that URM UC applicants’ likelihood of
attaining various high-earning thresholds declined after Prop 209, and moreso relative to a ‘94-95 baseline. Estimates
of β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ wage outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative action
program. The outcome in Panel A is defined as the average annual ethnicity-specific wage percentile between 6 and
16 years after UC application, omitting zero-wage years; percentiles are defined relative to the empirical distribution
of wages earned in that year by same-ethnicity (URM, Asian, or White/Other) college-educated California ACS
respondents born between 1974 and 1978, few of whom were directly impacted in university enrollment by Prop 209.
Outcomes in Panel B defined as annual unconditional indicators for having wages above specified wage thresholds
($75,00, $100,000, and $150,000) as measured in the California Employment Development Department database,
which includes employment covered by California unemployment insurance. Coefficients in each model and year
after UC application are estimated independently. Models include high school fixed effects and the components of
UC’s Academic Index (see footnote 47). Academic Index (AI) is defined in footnote 25. The gray estimates replace
the 1996-97 baseline with with 1994-95 UC applicants. Annual wages CPI-adjusted to 2018 and winsorized at top
and bottom 1 percent. Robust 95-percent confidence intervals shown. Source: UC Corporate Student System, the
California Employment Development Department, and the American Community Survey (Ruggles et al., 2018).
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Figure A.22: Share of > $100, 000 Workers among Rolling Cohorts Before and After Prop 209’s
Impact

Panel A: Rolling Cohorts Age 30-34

(a) All Workers (b) College Enrollees

Panel B: Rolling Cohorts Age 33-37

(d) All Workers (e) College Enrollees

Note: This figure shows that early-career URM Californians ten to twenty years after Prop 209 were less likely to
achieve high wages than a variety of reasonable comparison groups (like non-URM Californians and URM non-
Californians), and that the gaps (across rolling cohorts) seem to originate and widen in the years when URM workers
of that age would have been first impacted by Prop 209 (hitting age 18 around 1998). The fraction of ACS respondents
earning at least $100,000 per year in wages by ethnicity, contemporaneous age range, and either California birth or
contemporaneous California residency status, normalized to 1 in 2007 or 2010 for each group. Grey lines denote the
years 2010-2014 (2013-2017) in which the age 30-34 (33-37) URM cohort would have largely switched from people
who graduated high school before the 1998 implementation of Prop 209 to those who graduated after implementation,
assuming graduation at age 18. Some public universities began phasing out affirmative action two years earlier (in
1996), justifying the 2007 baseline. Wages are in 2018 CPI-adjusted dollars. All statistics are two-year moving
averages. Source: 2001-2017 American Community Survey (Ruggles et al., 2018)
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Figure A.23: Further Estimated Declines in 1998-99 Application and Admission by Ethnicity

Panel A: Changes in UC-Eligible Application Likelihood to Most-Selective UC Campuses

(a) Black (b) Hispanic

Panel B: Changes in UC-Ineligible Application Likelihood to UC

(c) Black (d) Hispanic

Panel C: Asian

(e) Any UC Campus (f) Most-Selective Campuses

Note: This figure shows that URM application declines to the Berkeley and UCLA campuses can explain up to 20
percentage points of the decline in URM enrollment at those campuses, while application rates only slightly declined
among UC-ineligible students and only slightly increased among Asian students relative to applications among white
students (a sort of placebo test). Estimates of the change in the number of UC applicants (and admits) in 1998-1999
by ethnicity (e) and 200-point AI bin, relative to 1994-1995. The height of each black bar is the product of βe,98−99,a
(estimated in Equation 2.2) and

∑
s UCs,98−99,e, the average number of UC-eligible California public high school

graduates of ethnicity e in 1998-1999. The height of each overlaying blue bar is the product of the black bar and the
percent of 1998-1999 UC-eligible e UC applicants in that AI range admitted to at least one UC campus. The statistics
in the bottom right sum the bars across all AI and report the sums as a share of all e UC applicants. Panel A and half
of Panel C re-estimate Equation 2.2 restricting to applicants to UC Berkeley or UCLA. Panels A and C are restricted to
UC-eligible high school graduates and UC applicants; Panel B re-estimates Equation 2.2 for UC-ineligible graduates
and applicants. 95-percent confidence intervals on the black bars from βe,98−99,a robust standard errors. Source: UC
Corporate Student System and the California Department of Education.193



Figure A.24: Annual Single-Difference Estimates of URM UC Applicants’ Post-1998 Outcomes

(a) Institutional “Value-Added” for
Wages

(b) Six-Year BA Attain., Bottom AI
Q. (c) Grad. Degree Attainment

(d) Avg. Annual Conditional Log Wages (e) # Above-$100,000 Years in Early 30s

Note: This figure shows single-difference analogues to the baseline estimates, showing that the estimated effects
appear largely driven by immediate 1998 declines in enrollment value-added and outcomes among URM students,
not 1998 increases among non-URM students. OLS difference-in-difference coefficient estimates of the change in
four URM applicant outcomes relative to non-URM applicants, compared to the 1997 baseline. Outcomes include
six-year Bachelor’s degree attainment in the NSC, graduate degree attainment in the NSC, average annual conditional
(omitting 0’s) log California covered wages 6-19 years after UC application, and the number years (6-19 years after
UC application) in which California covered wages exceed $75,000. Bars show 95-percent confidence intervals from
robust standard errors. Models include high school fixed effects and the components of UC’s Academic Index (see
footnote 47). Panel (a) restricts the sample to the bottom AI quartile as measured among ‘96-97 URM UC applicants.
Source: UC Corporate Student System, National Student Clearinghouse, and California Employment Development
Department.
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Figure A.25: Difference-in-Difference Estimates of URM UC Enrollees’ STEM Outcomes by
Ethnicity

(a) SAT Percentile in STEM Class (b) STEM Course Grade

(c) STEM Persistence (d) STEM Major Completion

Note: Difference-in-difference WLS regression coefficient estimates of UCB, UCSB, UCD, UCSC, and UCR
enrollees’ introductory STEM course performance or persistence, differencing across URM status following Equation
2.3 and interacting βt with Black and Hispanic indicators to separately identify outcomes by URM ethnicity, relative
to 1997. In Panels (a)-(c) each observation is a CA-resident freshman student-course pair in an introductory biology,
chemistry, physics, or computer science course (see Appendix A.8) taken within 2.5 years of matriculation, stacking
over courses and weighted evenly across observed students. SAT percentile is the fraction of other 1994-2002 freshman
CA-resident peers who have lower SAT scores than the student; persistence indicates completing the subsequent course
in the introductory STEM course sequence; and course grade is the grade points received in completed courses. In
Panel (d) each observation is a student; the outcome indicates completing any UC STEM degree. Models include high
school fixed effects, ethnicity indicators, and the components of UC’s Academic Index (see footnote 47). UCSC is
omitted from the GPA model because it did not mandate letter grades in the period. 95-percent confidence intervals
are two-way clustered by student and course sequence level (e.g. second chemistry course). Source: UC Corporate
Student System and UC-CHP Database (Bleemer, 2018b).
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Figure A.26: Difference-in-Difference Changes in Inst. Value-Added and Outcome byAI Quantile

(a) Six-Year Degree Attainment (b) Wages in Early 30s

Note: This figure plots unadjusted difference-in-difference averages for both VA and actual degree attainment and
early-30s wages, showing that the two lines poorly mirror each other, suggesting both that VA poorly-explains and
substantially underestimates the observed labor market effects of Prop 209. Raw difference-in-difference statistics of
average six-year degree attainment, early-30s wages, and corresponding “CFSTY” institutional value-added measures
from students’ first enrollment institution, differenced among UC freshman applicants between 1998-1999 and 1996-
1997 and by URM status for each percentile of academic index (AI) measured among 1996-1999 URM UC applicants.
Statistics are smoothed with a triangular kernel with bandwidth 15. First enrollment measured in NSC up to six years
after UC application; university groups partition possible enrollments. See note to Table 2.2 for value-added definition.
Average wages measured as mean observed wages between 12 and 16 years after UC application, when most students
are 30-34; VA wages are measured 15 years after UC application. Six-year degree attainment measured in the union
of UC and NSC degree attainment. Source: UC Corporate Student System, National Student Clearinghouse, and the
California Employment Development Department.
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Table A.14: STEM Majors in Main NSC Sample

Major # Major #

BIOLOGICAL SCIENCES 8,008 EXERCISE BIOLOGY 267
BIOLOGY 6,382 ZOOLOGY 264
COMPUTER SCIENCE 6,113 STRUCTURAL ENGINEERING 251
ELECTRICAL ENGINEERING 5,110 MATERIALS SCIENCE AND ENGINEERING 250
MECHANICAL ENGINEERING 4,942 AQUATIC BIOLOGY 238
MOLECULAR AND CELL BIOLOGY 3,505 ECOLOGY BEHAVIOR & EVOLUTION 227
MATHEMATICS 3,076 INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH 225
CIVIL ENGINEERING 2,649 EARTH SCIENCES 222
CHEMISTRY 2,516 INFORMATION SYSTEMS 221
COMPUTER ENGINEERING 2,347 NUTRITIONAL SCIENCES 216
BIOCHEMISTRY 2,167 PHARMACOLOGICAL CHEMISTRY 216
PHYSICS 1,624 COMPUTER INFORMATION SYSTEMS 209
MANAGEMENT SCIENCE 1,578 CONSTRUCTION MANAGEMENT 203
GENERAL BIOLOGY 1,537 APPLIED ECOLOGY 201
CHEMICAL ENGINEERING 1,509 ASTROPHYSICS 201
ELECTRICAL ENGINEERING AND COMPUTER SCIENCES 1,502 BIOCHEMISTRY AND MOLECULAR BIOLOGY 195
BIOCHEMISTRY AND CELL BIOLOGY 1,487 MATHEMATICS/ECONOMICS 186
INFORMATION AND COMPUTER SCIENCE 1,481 COMPUTER INFO SYSTEMS 170
PSYCHOLOGY AND SOCIAL BEHAVIOR 1,462 BIOLOGICAL SYSTEMS ENGINEERING 167
PSYCHOBIOLOGY 1,451 COMPUTER ENGINEERING AND COMPUTER SCIENCE 167
INTEGRATIVE BIOLOGY 1,263 ECOLOGY AND EVOLUTION 166
COGNITIVE SCIENCE 1,088 MATERIALS ENGINEERING 165
PHYSIOLOGICAL SCIENCE 1,006 CELL AND DEVELOPMENTAL BIOLOGY 160
MICROBIOLOGY 879 ENVIRONMENTAL ENGINEERING 160
ANIMAL PHYSIOLOGY & NEUROSCI 833 BIOMEDICAL SCIENCES 159
NEUROSCIENCE 810 PHYSIOLOGY 144
MOLECULAR CELL AND DEVELOPMENTAL BIOLOGY 803 EVOLUTION AND ECOLOGY 141
BIOENGINEERING 786 MOLECULAR ENVIRONMENTAL BIOLOGY 139
APPLIED MATHEMATICS 750 ARCHITECTURAL ENGINEERING 137
AEROSPACE ENGINEERING 718 PHARMACOLOGY 136
HUMAN BIOLOGY 712 MECHANICAL ENGINEER 133
NEUROBIOPHYSIOLOGY & BEHAVIOR 639 COGN SCI W/SPECIALIZ NEUROSCI 130
GENETICS 582 ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 128
COMPUTER SCIENCE AND ENGINEERING 570 GEOLOGICAL SCIENCES 127
COMPUTER SCIENCE & ENGINEERING 472 NUTRITION SCIENCE 126
BIOCHEM & MOLECULAR BIOLOGY 445 MATHEMATICS-COMPUTER SCIENCE 124
MICROBIOLOGY IMMUNOLOGY AND MOLECULAR GENETICS 403 ENGINEERING PHYSICS 122
ENGINEERING 387 BIOENGINEERING (BIOTECHNOLOGY) 119
MOLECULAR BIOLOGY 387 CLINICAL NUTRITION 117
BIOMEDICAL ENGINEERING 382 HEALTH SCIENCES 116
MATHEMATICS/APPLIED SCIENCE 350 COGN SCI W/SPEC HUM COMP INTER 115
MARINE BIOLOGY 348 ECONOMICS-MATHEMATICS 111
GEOLOGY 334 NEUROBIOLOGY 111
BIOTECHNOLOGY 332 NEUROSCIENCE AND BEHAVIOR 107
BIOLOGICAL SCIENCE 331 BIOLOGY-PHYSIOLOGY 105
INDUSTRIAL ENGINEERING 300 NATURAL SCIENCE 102
STATISTICS 295 MGMT SCI & ENGINEERING 99
BIOENGINEERING: PRE-MEDICAL 289 INDUSTRIAL AND SYSTEMS ENGINEERING 91
MICROBIOLOGY AND MOLECULAR GENETICS 288 MATHEMATICAL SCIENCES 87
BIOCHEMISTRY/CHEMISTRY 287 GENERAL ENGINEERING 85

Note: This table shows the 100 most common STEM majors earned by 1994-2002 freshman UC applicants. The 100 most common majors categorized as STEM (following the procedure described in
footnote 22) among those earned by 1994-2002 freshman UC applicants at any four-year institution as reported to the National Student Clearinghouse, and the number of in-sample students who report
that major. Each student is permitted up to three majors. Source: UC Corporate Student System and National Student Clearinghouse.
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Table A.15: Non-STEM Majors in Main NSC Sample

Major # Major #

PSYCHOLOGY 22,896 ASIAN AMERICAN STUDIES 729
BUSINESS ADMINISTRATION 17,406 COMMUNICATIONS 709
POLITICAL SCIENCE 15,964 DESIGN 699
ECONOMICS 14,652 WOMEN’S STUDIES 682
SOCIOLOGY 12,560 LINGUISTICS 676
ENGLISH 11,634 GOVERNMENT 663
HISTORY 10,216 SOCIAL WELFARE 654
COMMUNICATION 6,964 COMPARATIVE LITERATURE 632
BUSINESS ECONOMICS 4,939 POLITICAL ECONOMY OF INDUSTRIAL SOCIETIES 626
LIBERAL STUDIES 3,878 ART STUDIO 623
ANTHROPOLOGY 3,423 INTERNATIONAL BUSINESS 622
SPANISH 3,196 ETHNIC STUDIES 576
PHILOSOPHY 2,683 ACCOUNTANCY 542
HUMAN DEVELOPMENT 2,493 RHETORIC 525
INTERNATIONAL RELATIONS 2,171 BIOPSYCHOLOGY 517
COMMUNICATION STUDIES 2,154 AMERICAN LITERATURE AND CULTURE 511
NURSING 1,966 DRAMA 497
ART 1,923 GENERAL STUDIES 493
FINANCE 1,819 ENVIRONMENTAL SCIENCES 485
MARKETING 1,786 CINEMA-TELEVISION 483
MANAGERIAL ECONOMICS 1,781 DANCE 472
ACCOUNTING 1,587 VISUAL ARTS (MEDIA) 461
INTERNATIONAL STUDIES 1,552 POLITICAL SCI/INTNTL RELATIONS 456
ARCHITECTURE 1,534 SOCIAL ECOLOGY 456
MUSIC 1,480 ENVIRONMENTAL ANALYSIS AND DESIGN 445
ART HISTORY 1,404 SOCIAL WORK 441
AMERICAN STUDIES 1,358 THEATRE ARTS 437
CRIMINOLOGY LAW AND SOCIETY 1,302 FILM AND TELEVISION 435
GLOBAL STUDIES 1,212 PHARMACY 435
LIBERAL ARTS 1,208 THEATER 416
LEGAL STUDIES 1,199 AGRICULTURAL BUSINESS 414
LAW AND SOCIETY 1,167 BUSINESS ADMINISTRATION (MARKETING) 414
SOCIAL SCIENCE 1,166 EXERCISE SCIENCE 412
ENVIRONMENTAL STUDIES 1,156 CREATIVE STUDIES 404
INTERDISCIPLINARY STUDIES 1,129 GRAPHIC DESIGN 398
MASS COMMUNICATIONS 1,097 INTERDISC COMPUTING & THE ARTS 381
KINESIOLOGY 1,070 CRIMINAL JUSTICE ADMINISTRATION 368
THEATRE 1,032 INTERNATIONAL DEVELOPMENT STUDIES 367
FILM STUDIES 999 SOCIAL SCIENCES 366
JOURNALISM 953 ECONOMICS/INTERNATIONAL AREA STUDIES 365
CRIMINAL JUSTICE 910 LATIN AMERICAN STUDIES 352
MANAGEMENT 906 CHICANO STUDIES 332
GEOGRAPHY 895 DRAMATIC 325
POLITICS 894 JAPANESE 319
FRENCH 882 LAW 312
ANIMAL SCIENCE 813 FILM AND DIGITAL MEDIA 306
BUSINESS MANAGEMENT ECONOMICS 780 LANDSCAPE ARCHITECTURE 302
RELIGIOUS STUDIES 778 HISTORY OF ART 297
STUDIO 764 SPEECH COMMUNICATION 294
CHILD DEVELOPMENT 745 INDUSTRIAL TECHNOLOGY 291

Note: This table shows the 100 most common Non-STEM majors earned by 1994-2002 freshman UC applicants. The 100 most common majors not categorized as STEM (following the procedure
described in footnote 22) among those earned by 1994-2002 freshman UC applicants at any four-year institution as reported to the National Student Clearinghouse, and the number of in-sample students
who report that major. Each student is permitted up to three majors. Source: UC Corporate Student System and National Student Clearinghouse.
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Table A.16: Descriptive Statistics of 1990s UC Admissions by Ethnicity

Application Admission Enrollment

‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9

Panel A: Non-URM Applicants

Average Number or Percent of Applicants

Berkeley 14,452 17,478 19,814 37.3 32.3 30.8 15.1 14.0 13.8
UCLA 16,738 20,272 23,965 44.3 37.3 33.9 15.3 13.3 13.5
San Diego 15,787 19,072 23,008 63.0 60.0 48.3 15.3 12.9 12.2
Davis 13,434 15,131 17,189 71.1 72.0 67.7 18.8 19.7 17.9
Irvine 11,734 13,198 16,134 76.2 71.2 64.1 19.8 19.4 17.5
Santa Barbara 12,946 14,819 18,750 84.5 74.9 57.7 18.5 18.4 14.7
Santa Cruz 7,506 8,174 9,984 85.3 85.4 81.0 16.7 18.8 17.5
Riverside 6,996 7,480 10,211 82.0 85.6 88.0 14.7 17.9 17.4
All UCs 33,602 37,972 42,268 84.8 83.5 83.9 49.6 49.4 49.6

Average SAT Score

Berkeley 1250 1255 1262 1371 1375 1368 1344 1348 1338
UCLA 1209 1214 1228 1316 1333 1343 1262 1283 1299
San Diego 1212 1213 1222 1274 1298 1307 1224 1250 1260
Davis 1180 1184 1187 1232 1231 1230 1171 1176 1169
Irvine 1146 1151 1161 1185 1194 1213 1127 1137 1159
Santa Barbara 1141 1144 1166 1162 1182 1224 1122 1156 1189
Santa Cruz 1156 1154 1157 1177 1173 1180 1152 1151 1154
Riverside 1114 1114 1119 1137 1134 1136 1095 1091 1092
All UCs 1182 1187 1194 1207 1212 1216 1196 1208 1217

Panel B: URM Applicants

Average Number or Percent of Applicants

Berkeley 3,570 3,892 3,944 54.7 48.7 23.9 19.7 19.2 10.4
UCLA 4,872 5,152 5,395 55.8 42.8 24.8 21.5 16.8 11.3
San Diego 3,088 3,296 3,976 59.7 57.9 32.5 12.1 11.8 8.3
Davis 2,586 2,616 2,822 84.1 83.7 62.5 21.9 18.5 17.2
Irvine 2,884 2,752 3,238 73.4 62.7 54.8 15.7 12.9 14.3
Santa Barbara 3,197 3,542 4,008 77.0 77.2 54.3 16.3 18.1 15.4
Santa Cruz 2,235 2,096 2,291 83.7 81.3 72.9 16.0 14.5 15.6
Riverside 2,222 2,304 3,222 79.5 77.1 79.5 19.7 18.3 20.2
All UCs 9,478 9,498 9,922 81.3 79.4 73.4 47.0 44.3 39.6

Average SAT Score

Berkeley 1072 1087 1102 1151 1168 1200 1130 1138 1143
UCLA 1030 1048 1066 1119 1155 1185 1089 1118 1140
San Diego 1059 1069 1082 1124 1151 1196 1088 1118 1163
Davis 1048 1056 1067 1083 1091 1108 1050 1070 1067
Irvine 996 1012 1025 1042 1071 1097 1004 1026 1062
Santa Barbara 1008 1021 1042 1045 1059 1102 999 1023 1075
Santa Cruz 1011 1017 1030 1033 1042 1059 990 1013 1039
Riverside 958 968 982 983 996 1009 963 960 968
All UCs 1025 1039 1048 1054 1071 1081 1052 1071 1077

Note: This table shows campus-specific descriptive statistics mirroring Table 2.1. Count and mean average descriptive
statistics of 1994-1999 California-resident freshman UC applicants who are or are not underrepresented minorities
(URM). URM includes African-American, Hispanic, Chicano/a, and Native American applicants. SAT score includes
the Math and Verbal components and was on the 1600 scale. Percent admitted and percent enrolled are conditional on
applying to that campus. Source: UC Corporate Student System.
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Table A.17: Descriptive Statistics of 1990s UC Admissions by Ethnicity

Application Admission Enrollment

‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9

Panel A: Black Applicants

Average Number or Percent of Applicants

Berkeley 1,020 1,078 1,048 50.2 50.1 23.2 17.7 20.6 10.3
UCLA 1,230 1,318 1,234 53.1 40.6 23.8 20.5 15.7 11.0
San Diego 600 681 802 50.6 53.3 23.7 8.5 9.0 5.1
Davis 608 660 666 76.6 75.5 52.9 19.1 14.7 13.7
Irvine 540 546 605 65.6 50.9 46.3 11.9 9.6 12.1
Santa Barbara 523 608 710 76.3 71.8 48.6 17.6 17.5 12.5
Santa Cruz 364 376 386 78.8 76.5 64.3 13.7 11.0 13.1
Riverside 486 490 703 74.2 67.1 71.4 19.2 16.5 18.6
All UCs 2,104 2,130 2,116 75.2 72.1 64.0 42.8 40.9 34.0

Average SAT Score

Berkeley 1031 1049 1068 1122 1131 1157 1084 1088 1074
UCLA 1013 1027 1050 1103 1142 1176 1073 1106 1121
San Diego 1031 1040 1056 1119 1136 1210 1072 1104 1188
Davis 1009 1015 1030 1058 1064 1092 998 1015 1042
Irvine 978 994 1005 1031 1074 1090 986 1014 1048
Santa Barbara 983 999 1026 1018 1044 1096 967 979 1045
Santa Cruz 1000 1008 1027 1028 1036 1062 980 990 1019
Riverside 951 963 979 978 1006 1014 958 959 967
All UCs 1006 1018 1032 1043 1062 1078 1032 1052 1056

Panel B: Hispanic Applicants

Average Number or Percent of Applicants

Berkeley 2,406 2,684 2,763 55.8 47.6 24.2 20.0 18.5 10.4
UCLA 3,512 3,682 3,987 56.0 43.1 25.1 21.5 16.9 11.6
San Diego 2,338 2,470 3,006 60.8 58.3 34.8 12.7 12.1 9.2
Davis 1,821 1,830 2,002 86.3 86.3 65.6 22.3 19.2 18.2
Irvine 2,257 2,123 2,529 74.8 65.5 56.6 16.5 13.9 14.8
Santa Barbara 2,512 2,754 3,110 76.9 78.2 55.6 16.1 17.9 16.0
Santa Cruz 1,760 1,620 1,796 84.7 82.2 74.5 16.3 15.0 16.0
Riverside 1,690 1,763 2,440 81.0 79.9 81.6 19.9 18.9 20.8
All UCs 6,984 7,000 7,416 82.8 81.2 75.9 47.8 44.8 41.2

Average SAT Score

Berkeley 1083 1098 1110 1158 1180 1212 1141 1158 1164
UCLA 1031 1051 1066 1121 1156 1184 1090 1117 1143
San Diego 1060 1072 1084 1120 1152 1189 1084 1117 1153
Davis 1054 1064 1072 1083 1094 1106 1056 1075 1069
Irvine 995 1013 1025 1039 1067 1094 1001 1025 1061
Santa Barbara 1007 1020 1040 1044 1057 1099 1001 1028 1076
Santa Cruz 1006 1012 1024 1028 1036 1052 982 1004 1036
Riverside 956 966 979 981 991 1005 962 958 965
All UCs 1025 1040 1048 1052 1068 1077 1051 1071 1077

Note: This table shows separate descriptive statistics for Black and Hispanic UC applicants, showing that the former
make up only 20 percent of URM students and tend to have somewhat lower average test scores. Count and mean
average descriptive statistics of 1994-1999 California-resident freshman Black and Hispanic UC applicants. SAT
score includes the Math and Verbal components and was on the 1600 scale. Percent admitted and percent enrolled are
conditional on applying to that campus. Source: UC Corporate Student System.
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Table A.18: Descriptive Statistics of 1990s UC Admissions for White and Asian Applicants

Application Admission Enrollment

‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9 ‘94-5 ‘96-7 ‘98-9

Panel A: White Applicants

Average Number or % of Applications

Berkeley 5,928 7,244 7,440 39.9 34.1 31.9 13.9 12.4 12.2
UCLA 6,612 8,294 9,156 43.9 38.0 33.1 13.9 13.5 13.2
San Diego 7,586 9,137 9,887 61.8 59.7 47.4 15.1 12.9 11.9
Davis 6,876 7,576 7,675 73.4 74.8 69.8 18.8 19.8 18.1
Irvine 3,671 3,916 4,392 79.9 74.7 69.9 14.8 15.0 15.1
Santa Barbara 7,780 9,541 10,444 86.6 75.7 59.0 21.5 21.3 17.3
Santa Cruz 4,527 5,015 5,169 88.0 87.9 83.9 19.6 21.8 20.4
Riverside 2,152 2,280 3,186 84.2 87.1 91.8 17.0 19.4 15.7
All UCs 17,060 19,486 19,304 85.4 83.0 83.8 44.9 45.4 45.1

Average SAT Score

Berkeley 1267 1271 1277 1361 1367 1365 1332 1340 1333
UCLA 1224 1224 1239 1318 1324 1341 1268 1280 1302
San Diego 1221 1218 1229 1281 1298 1307 1248 1265 1273
Davis 1202 1202 1206 1245 1238 1242 1211 1203 1204
Irvine 1166 1169 1176 1193 1200 1208 1161 1169 1170
Santa Barbara 1160 1158 1180 1177 1196 1232 1138 1169 1196
Santa Cruz 1183 1179 1183 1198 1193 1200 1174 1169 1173
Riverside 1136 1132 1141 1151 1147 1151 1125 1120 1128
All UCs 1197 1198 1206 1217 1221 1226 1209 1217 1228

Panel B: Asian Applicants

Average Number or % of Applications

Berkeley 7,516 8,955 11,041 35.6 31.1 30.1 16.0 15.3 15.0
UCLA 8,970 10,548 13,200 44.8 36.8 34.3 16.4 13.0 13.7
San Diego 7,182 8,703 11,752 64.2 60.3 49.0 15.6 13.1 12.6
Davis 5,690 6,558 8,464 69.1 69.4 65.9 19.0 20.2 17.6
Irvine 7,211 8,237 10,577 74.4 69.6 61.7 22.3 21.6 18.6
Santa Barbara 4,489 4,550 7,432 81.5 73.7 56.2 13.8 13.1 11.4
Santa Cruz 2,558 2,694 4,296 81.2 81.4 78.0 11.9 13.9 14.6
Riverside 4,240 4,502 6,217 80.7 84.8 86.3 13.4 17.3 18.5
All UCs 14,488 16,148 20,548 84.4 84.3 84.1 55.1 54.1 53.6

Average SAT Score

Berkeley 1238 1245 1254 1379 1382 1370 1352 1354 1341
UCLA 1199 1209 1223 1314 1340 1344 1258 1283 1298
San Diego 1202 1207 1218 1266 1295 1306 1201 1236 1249
Davis 1156 1166 1172 1214 1221 1219 1125 1147 1139
Irvine 1136 1143 1155 1181 1190 1215 1115 1127 1157
Santa Barbara 1112 1117 1150 1139 1156 1214 1080 1116 1177
Santa Cruz 1113 1114 1131 1139 1137 1158 1099 1102 1129
Riverside 1102 1105 1109 1128 1126 1129 1072 1074 1079
All UCs 1167 1177 1184 1196 1203 1209 1184 1198 1210

Note: This table shows descriptive statistics for white and Asian UC applicants before and after Prop 209, showing
minimal evidence of differential trends among the two groups after Prop 209 (though Asian applicants’ SAT scores
were lower but rising faster throughout the period). Count and mean average descriptive statistics of 1994-1999
California-resident freshman non-URM UC applicants who report being either white or Asian. SAT score includes
the Math and Verbal components and was on the 1600 scale. Percent admitted and percent enrolled are conditional on
applying to that campus. Source: UC Corporate Student System.
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Table A.19: Difference-in-Difference Estimates of Post-1998 Black and Hispanic Application by
UC Campus

Campus: UCB UCLA UCSD UCSB UCI UCD UCSC UCR Total

Admission conditional on application (%), Black

Black 49.8 44.4 28.8 22.8 23.7 40.1 14.9 18.3 15.9
(1.0) (0.8) (1.1) (1.1) (1.2) (1.1) (1.3) (1.3) (0.6)

Black × -25.4 -25.5 -20.6 -8.7 -15.3 -27.2 -17.4 -20.9 -16.8
Prop 209 (1.3) (1.1) (1.4) (1.5) (1.6) (1.5) (1.8) (1.5) (0.8)

Ȳ 33.8 38.2 53.6 68.3 68.7 69.0 82.4 84.7 83.5
Obs. 71,821 85,476 79,947 65,728 57,492 62,326 36,445 35,880 160,180

Admission conditional on application (%), Hispanic

Hispanic 39.7 34.2 21.6 8.3 19.3 31.3 13.4 14.1 12.7
(0.7) (0.6) (0.6) (0.6) (0.6) (0.6) (0.6) (0.7) (0.3)

Hispanic × -29.9 -26.2 -18.8 0.1 -13.6 -23.3 -12.1 -13.4 -11.1
Prop 209 (0.9) (0.7) (0.8) (0.7) (0.8) (0.9) (0.8) (0.8) (0.4)

Ȳ 34.3 38.4 53.3 68.1 68.6 69.8 82.3 84.8 83.5
Obs. 77,988 95,495 87,802 74,487 64,688 67,352 42,051 41,654 180,540

Note: This table shows that Black and Hispanic UC applicants generally faced similar declines in UC admissions
likelihood after Prop 209, with Black applicants facing larger declines at some campuses. OLS coefficient estimates
of β0 and β‘98−99 from Equation 2.1, a difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ UC applications and enrollment compared to non-URM applicants after the 1998 end of UC’s
affirmative action program. Hispanic students are dropped from the sample in Panel A, and Black students are dropped
from Panel B; Native American students are dropped from both panels. Models include high school fixed effects and
the components of UC’s Academic Index (see footnote 47), and are estimated independently by campus or “Total” (all
applicants to any UC campus). Robust standard errors in parentheses. Source: UC Corporate Student System.
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Table A.20: Difference-in-Difference Estimates of Post-1998 URM Application and Enrollment
by UC Campus

Campus: UCB UCLA UCSD UCSB UCI UCD UCSC UCR Total

Application conditional on UC application (%)

URM 11.4 8.7 -3.7 -4.8 -9.8 -4.3 -2.9 -6.3
(0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (0.3)

URM × -2.2 -3.8 0.7 -1.0 0.4 0.7 0.3 3.5
Prop 209 (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.4)

Ȳ 45.3 55.0 49.5 41.3 35.4 37.9 22.6 23.3
Obs. 199,321 199,321 199,321 199,321 199,321 199,321 199,321 199,321

Enrollment conditional on application (%)

URM 13.6 8.0 2.4 0.7 -5.4 0.2 -4.9 -4.1 3.6
(0.6) (0.4) (0.5) (0.6) (0.6) (0.6) (0.7) (0.7) (0.4)

URM × -9.3 -5.9 -3.3 1.6 2.8 0.2 2.1 1.8 -5.8
Prop 209 (0.6) (0.5) (0.5) (0.7) (0.7) (0.8) (0.9) (0.8) (0.5)

Ȳ 16.8 14.1 12.3 16.8 17.8 18.9 17.8 18.1 50.1
Obs. 90,254 109,566 98,705 82,240 70,643 75,518 45,087 46,434 199,321

Enrollment conditional on admission (%)

URM -16.9 -17.0 -16.9 -8.1 -15.9 -14.9 -8.5 -7.0 -1.5
(1.1) (0.9) (0.8) (0.7) (0.8) (0.8) (0.8) (0.9) (0.5)

URM × 7.3 6.5 9.9 5.8 6.5 9.1 4.7 4.4 -2.2
Prop 209 (1.5) (1.3) (1.2) (1.0) (1.1) (1.1) (1.1) (1.0) (0.6)

Ȳ 44.9 39.1 24.9 25.6 27.0 27.4 21.7 21.7 60.6
Obs. 28,755 38,037 48,268 53,513 46,299 51,777 36,850 38,581 163,967

Note: This table shows that URM students were discouraged from applying to Berkeley and UCLA after Prop
209 (though remained more likely than similarly-academically-prepared non-URM students), that URM applicants’
likelihood of enrollment declined at the more-selective UCs and increased at the less-selective UCs, and that URM
yield rates increased at all UCs after Prop 209 (as shown in Antonovics and Sander (2013)). OLS coefficient estimates
of β0 and β‘98−99 from Equation 2.1, a difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ UC applications and enrollment compared to non-URM applicants after the 1998 end of UC’s
affirmative action program. Models include high school fixed effects and the components of UC’s Academic Index
(see footnote 47), and are estimated independently by campus or “Total” (all applicants to any UC campus). Robust
standard errors in parentheses. Source: UC Corporate Student System and National Student Clearinghouse.
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Table A.21: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Enrollment

UC Campuses by Selectivity Comm. CA Non-CA Not in
Most Middle Least CSU Coll. Ivy+ Priv. Univ. NSC

Panel A: Difference-in-Difference Coefficients

URM 10.4 -4.6 -2.8 -3.6 -3.7 2.5 1.3 -0.2 0.7
(0.4) (0.3) (0.2) (0.3) (0.3) (0.1) (0.3) (0.2) (0.2)

URM × -7.6 1.8 1.8 1.9 1.1 0.3 0.8 1.1 -0.9
Prop 209 (0.4) (0.4) (0.3) (0.4) (0.4) (0.2) (0.3) (0.3) (0.3)

Ȳ 21.9 19.6 6.5 13.8 12.1 2.7 9.3 8.5 6.2
Obs. 199,321 199,321 199,321 199,321 199,321 199,321 199,321 199,321 199,321

Panel B: Estimates of URM × Prop 209 by AI Quartile

Bottom -1.7 -4.9 -0.6 3.4 2.2 -0.1 1.4 0.4 -0.0
Quartile (0.6) (0.9) (0.8) (1.4) (1.2) (0.1) (0.8) (0.7) (0.8)

Second -12.6 4.4 3.2 3.1 1.0 -0.1 1.5 2.3 -2.4
Quartile (0.8) (1.1) (0.8) (1.0) (0.9) (0.1) (0.8) (0.6) (0.6)

Third -16.8 13.0 2.2 -1.4 0.3 -0.1 1.6 1.3 -0.0
Quartile (1.0) (1.0) (0.6) (0.7) (0.7) (0.2) (0.8) (0.6) (0.6)

Top -4.5 1.0 0.5 0.3 0.4 1.1 0.6 0.3 0.1
Quartile (1.1) (0.7) (0.4) (0.5) (0.5) (0.6) (0.7) (0.6) (0.6)

Panel C: Difference-in-Difference Coefficients (versus 1995)

URM 10.2 -4.4 -1.8 -5.2 -2.6 2.9 0.8 -1.1 1.3
(0.5) (0.5) (0.3) (0.4) (0.4) (0.2) (0.3) (0.3) (0.4)

URM × -7.8 1.5 0.9 3.7 0.4 -0.1 1.3 2.0 -1.7
Prop 209 (0.5) (0.5) (0.3) (0.5) (0.4) (0.2) (0.4) (0.4) (0.4)

Ȳ 22.0 19.4 6.4 14.0 11.7 2.8 8.8 8.6 6.8
Obs. 148,980 148,980 148,980 148,980 148,980 148,980 148,980 148,980 148,980

Note: This table summarizes URM UC applicants’ changed university enrollment following Prop 209, with aggregate
flows from the more-selective UC campuses cascading to all other sectors of higher education, particularly among
second- and third-AI-quartile applicants, and slightly larger flows compared to the ‘94-95 baseline. Estimates of β0
and β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ enrollment outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative
action program. Outcomes defined as the first institution of enrollment by college or university type within six years
of graduating high school, as measured in the NSC. Models include high school fixed effects and the components of
UC’s Academic Index (see footnote 47). Panel C omits the years 1996-1997 because some universities preemptively
curtailed their affirmative action programs in those years. “Ivy+” universities include the Ivy League, MIT, Stanford,
and the University of Chicago; private and non-CA universities exclude those institutions. Academic Index (AI) is
defined in footnote 25; models byAI quartile are estimated independently, with quartiles defined by theAI distribution
of 96-97 URM UC applicants. Robust standard errors in parentheses. Source: UC Corporate Student System and
National Student Clearinghouse.
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Table A.22: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Enrollment,
cont.

UC Campuses by Selectivity Comm. CA Non-CA Not in
Most Middle Least CSU Coll. Ivy+ Priv. Univ. NSC

Panel D: Estimates with Separate Coefficients for Black and Hispanic Applicants

Black 17.0 -7.6 -4.7 -6.2 -8.1 3.7 0.9 4.3 0.8
(0.7) (0.5) (0.3) (0.6) (0.5) (0.3) (0.5) (0.5) (0.5)

Hispanic 7.9 -3.8 -2.2 -2.6 -2.1 2.1 1.8 -1.8 0.8
(0.4) (0.4) (0.2) (0.4) (0.3) (0.2) (0.3) (0.2) (0.3)

Black × -10.6 1.9 1.8 3.2 0.5 0.7 1.7 2.5 -1.5
Prop 209 (0.8) (0.7) (0.5) (0.8) (0.7) (0.4) (0.7) (0.7) (0.6)

Hispanic × -6.3 1.8 1.9 1.4 0.9 0.1 0.4 0.8 -0.9
Prop 209 (0.5) (0.5) (0.3) (0.5) (0.4) (0.2) (0.4) (0.3) (0.3)

Ȳ 21.9 19.6 6.5 13.8 12.1 2.7 9.3 8.5 6.2
Obs. 197,804 197,804 197,804 197,804 197,804 197,804 197,804 197,804 197,804

Panel E: Estimates of Black × Prop 209 by Black AI Quartile

Bottom -1.2 -5.9 -0.7 5.7 2.7 0.0 1.3 1.1 -2.3
Quartile (1.4) (1.6) (1.3) (3.0) (2.4) (0.0) (1.6) (2.0) (1.6)

Second -12.4 2.0 3.7 4.8 -2.3 -0.6 0.1 3.9 0.8
Quartile (1.8) (2.1) (1.5) (2.0) (1.7) (0.4) (1.7) (1.6) (1.2)

Third -23.4 15.1 1.2 0.4 -1.2 0.2 4.7 4.5 -0.9
Quartile (2.2) (2.0) (1.2) (1.3) (1.3) (0.6) (1.7) (1.6) (1.1)

Top -14.5 3.2 2.1 -0.0 2.3 2.9 4.6 1.7 -1.9
Quartile (2.3) (1.4) (0.8) (0.9) (1.0) (1.5) (1.5) (1.6) (1.2)

Panel F: Estimates of Hispanic × Prop 209 by Hispanic AI Quartile

Bottom -1.3 -5.0 0.1 2.9 2.0 -0.0 0.7 0.9 -0.2
Quartile (0.6) (1.0) (0.9) (1.5) (1.3) (0.0) (0.8) (0.6) (0.9)

Second -11.2 6.0 3.0 1.8 1.3 0.0 1.3 1.2 -3.0
Quartile (0.9) (1.2) (0.9) (1.1) (1.0) (0.1) (0.9) (0.6) (0.7)

Third -14.9 11.7 2.5 -1.2 0.1 0.2 0.8 0.9 -0.1
Quartile (1.1) (1.2) (0.7) (0.9) (0.8) (0.2) (0.9) (0.6) (0.6)

Top -2.8 1.0 0.5 0.2 -0.1 0.3 0.3 -0.4 0.8
Quartile (1.2) (0.9) (0.4) (0.6) (0.6) (0.7) (0.8) (0.7) (0.7)

Note: This table shows that Black UC applicants were more likely to exit the more-selective UC campuses than
Hispanic applicants following Prop 209, though they were also more likely to instead enroll at Ivy+ and non-California
universities, especially among higher-AI applicants. This table extends Table A.21. Estimates of β0 and β‘98−99
from an extension Equation 2.1 splitting the URM indicator into separate Black and Hispanic indicators interacted
with post-209. The model is an OLS difference-in-difference model of 1996-1999 URM UC freshman California-
resident applicants’ enrollment outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative
action program. Outcomes defined as the first institution of enrollment by college or university type within six years
of graduating high school, as measured in the NSC. Models include high school fixed effects and the components of
UC’s Academic Index (see footnote 47). Models omit Native American applicants. “Ivy+” universities include the
Ivy League, MIT, Stanford, and the University of Chicago; private and non-CA universities exclude those institutions.
Academic Index (AI) is defined in footnote 25; models by AI quartile are estimated independently, with quartiles
defined separately for each ethnicity by the AI distribution of 96-97 URM UC applicants. Robust standard errors in
parentheses. Source: UC Corporate Student System and National Student Clearinghouse.
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Table A.23: Estimated Change in UC URM Enrollment, ‘94-95 to ‘98-99

Change in Change in
App. Pool Adm. and Yield

UC Campus Decrease Increase† Decrease† Total

Berkeley -93 4 -327 -415
UCLA -122 0 -496 -618
San Diego -35 127 -41 50
Santa Barbara -32 341 -25 284
Irvine -36 150 -50 64
Davis -53 91 -140 -103
Santa Cruz -46 11 -85 -119
Riverside -38 103 -7 61

Total -456 827 -1173 -800
Note: This table exploits year-over-year changes in URM and non-URM UC application and enrollment at each UC
campus by AI bin to estimate that URM UC enrollment fell by 450 students as a result of application dissuasion and
350 students as a result of changes in UC campuses’ URM admissions and yield rates (with particularly-large declines
at Berkeley and UCLA), resulting in a net decline in URM UC enrollment of 800 students, or 14 percent of UC’s
‘98-99 URM enrollment. Change in App. Pool: For each campus, these estimates show the sum across 200-point AI
bins of the positive (increase) and negative (decrease) products of (1) the change in the number of UC applicants byAI
bin (see Figure 2.7) and (2) the raw difference-in-difference in URM UC applicants’ enrollment at each campus byAI
bin (smoothed across bins as in Figure 2.3), where post-209 enrollment is set to 0 (since these students did not apply
to UC). Change in Adm. and Yield: The sum across AI centiles of the positive (increase) and negative (decrease)
products of (1) the number of ‘98-99 URM UC applicants in each bin, and (2) the raw difference-in-difference in
URM UC applicants’ enrollment at each campus by AI bin, smoothed across bins. Both: Baseline is defined as
‘94-95 applicants and post-209 defined as ‘98-99 applicants, with 1994 omitted from the difference-in-difference
estimates since ‘94 NSC data are unreliable. Estimates reported as annual changes in ‘98-99. The first column is
always 0 because URM UC applications declined in every relevant AI bin, resulting in enrollment increases at no
campuses. † Estimates of increased and decreased URM enrollment should be interpreted as lower-bound estimates
biased toward 0 by overlap in the AI distribution between students exiting and entering each campus. Source: UC
Corporate Student System, National Student Clearinghouse, and the California Department of Education.
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Table A.24: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Univ.
Characteristics

First Four-Year Institution First Institution of Enrollment
Adm. Avg. 6 Yr. "MH" VA1 "CFSTY" VA1

Rate SAT BA Rate BA 6 Earn 30s BA 6 Earn 30s

Panel C: Difference-in-Difference Coefficients (versus 1995)

URM -7.2 39.8 4.1 1.7 1,910 2.8 2,923
(0.3) (1.5) (0.2) (0.2) (101) (0.2) (115)

URM × 3.9 -24.1 -2.5 -0.5 -463 -1.1 -1,085
Prop 209 (0.3) (1.7) (0.2) (0.2) (114) (0.2) (130)

Ȳ 51.0 1,188 68.3
Obs. 128,957 127,138 125,319 131,214 128,628 130,261 128,417

Panel D: Estimates with Separate Coefficients for Black and Hispanic Applicants

Black -11.0 52.8 5.4 3.4 3,149 5.2 4,815
(0.3) (2.1) (0.3) (0.2) (142) (0.2) (154)

Hispanic -6.1 31.6 2.9 1.5 1,560 2.1 2,305
(0.2) (1.2) (0.2) (0.1) (85) (0.1) (95)

Black × 4.6 -24.7 -2.6 -0.8 -455 -1.5 -1,128
Prop 209 (0.5) (2.9) (0.4) (0.3) (197) (0.3) (214)

Hispanic × 3.3 -17.9 -1.4 -0.5 -328 -0.7 -811
Prop 209 (0.3) (1.5) (0.2) (0.2) (103) (0.2) (117)

Obs. 172,661 170,293 168,684 176,026 172,571 174,769 172,290
Note: This table shows that the impact of Prop 209 on proxies of UC URM applicants’ university quality are generally
somewhat larger when compared to the ‘94-95 baseline, and that Black and Hispanic UC applicants faced similar-
magnitude declines in proxies of university quality after Prop 209. This table extends Table 2.2. Panel C: Estimates
of β0 and β‘98−99 from Equation 2.1, a difference-in-difference model of 1995 and 1998-1999 URM UC freshman
California-resident applicants’ outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative
action program. The years 1996-1997 are omitted in Panel C because some universities preemptively curtailed their
affirmative action programs in those years. Panel D: Estimates of β0 and β‘98−99 from an extension Equation 2.1
splitting the URM indicator into separate Black and Hispanic indicators interacted with post-209. The model is an OLS
difference-in-difference model of 1996-1999 URM UC freshman California-resident applicants’ outcomes compared
to non-URM outcomes after the 1998 end of UC’s affirmative action program. Models omit Native American
applicants. All: For details on outcomes and specification, see Table 2.2. Robust standard errors in parentheses.
Source: UC Corporate Student System, National Student Clearinghouse, the California Employment Development
Department, and the Integrated Postsecondary Education Data System (IPEDS).
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Table A.25: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Educational
Outcomes

Earn Bach. Degree Earn STEM Degree Earn Grad. Degree
5-Year 6-Year Uncondit. Condit. All STEM JD

Panel C: Difference-in-Difference Coefficients (versus 1995)

URM -1.15 -2.46 0.09 -0.46 5.48 1.43 1.18
(0.55) (0.55) (0.42) (0.58) (0.36) (0.13) (0.15)

URM × -1.84 -0.91 -0.61 0.25 -3.51 -2.06 -1.03
Prop 209 (0.62) (0.62) (0.47) (0.65) (0.48) (0.18) (0.19)

Ȳ 47.33 74.23 22.37 27.43 27.99 4.30 3.76
Obs. 148,980 148,980 148,980 110,588 190,540 190,540 190,540

Panel D: Estimates with Separate Coefficients for Black and Hispanic Applicants

Black 2.06 -0.77 3.63 4.10 12.87 1.45 3.24
(0.74) (0.75) (0.53) (0.75) (0.78) (0.27) (0.38)

Hispanic -3.14 -3.08 -0.71 -0.90 2.15 0.39 0.17
(0.47) (0.46) (0.35) (0.47) (0.48) (0.19) (0.20)

Black × -0.83 -0.15 -1.54 -1.05 -1.50 -0.05 -0.56
Prop 209 (0.99) (1.01) (0.70) (1.00) (1.05) (0.38) (0.49)

Hispanic × -0.82 -0.79 -0.62 -0.37 -1.02 -0.73 -0.06
Prop 209 (0.58) (0.57) (0.43) (0.58) (0.59) (0.23) (0.23)

Obs. 197,804 197,804 197,804 147,795 197,804 197,804 197,804
Note: This table shows that the impact of Prop 209 on URM UC applicants’ educational outcomes generally appears
somewhat larger when compared to the ‘94-95 baseline, and that Black and Hispanic UC applicants faced similar
relative declines in educational outcomes following Prop 209. This table extends Table 2.3. Estimates of β0 and
β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 (or, in Panel C, 1995 and 1998-
1999) URM UC freshman California-resident applicants’ educational outcomes compared to non-URM outcomes
after the 1998 end of UC’s affirmative action program. For details on outcomes and specification, see Table 2.3.
The years 1996-1997 are omitted in Panel C because some universities preemptively curtailed their affirmative action
programs in those years; 1994 is omitted because NSC records from that year are unreliable. Panel D interacts the
two coefficients with Black and Hispanic coefficients to separately estimate effects for each group; Native American
applicants are omitted. Models include high school fixed effects and the components of UC’s Academic Index (see
footnote 47). Academic Index (AI) is defined in footnote 25. Robust standard errors in parentheses. Source: UC
Corporate Student System and National Student Clearinghouse.
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Table A.26: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Educational
Outcomes

Earn Bach. Degree Earn STEM Degree
5-Year 6-Year Uncondit. Condit.

Panel E: Coefficients measured with only NSC data

URM -0.98 -1.33 0.34 0.12
(0.41) (0.41) (0.28) (0.46)

URM × -1.01 -1.06 -0.93 -0.43
Prop 209 (0.51) (0.51) (0.35) (0.57)

Ȳ 45.86 71.60 18.36 28.93
Obs. 199,321 199,321 199,321 126,481

Panel F: Coefficients in UC data, condit. on UC enrollment

URM -5.99 -2.31 0.26 0.24
(0.63) (0.57) (0.52) (0.60)

URM × -1.02 0.07 -0.50 -0.27
Prop 209 (0.82) (0.74) (0.68) (0.77)

Ȳ 46.81 80.39 29.31 29.81
Obs. 94,469 94,469 94,469 75,943

Note: This table shows that the impact of Prop 209 on URM UC applicants’ undergraduate degree attainment generally
appears somewhat larger when measured in NSC alone, as a result of imperfect UCSC reporting, and shrinks when the
sample is restricted to UC enrollees before and after Prop 209 measured only in UC data). This table extends Table
2.3. Estimates of β0 and β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC
freshman California-resident applicants’ educational outcomes compared to non-URM outcomes after the 1998 end
of UC’s affirmative action program. For details on outcomes and specification, see Table 2.3. Outcomes are measured
in NSC alone in Panel D and in UC administrative data alone in Panel E (excluding applicants who do not enroll at
a UC campus). Models include high school fixed effects and the components of UC’s Academic Index (see footnote
47). Academic Index (AI) is defined in footnote 25. Robust standard errors in parentheses. Source: UC Corporate
Student System and National Student Clearinghouse.
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Table A.27: Difference-in-Difference Estimates of URM UC Applicants’ Post-1998 Earned
Majors

Major Baseline β‘98−99 (s.e.) Major Baseline β‘98−99 (s.e.)

Biology 4.4 0.62 (0.25) Economics 2.0 -0.39 (0.17)
Other Humanities 2.7 0.30 (0.18) History 2.4 -0.32 (0.17)
International Stud. 1.2 0.23 (0.14) Mathematics 0.9 -0.29 (0.11)
Film 0.9 0.22 (0.11) Electrical Eng. 0.8 -0.23 (0.11)
English 3.3 0.18 (0.20) Law 0.7 -0.20 (0.09)
Biochemistry 0.5 0.17 (0.09) Sociology 5.0 -0.20 (0.24)
Architecture 0.3 0.15 (0.08) Computer Science 0.7 -0.18 (0.12)
Criminology 1.0 0.14 (0.11) Political Science 4.2 -0.18 (0.23)
Chemistry 0.4 0.13 (0.08) Communications 2.5 -0.17 (0.18)
Environmental Stud. 0.3 0.08 (0.07) Computer Eng. 0.3 -0.17 (0.07)

Note: This table shows the fields of study that relatively increased and decreased with greatest likelihood among
URM UC applicants after Prop 209, with a mix of STEM and non-STEM fields both increasing and decreasing.
Estimates of β‘98−99 from Equation 2.1, an OLS difference-in-difference model of 1996-1999 URM UC freshman
California-resident applicants’ unconditional likelihood (in percentage points) of earning a major in each major group
compared to non-URM outcomes after Prop 209. The ten major groups with the largest and smallest β‘98−99 estimates
are presented, along with the “baseline” proportion of 1996-1997 URM UC applicants who earned a major in each
group. Major choice is measured only in NSC. NSC majors are categorized by the author; full categorization available
upon request. The sum across all major groups’ baseline values is 61.1 (reflecting URM UC applicants’ likelihood of
degree attainment); the sum across all major groups’ β‘98−99 estimates is -1.24, reflecting the change in NSC-measured
graduation after 1998. Source: UC Corporate Student System and National Student Clearinghouse.
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Table A.28: Difference-in-Difference Est. of URM UC Applicants’ Post-1998 CA Wage
Outcomes, cont.

Average 6-16 Years after UC App. Average 12-16 Years after UC App.

# Years Total Log # > $100K # Years Total Log # > $100
CA Emp. Wages Wages Wages CA Emp. Wages Wages Wages

Panel C: Estimates of URM × Prop 209 by AI Quartile

Bottom -0.02 -1,095 -0.06 0.06 0.00 -1,964 -0.09 0.00
Quartile (0.11) (995) (0.03) (0.06) (0.06) (1,430) (0.04) (0.04)

Second 0.10 -1,824 -0.05 -0.11 0.03 -1,935 -0.04 -0.09
Quartile (0.10) (936) (0.03) (0.06) (0.05) (1,361) (0.03) (0.04)

Third 0.02 -1,595 -0.03 -0.14 0.02 -2,077 -0.02 -0.09
Quartile (0.09) (935) (0.02) (0.06) (0.05) (1,374) (0.03) (0.04)

Top -0.10 -1,468 -0.02 -0.06 -0.04 -2,024 -0.03 -0.05
Quartile (0.09) (1,041) (0.02) (0.06) (0.05) (1,553) (0.03) (0.04)

Panel D: Difference-in-Difference Coefficients (versus 1995)

URM 0.19 343 0.04 -0.00 0.11 -387 0.01 0.02
(0.04) (391) (0.01) (0.02) (0.02) (580) (0.01) (0.01)

URM × -0.22 -2,555 -0.08 -0.19 -0.11 -3,184 -0.07 -0.15
Prop 209 (0.05) (462) (0.01) (0.03) (0.02) (676) (0.01) (0.02)

Ȳ 7.05 61,107 10.69 1.39 3.07 79,331 10.90 0.95
Obs. 190,540 158,989 158,989 190,540 190,540 136,341 136,341 190,540

Note: This table shows that the labor market deterioration faced by URM UC applicants following Prop 209 was
somewhat-larger among low-AI applicants and somewhat-larger when estimated relative to the ‘94-95 baseline. This
table extends Table 2.4. Estimates of β0 and β‘98−99 from Equation 2.1, an OLS difference-in-difference model of
1996-1999 (or, in Panel D, 1994-1995 and 1998-1999) URM UC freshman California-resident applicants’ educational
outcomes compared to non-URM outcomes after the 1998 end of UC’s affirmative action program. Outcomes are
defined as number of years of non-zero California wages, average wages and log wages across years with non-
zero wages, and number of years with wages above $100,000, among the years 6-16 or 12-16 years after initial UC
application. Outcomes measured in the California Employment Development Department database, which includes
employment covered by California unemployment insurance. The years 1996-1997 are omitted in Panel D because
some universities preemptively curtailed their affirmative action programs in those years. Models include high school
fixed effects and the components of UC’s Academic Index (see footnote 47). Academic Index (AI) is defined in
footnote 25; models by AI quartile are estimated independently, with quartiles defined by the AI distribution of 96-
97 URM UC applicants. Annual wages CPI-adjusted to 2018 and winsorized at top and bottom 1 percent. Robust
standard errors in parentheses. Source: UC Corporate Student System and the California Employment Development
Department.
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Table A.29: 1994-2001 Change in UC Application Rates in Public CA High Schools by Ethnicity

All Campuses Most-Selective Campuses

Unweighted Weighted Unweighted Weighted

B
la

ck
1995 0.034 0.023 0.014 0.021 0.016 0.011

(0.021) (0.014) (0.014) (0.019) (0.013) (0.013)

1996 -0.024 -0.005 -0.012 -0.038 -0.011 -0.011
(0.021) (0.015) (0.015) (0.019) (0.013) (0.013)

1997 -0.011 -0.016 -0.020 -0.014 -0.025 -0.033
(0.022) (0.015) (0.015) (0.020) (0.014) (0.013)

1998 -0.013 -0.008 -0.014 -0.029 -0.031 -0.031
(0.021) (0.014) (0.014) (0.019) (0.013) (0.013)

1999 0.003 -0.024 -0.026 -0.034 -0.054 -0.053
(0.022) (0.016) (0.015) (0.020) (0.014) (0.013)

2000 -0.005 -0.013 -0.012 -0.018 -0.037 -0.035
(0.021) (0.015) (0.015) (0.019) (0.013) (0.013)

2001 -0.000 -0.019 -0.023 -0.025 -0.051 -0.051
(0.021) (0.016) (0.015) (0.019) (0.013) (0.013)

H
is

pa
ni

c

1995 0.006 -0.004 -0.004 0.002 -0.005 -0.009
(0.013) (0.011) (0.010) (0.012) (0.009) (0.009)

1996 -0.016 -0.020 -0.026 -0.011 -0.010 -0.012
(0.013) (0.011) (0.011) (0.012) (0.010) (0.009)

1997 -0.018 -0.033 -0.035 -0.014 -0.029 -0.036
(0.014) (0.011) (0.011) (0.013) (0.009) (0.009)

1998 -0.021 -0.026 -0.022 -0.031 -0.029 -0.027
(0.014) (0.011) (0.010) (0.012) (0.009) (0.009)

1999 -0.036 -0.040 -0.037 -0.051 -0.048 -0.046
(0.014) (0.011) (0.011) (0.012) (0.009) (0.009)

2000 -0.021 -0.028 -0.029 -0.037 -0.039 -0.036
(0.014) (0.011) (0.011) (0.013) (0.010) (0.009)

2001 -0.029 -0.026 -0.024 -0.027 -0.029 -0.029
(0.014) (0.012) (0.011) (0.012) (0.010) (0.010)

A
si

an

1995 0.046 0.018 0.018 0.023 0.002 0.009
(0.016) (0.012) (0.011) (0.014) (0.010) (0.010)

1996 0.010 0.022 0.021 0.019 0.025 0.026
(0.017) (0.012) (0.011) (0.014) (0.010) (0.010)

1997 0.018 0.021 0.020 0.029 0.014 0.015
(0.016) (0.012) (0.012) (0.014) (0.010) (0.010)

1998 0.036 0.025 0.024 0.035 0.009 0.015
(0.017) (0.012) (0.012) (0.015) (0.011) (0.010)

1999 0.032 0.016 0.009 0.023 -0.004 -0.000
(0.017) (0.012) (0.011) (0.015) (0.011) (0.010)

2000 0.042 0.017 0.025 0.045 0.004 0.015
(0.017) (0.012) (0.011) (0.015) (0.011) (0.010)

2001 0.043 0.026 0.029 0.052 0.024 0.025
(0.017) (0.012) (0.012) (0.015) (0.012) (0.011)

HS×Eth. X X X X X X
HS×Year X X X X X X
by Eth.×Gender X X

R2 0.72 0.90 0.82 0.72 0.90 0.83
Obs. 20,311 20,311 37,622 21,191 21,191 39,008

Note: This table provides the underlying regression statistics (estimated at the annual level) behind Figure 2.7, showing
that URM application rates following Prop 209 declined by between 4 and 6 percent of all UC-eligible URM public
high school graduates while Asian application rates remained unchanged after Prop 209 in the main ‘weighted’
specifications. Estimates of the change in the proportion of California public high school graduates by ethnicity who
applied to UC or to UC’s more-selective Berkeley and UCLA campuses, relative to 1994. Coefficients are estimates of
βe,y,a from different specifications Equation 2.2, with annual coefficients and across all AI bins. Columns 1 and 4 are
unweighted, columns 2 and 5 are weighted by the number of graduates in each high-school-year (main specification),
and columns 3 and 6 disaggregate observations by gender (as well as school-year-ethnicity) and weight by number of
graduates. Standard errors in parentheses clustered by high school. Source: UC Corporate Student System and the
California Department of Education.
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Table A.30: Difference-in-Difference Estimates of URM Students’ Post-1998 STEM Grades and
Persistence

SAT %tile GPA Persist. STEM Deg. SAT %tile GPA Persist. STEM Deg.

URM -19.0 -0.42 -11.2 -10.3 -7.3 -0.06 -2.0 0.1
(1.7) (0.06) (1.5) (0.6) (1.2) (0.05) (1.6) (0.6)

URM × 2.7 0.02 1.5 1.2 4.0 -0.01 0.6 -0.1
Prop 209 (1.4) (0.05) (1.7) (0.9) (0.9) (0.04) (1.5) (0.8)

AI Cov. And HS FE X X X X

Ȳ 48.9 2.59 59.3 26.0 48.9 2.59 59.3 26.0
# of Obs. 109,489 105,550 85,206 56,160 109,489 105,550 85,206 56,160

Note: This table shows that URM students across five UC campuses had lower STEM class rank, performance,
persistence, and STEM major completion before Prop 209, but that these latter three gaps are fully explained by the
students’ prior academic opportunities and preparation; ending affirmative action had no estimable impact on any of
them. Difference-in-difference WLS regression coefficient estimates of 1996-1999 UC enrollees’ introductory STEM
course rank, performance, or persistence, differencing across URM status and post-1998 following Equation 2.3. In
all but the ‘STEM Deg’ columns, each observation is a student-course pair in an introductory biology, chemistry,
physics, or computer science course (see Appendix A.8) taken within 2.5 years of matriculation, stacking over courses
and weighted evenly across observed students. SAT percentile is the fraction of other 1994-2002 freshman CA-
resident peers who have lower SAT scores than the student; persistence indicates completing the subsequent course
in the introductory STEM course sequence; and course grade is the grade points received in completed courses. In
the ‘STEM Degree’ models each observation is a student; the outcome indicates completing any UC STEM degree.
Academic preparation covariates include high school fixed effects, and the components of UC’s Academic Index (see
footnote 47); all models include cohort fixed effects. The sample is restricted to CA-resident freshmen students at
UCB, UCSB, UCD, UCSC, or UCR. UCSC is omitted from the GPA model because it did not mandate letter grades
in the period. Standard errors (in parentheses) are two-way clustered by student and course, or robust (‘STEM Deg’).
Source: UC Corporate Student System and UC-CHP Database (Bleemer, 2018b).
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Table A.31: Difference-in-Difference Estimates of URM UC Enrollees’ Post-1998 STEM
Outcomes

Chemistry Biology Physics Comp. Science

1 2 3 4 1 2 1 2 1 2 3

Grade in Course (if earned grade)

URM 0.06 -0.11 -0.22 -0.09 -0.02 -0.18 -0.06 0.04 -0.11 0.15 0.12
(0.02) (0.04) (0.05) (0.06) (0.04) (0.06) (0.04) (0.07) (0.09) (0.15) (0.15)

URM × -0.09 0.08 0.27 0.07 -0.02 0.09 -0.00 -0.18 -0.02 -0.29 0.01
Prop 209 (0.03) (0.05) (0.07) (0.08) (0.05) (0.08) (0.06) (0.09) (0.13) (0.22) (0.22)

Acad. Prep. X X X X X X X X X X X

Ȳ 2.53 2.54 2.49 2.65 2.46 2.65 2.73 2.91 2.57 2.61 2.89
Obs. 22,330 14,415 10,632 7,610 12,436 7,639 11,719 6,059 6,027 3,708 2,975

Indicator for Persistence to Next Course (%)

URM -1.7 5.1 -10.2 -4.1 -6.3 -8.4 4.1
(1.4) (1.7) (2.1) (1.9) (2.1) (3.5) (5.0)

URM × 1.5 -2.9 8.7 -0.9 5.1 -3.2 -2.9
Prop 209 (1.8) (2.3) (2.9) (2.5) (2.7) (4.6) (6.9)

Acad. Prep. X X X X X X X

Ȳ 59.9 64.6 68.1 54.0 48.5 55.3 68.7
Obs. 23,384 14,933 10,954 12,858 12,291 6,638 4,148

Note: This table shows course-specific regression coefficients mirroring the sixth and seventh columns of Table A.30,
showing that URM students at the five observed UC campuses tended to earn lower grades in most STEM courses
following Prop 209, with both positive and negative estimates on persistence across different courses. Difference-in-
difference OLS regression coefficient estimates across 1996-1999 CA-resident freshman UCB, UCSB, UCD, UCSC,
or UCR enrollees’ introductory STEM courses, differencing across URM status and post-1998 using Equation 2.3.
Persistence indicates completing the subsequent course in the introductory STEM course sequence; course grade
is the grade points received in completed courses. Academic covariates include high school fixed effects and the
components of UC’s Academic Index (see footnote 47). Standard errors (in parentheses) are robust. The specific
courses comprising each sequence can be seen in Appendix A.8; courses taken after the first 2.5 years of matriculation
are omitted. UCSC is omitted from the GPA model because it did not mandate letter grades in the period. Source: UC
Corporate Student System and UC-CHP Database (Bleemer, 2018b).
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Appendix B

Appendix to Chapter 3

B.1 The Impact of ELC on UC Admissions after 2012
In 2011, the University of California “expanded” its Eligibility in the Local Context program to the
top nine percent of graduates from each California high school. It also began calculating each high
school’s GPA thresholds at each percentile from first to ninth, instead of only the fourth percentile,
and each UC campus was directly provided with its applicants’ ELC percentiles for admissions
purposes.1 As a result, campuses were subsequently able to provide admissions advantages to
their choice of applicant GPA centile.

I analyze the post-2011 impact of ELC eligibility on UC admissions and enrollment by
employing the same regression discontinuity research design described in the main text to
estimate the effect of barely achieving each GPA centile threshold on admission and enrollment at
each UC campus. I follow Equation 3.2 and employ the conservative local linear running variable
specification with bias-corrected cluster-robust standard errors (Calonico et al., 2019).2 The data
cover UC admissions from 2012 to 2017 and are restricted to students from the bottom half of
California high schools by SAT (B50).

Between 2001 and 2011, the four Absorbing UC campuses provided admissions advantages
to the top four percent of B50 graduates from each high school of between 12 and 33 percentage
points, leading to 3-5 percentage point enrollment increases at Davis, San Diego, and Irvine (see
Table B.15). After 2012, the impact of ELC eligibility on campus admissions was far smaller.
Table B.1 shows that only UC’s least-selective Merced campus provided an estimable admissions
advantage to ELC-eligible students, with eligible students becoming about 10 percentage points
more likely to be admitted. There is further evidence that Irvine provided a small (4 p.p.) advantage
to students in the top four percent of their graduating class, and perhaps some evidence that San
Diego provided an advantage to applicants from the top 1 or 2 percent of their classes. In short,
ELC ceased providing meaningful admissions advantages to any campus other than UC Merced.

As a result of these inestimably small admissions advantages provided by ELC eligibility after
2012, ELC ceased substantially shifting near-threshold applicants’ UC enrollment decisions.

1UC also ceased calculating special “ELC GPA”s, instead relying on high-school-provided grade point averages,
and switched to only updating each schools’ centile thresholds every three years. It also ceased informing students of
their ELC eligibility prior to UC application.

2I calculate each of the annual centile thresholds for each high school using the same minimum-error method
described in the main text.
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Table B.2 replicates the structure of the previous table, replacing each outcome with
unconditional enrollment by centile and UC campus. It shows no evidence of any enrollment
increases at any UC campus among barely ELC-eligible applicants or applicants barely in the top
four percent of their graduating classes. There is not even a measurable enrollment increase at UC
Merced among ELC-eligible applicants, despite its small admissions advantage for ELC-eligible
applicants. Estimating Equation 3.2 for enrollment at any Absorbing UC campus between 2012
and 2017 results in a β̂ of 1.1 p.p. (s.e. 1.4 p.p.) — and a coefficient of 0.4 (s.e. 1.3) at the fourth
percentile threshold — rejecting any ELC-generated enrollment increase that is even a third of the
magnitude of the pre-2012 policy’s; in fact, the post-2011 policy appears no larger than one-tenth
the size of its predecessor in terms of spurring more-selective university enrollment.

As a result of these findings, I assume that ELC played no substantial role in post-2011 UC
admissions when constructing the structural model of university decision-making in Section 6
above.

Table B.1: The 2012-2017 Impact of ELC Percentile on Admission to Each UC Campus

UCB UCLA UCSB UCD UCSD UCI UCR UCSC UCM

First -4.19 -1.94 -0.83 -0.08 3.44 1.12 -1.66 -3.35 -2.60
Centile *

Second 1.36 0.32 -2.70 0.19 5.69 1.45 -1.85 1.04 0.85
Centile **

Third 1.44 2.30 -1.56 -1.58 0.59 -1.98 -1.75 2.80 0.96
Centile

Fourth -0.63 -0.30 0.72 1.48 -0.71 4.05 1.57 -0.65 -0.07
Centile †
Fifth 0.38 0.87 0.22 -0.26 3.78 0.62 -0.62 -0.07 2.04
Centile

Sixth -1.01 -0.07 0.35 -1.86 -1.84 -1.49 -1.00 0.74 -0.04
Centile

Seventh 0.51 1.45 0.42 2.57 2.04 0.10 0.71 0.21 1.11
Centile

Eighth -0.77 0.46 0.36 1.76 1.27 0.04 -1.22 -0.61 0.38
Centile

Ninth -0.19 0.44 1.00 0.89 0.44 1.18 -4.83 1.47 10.54
Centile * **

Note: This table shows that achieving post-2011 ELC eligibility or any of the first to ninth centiles of (within-high-
school) ELC GPA rank provided negligible admissions advantages at all UC campuses except for UC Merced, which
provided a small admissions advantage to ELC-eligible students. Estimated β̂ (treatment) coefficients on applicants’
likelihood of admission to each UC campus (conditional on application) at each 2012-2017 ELC GPA centile threshold
from local linear regression discontinuity estimation, with indicated statistical significance (from 0) estimated by
bias-corrected cluster-robust standard errors by school-year (Calonico et al., 2019) following Equation 3.2. Sample
restricted to applicants from the bottom half of California high schools by SAT (B50). Applicants from high schools
with ELC eligibility thresholds between 3.96 and 4.00 are omitted. Statistical significance: † 10 percent, * 5 percent,
** 1 percent. Source: UC Corporate Student System
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Table B.2: The 2012-2017 Impact of ELC Percentile on Enrollment at Each UC Campus

UCB UCLA UCSB UCD UCSD UCI UCR UCSC UCM

First -1.60 -0.83 2.25 1.46 2.18 -1.31 0.79 -0.16 -0.64
Centile **

Second -0.51 -1.14 0.66 -3.07 0.26 0.93 0.73 0.20 -0.58
Centile *

Third -0.35 0.68 -0.31 -1.27 -0.58 -0.31 0.21 -0.66 0.20
Centile

Fourth -0.02 -0.70 -0.13 0.41 -1.58 0.58 0.40 0.16 -0.02
Centile †
Fifth 0.67 0.26 -0.13 0.37 -0.33 -0.26 0.64 0.16 0.14
Centile

Sixth 0.29 0.06 -0.39 -2.40 0.51 1.20 -0.07 0.15 0.43
Centile †
Seventh 0.09 0.47 0.85 0.14 0.50 -0.47 0.51 0.17 0.60
Centile

Eighth -0.15 0.52 0.71 0.08 1.31 0.40 -0.16 -0.48 -0.71
Centile *

Ninth -0.10 0.00 -0.23 0.78 -0.04 0.51 -0.10 0.45 -0.03
Centile

Note: This table shows that achieving post-2011 ELC eligibility or any of the first to ninth centiles of (within-
high-school) ELC GPA rank caused no meaningful measurable changes in students’ likelihood of enrollment at any
UC campus, including UC Merced. Estimated β̂ (treatment) coefficients on applicants’ unconditional likelihood of
enrollment at each UC campus at each 2012-2017 ELC GPA centile threshold from local linear regression discontinuity
estimation, with indicated statistical significance (from 0) estimated by bias-corrected cluster-robust standard errors
by school-year (Calonico et al., 2019) following Equation 3.2. Sample restricted to applicants from the bottom half
of California high schools by SAT (B50). Applicants from high schools with ELC eligibility thresholds between 3.96
and 4.00 are omitted. Statistical significance: † 10 percent, * 5 percent, ** 1 percent. Source: UC Corporate Student
System

B.2 Robustness of Regression Discontinuity Design
This appendix discusses several tests of the key smoothness assumption justifying the regression
discontinuity design presented in the main text.

B.2.1 Sample Selection Bias
The most common sample selection concern in regression discontinuity settings arises from
individuals observing their running variable value and changing their position to end up across the
threshold. In the present setting, such “cheating” would involve high school students inflating
their grades — for example, by studying harder for certain exams — in order to end up above
their school’s ELC eligibility threshold. However, ELC’s centrally-organized policy structure
makes such behavior impossible. Thresholds were recalculated every year using special
centrally-calculated ELC GPAs, so students would have been unable to know their own or their
peers’ UC-calculated ELC GPA ranks prior to being informed of their eligibility. Indeed, even
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students who strategically switched high schools in order to achieve ELC eligibility (as some
students appear to have done in Texas (Cullen, Long and Reback, 2013)) could not have known
where they would fall on the ELC GPA running variable, for which reason their presence is not a
threat to the research design as presented.

However, the observed data do not contain every ELC-eligible or -ineligible California high
school student, but are instead limited to students who apply to at least one of the nine
undergraduate UC campuses. There is good reason to think that all students within 0.3 GPA
points of their high schools’ thresholds — the relevant sample in this study — would apply to at
least one UC campus whether or not they were ELC eligible. These are students in the top ∼5%
of their high school classes, and by 2000 over 14 percent of the average California high school’s
graduates applied to at least one UC campus. Even bottom-quartile schools by SAT score had an
average UC application rate of 9.4 percent, and 9.5 percent of the average school’s URM
graduates applied to UC.

Moreover, nearly all of the sample’s students would be virtually guaranteed to be admitted
to several highly-regarded UC campuses. For example, Appendix Table B.15 shows that barely
ELC-ineligible students had admissions rates of 91.9 percent at UC Santa Barbara, 98.0 percent at
Santa Cruz, and 96.6 percent at Riverside, which had U.S. News & World Report national rankings
of 44th, 79th, and 96th in 2008. Even at bottom-quartile (B25) high schools, the admissions rates
would be 77.3 percent, 93.0 percent, and 94.1 percent; among URM students, 83.5 percent at Santa
Barbara, 94.6 percent at Santa Cruz, and 93.1 percent at Riverside. There are no public research
universities in California outside the UC system; students’ next-best alternative paying in-state
tuition (which in 2008 was $6,200, a small fraction of the cost of comparable alternatives) would
be local comprehensive universities in the California State University system.

Also, though ELC-eligible students received letters notifying them that they would be
guaranteed admission to at least one UC campus if they applied, 94.5 percent of ELC-ineligible
students within 0.3 ELC GPA points of their high schools’ thresholds received similar letters
notifying them that they too would likely be guaranteed admission to at least one UC campus
under UC’s “Eligibility in the Statewide Context” program, which guaranteed admission to
students in the top 12.5% of California high school graduates by a publicly-available linear
combination of GPA and SAT score.3 There is thus little reason to expect that the ELC eligibility
letter would cause barely above-threshold students to become meaningfully more likely to apply
to UC relative to below-threshold students.

However, a peculiarity of the University of California’s ELC eligibility threshold-setting rule
interferes the clearest test of the presence of selection into application, the McCrary (2008) test
of distributional discontinuity at the eligibility boundary. Because ELC eligibility was determined
using ELC GPAs rounded to the nearest hundredth, any students who ‘tied’ for the 4th percentile
GPA were also deemed ELC-eligible. Moreover, because the distribution of ELC GPAs is highly
lumpy — see Panel (a) in Figure B.1 — popular ELC GPAs were likely to be chosen as the fourth-
percentile threshold, which algorithmically generates a particular ‘bunching’ pattern immediately
above the ELC eligibility threshold. The distribution of thresholds across high schools is shown in
Panel (b) of Figure B.1. Note that these figures are not histograms, but complete reflections of the
counts of the discrete running variable.4

3The letter to ELC-ineligible students was somewhat speculative, because UC administrators could not yet observe
the students’ SAT scores.

4In the 1.3% of high-school-years when the estimated ELC eligibility thresholds are not in these discrete bins, as
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Figure B.1: Distribution of ELC GPAs, Overall and Around High School Thresholds

(a) Applicant ELC GPAs (b) High School ELC Thresholds

(c) Applicant Running Variable, B50 (d) Applicant Running Variable, B25

Note: This figure shows that the uneven discrete nature of the ELC GPA running variable combines with UC’s GPA
threshold selection rule (providing ELC eligibility to GPA ‘ties’) to cause a discrete mass of applicants with running
variables exactly 0.02 GPA points above their high schools’ thresholds, but there is no other evidence of applicants
bunching above the eligibility threshold. (a) Discrete distribution of observed ELC GPAs by hundredth across years.
ELC GPAs only observed for California high school seniors in the top 10 percent of their class who did not allow
their ELC-participating high school to share their transcript with UC, and who applied to at least one UC campus. (b)
Discrete distribution of high schools’ estimated ELC eligibility thresholds (see the Data section for estimation details).
(c and d) Discrete distribution of the running variable (difference between high school threshold and own ELC GPA),
within 0.3 GPA of the threshold, for applicants from the bottom half and quartile of California high schools by SAT
(see Footnote 28 for definition of SAT quartiles). Source: UC Corporate Student System.

As a result, Panel (c) of Figure B.1 shows a discrete mass of B50 applicants exactly 0.02 GPA
points above the eligibility threshold. There is no evidence of bunching at any other level of the
running variable, nor evidence of a decline in the number of applicants below the threshold (a
tell-tale pattern of selection); indeed, there appears to be slightly elevated numbers of applicants
just below the threshold as well, another artifact of the threshold determination rule (which usually
selects the mean between the lowest eligible ELC GPA and the highest ineligible ELC GPA).
Panel (d) shows an even more extreme pattern among B25 applicants, since those schools tend to
have fewer honors- and AP-level courses available and thus coarser grade point averages. The 0.02
mass point largely reflects schools with minimum eligible ELC GPAs at exactly 3.94, 4.0, and 4.06
(with the next-highest GPA exactly 0.04 points lower). There is no other evidence of distributional
discontinuity in the sample.

While both of these distributions fail the McCrary test, it appears unlikely that they do so as a
result of selection into UC application among ELC-eligible students, which would generate a more
distributed pattern of increased applications just above high schools’ thresholds. Sample selection

a result of noise in eligibility reporting around the threshold discussed in the Data section above, I round to the nearest
0.005 for Figure B.1.
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Table B.3: Baseline Balance Versus Post-2011 Applicants within 0.1 GPA Points of 4th Percentile
Threshold

Pre-Treatment Dependent Variable Predicted Values2

Max. Parent Log Fam. Missing SAT Graduation California
Female (%) URM (%) Ed. (Index)1 Income Inc. (%) Score Rate (%) Earnings ($)

All 0.55 -0.06 -0.12 -0.072 -1.13 -8.80 -0.32 86.44
(1.92) (1.47) (0.07) (0.055) (1.36) (6.36) (0.29) (411)

B50 0.84 1.26 -0.01 -0.030 -0.11 -15.41 -0.22 160
(3.21) (2.72) (0.14) (0.088) (1.75) (12.04) (0.52) (566)

B25 3.24 2.50 -0.34 0.051 -3.16 -35.06 -0.88 -75.66
(4.35) (3.73) (0.20) (0.123) (2.00) (17.10) (0.70) (706)

Note: Reported coefficients are from difference-in-difference balance estimates of permanent applicant characteristics
on an indicator for pre-2012 and above the 4th percentile ELC eligibility threshold, among 2010-2013 UC applicants
within 0.1 ELC GPA points of their high schools’ ELC eligibility threshold. Sample covers all students and applicants
and applicants from the bottom half (B50) or quartile (B25) of California high schools by SAT. Covariates include
interactions between a pre-2012 indicator, a 4th percentile indicator, and the running variable (applicants’ ELC
GPA distance from their high school’s threshold), along with high school and year fixed effects. Standard errors
(in parentheses) are clustered by school-year. 1Integer index of reported maximum parental education (across two
parents), from 1 (no high school) to 7 (graduate degree). 2Dependent variable is the predicted values from an OLS
regression (across the full sample of 1995-2013 UC freshman California-resident applicants, excluding the study’s
primary sample) of either five-year NSC graduation or 6-to-8 year average California covered wages (see text for
definitions) on gender by ethnicity indicators, maximum parental education indicators (7 categories), family income,
missing income indicator, SAT score, and year indicators. UC Corporate Student System.

bias would also likely lead to different observable student characteristics across the eligibility
threshold, of which no evidence can be seen in the baseline coefficient estimates presented in
Table B.14 despite substantial power and highly-detailed observed demographics.

Difference-in-Difference Comparison with Comparable Post-2011 Applicants

I conduct one further test of selection into application, investigating whether the characteristics of
UC applicants in the top four percent of the graduating classes change after the ELC program’s
admissions advantages ceased in 2012 (see Appendix B.1). While UC continued to identify the
fourth percentile of applicants from each school-year, though it made a number of changes after
2011: (a) eligibility was determined using grades submitted by applicants on their UC applications
instead of being calculated from high school records, including ninth grade grades; (b) applicants
were no longer informed by letter of their eligibility; and (c) GPAs were no longer rounded to
the nearest hundredth, and thresholds were only calculated every three years.5 Nevertheless, if
being notified of ELC eligibility encouraged UC application, then the identification of a group of
fourth-percentile applicants who did not receive notification suggests a test of whether the informed
applicants differ from the non-informed on detailed observables. I restrict the sample to 2010-2013
applicants within 0.1 ELC GPA points of their schools’ fourth percentile threshold and estimate
difference-in-difference regressions of the form:

5Because of the change in GPA and threshold calculations implemented by policy-makers, the distributions of
students around the ELC eligibility thresholds also changes somewhat, prohibiting direct tests of running-variable
distributional similarity.
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Yiy = αhi + γy + β1Abovei + β2AboveiPrey + γ1yGPAiyAbovei + γ2yGPAiy(1−Abovei) + εiy
(B.1)

where Yiy is an observed permanent characteristic of individual i who applied to UC in y, Abovei
indicates having an ELC GPA above the fourth percentile threshold, Prey indicates
y ∈ (2010, 2011), and GPAiy is that year’s ELC GPA.6 Standard errors are clustered by
school-year.

Table B.3 shows estimates of Equation B.1’s β2 for the highly detailed set of observable
characteristics described above. Estimates are shown for the full sample and for B50 and B25
applicants. Despite substantial precision (e.g. standard errors of 2 percentage points for gender
and 6 points for the SAT), the only estimate with a t-statistic greater than 1.5 suggests that under
the ELC program, above-threshold B25 applicants had somewhat-lower average SAT scores by
about 35 points, or 0.15 standard deviations. As in the main text, I construct predicted measures
of degree attainment and early-career earnings and find that the estimates of predicted income are
precisely estimated 0’s, while those of college graduation suggest slight negative selection, with
pre-2012 above-threshold B25 applicants having lower expected likelihoods of graduation by 0.9
(s.e. 0.7) percentage points. These evidence suggest that the composition of near-threshold UC
applicants did not change after ELC’s letter-sending and admissions advantages ceased.

The first panel of Figure B.2 estimates Equation B.1 annually relative to 2012, adding the
covariates used in the main analysis: gender-ethnicity indicators and a quadratic of SAT score. It
suggests that there is little evidence of a meaningful change in near-threshold applicant
characteristics around the ELC eligibility threshold, providing important evidence against sample
selection driving the present study’s main reduced-form findings. Indeed, the small degree of
selection appears to be negative selection, suggesting that those estimates may be slightly
conservative.

Panel B provides an additional robustness check on the study’s findings by replacing Yiy in
Equation B.1 with indicators for enrolling at an Absorbing UC campus and five-year degree
attainment. It shows that despite no evidence of differential selection, above-threshold applicants
prior to 2012 were significantly and substantially more likely than their post-2011 peers to enroll
at Absorbing campuses and earn college degrees (though the latter estimates are somewhat noisy).
The estimated coefficients are slightly larger than the regression discontinuity results, though the
two are statistically indistinguishable. In short, these difference-in-difference findings provide
additional support for a causal interpretation of the study’s main reduced-form findings.

B.2.2 Alternative Discontinuities in the Running Variable
The distribution of ELC GPAs shown in Figure B.1 also suggests a second possible threat to the
research design resulting from the apparent non-continuity of the running variable as a measure of
student preparedness. The large mass point at 4.00 GPA, for example, could indicate that students
at that GPA level are qualitatively different academic performers than those with slightly lower
GPAs, perhaps because GPAs above 4.00 are effectively top-censored for students not taking
honors-level classes (since even the best students are unable to earn more than 4.00 GPA points in

6I allow the γ terms to differ before and after 2011 in order to account for the 2012 change in GPA calculation.
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Figure B.2: Difference-in-Difference Estimates after 2011 for Near-Threshold B50 Applicants

Panel A: Predicted Outcomes
(a) Predicted Grad. (b) Predicted Post-Grad. Wage

Panel B: Actual Outcomes
(c) Enroll at Abs. UC Campus (d) Five-Year Degree Attainment

Note: This table replicates the main reduced-form findings in the study in a difference-in-difference design following
the end of admissions advantages for top-four-percent applicants after 2011, showing that above-threshold B50
applicants were of similar socioeconomic composition but faced declines in Absorbing UC campus enrollment and
degree attainment as would have been anticipated by the regression-discontinuity estimates. Difference-in-difference
estimates of applicant characteristics and outcomes on annual indicators interacted with an indicator for being above
the 4th percentile ELC eligibility threshold, among 2008-2014 UC applicants within 0.1 ELC GPA points of their high
schools’ ELC eligibility threshold. Sample restricted to applicants from the bottom half of California high schools
by SAT (B50). Covariates include interactions between pre-2012 indicator, a 4th percentile indicator, and the running
variable (applicants’ ELC GPA distance from their high school’s threshold), along with high school and year fixed
effects, gender-ethnicity indicators, and a quadratic in SAT score. Predicted graduation rate and wages from an OLS
regression (across the full sample of 1995-2013 UC freshman California-resident applicants, excluding the study’s
primary sample) of either five-year NSC graduation or 6-to-8 year average California covered wages on gender by
ethnicity indicators, maximum parental education indicators (7 categories), family income, missing income indicator,
SAT score, and year indicators. Absorbing UC Campus enrollment includes San Diego, Davis, Irvine, and Santa
Barbara, and is measured from National Student Clearinghouse, as is whether the student has earned a college degree
within five years of high school graduation. Degree attainment for the 2014 cohort is not yet observed. Standard errors
(in parentheses) are clustered by school-year. Source: UC Corporate Student System, National Student Clearinghouse,
and the California Employment Development Department (Bleemer, 2018c).

such courses). Similar (though lesser) concerns may be present at other GPA mass points.
Because UC’s ELC eligibility threshold-setting rule tended to set thresholds just below these mass
points — since greater mass at a given GPA leads to a greater likelihood of the fourth-percentile
student having that GPA — these qualitative differences could positively bias the study’s main
reduced-form results: GPA mass points tend to be censored from above, suggesting that students
at mass points are higher-performing than their GPA evinces.
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These arguments justify the removal of high schools with ELC eligibility thresholds at 4.00,
which I omit from all reduced-form analysis.7 Having removed those schools, the clearest test of
the presence of running variable discontinuities at the eligibility threshold is the baseline
estimates presented in Table B.14, along with the covariate comparisons with post-2011
applicants (for whom mechanical threshold-bunching no longer occurred) presented in Appendix
Table B.3. These estimates suggest the absence of positive selection just above the eligibility
threshold on detailed demographic and socioeconomic characteristics.

The binned scatterplots in Figure 3.2 provide additional evidence that running variable
discontinuities are not biasing the estimates; a discontinuity just above the threshold would lead
the fit line to spike upwards approaching the threshold from above, but there is no such pattern in
any of the figures.

I further test the continuity of applicant preparedness along the running variable at the 4.00
mass point using the test presented by Caetano (2015), directly estimating the degree of mass-
point non-continuity by comparing conditional regression estimates at the mass point to those of
local linear regressions around the mass point. The tests include the same covariates as in Equation
3.2, with third-order polynomials in distance to the ELC eligibility threshold, and provide bounds
on the bias induced by the running variable’s non-continuities. Bandwidths are optimally chosen
following Calonico, Cattaneo and Titiunik (2014) as in the local linear estimates presented above,
and range from 0.07 to 0.09 GPA points.

4.00 is chosen because it is almost-certainly the mass point with the largest type-discontinuity
in the running variable; students with 4.00 GPAs might have been able to perform better if grades
above A were available to be earned, and thus may be qualitatively different from students just
below that GPA. As a result, the generated estimates are not only upper bounds for the possible
degree of bias caused by type discontinuities at the eligibility threshold, but would be expected to
be far higher than the true observed bias, since high schools with 4.00 eligibility thresholds are
omitted from the analysis and most high schools’ thresholds are not located at similar
discontinuities.

Table B.4 shows the resulting estimates. Unsurprisingly, 4.00 students in the bottom SAT
quartile of high schools have significantly upwardly biased SAT scores and predicted likelihoods
of graduation, though their expected postgraduate wages are substantially negatively biased. These
estimates suggest that if type-discontinuities were driving the observed results, we would expect
to observe them in discontinuous student characteristics at the eligibility threshold, though no such
differences are observed (see Table B.14).

The remaining columns suggest the possibility for modest bias in enrollment behavior,
graduation rate, and early-career California wages, the latter of which appears to be negatively
biased. The most-troubling of these results is the possible two percentage-point upward bias in
five-year graduation rates. However, consider a worst-case scenario in which half of students’
high schools’ eligibility thresholds were set at type discontinuities just as biased as the 4.00 bias
(an extremely unlikely scenario). In this case, we would expect a 1 percentage point upward bias
in our estimate of the impact of ELC eligibility on graduation. In fact, Table B.23 shows that the
comparable local-linear estimate of the increase in five-year graduation rate for bottom-quartile
applicants is 6.29 p.p. This implies a maximum possible upward bias of 16 percent. In fact, there

7In particular, I omit high schools with estimated ELC eligibility thresholds between 3.96 and 4.00. Estimates are
highly similar — with no important changes to estimate magnitude or significance — when those schools are included.
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Table B.4: Caetano (2015) Endogeneity Test Coefficients at 4.0 ELC GPA

Predicted Values Abs. UC Five-Year Grad. In Early-Career
SAT Grad. Rate Earnings Enr. Grad. Rate Five Years CA Earnings

All -9.3 -0.01 -17.68 -0.39 0.39 1.42 -2,085
(0.66) (0.01) (31.99) (0.19) (0.08) (0.15) (419)

B25 12.24 0.06 -243.32 0.52 1.05 2.05 -2,336
(1.47) (0.02) (53.12) (0.40) (0.19) (0.37) (764)

Bandwidth 0.09 0.09 0.09 0.08 0.07 0.09 0.07

Note: This table shows the potential for small upward biases in reduced-form estimates of barely-eligible applicants’
degree attainment resulting from a possible potential-outcome discontinuity in applicants’ GPA running variable at
exactly 4.0, though as the text explains, the actual biases resulting from such discontinuities is far smaller than those
shown in this table (which assume that every ELC eligibility threshold is set at exactly 4.0, whereas in fact all such
applicants are removed from the main estimation sample). Reported coefficients are endogeneity test coefficients
estimated by two-step procedure described in Caetano (2015) around a 4.0 ELC GPA on various outcomes defined in
previous tables, with same controls as main specification (indicator for above ELC eligibility threshold, polynomial
in distance from threshold, polynomial in SAT, gender/URM indicators, and high school and year FEs), for the full
sample and for students from the bottom SAT quartile of high schools. Coefficients are normally distributed with
standard errors in parentheses; statistical significance rejects the null hypothesis that the outcome is conditionally
continuous at GPA 4.0. Coefficients can be interpreted as the bias induced by endogeneity in the running variable at
4.0. Bandwidths are optimally chosen following Calonico, Cattaneo and Titiunik (2014), and range from 0.07 to 0.09
GPA points. B25 applicants are those from the bottom quartile of high schools by SAT score. Source: UC Corporate
Student System, National Student Clearinghouse, and CA Employment Development Department.

is good reason to think that the bias is substantially smaller:

1. Bias of such magnitude would be observable in the detailed characteristics observed for each
applicant, but there is no evidence of positive selection on observables (if anything, there is
slight evidence of negative selection on SAT score).

2. Most type discontinuities are likely to impose less bias than the discontinuity at 4.00, which
is omitted from the sample.

3. Most high schools’ thresholds are likely not set at meaningfully discontinuous points in the
running variable.

As a result of these estimates and others described in the text, I report uncorrected estimates
and assume that type discontinuities play a very minor (if any) role in driving this study’s results.

B.3 National Student Clearinghouse Data Quality
The National Student Clearinghouse’s StudentTracker database contains enrollment and
graduation records for nearly all two- and four-year postsecondary institutions in the United
States. A nonprofit and nongovernmental organization founded in 1993, NSC collects
postsecondary student records and provides degree verification and other services back to
contributing universities. Participating universities, including the University of California, are
permitted to match their applicants and enrollees by name and date of birth (using NSC’s
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proprietary match algorithm) in order to observe those students’ enrollment and degrees at other
institutions.8

Individual students’ enrollment or graduation records may fail to match in the NSC for three
reasons: (1) because the student’s institution does not report records to NSC; (2) because the
student has blocked their record from being shared through NSC; or (3) the student’s name and
date of birth fail to match using the NSC’s match algorithm. NSC reports that about 4 percent of
records are censored due to student- or institution-requested blocks for privacy concerns (National
Student Clearinghouse Research Center, 2017), and that the only public university in California
with censorship greater than 10 percent is UC Berkeley. Dynarski, Hemelt and Hyman (2015)
compare aggregate NSC enrollment to aggregate enrollment reported in the federal Integrated
Postsecondary Education Data System (IPEDS) and find that enrollment coverage has been
greater than 90 percent in California since at least 2003, the first year of data used in the present
study, and is near-comprehensive for public institutions. Coverage is shown to generally be
poorest at for-profit institutions.

I directly test the quality of NSC coverage for the institutions at which UC applicants tend to
enroll in two ways. Using the complete linked UC-NSC database since 1994, I measure
institution’s NSC participation by identifying the first recorded year in which each institution
appears in the NSC records. Table B.5 presents a complete list of California public four-year
universities along with all private California four-year universities with at least 500 enrolled
students in 1998. The largest institution that still fails to report enrollment to NSC in 2003 was
the private 4,400-student University of San Diego, but all California public universities were
reporting both enrollment and degree attainment by that year. The largest university to begin
reporting degree attainment after 2007, the first year of degree receipience for the first cohort in
the present study, was the 648-student San Diego Christian College.

Table B.6 shows similar statistics for the California Community Colleges. As with the private
universities, many community colleges did not begin reporting enrollment until the late 1990s or
early 2000s, though they reported degree attainment in earlier years. However, by 2003 nearly-all
extant schools were reporting enrollment.

Unfortunately, because I only observe enrollment for UC applicants, I cannot directly measure
the proportion of enrollees at each California university that appear in the NSC. However, I can
estimate NSC’s data quality for the UC campuses themselves. I first focus on degree attainment,
measuring the proportion of UC graduates by campus who are observed as such in the NSC records.
The most likely reason for match failure is students’ decision to censor their records, as permitted
under federal FERPA guidelines, though universities may also choose to censor student records.
Table B.7 presents type 2 error rates (that is, false negative rates) by campus and application year.
Censorship rates are persistently highest at UCLA and UC Riverside, which had NSC error rates
around 5-10 percent annually between 1995 and 2012. The only school to face large non-reporting
bias is UC Santa Cruz, which had error rates between 50 and 80 percent from 1995 until the 2000
entering class, suggesting substantial censorship of degrees from that campus. Interestingly, it does
not appear that coverage rates are improving over time — indeed, several campuses’ error rates
were higher in 2012 than in 1995 — nor does it appear that more-selective campuses systematically
have lower error rates than less-selective campuses. In general, however, failure rates are very low

8For additional documentation, see NSC’s “StudentTracker for Systems of Institutions User Manual”:
https://studentclearinghouse.info/onestop/wp-content/uploads/STSOI_User_Manual.pdf.
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Table B.5: Maximum Years that Four-Year Universities in California Began Contributing to
National Student Clearinghouse

1998 In NSC Data 1998 In NSC Data
Institution Enroll. Enroll. Grad. Univ. Enroll. Enroll. Grad.

University of California

UC Los Angeles 24,101 1995 1995 UC Irvine 14,336 1995 1995
UC Berkeley 22,259 1995 1996 UC Santa Cruz 9,921 1995 1996
UC Davis 19,258 1995 1995 UC Riverside 9,125 2000 1996
UC Santa Barbara 17,048 1996 1995 UC Merced (2005) 2008 2006
UC San Diego 15,818 1995 1995

California State University

San Diego State Univ. 25,773 1995 1996 CSU San Bernardino 9,636 1995 1996
CSU Long Beach 22,868 1995 1996 CSU East Bay 9,626 1996 1996
CSU Fullerton 21,279 1996 1997 CSU Dominguez Hills 7,834 1996 1996
San Francisco State Univ. 21,044 1994 1995 Humboldt State Univ. 6,534 1995 1997
CSU Northridge 20,955 1995 1995 Sonoma State Univ. 5,856 1998 1996
San Jose State Univ. 20,681 1995 1996 CSU Stanislaus 4,992 1997 1995
CSU Sacramento 18,702 1995 1995 CSU Bakersfield 4,223 2003 1996
CA State Poly. Univ. 15,351 1996 1995 CSU San Marcos 4,103 1995 1996
CA Poly. State Univ. 15,347 1995 1996 CSU Monterey Bay 1,716 1995 1997
CSU Fresno 14,518 1995 1996 CA State Univ. Maritime Academy 436 2006 1998
CSU Los Angeles 13,935 2003 1996 CSU Channel Islands (2002) 2006 2003
CSU Chico 13,196 1996 1997

Private Universities in California (Undergraduate enrollment ≥ 500 in 1998)

Univ. of Southern CA 15,218 1995 1996 Golden Gate Univ. 1,235 1998 1996
Stanford Univ. 6,391 1994 1996 Vanguard Univ. of Southern CA 1,180 2003 1996
Univ. of San Francisco 4,570 1995 1996 La Sierra Univ. 1,148 1997 1997
Univ. of San Diego 4,439 2007 1997 Loma Linda Univ. 1,137 1995 1998
National Univ. 4,393 1995 1997 Claremont McKenna College 1,024 1996 1996
Loyola Marymount Univ. 4,327 1995 1996 Simpson Univ. 1,021 1996 2003
Santa Clara Univ. 4,311 1999 1997 CA College of the Arts 1,004 2006 1997
Academy of Art Univ. 4,023 1997 1998 Notre Dame de Namur Univ. 983 1997 1996
Saint Mary’s College of CA 3,234 1996 1997 The Master’s Univ. and Seminary 959 1997 1999
Pepperdine Univ. 3,233 1995 1996 Dominican Univ. of CA 946 2001 1998
Univ. of La Verne 3,168 2005 1995 Woodbury Univ. 931 1996 1998
Univ. of the Pacific 2,802 1996 1996 Marymount CA Univ. 923 1998 1995
Azusa Pacific Univ. 2,795 1996 1996 CA Institute of Technology 901 2004 1997
Univ. of Redlands 2,737 1997 1997 Pitzer College 880 1997 1997
Chapman Univ. 2,486 2001 1996 CA Institute of the Arts 777 1998 1997
Biola Univ. 2,341 1996 1997 Scripps College 776 1996 1997
Point Loma Nazarene Univ. 2,301 1996 1997 Otis College of Art and Design 763 2004 1998
Brandman Univ. 2,125 2011 2003 Fresno Pacific Univ. 754 1997 1997
CA Lutheran Univ. 1,750 1996 1996 Mills College 741 1996 1997
Mount Saint Mary’s Univ. 1,687 1996 1996 Hope International Univ. 706 1998 1997
CA Baptist Univ. 1,653 1995 1997 Harvey Mudd College 705 1996 1997
Pomona College 1,571 1996 1995 Concordia Univ. 694 1996 1999
Pacific Union College 1,554 1997 1997 San Diego Christian College 648 2015 2015
Occidental College 1,529 1999 1995 Musicians Institute 559 2011 2011
Art Center College of Design 1,308 2008 1998 Ashford Univ. 555 2000 2001
Westmont College 1,304 1997 1998 Menlo College 534 2015 1997
Whittier College 1,279 1995 1996

Note: This table shows that all public California universities were reporting enrollment and degree attainment
throughout the ELC study period. The largest private California university that did not report degree attainment
by the beginning of the study period was the 648-student San Diego Christian College. For all four-year public and
private (with more than 500 students in 1998) higher education institutions in California, the earliest year in which
any 1995-2016 applicant to any UC campus was recorded in the National Student Clearinghouse as being enrolled at
that university or having graduated from that university. Years that might interfere with inference in a study of 1996
(or later) UC enrollees — that is, any years that suggest uniformly missing enrollment records after 1997 or missing
graduation records after or in 1996+4=2000 — are in bold. Source: UC Corporate Student System and National
Student Clearinghouse

at most campuses for the 2003-2011 cohorts.
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Finally, I conduct a similar exercise for STEM major choice, conditional on being recorded as
having earned a degree in both the NSC and UC records. Students are defined as studying STEM
if their stated major is included on a federally designated list of 278 “fields involving research,
innovation, or development of new technologies using engineering, mathematics, computer
science, or natural sciences (including physical, biological, and agricultural sciences)” (U.S.
Department of Homeland Security, 2016). While six-digit CIP codes are available for UC majors,
permitting direct matching to the STEM list, the frequent absence of CIP codes in the NSC
required hand-coding of each observed major in the NSC dataset (omitting majors ever earned by
fewer than 20 UC applicants). A complete crosswalk is available from the author.

Table B.8 shows the Type 1 and Type 2 error rates in STEM major attainment for each UC
graduate by campus and application year. Type 1 errors tend to occur because the UC campus
records a major in NSC that was not recorded as STEM, but its CIP code recorded by UC is
designated as STEM; these cases are very rare at most campuses. Type 2 errors tend to occur
because either no major is recorded in the NSC file or a different major is recorded; this appears
most prevalent among double-majors, with sometimes only a single major reported to NSC
(although NSC allows multiple fields for major reporting). UC Berkeley has remarkably low error
rates, never higher than 0.4 percent, while most campuses have Type 2 error rates around 1-5
percent. As in the case of degrees, these very low error rates serve to increase confidence in the
reliability of the major-specific estimates reported in the study.

B.4 NSC-Estimated Five-Year Graduation Rates
This appendix describes the novel institutional five-year graduation rate and average SAT score
statistics produced to index colleges’ and universities’ selectivity in this study. As discussed in the
text, these statistics are calculated for all two- and four-year postsecondary institutions at which at
least 100 UC applicants first enroll, making them a much more useful proxy than many alternative
selectivity statistics that are unavailable for community colleges (or fail to account for many
students’ transferring from those colleges after two years). Specifically, I restrict the sample to
2001-2011 California-resident freshman UC applicants outside this study’s primary sample —
that is, applicants without ELC GPAs or with ELC GPAs more than 0.3 GPA points from their
high schools’ eligibility threshold — which leaves 618,116 applicants. I assign each applicant to
their institution of first enrollment using NSC enrollment records from July of their year of high
school graduation to six years later.9. I then define each institution’s average SAT score as the
average SAT score of assigned applicants, and its five-year graduation rate as the percent of
assigned applicants who are reported to have earned a degree in the NSC within five years of high
school graduation. 3.0 percent of applicants in this study’s sample do not have any enrollment
institution reported within six years of high school graduation, and another 3.0 percent enroll at
institutions that fewer than 100 applicants from the full sample had enrolled at in the sample
period, for which reason they are omitted (since the university characteristics are noisily
estimated).

This appendix contains five tables, covering UC, CSU, California community colleges, and
the top and bottom half of private (and out-of-state) universities. Each table presents each in-

9If an applicant enrolls at a two-year institution but has changed enrollment to a four-year institution within six
months, I assign them to the latter institution
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sample institution’s ‘NSC-measured’ graduation rate and average SAT score, along with the same
measures from 2008 IPEDS where available. These rates differ for three primary reasons: the UC
applicant pool is positively selected relative to other California public institutions (though perhaps
negatively selected at some highly-selective private institutions), the NSC-measured graduation
rates include degrees obtained at other institutions (following transfer), and they do not include
degrees censored from NSC by the institutions. The most notable feature of these new statistics is
their inclusion of community colleges, which have NSC-measured graduation rates ranging from
6.6 to over 40 percent.

Table B.9 shows the estimated selectivity statistics for the nine undergraduate University of
California campuses, ordered by their NSC-calculated graduation rates. The third and fourth
columns show 2008 IPEDS measures of the campuses’ average SAT score and five-year
graduation rates. The most-selective UC campuses had published graduation rates over 80 percent
and average SAT scores over 1900 on the 2400 scale, more than a standard deviation above the
median SAT test-taker. The least-selective UC campuses have substantially lower SAT scores and
graduation rates, with UC Riverside and Merced each reporting average SAT scores of 1568.10

These statistics are relatively closely mirrored in the NSC-calculated statistics shown in the
first and second columns. Average SAT scores run from 1942 at UC Berkeley down to 1548 at UC
Merced, and graduation rates run from 87.0 to 64.9. The Absorbing UC campuses have five-year
graduation rates between 74 and 79 percent.

Table B.10 shows an even greater degree of variation variation in average SAT scores and
graduation rates among the California State Universities, California’s public comprehensive
university system. According to IPEDS, the two institutions with the strongest statistics are the
CSU Maritime Academy and California Polytechnic State University in San Luis Obispo (Cal
Poly), with average SAT scores between 1575 and 1780 and five-year graduation rates above 55
percent. That graduation rate is on par with the UC Riverside and UC Merced campuses, though
Cal Poly’s SAT scores are closer to those of the middle UC campuses. Meanwhile, the CSU Los
Angeles and Dominguez Hills campuses have far lower measured statistics, with average SAT
scores under 1300 and five-year graduation rates around 25 percent.

The institutional quality measures estimated from the UC-applicant NSC database are generally
higher than those available from IPEDS, likely as a result of selection into UC application: the
CSU enrollees who had also chosen to apply to at least one University of California campus tend
to have higher SAT scores and were otherwise more likely to ultimately earn a college degree.
Graduation rates are also higher because of high transfer rates between and out of the CSU system,
such that more students who first enroll at a given institution end up earning a college degree than
the number of students who earn degrees from that particular university. Average SAT scores are
only modestly higher, by between 20 and 120 points, but graduation rates exceed IPEDS-reported
rates by as much as 20 percentage points (at Sonoma State University).

As a result, the five-year graduation rates observed at a few top CSU institutions are comparable
to those of the middle-selectivity University of California campuses, with a 73 percent graduation
rate at the small CSU Maritime Academy and graduation rates above 60 percent at Cal Poly,
Sonoma State, and San Diego State. The median CSU campus had a five-year graduation rate
around 44 percent, while the least-selective CSU campuses had graduation rates just above 30
percent.

10Since UC Merced was founded in 2005, it did not yet report a five-year graduation rate in 2008.
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Table B.11 does not present IPEDS statistics for the California Community Colleges because
graduation rates and average SAT scores are unavailable for two-year institutions. The first two
columns show the average SAT score and five-year graduation rates of enrollees at each California
Community College, omitting colleges with fewer than 100 UC-applicant enrollees in the sample
period. As in the case of the CSU system, these statistics are likely upward-biased snapshots of
the actual student body of each college, since CC enrollees who chose to apply to a UC campus
after graduating high school were likely positively selected relative to the average CC enrollee.
Nevertheless, these selectivity statistics are relevant for the UC applicants who comprise the main
estimation sample in this study.

UC-applicant enrollees at many California community colleges are strikingly prepared for
university enrollment. About half of all community colleges have measured average SAT scores
that are higher than the average SAT score of enrollees at UC Riverside or UC Merced. The
college with the highest average observed SAT score is the Foothill College (in California’s
high-income Silicon Valley), which has an average SAT score among UC applicants of 1739,
higher than all but one CSU institution and approximately equal to the average SAT score of
enrollees at UC Davis. Indeed, more than a quarter of the 93 observable community colleges have
average SAT scores above 1600 among UC applicants, higher than nearly all CSU campuses.

Moreover, the community colleges have relatively high five-year college graduation rates,
despite their not awarding Bachelor’s degrees themselves. Seventeen community colleges have
graduation rates above 35 percent, comparable to the bottom quartile of CSU institutions. One
college — Moorpark College, near the Simi Valley outside of Los Angeles — has a graduation
rate of almost 45 percent. While some colleges’ graduation rates are low, some even below 10
percent, these calculations suggests that large numbers of UC applicants who choose to enroll at
community colleges ultimately earn college degrees, making some colleges of comparable
selectivity to lower-tier public universities.

Finally, Tables B.12 and B.13 presents statistics for the 200 private and out-of-state univerities
with at least 100 UC-applicant enrollees. The schools with the highest graduation rates tend to
be private institutions on the East Coast with graduates rates (over 93) and average SAT scores
(2000+) considerably higher than the most-selective UC campuses. The median private or out-
of-state university in the sample has a graduation rate and average SAT scores comparable to the
middle-selectivity UC campuses.

The less-selective private and out-of-state universities, however, shows a small set of outliers
— including Harvard University and Mount Holyoke College — that appear to have extremely
low graduation rates. These institutions likely do not report degree attainment to National Student
Clearinghouse, such that the only reported degrees earned by their enrolled students are from
students who transferred and earned degrees elsewhere. While this could be concerning for the
graduation rate measures discussed in this study, none of the impacted schools enroll more than a
tiny handful of students near their high schools’ ELC eligibility thresholds, and (as shown in Table
3.2) their enrollment is unimpacted by (and largely irrelevant to) ELC eligibility. The other schools
that actually have the lowest reported graduation rates include out-of-state public universities and
several for-profits (like the University of Phoenix and DeVry University), and have SAT scores
comparable to the lower-tier CSU campuses. As a result of these outliers (and also because of the
other differences discussed above), the correlation between IPEDS and NSC-measured graduation
rates is only about 0.56, while the correlation between average SAT scores is over 0.95.
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Table B.6: Maximum Years that California Community Colleges Began Contributing to National
Student Clearinghouse

1998 In NSC Data 1998 In NSC Data
Institution Enroll. Enroll. Grad. Univ. Enroll. Enroll. Grad.

California Community Colleges

Pasadena City College 16272 1998 1995 West Valley College 4952 2001 1995
Orange Coast College 15759 2000 1995 Mt San Jacinto C.C. District 4805 1997 1995
Cerritos College 15703 1995 1997 Irvine Valley College 4793 1995 1995
Mt San Antonio College 15073 1996 1995 College of the Desert 4768 1996 1998
San Diego Mesa College 14527 1998 2004 Skyline College 4687 1996 1995
City College of San Francisco 13679 2001 1995 Ohlone College 4667 1997 1996
Riverside City College 13542 1996 1995 Merced College 4601 1999 1995
El Camino C.C. District 13379 1997 1995 Allan Hancock College 4593 1995 1995
American River College 13031 1999 1995 MiraCosta College 4307 1996 1995
Santa Monica College 12801 1996 1995 Coastline C.C. 4157 2000 2001
Fullerton College 12390 1998 1995 Imperial Valley College 4103 2001 1995
Palomar College 12338 1998 1995 Hartnell College 4093 1995 1997
Diablo Valley College 12229 1997 1995 Mission College 3963 2001 1995
De Anza College 11919 1995 1995 San Diego Miramar College 3905 1998 2004
Santa Rosa Junior College 11727 1998 1995 Victor Valley College 3680 2001 1998
Fresno City College 11491 1998 1995 Los Medanos College 3632 2000 1995
Long Beach City College 11247 1995 1995 Las Positas College 3508 1996 1995
Grossmont College 10976 1999 1998 Cuyamaca College 3463 1999 2003
Sacramento City College 10273 1999 1995 College of the Redwoods 3445 2000 1995
Sierra College 10113 1996 1995 Los Angeles Harbor College 3375 1999 1995
Modesto Junior College 9790 2000 1996 Los Angeles Trade Tech. College 3362 1999 1995
Southwestern College 9620 2001 1995 Contra Costa College 3237 2001 1995
San Diego City College 9574 1998 2004 Copper Mountain C.C. 2942 1999 2000
Chaffey College 9408 1997 1995 West Los Angeles College 2929 1999 1995
Citrus College 9317 2000 1995 Monterey Peninsula College 2913 1998 2002
Glendale C.C. 8672 2001 2001 Napa Valley College 2886 1998 1995
San Joaquin Delta College 8432 1998 1995 College of Marin 2881 2000 1995
Chabot College 8418 1996 1995 Oxnard College 2728 1996 1995
Rio Hondo College 8146 2001 1995 Crafton Hills College 2514 1995 1995
Cosumnes River College 7843 1999 1995 College of Alameda 2246 1997 1995
College of the Sequoias 7788 2006 1995 Los Angeles Southwest College 2112 1999 1995
Bakersfield College 7762 2000 1995 Los Angeles Mission College 2097 1999 1995
Cypress College 7718 1998 1995 Canada College 2094 1996 1995
Santa Barbara City College 7689 1998 1995 West Hills College 2086 2001 1995
Saddleback College 7673 1995 1995 Merritt College 1969 1997 1997
Santa Ana College 7629 1996 1995 Cerro Coso C.C. 1889 2000 1998
Moorpark College 7414 1996 1995 Porterville College 1692 2000 1998
East Los Angeles College 7151 1999 1995 Gavilan College 1650 2010 1995
Los Angeles Pierce College 6984 1999 1995 Mendocino College 1647 1998 1997
Golden West College 6961 2000 1997 Berkeley City College 1528 1997 2000
Butte College 6804 1998 2000 Barstow C.C. 1434 1998 1995
Los Angeles City College 6772 1999 1995 Columbia College 1328 2000 1997
Cuesta College 6644 1995 1995 College of the Siskiyous 991 1998 1998
Evergreen Valley College 6461 2002 1998 Lake Tahoe C.C. 910 2001 1995
College of San Mateo 6349 1996 1995 Lassen C.C. 837 1998 1995
Los Angeles Valley College 6337 1999 1995 College of the Canyons 637 1998 1995
San Jose City College 6230 2002 1995 Taft College 578 2012 1995
Foothill College 5836 1996 1995 Feather River C.C. District 486 1998 1995
Cabrillo College 5820 1996 1995 Palo Verde College 370 2009 2010
Solano C.C. 5602 1998 1995 Santiago Canyon College (2001) 2009 2001
Shasta College 5462 1999 1997 Folsom Lake College (2004) 2005 2004
Yuba College 5358 2001 1995 West Hills College (2006) 2007 2006
Antelope Valley College 5156 1998 1998 Woodland C.C. (2009) 2010 2009
Reedley College 5004 1998 1995 Moreno Valley College (2010) 2011 2010
Ventura College 4980 1996 1995 Norco College (2010) 2011 2010
Laney College 4978 1997 1997 Clovis C.C. (2016) 2016 2016
San Bernardino Valley College 4968 1995 1996

Note: This table shows that nearly all California Community Colleges were reporting enrollment to NSC by the start
of the study period. For all community colleges in California, the earliest year in which any 1995-2016 applicant
to any UC campus was recorded in the National Student Clearinghouse as being enrolled at that college or having
graduated from that college. Years that might interfere with inference in a study of 1996 (or later) UC enrollees —
that is, any years that suggest uniformly missing enrollment records after 1997 or missing graduation records after or
in 1996+4=2000 — are in bold. Source: UC Corporate Student System and National Student Clearinghouse
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Table B.7: National Student Clearinghouse Degree Data Quality for UC Graduates

Year UCB UCD UCLA UCR UCSD UCSC UCSB UCI UCM

1995 1.3 1.9 5.0 11.6 1.5 79.1 1.7 3.5
1996 2.5 2.3 6.0 13.1 1.5 78.1 1.6 2.8
1997 0.9 1.7 6.1 8.2 1.1 74.4 1.6 2.4
1998 1.5 2.0 6.1 5.2 1.9 69.1 1.4 2.2
1999 1.2 1.3 5.9 7.3 2.1 70.1 1.2 1.9
2000 1.4 1.5 7.8 8.6 1.9 55.9 1.1 1.8
2001 1.2 1.9 6.8 9.2 1.3 5.7 0.9 2.6
2002 1.1 1.6 6.7 10.5 1.6 2.1 1.8 2.6
2003 0.3 1.8 6.7 9.9 1.8 2.8 1.9 1.7
2004 0.8 2.7 6.0 9.5 1.9 2.9 1.7 1.9
2005 1.2 2.2 6.6 9.0 2.0 2.1 2.5 2.1 1.5
2006 1.4 2.2 8.4 8.5 2.0 3.5 2.4 1.8 0.5
2007 1.1 2.6 8.9 8.7 2.1 3.4 2.0 1.6 3.0
2008 1.1 2.8 7.6 9.4 2.8 3.0 2.2 1.9 1.3
2009 1.2 3.2 7.7 8.1 2.0 3.5 2.9 2.4 1.5
2010 1.5 2.7 8.1 7.6 2.6 2.7 3.1 2.4 1.4
2011 2.4 2.7 6.5 9.7 2.8 3.3 3.5 2.4 0.9
2012 0.4 2.1 4.4 7.3 1.7 2.0 2.5 2.2 1.6

Note: This table shows low levels of missing NSC degree attainment records for UC graduates identified in
administrative data throughout the study period. The proportion of UC graduates (within five years of first enrollment),
among freshman California-resident enrollees, who are not recorded as having graduated within five years of
graduating in their matched National Student Clearinghouse record, by UC campus and year of first enrollment.
Source: UC Corporate Student System and National Student Clearinghouse

Table B.8: National Student Clearinghouse STEM Major Data Quality for UC Graduates

Year UCB UCD UCLA UCR UCSD UCSC UCSB UCI UCM

Err. Type: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1996 0.2 0.0 0.7 6.3 1.2 3.2 3.0 1.7 3.0 2.7 11.7 2.0 2.6 2.8 1.3 3.1
1997 0.4 0.1 1.6 5.6 0.4 2.5 3.1 2.2 2.0 4.0 6.8 2.1 1.9 3.5 1.5 3.4
1998 0.3 0.4 0.9 5.8 0.4 3.0 5.8 2.4 1.6 3.1 8.1 0.5 2.3 2.9 0.7 2.7
1999 0.1 0.1 0.6 6.0 0.2 2.8 3.7 1.4 1.6 2.9 5.3 2.2 2.8 1.8 0.6 2.1
2000 0.3 0.2 1.2 6.9 0.4 2.4 6.0 1.6 1.0 4.6 10.1 5.1 2.3 2.4 0.9 2.9
2001 0.2 0.2 0.9 4.7 0.3 2.6 6.2 1.1 1.7 4.4 6.6 4.9 2.3 1.2 1.7 1.8
2002 0.1 0.2 0.8 5.2 0.3 2.2 3.8 1.7 1.1 3.5 6.3 6.3 1.7 2.0 1.4 2.7
2003 0.1 0.0 1.1 5.2 0.3 2.7 5.0 1.1 1.0 4.2 4.2 11.5 1.7 1.9 1.2 1.9
2004 0.2 0.2 1.1 4.7 0.3 2.5 3.7 1.3 1.0 3.3 5.9 15.3 1.9 1.9 1.2 2.5
2005 0.1 0.2 1.5 4.5 0.7 2.6 6.4 1.1 1.3 4.0 5.2 8.3 2.5 2.7 1.4 2.5 4.8 0.6
2006 0.0 0.1 1.0 4.5 0.4 2.2 5.0 0.5 1.9 3.1 4.3 7.1 2.4 1.7 0.8 2.5 5.9 0.0
2007 0.2 0.0 1.0 2.9 0.1 2.6 3.8 0.7 1.1 4.4 2.9 6.1 1.9 2.0 1.1 2.6 11.0 0.0
2008 0.1 0.1 0.7 4.0 0.3 2.0 4.0 0.8 0.8 3.0 3.7 5.8 1.5 2.0 1.1 2.2 2.6 0.5
2009 0.0 0.1 0.5 3.7 0.1 2.4 3.9 1.0 0.8 2.9 2.5 2.8 1.5 2.2 1.0 2.4 4.1 0.3
2010 0.1 0.1 0.2 3.2 0.1 1.6 4.0 0.4 0.7 2.2 3.5 2.5 1.5 1.1 0.6 2.0 2.7 0.2
2011 0.1 0.3 0.6 2.5 0.1 1.7 2.7 0.5 0.9 2.1 2.3 2.0 0.8 1.8 1.0 2.7 2.7 0.9
2012 0.1 0.7 0.2 4.1 0.2 2.9 3.3 0.9 0.5 1.8 2.3 1.6 1.4 2.9 0.8 2.9 4.4 1.1

Note: This table shows NSC’s very low error rates in identifying UC students who earned STEM degrees throughout
the study period. The Type 1 and Type 2 error rate in measurement of STEM major (among students denoted as
graduates in base-truth UC records and linked to NSC degree records within five years of first enrollment) among
freshman California-resident enrollees. Type 1 error (false positive) indicates non-STEM graduates listed with STEM
majors in NSC; Type 2 error (false negative) indicates STEM graduates listed without STEM majors in NSC. STEM
defined in U.S. Department of Homeland Security (2016), with NSC majors hand-coded in the absence of CIP codes.
Source: UC Corporate Student System and National Student Clearinghouse
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Table B.9: University of California Campuses

NSC IPEDS NSC IPEDS

5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg.
Institution G.R. SAT G.R. SAT Institution G.R. SAT G.R. SAT

UC Berkeley 82.3 1941 87 1995 UC Davis 74.3 1756 77 1740
UCLA 80.2 1886 88 1928 UC Santa Cruz 72.7 1715 68 1702
UC San Diego 79.4 1884 80 1868 UC Riverside 63.7 1586 60 1568
UC Irvine 79.3 1773 78 1755 UC Merced 58.0 1547 1568
UC Santa Barbara 78.5 1791 76 1778

Note: This table presents selectivity statistics for the nine undergraduate University of California campuses, showing
that the Absorbing UC campuses fall relatively in between the most-selective Berkeley and UCLA campuses and the
less-selective Santa Cruz, Riverside, and Merced campuses. University of California estimated graduation rates and
average SAT scores. ‘NSC’ statistics measured from 2001-2011 UC freshman California-resident applicants assigned
by first institution of enrollment (using National Student Clearinghouse data), with ‘5-Yr. G.R.’ measuring the percent
of those applicants who had earned a Bachelor’s degree within five years of high school graduation (according to NSC
records) and ‘Avg. SAT’ measuring their average SAT score. ‘IPEDS’ presents statistics as publicly reported in 2008.
Institutions are ordered by NSC graduation rate. Source: National Student Clearinghouse, UC Corporate Student
System, and Integrated Postsecondary Education Data System (IPEDS).

Table B.10: California State University Campuses

NSC IPEDS NSC IPEDS

5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg.
Institution G.R. SAT G.R. SAT Institution G.R. SAT G.R. SAT

CA State Univ. Maritime Academy 73.2 1673 57 1575 CSU Fullerton 44.0 1531 38 1470
CA Poly. State Univ. 67.4 1796 60 1778 CA State Poly. Univ. 42.1 1590 38 1530
Sonoma State Univ. 63.0 1611 43 1522 CSU Northridge 39.9 1463 29 1410
San Diego State Univ. 62.4 1627 53 1575 San Jose State Univ. 39.0 1549 26 1492
CSU Chico 59.1 1607 45 1515 CSU East Bay 38.7 1433 35 1365
CSU Monterey Bay 51.4 1519 30 1470 Humboldt State Univ. 38.1 1595 32 1552
CSU San Marcos 47.7 1503 34 1455 CSU Sacramento 37.4 1489 30 1440
CSU Long Beach 47.6 1570 40 1515 CSU San Bernardino 37.2 1393 34 1328
CSU Fresno 46.9 1480 37 1388 CSU Bakersfield 36.7 1427 33 1380
San Francisco State Univ. 45.6 1541 32 1500 CSU LA 30.6 1373 23 1298
CSU Stanislaus 45.3 1464 45 1425 CSU Dominguez Hills 30.1 1340 24 1222
CSU Channel Islands 44.1 1509

Note: This table presents selectivity statistics for the California State University system, showing that the campuses
range in selectivity from schools that look similar to the least-selective UC campuses to schools that have considerably
lower graduation rates. California State University estimated graduation rates and average SAT scores. ‘NSC’ statistics
measured from 2001-2011 UC freshman California-resident applicants assigned by first institution of enrollment
(using National Student Clearinghouse data), with ‘5-Yr. G.R.’ measuring the percent of those applicants who had
earned a Bachelor’s degree within five years of high school graduation (according to NSC records) and ‘Avg. SAT’
measuring their average SAT score. ‘IPEDS’ presents statistics as publicly reported in 2008. Institutions are ordered
by NSC graduation rate. Source: National Student Clearinghouse, UC Corporate Student System, and Integrated
Postsecondary Education Data System (IPEDS).
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Table B.11: CA Community Colleges

NSC IPEDS NSC IPEDS

5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg.
Institution G.R. SAT G.R. SAT Institution G.R. SAT G.R. SAT

Moorpark C. 43.5 1674 - - Cuesta C. 25.1 1678 - -
Saddleback C. 41.0 1689 - - Cuyamaca C. 25.0 1545 - -
Las Positas C. 40.1 1677 - - Reedley C. 24.9 1512 - -
C. of San Mateo 40.1 1623 - - Berkeley City C. 24.9 1673 - -
Ohlone C. 39.8 1644 - - El Camino C. 24.8 1511 - -
Folsom Lake C. 38.6 1718 - - Yuba C. 24.8 1508 - -
C. of Marin 38.5 1723 - - San Joaquin Delta C. 24.6 1499 - -
Diablo Valley C. 37.9 1651 - - Cabrillo C. 23.9 1628 - -
Santa Barbara City C. 37.7 1637 - - Mission C. 23.7 1592 - -
De Anza C. 37.4 1660 - - San Jose City C. 22.9 1545 - -
Shasta C. 37.0 1652 - - C. of the Redwoods 22.6 1665 - -
Skyline C. 36.8 1563 - - LA Valley C. 22.5 1515 - -
MiraCosta C. 36.7 1683 - - Laney C. 22.5 1495 - -
Irvine Valley C. 36.4 1678 - - Merritt C. 22.4 1467 - -
Foothill C. 36.1 1739 - - Los Medanos C. 22.3 1497 - -
Glendale C.C. 35.7 1568 - - Bakersfield C. 22.0 1557 - -
West Valley C. 35.0 1698 - - Cosumnes River C. 21.9 1531 - -
Orange Coast C. 34.5 1624 - - Coastline C.C. 21.8 1613 - -
Sierra C. 34.0 1663 - - Antelope Valley C. 21.5 1511 - -
Canada C. 32.2 1633 - - Modesto Junior C. 21.2 1554 - -
Santa Rosa Junior C. 31.7 1703 - - Citrus C. 20.6 1505 - -
Palomar C. 31.7 1642 - - Long Beach City C. 20.0 1499 - -
C. of the Canyons 30.9 1599 - - Allan Hancock C. 19.5 1543 - -
City C. of San Francisco 30.5 1573 - - Grossmont C. 19.2 1557 - -
Butte C. 30.2 1616 - - LA Mission C. 19.0 1430 - -
Santa Monica C. 30.0 1583 - - Crafton Hills C. 18.5 1522 - -
Sacramento City C. 30.0 1562 - - Oxnard C. 18.5 1439 - -
Santiago Canyon C. 29.8 1652 - - C. of the Sequoias 17.9 1448 - -
Contra Costa C. 29.8 1464 - - LA Harbor C. 16.5 1465 - -
Golden West C. 29.2 1594 - - West Hills C. 16.5 1400 - -
LA Pierce C. 29.2 1585 - - Cerritos C. 16.2 1460 - -
San Diego Miramar C. 29.2 1623 - - Imperial Valley C. 16.1 1401 - -
Napa Valley C. 28.2 1571 - - San Diego City C. 15.8 1449 - -
American River C. 28.1 1608 - - Hartnell C. 15.6 1477 - -
Solano C.C. 28.1 1574 - - Chaffey C. 15.5 1489 - -
San Diego Mesa C. 27.9 1587 - - Southwestern C. 15.2 1443 - -
Ventura C. 27.7 1554 - - Merced C. 15.2 1422 - -
Pasadena City C. 27.4 1586 - - Rio Hondo C. 14.8 1463 - -
Chabot C. 27.3 1519 - - Mt San Jacinto C.C. 14.3 1500 - -
C. of Alameda 27.0 1440 - - Victor Valley C. 13.5 1473 - -
Fullerton C. 26.8 1619 - - West LA C. 13.5 1479 - -
Evergreen Valley C. 26.5 1526 - - C. of the Desert 13.3 1430 - -
Mt San Antonio C. 26.4 1559 - - Riverside City C. 12.5 1452 - -
Santa Ana C. 26.0 1533 - - East LA C. 11.7 1401 - -
Fresno City C. 25.5 1494 - - LA City C. 11.1 1463 - -
Monterey Peninsula C. 25.5 1632 - - LA Trade Tech. C. 7.1 1293 - -
Cypress C. 25.4 1610 - - San Bernardino Valley C. 6.6 1422 - -

Note: This table presents selectivity statistics for the California Community College system, showing that many
community colleges have average SAT scores comparable to middle-selective public universities, though their five-
year graduation rates tend to be comparable only to the least-selective universities. California Community College
estimated (Bachelor’s) graduation rates and average SAT scores, among colleges with at least 100 enrollees among
applicants in the NSC sample. ‘NSC’ statistics measured from 2001-2011 UC California-resident freshman applicants
assigned by first institution of enrollment (using National Student Clearinghouse data), with ‘5-Yr. G.R.’ measuring the
percent of those applicants who had earned a Bachelor’s degree within five years of high school graduation (according
to NSC records) and ‘Avg. SAT’ measuring their average SAT score. ‘IPEDS’ statistics unavailable for community
colleges. Institutions are ordered by NSC graduation rate. Source: National Student Clearinghouse, UC Corporate
Student System, and Integrated Postsecondary Education Data System (IPEDS).
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Table B.12: Top Half of Private and Out-of-State Universities (by Grad. Rate)

NSC IPEDS NSC IPEDS

5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg.
Institution G.R. SAT G.R. SAT Institution G.R. SAT G.R. SAT

Bates C. 96.7 1893 89 Santa Clara Univ. 87.1 1819 84 1822
Swarthmore C. 95.4 2103 91 2152 Kenyon C. 87.0 1965 88 2002
Williams C. 94.7 2085 95 2130 Univ. of San Diego 86.8 1798 74 1785
Bowdoin C. 94.4 2017 89 2108 Macalester C. 86.8 2015 87 2040
Haverford C. 94.3 2061 94 2085 Univ. of Portland 86.3 1794 70 1792
Northwestern Univ. 93.6 2110 93 2152 Whitworth Univ. 86.3 1804 75 1808
Claremont McKenna C. 93.5 2002 94 2100 Johns Hopkins Univ. 86.0 2085 88 2100
Pomona C. 93.1 2099 94 2212 Univ. of Southern CA 85.9 1961 86 2055
Princeton Univ. 93.0 2167 95 2228 Univ. of North Carolina at Chapel Hill 85.4 2003 83 1958
Wesleyan Univ. 92.6 2063 92 2092 Stanford Univ. 85.4 2142 92 2152
Middlebury C. 92.6 2036 93 2092 Univ. of Virginia 84.9 2019 92 1995
Carleton C. 92.4 2052 92 2100 Bryn Mawr C. 84.4 1944 85 1958
Brown Univ. 92.4 2098 92 2145 Colorado C. 84.3 1966 86 1972
Yale Univ. 92.4 2180 95 2242 Pepperdine Univ. 84.1 1816 80 1860
Tufts Univ. 92.3 2068 91 2130 Seattle Univ. 84.0 1796 68 1718
Duke Univ. 92.3 2127 88 2160 Southern Methodist Univ. 84.0 1854 72 1868
Amherst C. 92.2 2093 93 2130 New York Univ. 83.9 1992 83 2018
Colby C. 92.0 1981 90 2032 Brandeis Univ. 83.6 1991 88 2055
Univ. of Pennsylvania 91.6 2126 94 2138 Miami Univ. 83.5 1787 40 1770
Wellesley C. 91.3 2062 90 2051 Lehigh Univ. 83.2 1922 83 1972
Dartmouth C. 91.2 2099 94 2160 Boston Univ. 83.0 1894 79 1905
Wheaton C. 90.9 1792 81 Brite Divinity School 83.0 1769 67 1748
Connecticut C. 90.5 1870 87 1988 Clark Univ. 83.0 1830 72 1800
Georgetown Univ. 90.4 2050 92 2032 Loyola Marymount Univ. 82.7 1749 78 1755
Skidmore C. 90.4 1882 81 1890 Trinity Univ. 82.6 1886 80 1935
Whitman C. 90.4 2006 91 1980 George Washington Univ. 82.4 1932 80 1935
Davidson C. 90.2 2022 93 2046 Univ. of Wisconsin Extension 82.0 1842 78 1905
Univ. of Chicago 90.2 2115 91 2130 Point Loma Nazarene Univ. 81.8 1726 69 1680
Villanova Univ. 90.2 1881 88 1958 Grinnell C. 81.8 1929 85 2010
Washington Univ. in St Louis 90.2 2131 92 2190 Univ. of Denver 81.6 1790 72 1792
Vanderbilt Univ. 90.1 2038 89 2122 Baylor Univ. 81.1 1819 71 1808
Boston C. 89.7 1988 90 2010 American Univ. 81.1 1907 75 1890
CA Inst. of Tech. 89.6 2219 87 2272 Indiana Univ. 81.0 1813 69 1725
Rice Univ. 89.5 2111 92 2138 Seattle Pacific Univ. 81.0 1774 61 1725
Oberlin C. 89.2 2021 82 2032 Tulane Univ. of Louisiana 80.9 1969 73 2010
Bucknell Univ. 89.1 1932 88 1965 Sarah Lawrence C. 80.8 1872 71
Harvey Mudd C. 89.0 2144 89 2242 Emerson C. 80.7 1864 75 1838
Univ. of Michigan 88.7 1952 85 1988 Univ. of Puget Sound 80.3 1883 75 1860
Rhode Island School of Design 88.5 1903 85 1838 Willamette Univ. 80.3 1860 69 1838
Wake Forest Univ. 88.4 1962 88 1980 Carnegie Mellon Univ. 80.1 2047 84 2092
Scripps C. 88.4 1994 82 2025 Syracuse Univ. 80.0 1781 79 1755
Barnard C. 88.3 2066 88 2018 Fordham Univ. 79.5 1879 78 1838
Massachusetts Inst. of Tech. 88.2 2161 92 2205 Lewis & Clark C. 79.4 1891 70 1965
Smith C. 88.1 1905 88 1920 Case Western Reserve Univ. 79.3 1992 78 1965
Columbia Univ. 88.1 2096 92 2152 Univ. of Vermont 79.2 1829 69 1785
Dickinson C. 88.0 1720 84 1935 Univ. of Maryland 79.1 1944 80 1912
Wheaton C. 87.9 2004 83 1950 Marquette Univ. 79.0 1766 74 1755
Occidental C. 87.5 1868 85 1912 Brandman Univ. 78.9 1789 62 1837
Gonzaga Univ. 87.2 1790 78 1770 Univ. of Washington 77.9 1865 73 1608
Emory Univ. 87.2 2009 87 2078 Univ. of Miami 77.7 1870 75 1928

Note: This table presents selectivity statistics for the top half of private and out-of-state universities, showing that many
of these schools tend to be even more selective than the most-selective UC campuses. Estimated graduation rates and
average SAT scores of the private and out-of-state universities with at least 100 enrollees among applicants in the
UC-NSC sample. ‘NSC’ statistics measured from 2001-2011 UC freshman California-resident applicants assigned by
first institution of enrollment (using National Student Clearinghouse data), with ‘5-Yr. G.R.’ measuring the percent of
those applicants who had earned a Bachelor’s degree within five years of high school graduation (according to NSC
records) and ‘Avg. SAT’ measuring their average SAT score. ‘IPEDS’ presents statistics as publicly reported in 2008.
Institutions are ordered by NSC graduation rate. Source: National Student Clearinghouse, UC Corporate Student
System, and Integrated Postsecondary Education Data System (IPEDS).
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Table B.13: Bottom Half of Private and Out-of-State Universities (by Grad. Rate)

NSC IPEDS NSC IPEDS

5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg. 5-Yr. Avg.
Institution G.R. SAT G.R. SAT Institution G.R. SAT G.R. SAT

The Univ. of Texas at Austin 77.0 1924 73 1838 Oregon State Univ. 63.5 1715 57 1605
Univ. of Oregon 76.4 1736 61 1635 Notre Dame de Namur Univ. 63.0 1507 53 1446
Rensselaer at Hartford 76.2 1958 81 2002 The Evergreen State C. 62.6 1790 59 1695
Spelman C. 75.8 1618 0 1605 Arizona State Univ. 62.5 1659 50 1612
Vassar C. 75.7 2029 91 2070 Concordia Univ. 62.0 1555 59 1740
Pitzer C. 75.7 1822 69 Univ. of the Pacific 61.8 1769 62 1740
Univ. of Rochester 75.6 1918 82 1980 Colgate Univ. 61.5 1986 91 2048
Univ. of Illinois at Urbana 75.0 1943 80 1942 Hofstra Univ. 61.5 1769 52 1762
Saint Mary’s C. of CA 75.0 1646 63 1612 Pacific Union C. 61.2 1706 36 1492
Univ. of Redlands 75.0 1686 73 1725 Pace Univ. 60.8 1725 53 1605
Reed C. 74.7 2059 76 2070 Washington State Univ. 60.5 1705 62 1665
CA Lutheran Univ. 74.5 1671 68 1642 St John’s Univ. 59.4 1667 50 1605
Univ. of Missouri 74.4 1892 65 1792 Rutgers Univ. 59.3 1807 56 1660
Ithaca C. 74.3 1803 77 1778 Dominican Univ. of CA 59.2 1583 46 1538
CA C. of the Arts 74.2 1694 56 Univ. of Iowa 58.8 1778 0 1808
Whittier C. 74.0 1614 54 1568 Northern Arizona Univ. 58.4 1647 48 1582
Ohio State Univ. Ag. Tech. Inst. 73.7 1828 35 1845 George Mason Univ. 58.0 1754 55 1672
Creighton Univ. 72.5 1778 75 1755 Morehouse C. 57.9 1589 62 1530
Arizona Board of Regents 72.0 1690 52 1650 Saint Louis Univ. 57.3 1849 73 1800
Hampshire C. 71.8 1884 0 1882 Univ. of Hawaii at Manoa 55.9 1649 40 1635
Pennsylvania State Univ. 71.4 1771 48 1463 Clark Atlanta Univ. 53.3 1362 42 1350
Virginia Poly. Inst. and State Univ. 71.4 1771 75 1808 Yeshiva Univ. 53.3 1925 69 1815
Biola Univ. 71.3 1723 68 1680 Embry 52.4 1699 53 1631
Azusa Pacific Univ. 70.3 1681 60 1605 Univ. of Minnesota 52.1 1842 61 1868
Texas A & M Univ. 70.0 1872 73 1785 Art Center C. of Design 52.1 1731 86
Drexel Univ. 69.6 1853 56 1800 Boise State Univ. 51.7 1580 19 1545
Loyola Univ. Chicago 69.6 1771 64 1768 CA Inst. of the Arts 50.9 1739 61
Univ. of Pittsburgh 69.3 1900 56 1557 Univ. of Nevada 48.8 1660 39 1575
Mills C. 69.2 1693 61 1688 Rochester Inst. of Tech. 48.3 1854 54 1800
Univ. of Colorado Boulder 69.1 1755 62 1762 Holy Names Univ. 46.9 1399 11 1397
Univ. of San Francisco 68.8 1682 65 1718 Univ. of New Mexico 46.7 1658 35 1598
Univ. of Massachusetts 68.4 1770 67 1732 Univ. of Utah 46.4 1706 39 1661
The New School 68.0 1780 60 1665 Marymount CA Univ. 45.3 1497
Vanguard Univ. of Southern CA 67.8 1523 51 1455 Univ. of Nevada 42.0 1546 31 1522
Pratt Inst. 67.6 1772 45 1725 La Sierra Univ. 41.5 1496 25 1478
Northeastern Univ. 67.5 1925 64 1905 Tuskegee Univ. 41.4 1362 39 1312
DePaul Univ. 67.3 1748 60 1702 Southern Oregon Univ. 40.7 1686 33 1500
Purdue Univ. 66.8 1811 66 1725 Fresno Pacific Univ. 38.1 1549 60 1522
Loyola Univ. New Orleans 66.7 1781 61 1778 DeVry Univ. 36.6 1402
Howard Univ. 66.4 1587 61 1710 Portland State Univ. 35.7 1711 27 1568
Hampton Univ. 66.2 1475 48 1589 Brigham Young Univ. 34.0 1859 53 1845
Georgia Inst. of Tech. 66.1 1982 70 1995 Brigham Young Univ. 33.3 1579 39 1635
Univ. of Notre Dame 66.0 2019 96 2115 Academy of Art Univ. 28.9 1596 24
Michigan State Univ. 66.0 1756 72 1725 Woodbury Univ. 27.0 1472 54 1395
Western Washington Univ. 65.9 1767 63 1672 Univ. of Phoenix 12.1 1529 4
Otis C. of Art and Design 65.8 1652 52 1545 Mount Holyoke C. 10.2 1819 82
Univ. of La Verne 65.5 1514 57 1470 Westmont C. 8.6 1809 78 1822
Colorado State Univ. 64.8 1729 58 1680 Harvard Univ. 5.7 2186 96 2228
Mount Saint Mary’s Univ. 64.0 1429 57 1380 CA Baptist Univ. 4.5 1492 45 1574
Cornell Univ. 63.5 2065 92 2100 Soka Univ. of America 2.3 1773 93 1750

Note: This table presents selectivity statistics for the bottom half of private and out-of-state universities, showing
that these schools exhibit a comparable selectivity range to the CSU system, though there are a small number of
universities that have erroneously-low NSC graduation rates as a result of non-reporting. Estimated graduation rates
and average SAT scores of the private and out-of-state universities with at least 100 enrollees among applicants in the
UC-NSC sample. ‘NSC’ statistics measured from 2001-2011 UC freshman California-resident applicants assigned by
first institution of enrollment (using National Student Clearinghouse data), with ‘5-Yr. G.R.’ measuring the percent of
those applicants who had earned a Bachelor’s degree within five years of high school graduation (according to NSC
records) and ‘Avg. SAT’ measuring their average SAT score. ‘IPEDS’ presents statistics as publicly reported in 2008.
Institutions are ordered by NSC graduation rate. Source: National Student Clearinghouse, UC Corporate Student
System, and Integrated Postsecondary Education Data System (IPEDS).
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B.5 Annual Relationship between ELC GPA and UC
Admissions

Figures B.3 to B.11 show annual break-outs of the effect of ELC eligibility on applicants’
likelihood of admission to each campus. They show that the general admissions patterns remain
highly persistent across the nine observed years: applicants receive large admissions advantages
in most years at the Absorbing UC campuses and negligible admissions advantages at the other
UC campuses. Some Absorbing UC campuses’ admissions advantages grow somewhat over time,
largely driven by the campuses’ increasing selectivity in the period (decreasing near-threshold
applicants’ admissions likelihood through non-ELC admissions).
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Figure B.3: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC Davis

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC Davis by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC campus
in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are
omitted. Source: UC Corporate Student System.
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Figure B.4: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC Irvine

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC Irvine by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC campus
in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are
omitted. Source: UC Corporate Student System.
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Figure B.5: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC San
Diego

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC San Diego by ELC GPA distance from their high school’s
ELC eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California
high schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC
campus in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and
4.00 are omitted. Source: UC Corporate Student System.
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Figure B.6: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC Santa
Barbara

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC Santa Barbara by ELC GPA distance from their high school’s
ELC eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California
high schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC
campus in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and
4.00 are omitted. Source: UC Corporate Student System.
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Figure B.7: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC
Berkeley

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC Berkeley by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC campus
in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are
omitted. Source: UC Corporate Student System.
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Figure B.8: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UCLA

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UCLA by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC campus
in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are
omitted. Source: UC Corporate Student System.
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Figure B.9: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC Santa
Cruz

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC Santa Cruz by ELC GPA distance from their high school’s
ELC eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California
high schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC
campus in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and
4.00 are omitted. Source: UC Corporate Student System.
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Figure B.10: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC
Riverside

(a) 2003 (b) 2004 (c) 2005

(d) 2006 (e) 2007 (f) 2008

(g) 2009 (h) 2010 (i) 2011

Note: Applicants’ annual likelihood of admission to UC Riverside by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC campus
in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are
omitted. Source: UC Corporate Student System.
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Figure B.11: Local Effect of ELC Eligibility on Applicants’ Likelihood of Admission to UC
Merced

(a) 2005

(b) 2006 (c) 2007 (d) 2008

(e) 2009 (f) 2010 (g) 2011

Note: Applicants’ annual likelihood of admission to UC Merced by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Each panel conditions on applying to that UC campus
in that year. Applicants from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are
omitted. Source: UC Corporate Student System.
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B.6 Other Appendix Figures and Tables

Figure B.12: Socioeconomic-Predicted Five-Year Degree Attainment

Note: This figure summarizes baseline sample balance across the ELC eligibility threshold using applicants’
predicted five-year degree attainment (on the basis of socioeconomic characteristics). Regression discontinuity plot
of applicants’ predicted likelihood of five-year degree attainment by ELC GPA distance from their high school’s ELC
eligibility threshold, among all applicants or applicants from the bottom half or quartile of California high schools
by SAT. Points are binned averages; lines are unconditional cubics. Beta estimate from cubic parameterization of
Equation 3.2 for the B50 sample, with standard error clustered by school-year in parentheses. Predicted graduation
from an OLS regression (across 1995-2013 UC freshman California-resident applicants outside the study’s primary
sample) of five-year NSC degree-attainment on gender-ethnicity indicators, maximum parental education indicators
(7 categories), family income, missing income indicator, SAT score, high school GPA, and year indicators. Applicants
from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted. Source: UC Corporate Student
System and National Student Clearinghouse.

246



Figure B.13: Local Effect of ELC Eligibility on Applicants’ Likelihood of Application to each UC
Campus

(a) UC Berkeley (b) UCLA (c) UC San Diego

(d) UC Irvine (e) UC Davis (f) UC Santa Barbara

(g) UC Riverside (h) UC Santa Cruz (i) UC Merced

Note: This figure shows that barely ELC-eligible applicants responded to their Absorbing UC campus admissions
advantages by becoming slightly more likely to apply to those campuses and slightly less likely to apply to the
Dispersing campuses, though the magnitudes are far smaller than the shifts in those applicants’ admissions likelihoods.
UC applicants’ likelihood of application to each UC campus by ELC GPA distance from their high school’s ELC
eligibility threshold, among all UC applicants and those from the bottom half (B50) or quartile (B25) of California high
schools by SAT. Points are binned averages; lines are cubic fits. Beta estimates are from cubic regression discontinuity
models following Equation 3.2 for the B25 sample, with standard errors in parentheses clustered by high-school-
year. Each panel conditions on applying to that UC campus. Applicants from high schools with approximated ELC
eligibility thresholds between 3.96 and 4.00 are omitted. ‡ indicates reduced-form estimates with p > 0.1 for the
null hypothesis (β̂ = 0) when estimated using a local linear model with bias-corrected and cluster-robust confidence
intervals following Calonico et al. (2019). Source: UC Corporate Student System.

247



Figure B.14: Local Effect of ELC Eligibility on UC Applicants’ Other Education Outcomes

(a) Earn STEM Degree (b) Earn Deg. in ‘Intended’ Discipline (c) # Years Enrolled in College

Note: Regression discontinuity plots of applicants’ measured outcomes by ELC GPA distance from their high school’s
ELC eligibility threshold, among applicants from the bottom half (B50) or quartile (B25) of high schools by SAT.
Points are binned averages; lines are cubic fits. Beta estimates are from cubic regression discontinuity models
following Equation 3.2, with standard errors in parentheses clustered by high-school-year. Degree attainment by
discipline is unconditional on overall attainment. See footnote 22 for definitions of STEM and other disciplines;
intended discipline is applicants’ most-selected prospective major discipline reported to UC campuses. Number of
years enrolled in college is the number of academic years within seven years of high school graduation in which the
applicant is observed enrolled at a postsecondary institution but has not yet earned a Bachelor’s degree. Applicants
from high schools with approximated ELC eligibility thresholds between 3.96 and 4.00 are omitted. ‡ indicates
reduced-form estimates with p > 0.1 for the null hypothesis (β̂ = 0) when estimated using a local linear model with
bias-corrected and cluster-robust confidence intervals following Calonico et al. (2019). Source: UC Corporate Student
System and National Student Clearinghouse.
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Figure B.15: Estimated Return per Inst. Grad Rate for Applicants by qi, Qi, and SAT Tercile

(a) q̂i (b) Qi

(c) SAT (d) HS GPA

Note: This figure shows that the return to more-selective university enrollment (per one point of graduation rate) for
universities in the support of the data (which is strongest from about 30 to 75) is similar for top-, middle-, and bottom-
tercile UC applicants by model-defined caliber (qi), application merit (Qi), SAT score, or high school GPA, where
returns are measured by five-year degree attainment. Estimated change in applicants’ likelihood of five-year degree
attainment per additional percentage point in institutional graduation rate, by tercile of q̂i, Q̂i, SAT score, or high
school GPA. Estimates from an extension of equation 3.8 in which GRi is a fifth-order polynomial in institutional
graduation rate and q̂i is replaced by tercile indicators, omitting the constant term; the plot shows the derivative of
the resulting estimated polynomials. Applicants’ q̂i estimated using the posterior distribution of qi’s resulting from
the model parameters described in the text, and Q̂i = ziβ̂

z + q̂i. Covariates include gender-ethnicity indicators, SAT
score, HS GPA, log income, parental education and occupation indicators, ELC eligibility, and high school, zip code,
and year fixed effects, as well as admissions portfolio indicators for every combination of UC campuses to which
the applicant applies and UC campuses to which they are admitted. See Appendix B.4 for definition of institutional
graduation rates. Source: UC Corporate Student System and the National Student Clearinghouse.
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Table B.14: Baseline Characteristic Balance at ELC GPA Threshold, 2003-2011

Permanent Applicant Characteristics Predicted Values2

Max. Parent Log Fam. Missing SAT Graduation California
Female (%) URM (%) Ed. (Index)1 Income Inc. (%) Score Rate (%) Earnings ($)

All 0.0 1.0 -0.022 0.02 -0.0 -5.7 0.06 83.5
(0.8) (0.6)‡ (0.030) (0.02) (0.7) (2.9)‡ (0.06) (63.2)

URM -0.6 - -0.061 -0.04 -0.1 -2.0 -0.07 -105.2
(1.8) - (0.078) (0.05) (1.1) (6.6) (0.20) (111.5)

High School Quartiles by SAT Score

Top 0.6 0.2 -0.017 0.05 0.9 -0.6 0.00 188.1
Quartile (1.6) (0.8) (0.038) (0.05) (1.5) (4.1) (0.12) (136.3)

Third 0.5 2.1 -0.020 0.06 -0.2 -10.6 0.16 61.7
Quartile (1.6) (1.1)‡ (0.055) (0.04) (1.5) (5.3) (0.12) (121.3)

Second -0.6 0.7 0.014 -0.01 -1.5 -5.9 0.04 129.0
Quartile (1.7) (1.4) (0.068) (0.04) (1.3) (6.1) (0.11) (117.0)

Bottom -1.4 0.8 -0.085 -0.01 0.4 -3.3 0.05 -126.6
Quartile (1.9) (1.6) (0.082) (0.05) (1.0) (7.4) (0.10) (105.3)

Male3 - 1.0 -0.221 0.00 2.3 -7.2 -0.01 -200.8
- (2.7) (0.146) (0.09) (1.8) (13.0) (0.26) (218.4)

Female3 - 0.2 0.060 0.00 -0.1 -0.3 0.01 -376.9
- (2.1) (0.111) (0.06) (1.2) (9.1) (0.16) (151.1)

Baseline4 60.5 21.9 5.15 11.01 22.7 1877 75.6 87,477

Note: This table shows baseline sample balance across the ELC eligibility threshold. Reported coefficients are
estimated changes in various applicant characteristics across the ELC eligibility threshold. Estimates from 2SLS cubic
fuzzy regression discontinuity models, with standard errors in parentheses clustered by high-school-year. Additional
covariates (where not colinear with the outcome variable) include gender-ethnicity indicators and a quadratic term in
SAT score, along with year and high school fixed effects. Coefficients estimated overall, for URM (Black, Hispanic,
and Native American) applicants, by high school SAT quartiles (see the text for definition), and for male and female
applicants (among applicants from the bottom two high school SAT quartiles). SAT score on a 2400 point scale;
converted from ACT score or 1600-point SAT score if otherwise unavailable. Family income is not reported by 12
percent of applicants. Applicants from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted.
‡ Indicates estimates with p < 0.1 for the null hypothesis such that p ≮ 0.05 (insignificant at conventional levels) when
estimated using a local linear model with bias-corrected and cluster-robust confidence intervals following Calonico
et al. (2019). 1Integer index of reported maximum parental education (across two parents), from 1 (no high school)
to 7 (graduate degree). 2Dependent variable is the predicted values from an OLS regression (across the full sample of
1995-2013 UC freshman California-resident applicants, excluding the study’s primary sample) of either five-year NSC
graduation or 6-to-8 year average California covered wages (see text for definitions) on gender-ethnicity indicators,
maximum parental education indicators (7 categories), family income, missing income indicator, SAT score, and year
indicators. 3Conditional on graduating from the bottom two SAT high school quartiles. 4The estimated baseline
(ELC-ineligible) mean characteristic of barely below-threshold UC applicants, estimated following Abadie (2002).
Source: UC Corporate Student System.
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Table B.15: Impact of ELC on Admissions and Enrollment for Barely ELC-Eligible Applicants by
Campus

Admission (%) Enrollment (%)
All B251 All B251

Baseline β Baseline β Baseline β Baseline β

Unimpacted Campuses

Berkeley 42.6 2.0 15.7 1.8 13.5 0.8 4.8 0.9
(0.9)‡ (1.9) (0.6) (0.8)

UCLA 46.0 1.3 17.4 1.8 12.5 -0.6 6.7 0.2
(0.8) (1.8) (0.5) (1.0)

Absorbing Campuses

Davis 79.6 19.8 57.9 40.1 6.6 2.7 7.9 4.3
(0.8) (2.4) (0.5) (1.1)

San Diego 70.1 13.9 42.7 17.3 7.3 2.8 5.2 2.7
(0.8) (2.5) (0.5) (0.9)

Santa Barbara 91.9 6.7 77.3 17.4 6.1 -0.5 8.0 1.2
(0.6) (1.9) (0.4) (1.1)

Irvine 81.9 14.9 49.1 41.8 5.9 0.9 6.8 7.4
(0.8) (2.1) (0.4)‡ (1.1)

Dispersing Campuses

Riverside 96.5 2.4 94.1 4.0 2.5 -0.9 8.5 -2.5
(0.6) (1.2)‡ (0.2) (1.0)‡

Santa Cruz 98.0 1.4 93.0 4.5 1.7 -0.4 2.7 -1.7
(0.6)‡ (2.2)‡ (0.2) (0.6)

Merced 95.6 0.4 95.5 0.6 0.7 -0.4 1.7 -0.8
(1.3) (1.8) (0.1) (0.5)

Note: This table presents the impact of near-threshold ELC eligibility on each UC campus’s admissions and
enrollment, showing that the Absorbing UC campuses provided large admissions advantages to eligible students
(especially those from less-competitive high schools) that translated into increased likelihood of enrollment. Reported
coefficients are the estimated baseline (ELC-ineligible) proportion of below-threshold students at their high school’s
ELC eligibility threshold admitted or enrolled at each UC campus 2003-2011, and the estimated change in admission
or enrollment for barely ELC-eligible applicants (β), overall and for students from the bottom SAT quartile of high
schools. Values in percentages. Estimates from 2SLS cubic fuzzy regression discontinuity models; standard errors
are clustered by school-year, and omitted for baseline estimates (which are estimated following Abadie (2002)).
Additional covariates include gender-ethnicity indicators and a quadratic term in SAT score, along with year and
high school fixed effects. ‘Admission’ estimates are conditional on applying to that campus; ‘Enrollment’ estimates
are conditional on applying to at least one UC campus. Applicants from high schools with ELC eligibility thresholds
between 3.96 and 4.00 are omitted. ‡ Indicates estimates with p < 0.1 for the null hypothesis such that p ≮ 0.05
(insignificant at conventional levels) when estimated using a local linear model with bias-corrected and cluster-robust
confidence intervals following Calonico et al. (2019). 1Bottom quartile of high schools by SAT scores of students
within 0.3 GPA points of the ELC eligibility threshold.
Source: UC Corporate Student System and National Student Clearinghouse.

251



Table B.16: Local Effect of ELC Eligibility on Application to Each UC Campus

UCB UCLA UCSD UCI UCD UCSB UCSC UCR UCM

Panel A: Baseline Application Likelihood (%)

All 64.6 72.2 62.4 47.8 47.0 45.5 20.0 20.4 9.9

B50 50.3 62.0 52.4 53.2 45.9 44.5 31.8 21.6 16.6

B25 45.1 61.7 44.8 55.0 39.9 43.4 40.9 20.4 20.7

Panel B: Local Change in App. Likelihood Caused by ELC Eligibility (p.p.)

All -0.2 -0.9 1.7 1.9 3.3 1.0 -4.9 -3.8 -3.5
(0.8) (0.7) (0.8) (0.8) (0.8) (0.9) (0.6) (0.7) (0.5)

B50 -1.0 0.4 2.5 4.2 2.6 2.4 -6.2 -3.7 -6.1
(1.2) (1.2) (1.2) (1.3) (1.2)‡ (1.3)‡ (1.1) (1.0) (1.0)

B25 -0.4 -1.2 1.5 5.8 1.9 3.1 -4.1 -2.4 -6.1
(1.8) (1.8) (1.9) (1.8) (1.7) (1.9) (1.7)‡ (1.5) (1.6)

Note: This table shows that barely ELC-eligible applicants responded to their Absorbing UC campus admissions
advantages by becoming slightly more likely to apply to those campuses and slightly less likely to apply to the
Dispersing campuses, though the magnitudes are far smaller than the shifts in those applicants’ admissions likelihoods.
Reported coefficients are the estimated baseline (ELC-ineligible) proportion of near-threshold UC applicants who
apply to each UC campus, and the estimated change in application likelihood for barely above-threshold ELC-eligible
applicants (β). Values in percentages; estimates overall and for students from the bottom half (B50) and quartile (B25)
of high schools by SAT. Estimates from cubic regression discontinuity models following Equation 3.2; standard errors
are clustered by school-year and omitted for baseline estimates (which are estimated following Abadie (2002)). ‡

Indicates estimates with p < 0.1 for the null hypothesis such that p ≮ 0.05 (insignificant at conventional levels) when
estimated using a local linear model with bias-corrected and cluster-robust confidence intervals following Calonico
et al. (2019). Source: UC Corporate Student System.
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Table B.17: Change in Characteristics of ELC-Eligible Students’ University of First Enrollment

Sample: First Four-Year Inst. First Two- or Four-Year Institution1

Admit Avg. Four-Year Five-Year Avg. Med. Fam. Sticker Est. Net
Rate SAT Grad. Rate Grad. Rate SAT Income Price Price2

Overall

Baseline 43.0 1,820.9 55.4 1,821.0 75.0 111,874.0 29,977.7 18,601.7

β -0.70 15.46 1.58 12.66 1.63 766.79 225.61 113.65
(0.35)‡ (3.17) (0.35) (2.27) (0.32) (393.49)‡ (238.18) (231.97)

IV: Enroll -9.9 208.4 21.8 209.6 27.1 12,313.4 3,297.3 1,672.0
Abs. UC (5.4) (47.3) (5.1) (43.6) (5.4) (6,414.6) (3,609.6) (3,444.8)

Bottom High School Quartile (B25)

Baseline 52.8 1,678.6 42.3 1,682.0 64.2 95,371.0 26,794.2 11,536.9

β -2.17 36.71 5.59 39.46 5.24 2,612.37 902.14 305.00
(0.85) (8.33) (0.90) (5.68) (0.83) (906.39) (417.07)‡ (382.89)

IV: Enroll -12.2 201.9 30.8 249.1 33.1 15,285.5 4,259.2 1,505.8
Abs. UC (4.8) (41.9) (4.4) (35.4) (4.8) (4,964.1) (2,003.7) (1,903.4)

Source: IPEDS IPEDS IPEDS NSC NSC OI IPEDS IPEDS

Note: This table shows that ELC caused barely-eligible applicants to enroll at more-selective universities using a
host of selectivity measures, and but those universities had similar net prices for students with their family incomes.
Reported coefficients are the estimated characteristics of applicants’ first-enrollment university or post-secondary
institution at the barely ELC-ineligible baseline, the change in those characteristics across the ELC eligibility threshold
(β), and the estimated change in those characteristics for Absorbing-UC-campus compliers estimated using ELC
eligibility as an instrumental variable. Estimates from 2SLS cubic fuzzy regression discontinuity models; standard
errors are clustered by school-year, and omitted for baseline estimates (which are estimated following Abadie (2002)).
Additional covariates include gender-ethnicity indicators and a quadratic term in SAT score, along with year and high
school fixed effects. Enrollment measured as first four-year (columns 1-3) or two- or four-year (columns 4-8) college
or university of enrollment between July following high school graduation and six years later. IPEDS and Opportunity
Insights (OI) data linked by OPE ID (and year in IPEDS case) to NSC enrollment. NSC-measured average SAT scores
and five-year graduation measured only for 2001-2011 UC applicants (excluding applicants within 0.3 GPA points of
their high school’s ELC eligibility threshold) and are time-invariant; see the text for the definition. Also see the text
for definition of high school quartiles. IPEDS Average SAT score calculated for each school as the sum of the mean
of the 25th and 75th percentiles of each SAT section, converting scores from 1600 scale to 2400 scale when necessary.
Sticker price is defined using on-campus residency unless unavailable, in which case it is defined using off-campus
non-family residency. IPEDS admission rate unavailable prior to 2005, and price information unavailable prior to 2008.
Applicants from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted. ‡ Indicates reduced-
form estimates with p < 0.1 for the null hypothesis such that p ≮ 0.05 (insignificant at conventional levels) when
estimated using a local linear model with bias-corrected and cluster-robust confidence intervals following Calonico
et al. (2019). 1If the applicant enrolls at a community college but then enrolls at a four-year university within 6 months,
the latter is defined as her first institution of enrollment. 2Net price includes tuition and fees, expected room and board,
books and supplies, and other expenses net of federal, state, local, or institutional grant aid. Calculated as the IPEDS
average net price for Title-IV-aid-awarded enrollees in the applicant’s family income bin, where the observed bins
are $0-30,000, $30,000-48,000, $48,000-75,000, $75,000-110,000, and above $110,000. Applicants with unobserved
family incomes are omitted, and likely paid the sticker price (as they did not apply for federal financial aid, including
loans).
Source: UC Corporate Student System, National Student Clearinghouse, the Integrated Postsecondary Education Data
System (IPEDS), and Opportunity Insights (Chetty et al., 2020a).
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Table B.18: Change in Characteristics of ELC-Eligible Students’ Degree-Providing Universities

Sample: First Four-Year Inst. First Two- or Four-Year Institution1

Admit Avg. Four-Year Five-Year Avg. Med. Fam. Sticker Est. Net
Rate SAT Grad. Rate Grad. Rate SAT Income Price Price2

Overall

Baseline 42.5 1,826.7 56.2 80.0 1,840.2 113,380.8 29,974.5 18,801.1

β -0.56 16.26 1.53 0.93 10.13 623.98 325.98 364.73
(0.38) (3.39) (0.37) (0.21) (2.28) (400.77) (249.42) (246.87)

IV: Enroll -8.9 247.7 23.9 17.2 187.5 11,556.1 4,877.1 5,886.1
Abs. UC (6.4) (61.3) (6.3) (4.1) (50.7) (7,608.6) (3,996.2) (4,258.6)

Bottom High School Quartile (B25)

Baseline 52.9 1,687.7 44.0 1,704.0 70.6 97,577.2 26,812.8 11,526.0

β -2.05 33.56 4.43 35.26 3.87 2,172.27 991.20 570.78
(0.99) (10.13) (1.05) (7.03) (0.76) (971.84) (473.61)‡ (436.75)

IV: Enroll -12.4 200.5 26.2 222.6 24.4 13,830.3 5,058.3 3,165.8
Abs. UC (6.1) (56.2) (5.7) (44.6) (4.6) (5,876.4) (2,521.4) (2,495.1)

Source: IPEDS IPEDS IPEDS NSC NSC OI IPEDS IPEDS

Note: This table shows that ELC caused barely-eligible applicants to earn degrees from more-selective institutions
using a host of selectivity measures (conditional on degree attainment). Reported coefficients are the estimated
characteristics of applicants’ Bachelor’s graduation university or post-secondary institution (conditional on BA
graduation) at the barely ELC-ineligible baseline, the change in those characteristics across the ELC eligibility
threshold (β), and the estimated change in those characteristics for Absorbing-UC-campus compliers using an IV
estimator instrumenting with ELC eligibility. Estimates from instrumental variable 2SLS cubic fuzzy regression
discontinuity models; standard errors are clustered by school-year, and omitted for baseline estimates (which are
estimated following Abadie (2002)). Graduation measured as first Bachelor’s degree earned between July following
high school graduation and six years later. IPEDS and Opportunity Insights (OI) data linked by OPE ID (and year
in IPEDS case) to NSC enrollment. NSC-measured average SAT scores and five-year graduation measured only for
2001-2011 UC applicants (excluding applicants within 0.3 GPA points of their high school’s ELC eligibility threshold)
and are time-invariant; see the text for the definition. Also see the text for definition of high school quartiles. IPEDS
Average SAT score calculated for each school as the sum of the mean of the 25th and 75th percentiles of each SAT
section, converting scores from 1600 scale to 2400 scale when necessary. Sticker price is defined using on-campus
residency unless unavailable, in which case it is defined using off-campus non-family residency. IPEDS admission
rate unavailable prior to 2005, and price information unavailable prior to 2008. Applicants from high schools with
ELC eligibility thresholds between 3.96 and 4.00 are omitted. ‡ Indicates reduced-form estimates with p < 0.1
for the null hypothesis such that p ≮ 0.05 (insignificant at conventional levels) when estimated using a local linear
model with bias-corrected and cluster-robust confidence intervals following Calonico et al. (2019). 1If the applicant
enrolls at a community college but then enrolls at a four-year university within 6 months, the latter is defined as her first
institution of enrollment. 2Net price includes tuition and fees, expected room and board, books and supplies, and other
expenses net of federal, state, local, or institutional grant aid. Calculated as the IPEDS average net price for Title-IV-
aid-awarded enrollees in the applicant’s family income bin, where the observed bins are $0-30,000, $30,000-48,000,
$48,000-75,000, $75,000-110,000, and above $110,000. Applicants with unobserved family incomes are omitted, and
likely paid the sticker price (as they did not apply for federal financial aid, including loans).
Source: UC Corporate Student System, National Student Clearinghouse, the Integrated Postsecondary Education Data
System (IPEDS), and Opportunity Insights (Chetty et al., 2020a).
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Table B.19: Instrumental Variable Estimates of Near-Threshold ELC Eligibility Outcomes by
Campus, with Unadjusted Log-Distance Instrumental Variables

UCD UCSD UCSB UCI F 1

Predicted -0.32 -0.45 1.46 -0.50 0.583
Grad.2 (0.54) (0.78) (1.61) (0.64)

Institution’s 5-Year 24.0 33.6 38.3 23.4 0.266
Grad. Rate (4.94) (7.21) (14.8) (6.20)

Grad. Within 32.48 27.40 53.47 27.75 0.817
5 Years (%) (11.89) (17.44) (35.76) (14.90)

Earn STEM -9.06 -5.27 -71.07 -19.63 0.100
Degree (%) (11.71) (17.87) (35.29) (14.52)

Enr. At Grad School 31.88 18.24 83.13 37.06 0.413
within 7 Yrs. (%) (12.85) (18.58) (40.46) (16.08)

Num. Yrs. 0.33 0.19 -0.14 0.43 0.898
Pos. CA Wages3 (0.35) (0.48) (1.01) (0.45)

Avg. Early-Career 24,819 16,095 1,555 7,788 0.049
Wages3 (10,581) (13,836) (28,973) (12,635)

Avg. Early-Career 0.71 0.13 -0.87 0.19 0.006
Log Wages3 (0.31) (0.48) (0.86) (0.33)

First Stage F 107.1 12.8 7.2 61.8
Conditional F 41.6 51.7 16.1 46.4

Note: This table replicates Table 3.4 without adjusting the UCSB distance-to-campus instrument, showing that the
reduction in that instruments’ predictive power does not substantially change the main presented results. Estimates of
the effect of Absorbing UC campus enrollment on educational and labor market outcomes for near-threshold ELC-
eligible students following Equation 3.3. Log distance to Santa Barbara is unadjusted, resulting in poor instrument
strength; see Table 3.4 for adjusted estimates. Applicants from high schools with ELC eligibility thresholds between
3.96 and 4.00 are omitted. Conditional F statistic estimated following Sanderson and Windmeijer (2016). 1F -
test of the null hypothesis of equality among the four campus enrollment coefficients. 2The predicted values from
an OLS regression (across the full sample of 1995-2013 UC freshman California-resident applicants, excluding the
study’s primary sample) of five-year NSC graduation on gender by ethnicity indicators, maximum parental education
indicators (7 categories), family income, missing income indicator, SAT score, HS GPA, and year indicators. 3The
number of years between 6 and 8 years after high school graduation in which the applicant has positive covered
California wages, and the applicants’ unconditional average annual wages in the period.
Source: UC Corporate Student System, National Student Clearinghouse, and the California Employment Development
Department (Bleemer, 2018c).
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Table B.20: First-Stage IV Estimates of Near-Threshold ELC Eligibility Outcomes by Campus

UCD UCSD UCSB UCI

Log Distance to UC -0.063 0.021 0.016 0.021
Davis × ELC Elig. (0.003) (0.004) (0.003) (0.003)

Log Distance to UC 0.018 -0.055 0.001 0.049
San Diego × ELC Elig. (0.005) (0.011) (0.006) (0.008)

Log Distance to UC 0.019 0.009 -0.034 0.017
Santa Barbara × ELC Elig. (0.004) (0.004) (0.004) (0.004)

Log Distance to UC 0.043 0.034 0.014 -0.091
Irvine × ELC Elig. (0.005) (0.010) (0.006) (0.008)

Note: This table shows first-stage OLS regression coefficients for the four instrumental variables used in the IV
specifications in Table 3.4, showing that near-threshold enrollment at each UC campus is much more strongly predicted
by distance to that campus as by distance to the other campuses. Estimates of the effect of the interaction between
ELC eligibility and log distance to each Absorbing UC campus on enrollment at each of those campuses, representing
the four first-stage regressions implied by instrumental variable OLS estimation of Equation 3.3. Each column
presents estimates from a separate OLS regression predicting enrollment at the stated Absorbing UC campus; covariate
coefficients are not reported. Log distance to Santa Barbara is set to 0 after 2010 to increase instrument strength.
Applicants from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted.
Source: UC Corporate Student System and National Student Clearinghouse.
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Table B.21: Baseline Changes in Intended Major Selection

Soc. Nat.
Undec. Art Hum. Sci. Sci. Engin. Profess. Bus. STEM1

B50 Sample

Baseline 14.9 -1.4 8.4 2.6 52.0 16.2 11.8 10.0 69.4

β̂ -0.1 -0.1 -0.3 2.1 -2.1 0.8 -0.4 0.1 -1.3
(1.0) (0.5) (0.8) (1.0) (1.3) (1.0) (0.6) (0.7) (1.3)

B25 Sample

Baseline 19.5 -2.4 4.9 6.4 56.4 17.5 10.7 6.7 73.7

β̂ 0.0 -0.4 -0.4 1.6 -2.6 0.3 0.2 1.2 -2.0
(1.5) (0.6) (1.2) (1.6) (1.9) (1.5) (0.9) (1.1) (2.0)

Note: This table shows that barely ELC-eligible applicants were somewhat less likely to report intended majors in
natural science and broader STEM fields, with some switching toward social science, potentially suggesting that
eligible students felt less pressure to earn lucrative majors if they attended more-selective universities. Reported
coefficients are the estimated distribution of intended majors reported on UC applications at the barely ELC-ineligible
baseline (estimated following Abadie (2002) with Absorbing UC campus enrollment as the endogenous variable), and
the change in those characteristics across the ELC eligibility threshold (β̂) estimated following Equation 3.2. Estimates
from 2SLS cubic fuzzy regression discontinuity models; standard errors are clustered by school-year. Applicants from
high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted. Statistical significance: † 10 percent,
* 5 percent, ** 1 percent. 1STEM includes all Natural Science and Engineering majors as well as some Professional
majors (e.g. Agriculture and Architecture); see U.S. Department of Homeland Security (2016).
Source: UC Corporate Student System.

Table B.22: ELC Impact on Intended Major to Earned Major Transitions, B50 Sample

No Soc. Nat.
Degree Art Human. Sci. Sci. Engin. Profess. Bus. STEM1

Undeclared -2.5 0.5 1.2 4.5 -4.3* -0.2 0 4.2* -3.5

Hum. -1.4 -4.5* 1.8 2.8 1.9 0.1 -1.8 0.6 0.6
Soc. Sci. -8.6** 0.6 -0.2 10** -0.7 0.2 0.1 -1 -2.8
Nat. Sci. -2.9 0.2 -1.2 5.3** 0.6 -2** 0.3 -0.6 -1.9
Engin. 0.4 0.7 -0.1 -0.6 0 -2.7 1.1 2 -1.8
Profess. -10.1** 0.6 -4† 5.9 0.3 -0.9 4.9 2.1 1.1
Bus. -5.9 -0.5 -0.2 1.9 3 -1.2 3.5 -1.9 1.2

STEM -2 0.2 -1.4† 3.8** -0.3 -1.2 0.5 0.4 -1.7

Note: This table shows that barely ELC-eligible intended STEM majors tended to switch into social science majors,
though the estimates are too noisy to precisely estimate intended STEM majors’ transition out of STEM fields.
Reported coefficients are the estimated change in likelihood for barely ELC-eligible applicants (β̂) to earn a major by
discipline conditional on their intended major’s discipline, among applicants from the bottom half of California high
schools by SAT. Estimates from polynomial specification of Equation 3.2; hypothesis tests (from 0) conducted with
standard errors clustered by school-year. Degree attainment measured five years after initial enrollment. Applicants
from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted. 1STEM includes all Natural
Science and Engineering majors as well as some Professional majors (e.g. Agriculture and Architecture); see U.S.
Department of Homeland Security (2016).
Source: UC Corporate Student System and National Student Clearinghouse

257



Table B.23: Impact of ELC Eligibility on Schooling and Labor Market Outcomes

B50 Sample B25 Sample

Reduced Form Abs. UC Potential Out. Reduced Form Abs. UC Potential Out.
Base. CCT Min. GPA IV Below Above Base. CCT Min. GPA IV Below Above

Inst. Five-Year 3.33 3.05 3.57 26.78 49.89 76.68 5.41 5.27 5.74 34.14 44.51 78.65
Grad. Rate (%) (0.51) (0.75) (0.51) (3.83) (3.67) (1.15) (0.83) (0.94) (0.81) (4.84) (4.51) (1.52)

Grad. within 3.50 4.50 2.66 28.59 46.41 75.00 4.83 6.29 3.13 31.00 34.98 65.98
Five Years (%) (1.20) (1.59) (1.19) (9.92) (8.27) (5.82) (1.96) (2.55) (1.91) (12.63) (10.51) (7.13)

Number of -0.08 -0.12 -0.08 -0.62 4.99 4.37 -0.09 -0.12 -0.07 -0.55 4.96 4.41
Year Enrolled (0.03) (0.04) (0.03) (0.24) (0.20) (0.14) (0.05) (0.06) (0.05) (0.31) (0.26) (0.17)

STEM -1.75 -1.27 -1.14 -14.28 37.32 23.04 -2.37 -1.80 -1.44 -15.22 26.46 11.24
Degree (%) (1.05) (1.23) (1.04) (8.81) (6.52) (6.05) (1.34) (1.56) (1.29) (8.95) (6.46) (6.03)

Deg. in Intended 2.56 3.60 3.24 20.92 25.08 46.00 2.76 4.31 3.28 17.68 7.89 25.57
Field of Study (%) (1.24) (1.47) (1.24) (10.20) (7.73) (6.65) (1.71) (2.12) (1.66) (11.01) (8.71) (7.13)

Enr. Grad. School 2.56 3.87 1.76 20.94 4.00 24.94 3.87 3.77 2.13 24.82 -1.27 23.54
Within 7 Years (1.17) (1.65) (1.17) (9.78) (7.91) (6.27) (1.66) (1.83) (1.62) (11.02) (9.02) (6.48)

# Early-Career 0.05 0.04 0.05 0.47 2.17 2.64 0.07 0.05 0.03 0.47 2.21 2.68
Years Employed (0.03) (0.04) (0.03) (0.30) (0.24) (0.18) (0.05) (0.05) (0.05) (0.35) (0.30) (0.20)

Average Early-Career 2,356 1,253 2,254 20,341 27,351 47,692 2,243 2,227 1,400 16,205 27,145 43,350
Covered Earnings (901) (1,206) (865) (8,199) (6,322) (4,891) (1,184) (1,262) (1,139) (8,884) (7,164) (5,231)

Average Early-Career 0.10 0.08 0.06 0.76 10.04 10.81 0.08 0.06 0.03 0.56 10.19 10.75
Log Covered Earnings (0.04) (0.05) (0.03) (0.33) (0.25) (0.21) (0.06) (0.06) (0.04) (0.39) (0.32) (0.25)

Note: This table summarizes a series of robustness checks and extensions of the main regression discontinuity findings, showing that they are generally robust to alternative
specifications and also highlighting the changes in potential outcomes resulting from Absorbing UC campus enrollment because of ELC eligibility. Reported coefficients are the
estimated change in various outcome measures for barely ELC-eligible applicants estimated by Equation 3.2: reduced-form 2SLS polynomial and ‘CCT’ local linear (Calonico,
Cattaneo and Titiunik, 2014) regression discontinuity models; reduced-form polynomial regression discontinuity model using an alternative measurement of each high school’s ELC
eligibility threshold (just below the lowest ELC-eligible applicant’s ELC GPA); polynomial models with Absorbing UC campus enrollment (1Abs.) as the endogenous variable; and
estimated average potential outcomes for barely ELC-ineligible and barely ELC-eligible Absorbing UC campus compliers (following Abadie (2002)). Standard errors in parentheses
are clustered by high-school-year. Coefficients estimated for applicants from the bottom half (B50) and quartile (B25) of California high schools by SAT; see text for details, and for
definitions of the outcome variables. Early-career employment outcomes for 7-9 years after high school graduation. See Appendix Table B.26 for annual specifications 6-10 years
after high school graduation. Applicants from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted.
Source: UC Corporate Student System, National Student Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).
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Table B.24: Impact of ELC Eligibility on Schooling and Labor Market Outcomes by Subgroup

Reduced-Form Polynomial Estimates Five-Year Graduation Rate IV Estimates

B50 B25 Female Male URM Non-URM B50 B25 Female Male URM Non-URM

Inst. Five-Year 3.33 5.41 3.97 2.27 3.59 3.03
Grad. Rate (%) (0.51) (0.83) (0.67) (0.82) (0.93) (0.62)

Grad. within 3.50 4.83 3.45 3.89 3.97 3.08 1.01 0.85 0.89 1.57 1.08 0.98
Five Years (%) (1.20) (1.96) (1.49) (2.05) (2.12) (1.45) (0.35) (0.34) (0.35) (0.93) (0.57) (0.46)

Number of -0.078 -0.092 -0.058 -0.120 -0.103 -0.070 -0.024 -0.018 -0.016 -0.048 -0.030 -0.022
Year Enrolled (0.030) (0.050) (0.037) (0.051) (0.055) (0.035) (0.010) (0.010) (0.010) (0.025) (0.016) (0.012)

STEM -1.75 -2.37 -3.74 0.54 -1.96 -1.61 -0.52 -0.44 -0.87 0.11 -0.55 -0.50
Degree (%) (1.05) (1.34) (1.25) (1.90) (1.45) (1.48) (0.33) (0.27) (0.36) (0.84) (0.44) (0.52)

Deg. in Intended 2.56 2.76 1.49 4.09 3.06 2.19 0.79 0.54 0.42 1.85 0.89 0.78
Field of Study (%) (1.24) (1.71) (1.60) (2.08) (1.93) (1.62) (0.38) (0.32) (0.40) (1.06) (0.55) (0.53)

Enr. Grad. School 2.56 3.87 3.63 1.06 4.15 1.47 0.77 0.63 0.94 0.43 1.12 0.48
Within 7 Years (1.17) (1.66) (1.58) (1.81) (1.90) (1.51) (0.36) (0.31) (0.41) (0.81) (0.58) (0.50)

# Early-Career 0.054 0.065 0.053 0.055 0.012 0.074 0.016 0.014 0.014 0.023 -0.003 0.025
Years Employed (0.034) (0.048) (0.042) (0.057) (0.056) (0.044) (0.011) (0.010) (0.011) (0.030) (0.020) (0.014)

Average Early-Career 2,356 2,243 2,422 2,575 704 3,392 728 478 670 1,082 104 1,111
Covered Earnings (901) (1,184) (1,079) (1,616) (1,349) (1,207) (310) (258) (298) (938) (488) (437)

Average Early-Career 0.100 0.083 0.080 0.146 -0.008 0.176 0.033 0.021 0.018 0.146 0.000 0.063
Log Covered Earnings (0.04) (0.06) (0.05) (0.07) (0.06) (0.05) (0.02) (0.01) (0.01) (0.17) (0.02) (0.03)

Note: This table summarizes heterogeneity in the estimated relative return to university selectivity for near-threshold ELC-eligible participants, generally suggesting similar treatment
effect magnitudes for male, female, URM, and non-URM applicants. Reported coefficients are the estimated change in various outcome measures for barely ELC-eligible applicants
from the polynomial specification of Equation 3.2, with the IV estimates replacing the endogenous variable with applicant’s first institution’s five-year graduation rate. Sample is
restricted to the bottom half (B50) of California high schools by SAT; second column is further restricted to bottom quartile (B25) of high schools, and other columns are restricted
to female, male, URM, or non-URM applicants. Standard errors in parentheses are clustered by high-school-year. URM includes black, Hispanic, and Native American applicants.
See the text for definition of high school SAT quartiles and the outcome variables. Applicants from high schools with ELC eligibility thresholds between 3.96 and 4.00 are omitted.
Early-career employment outcomes are for 7-9 years after high school graduation.
Source: UC Corporate Student System, National Student Clearinghouse, and the California Employment Development Department (Bleemer, 2018c).

259



Table B.25: Tests of Treatment Effect Linearity in University Graduation Rate

Number of HS Quantiles
2 4 6 8 10

Panel A: 2SLS Over-ID Tests on Graduation Rate

IV β 1.05 0.88 1.04 1.04 1.16
(0.35) (0.33) (0.33) (0.32) (0.31)

Sargan’s S 0.15 1.89 1.85 2.58 2.31
p 0.698 0.595 0.870 0.921 0.986

Panel B: LIML Estimates on Graduation Rate

IV β 1.06 0.95 1.21 1.33 1.47
(0.36) (0.57) (0.53) (0.67) (0.59)

Panel C: 2SLS Estimates of Quadratic in Grad. Rate

GR2 β 0.369 0.326 0.091 0.091 0.052
(1.332) (0.336) (0.063) (0.056) (0.039)

Note: This table reports the results of three series of tests of whether the changes in outcomes caused by barely
ELC-eligible students’ Absorbing UC campus enrollment could be usefully projected onto their change in university
selectivity (indexed by five-year graduation rates). Interacting ELC eligibility and the running variable terms with
applicants’ high school quantiles, Panel A shows that over-id tests cannot reject linear returns to selectivity; Panel
B shows that the LIML IV estimates do not shrink as the number of instruments increase; and Panel C shows that a
quadratic term in graduation rate is not statistically significantly different from 0. Reported coefficients are coefficient
estimates and test statistics from regressions of an indicator for applicants’ five-year university graduation on their
institution of first enrollment’s NSC-calculated five-year graduation rate, instrumented by ELC eligibility interacted
with high school SAT quantile indicators. Sample restricted to UC applicants in the bottom half of California high
schools by near-threshold SAT score, and regressions include third-order polynomials in the ELC running variable
interacted with quantile dummies along with high school and year fixed effects, gender-ethnicity indicators, and a
quadratic in SAT score. Standard errors in parentheses clustered by high-school-year. Panel A: Coefficients and
statistics from 2SLS regression estimation. Reported “IV β” is the second-stage term on five-year graduation rates;
Sargan’s S tests for over-identification and is distributed χ2 with degrees of freedom equal to the number of high school
quantiles minus 1 (p estimates model’s likelihood under the null hypothesis). Panel B: Coefficients on graduation rate
from Limited Information Maximum Likelihood estimation. Panel C: Coefficients on the square of graduation rate
when both linear and squared rates are instrumented by ELC-interactions.
Source: UC Corporate Student System and National Student Clearinghouse
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Table B.26: Impact of ELC Eligibility on Observed Annual California Wages

B50 Sample B25 Sample

# Years after HS Grad: 6 7 8 9 10 11 6 7 8 9 10 11

Non-Zero Wage 1.65 1.34 1.81 1.82 1.76 2.13 2.55 2.23 1.52 1.53 0.53 1.25
Indicator (1.15) (1.18) (1.28) (1.39) (1.53) (1.70) (1.66) (1.69) (1.79) (1.99) (2.20) (2.42)

Average Wages 734 1,758 2,150 2,068 2,237 2,063 1,341 1,637 2,062 1,652 1,249 2,597
(690) (814) (964) (1,154) (1,383) (1,637) (917) (1,059) (1,261) (1,554) (1,897) (2,248)

Average Log Wages 0.017 0.083 0.070 0.042 0.040 -0.005 0.061 0.053 0.052 0.036 0.059 0.082
(0.037) (0.038) (0.038) (0.040) (0.042) (0.048) (0.052) (0.050) (0.054) (0.056) (0.060) (0.069)

Latest Year Inc.1 2011 2011 2011 2010 2009 2008 2011 2011 2011 2010 2009 2008
Number of Observations 85,725 85,725 85,725 75,334 65,462 54,811 42,904 42,904 42,904 37,435 32,121 26,669
Percent of Total1 100 100 100 87.9 76.4 63.9 100 100 100 87.3 74.9 62.2

Note: This table shows that ELC eligibility appears to persistently increase wages for barely-eligible applicants as they
age (from about age 24 to 29, though the number of observations declines in years further from high school graduation),
suggesting that the main estimates are unlikely to be short-lived in applicants’ very early careers. Estimated reduced-
form changes (β̂) in annual covered California employment and covered California wages and log wages 6-11 years
after high school graduation caused by near-threshold ELC eligibility. Estimates from polynomial specification of
Equation 3.2, restricting the sample to the bottom half (B50) or quartile (B50) of California high schools by SAT
(see text for details); standard errors are clustered by school-year. Covered wages exclude wages not covered by
unemployment insurance, including federal and self-employment. Applicants from high schools with ELC eligibility
thresholds between 3.96 and 4.00 are omitted. 1The latest observed high school cohort is 2011, and the latest observed
wages are 2019. As a result, every year more than 8 years following high school graduation requires dropping one
cohort of applicants from the estimation sample. These figures show the latest cohort included in estimation, the
number of within-sample applicants in those cohorts, and the percent of all in-sample applicants in available cohorts.
Source: UC Corporate Student System and the California Employment Development Department. (Bleemer, 2018c).
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Table B.27: Other Model Parameters

Parameter Value Parameter Value Parameter Value

σ2
νCSU

1.54 γsConst -0.59 βxDist -0.37
(0.71) (0.04) (0.02)

σ2
νUnimp

3.05 γsLogInc -0.11 βxDist2 0.02
(0.76) (0.02) (0.01)

σ2
νAbs1

1.58 γsFemale -0.14 βxDist×LogInc 0.08
(0.72) (0.04) (0.01)

σ2
νAbs2

1.78 γsAsian 0.13 βxDist×Female 0.02
(0.71) (0.05) (0.01)

σ2
νDisp

2.22 γsURM -0.61 βxDist×Asian -0.10
(0.71) (0.06) (0.02)

βxDist×URM -0.03
(0.02)

γcConst 0.05 γ
q|s
Const -2.58

(0.001) (0.72)

γcLogInc 0.02 γ
q|s
LogInc 0.03

(0.001) (0.31)

γcFemale 0.00 γ
q|s
Female -0.55

(0.001) (0.66)

γcAsian -0.03 γ
q|s
Asian 0.13

(0.001) (0.65)

γcURM -0.02 γ
q|s
URM -0.53

(0.001) (1.06)
Note: This table presents estimates of the remaining structural model parameters not presented in the main tables; see
text for details. Parameter estimates from maximum simulated likelihood (maximized by the BFGS Quasi-Newton
algorithm) of Equation 3.7. Reported standard errors from the inverse of the empirical Hessian matrix. Missing family
incomes are imputed; see footnote 50. Continuous variables are standardized in-sample. Sample restricted to 2010-
2013 UC freshman California-resident applicants who enroll at a public California institution in the fall after high
school graduation.
Source: UC Corporate Student System and the National Student Clearinghouse.
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Table B.28: Adjusted Admissions Thresholds in in Counterfactual Simulations

Unimpacted UCSD/UCSB UCD/UCI Dispersing

Baseline
¯
πj’s 1.95 0.46 0.15 -1.63

Counterfactual 1: Setting βELCAbs1 = βELCAbs2 = 0 before 2012

1.95 0.41 0.07 -1.64

Counterfactual 2: Setting ELC = 1 above threshold after 2011

Threshold:
1 1.95 0.48 0.17 -1.63
2 1.94 0.50 0.20 -1.62
3 1.94 0.52 0.23 -1.62
4 1.94 0.54 0.27 -1.62
5 1.94 0.57 0.32 -1.62
6 1.94 0.60 0.38 -1.61
7 1.94 0.63 0.46 -1.61
8 1.94 0.67 0.54 -1.61
9 1.94 0.70 0.63 -1.61

Note: This table shows how each UC campus’s
¯
πj admissions threshold adjusts to preserve expected enrollment in the

counterfactual presence or absence of a top percent admissions policy; the Absorbing UC campuses’ thresholds relax
(tighten) when the top percent policy is removed (added), reflecting their trade-off between admitting students through
regular admissions or the top percent policy. Parameter estimates from maximum simulated likelihood (maximized by
the BFGS Quasi-Newton algorithm) minimizing changes in each UC campus’s expected enrollment in counterfactual
exercises removing the ELC policy before or adding the policy after 2011 (providing admissions advantages to students
at or above the specified GPA rank admissions threshold). Standard errors are omitted. Sample restricted to 2010-2013
UC freshman California-resident applicants who enroll at a public California institution in the fall after high school
graduation. See text for details on the counterfactual exercises.
Source: UC Corporate Student System and the National Student Clearinghouse.
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Appendix C

Appendix to Chapter 4

C.1 Department-Specific Event Study Estimates
This study estimates the average effects of newly-imposed major restrictions by averaging across
every restriction imposed by the University of California campuses at Berkeley, Davis, Santa
Barbara, and Santa Cruz, conditional on data availability in the surrounding years. However,
heterogeneity in implementation timing, grandfathering provisions, strictness, and other
characteristics of majors generate substantial heterogeneity in how majors’ student composition
shifted as a result of their new policies. This appendix presents estimates of βt from Equation 4.2
separately for each estimable restriction event, decomposing the average into its many
heterogeneous components.

C.2 Other Appendix Figures and Tables
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Figure C.1: Individual Department Event Studies: Log Number of Students

UCB Comp. Sci. UCB Pol. Econ. UCB Art UCB Psychology UCB Public Health

UCB Env. Econ. UCD Land. Arch. UCD Psychology UCD Int. Rel. UCD Comp. Sci.

UCD Comm. UCD Hum. Dev. UCD Manag. Econ. UCD Biotech. UCSB Biology

UCSB Law and Soc. UCSB Biopsych. UCSB Fin. Math. UCSC Econ. UCSC Physics

UCSC Psych. UCSC Chem.

Note: Event study β estimates of the log number of students in each respective major before and after the
implementation of its restriction, relative to other majors in that campus-year. Estimated over the full sample of
campus-major-cohorts, but only including one ‘event’ per figure. β−1 is omitted and standard errors are clustered by
campus-major. Source: UC ClioMetric History Project Student Database.
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Figure C.2: Individual Department Event Studies: Percent of Majors URM

UCB Comp. Sci. UCB Pol. Econ. UCB Art UCB Psychology UCB Public Health

UCB Env. Econ. UCD Int. Rel. UCD Comp. Sci. UCD Comm. UCD Hum. Dev.

UCD Manag. Econ. UCD Biotech. UCSB Biology UCSB Law and Soc. UCSB Biopsych.

UCSB Fin. Math. UCSC Econ. UCSC Physics UCSC Psych. UCSC Chem.

Note: Event study β estimates of the percent of declared students in each respective major who are underrepresented
minorities (URM) before and after the implementation of the major’s restriction, relative to other majors in that
campus-year. Estimated over the full sample of campus-major-cohorts, but only including one ‘event’ per figure.
β−1 is omitted and standard errors are clustered by campus-major. Source: UC ClioMetric History Project Student
Database.
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Figure C.3: Individual Department Event Studies: Outside-Discipline Normed GPA

UCB Comp. Sci. UCB Pol. Econ. UCB Art UCB Psychology UCB Public Health

UCB Env. Econ. UCD Comp. Sci. UCD Comm. UCD Hum. Dev. UCD Manag. Econ.

UCD Biotech. UCSB Biology UCSB Law and Soc. UCSB Biopsych. UCSB Fin. Math.

UCSC Econ. UCSC Physics UCSC Psych. UCSC Chem.

Note: Event study β estimates of each major’s declared students’ first-quarter normed GPA in courses taken outside
of the major’s division (and excluding Mathematics and Statistics courses) before and after the implementation of its
restriction, relative to other majors in that campus-year. Estimated over the full sample of campus-major-cohorts, but
only including one ‘event’ per figure. β−1 is omitted and standard errors are clustered by campus-major. Source: UC
ClioMetric History Project Student Database.
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Figure C.4: Estimated Changes in Major Choice and Composition of Students Who Intend
Restricted Majors

Panel A: Earn the Restricted Major
(a) By Ethnicity (b) By Gender

Panel B: Student GPA FE
(c) By Ethnicity (d) By Gender

Note: Difference-in-difference event study βit estimates by gender and ethnicity of the relationship between
students’ intending the restricted major (M̂im) and their major choice or student characteristic before and after the
implementation of the restriction, following Equation 4.5 and estimated over a stacked dataset of students i’s major
intentions in field m. Outcomes are defined as whether the student earns the restricted major and the student’s GPA
FE, their individual fixed effect from a two-way fixed effect model of GPA on student and course effects. β−3 is
omitted, and standard errors are two-way clustered by campus-majors m and by students i. Models include campus-
major-cohort fixed effects. Source: UC ClioMetric History Project Student Database.
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Table C.1: Wage-by-Major Estimates from the American Community Survey

Major Code and Name β s.e. Major Code and Name β s.e.

2419 Petroleum Engineering 0.7593 0.0842 2503 Industrial Production Technologies 0.2283 0.0293
6202 Actuarial Science 0.7476 0.0510 3202 Pre-Law and Legal Studies 0.2251 0.0285
6106 Health and Medical Preparatory Programs 0.7300 0.0377 6100 General Medical and Health Services 0.2227 0.0278
2404 Biomedical Engineering 0.7220 0.0388 6102 Communication Disorders Sciences and Services 0.2200 0.0245
3611 Neuroscience 0.7141 0.0498 6402 History 0.2197 0.0217
4006 Cognitive Science and Biopsychology 0.6462 0.0515 2602 Common Foreign Language Studies 0.2178 0.0238
6108 Pharmacy, Pharm. Sciences, and Admin. 0.6265 0.0239 5004 Geology and Earth Science 0.2138 0.0259
2405 Chemical Engineering 0.6226 0.0232 5401 Public Administration 0.2100 0.0314
3603 Molecular Biology 0.6188 0.0306 6103 Health and Medical Administrative Services 0.2076 0.0254
3601 Biochemical Sciences 0.6040 0.0256 5006 Oceanography 0.1965 0.0427
2418 Nuclear Engineering 0.6033 0.0587 2107 Computer Networking and Telecommunications 0.1954 0.0301
2407 Computer Engineering 0.5982 0.0226 2500 Engineering Technologies 0.1948 0.0349
4005 Mathematics and Computer Science 0.5890 0.0621 1902 Journalism 0.1932 0.0231
4003 Neuroscience 0.5828 0.2293 2106 Computer Information Management and Security 0.1886 0.0280
5008 Materials Science 0.5724 0.0380 5299 Miscellaneous Psychology 0.1881 0.0366
2408 Electrical Engineering 0.5585 0.0213 6006 Art History and Criticism 0.1880 0.0294
5501 Economics 0.5467 0.0218 1901 Communications 0.1865 0.0215
2415 Metallurgical Engineering 0.5406 0.0480 6104 Medical Assisting Services 0.1838 0.0309
2401 Aerospace Engineering 0.5377 0.0268 6110 Community and Public Health 0.1833 0.0313
3607 Pharmacology 0.5360 0.0650 1103 Animal Sciences 0.1771 0.0275
2414 Mechanical Engineering 0.5299 0.0213 2101 Computer Programming and Data Processing 0.1754 0.0384
5402 Public Policy 0.5226 0.0479 5206 Social Psychology 0.1697 0.0601
3701 Applied Mathematics 0.5190 0.0356 2303 School Student Counseling 0.1597 0.0380
2412 Industrial and Manufacturing Engineering 0.5069 0.0244 1301 Environmental Science 0.1551 0.0244
2416 Mining and Mineral Engineering 0.5039 0.0648 5200 Psychology 0.1515 0.0211
6207 Finance 0.4990 0.0214 3301 English Language and Literature 0.1504 0.0214
3605 Genetics 0.4972 0.0434 5000 Physical Sciences 0.1476 0.0532
2102 Computer Science 0.4874 0.0212 4002 Nutrition Sciences 0.1422 0.0324
3600 Biology 0.4854 0.0213 3201 Court Reporting 0.1401 0.0714
5003 Chemistry 0.4770 0.0224 4801 Philosophy and Religious Studies 0.1362 0.0239
6205 Business Economics 0.4695 0.0310 5507 Sociology 0.1356 0.0218
5505 International Relations 0.4671 0.0271 5301 Criminal Justice and Fire Protection 0.1327 0.0212
2417 Naval Architecture and Marine Engineering 0.4610 0.0504 5502 Anthropology and Archeology 0.1312 0.0247
5007 Physics 0.4564 0.0235 5503 Criminology 0.1302 0.0288
2410 Environmental Engineering 0.4547 0.0324 1101 Agriculture Production and Management 0.1154 0.0286
3702 Statistics and Decision Science 0.4516 0.0344 4007 Interdisciplinary Social Sciences 0.1123 0.0304
3606 Microbiology 0.4505 0.0276 2601 Linguistics and Comparative Language and Lit. 0.1068 0.0311
6212 Management Information Systems and Statistics 0.4399 0.0227 5201 Educational Psychology 0.1051 0.0414
2501 Engineering and Industrial Management 0.4375 0.0410 5504 Geography 0.0954 0.0252
5801 Precision Production and Industrial Arts 0.4307 0.1720 3604 Ecology 0.0903 0.0297
2403 Architectural Engineering 0.4297 0.0440 5202 Clinical Psychology 0.0799 0.0576
2413 Materials Engineering and Materials Science 0.4278 0.0344 2308 Science and Computer Teacher Education 0.0782 0.0271
2406 Civil Engineering 0.4277 0.0222 3401 Liberal Arts 0.0775 0.0224
5506 Political Science and Government 0.4257 0.0215 1903 Mass Media 0.0768 0.0244
2409 Engineering Mechanics, Physics, and Science 0.4251 0.0429 4000 Interdisciplinary and Multi-Disciplinary Studies 0.0748 0.0288
2105 Information Sciences 0.4219 0.0252 2310 Special Needs Education 0.0727 0.0236
2400 General Engineering 0.4136 0.0221 2399 Miscellaneous Education 0.0710 0.0246
2499 Miscellaneous Engineering 0.4034 0.0296 1303 Natural Resources Management 0.0704 0.0256
3608 Physiology 0.4015 0.0305 1302 Forestry 0.0607 0.0313
5599 Miscellaneous Social Sciences 0.4005 0.0486 4101 Physical Fitness, Parks, Recreation, and Leisure 0.0605 0.0224
3609 Zoology 0.3946 0.0306 2305 Mathematics Teacher Education 0.0592 0.0275
5001 Astronomy and Astrophysics 0.3867 0.0617 6004 Commercial Art and Graphic Design 0.0573 0.0228
3700 Mathematics 0.3745 0.0225 2603 Other Foreign Languages 0.0567 0.0347
6107 Nursing 0.3690 0.0210 3302 Composition and Speech 0.0555 0.0306
6210 International Business 0.3644 0.0270 3402 Humanities 0.0515 0.0331
6201 Accounting 0.3628 0.0211 2001 Communication Technologies 0.0498 0.0309
6204 Operations, Logistics and E-Commerce 0.3624 0.0277 5500 General Social Sciences 0.0479 0.0289
5005 Geosciences 0.3446 0.0454 1106 Soil Science 0.0433 0.0555
5601 Construction Services 0.3385 0.0264 2313 Language and Drama Education 0.0390 0.0238
5901 Transportation Sciences and Technologies 0.3342 0.0249 2300 General Education 0.0327 0.0212
2402 Biological Engineering 0.3332 0.0384 6211 Hospitality Management 0.0327 0.0251
3801 Military Technologies 0.3284 0.0867 6199 Miscellaneous Health Medical Professions 0.0317 0.0301
2100 Computer and Information Systems 0.3184 0.0221 1105 Plant Science and Agronomy 0.0256 0.0301
1104 Food Science 0.3078 0.0402 6005 Film, Video and Photographic Arts 0.0225 0.0279
2502 Electrical Engineering Technology 0.2903 0.0272 2311 Social Science or History Teacher Education 0.0197 0.0254
6200 General Business 0.2880 0.0211 2309 Secondary Teacher Education 0.0164 0.0235
5098 Multi-disciplinary or General Science 0.2810 0.0231 2306 Physical and Health Education Teaching 0.0034 0.0233
6206 Marketing and Marketing Research 0.2800 0.0215 5404 Social Work 0.0028 0.0223
2301 Educational Administration and Supervision 0.2798 0.0304 1100 General Agriculture 0.0000 0.0000
4008 Multi-disciplinary or General Science 0.2747 0.0353 5203 Counseling Psychology -0.0041 0.0341
3699 Miscellaneous Biology 0.2740 0.0315 2304 Elementary Education -0.0239 0.0211
4001 Intercultural and International Studies 0.2737 0.0297 2901 Family and Consumer Sciences -0.0239 0.0236
5205 Industrial and Organizational Psychology 0.2694 0.0467 3501 Library Science -0.0277 0.0502
6105 Medical Technologies Technicians 0.2667 0.0253 2312 Teacher Education: Multiple Levels -0.0295 0.0262
1102 Agricultural Economics 0.2539 0.0373 5701 Electrical and Mechanic Repairs and Technologies -0.0303 0.0463
6299 Misc. Business and Medical Admin. 0.2527 0.0281 1199 Miscellaneous Agriculture -0.0310 0.0753
5102 Nuclear, Industrial Radiology, and Bio. Tech. 0.2522 0.0499 3602 Botany -0.0335 0.0479
2599 Miscellaneous Engineering Technologies 0.2498 0.0272 5403 Human Services and Community Organization -0.0529 0.0274
1501 Area, Ethnic, and Civilization Studies 0.2468 0.0260 2314 Art and Music Education -0.0531 0.0239
5002 Atmospheric Sciences and Meteorology 0.2461 0.0381 6000 Fine Arts -0.0577 0.0232
6209 Human Resources and Personnel Management 0.2446 0.0242 6001 Drama and Theater Arts -0.0745 0.0257
6203 Business Management and Administration 0.2440 0.0208 6002 Music -0.0791 0.0240
1904 Advertising and Public Relations 0.2429 0.0251 6003 Visual and Performing Arts -0.0959 0.0349
1401 Architecture 0.2427 0.0227 2307 Early Childhood Education -0.1104 0.0246
6109 Treatment Therapy Professions 0.2418 0.0226 6007 Studio Arts -0.1463 0.0301
2504 Mechanical Engineering Related Technologies 0.2343 0.0354 6099 Miscellaneous Fine Arts -0.1543 0.0844
2411 Geological and Geophysical Engineering 0.2339 0.1412 2201 Cosmetology Services and Culinary Arts -0.1603 0.0385
6403 United States History 0.2288 0.0535 4901 Theology and Religious Vocations -0.2731 0.0240

Note: Estimates from a linear regression of annual log income on major indicators across all employed college
graduates in the 2009-2019 American Community Surveys (Ruggles et al., 2020), conditioning on gender-ethnicity-
age and year indicators. Individuals with two majors are randomly assigned to one of their majors. Standard errors are
robust. Source: American Community Survey.
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Appendix D

Appendix to Chapter 5

D.1 Survey Appendix
We analyze students’ responses to two UCUES survey questions. The first question asks: “How
many hours: -Studying and other academic activities outside of class,” and respondents are
provided eight radio-button alternatives: “0; 1-5; 6-10; 11-15; 16-20; 21-25; 26-30; More than
30”. We code each range to its mean, and code “More than 30” to 35.

The second question asks: “Career hope to eventually have after education complete”.
Students available responses are: “Agricultural/agribusiness; Artistic, creative professions;
Business, finance-related professions; Civil service/government; Education; Engineering,
computer programming; Law; Medicine, health-related professions; Military; Psychology,
helping professions; Researcher, scientist; I have no idea whatsoever; Other”. Our analysis uses
an indicator for whether the student selected the third response, “Business, finance-related
professions”.

D.2 Other Appendix Figures and Tables
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Figure D.1: UCSC Economics Major Declaration at the Admission Threshold by Year

(a) 2000 (b) 2001 (c) 2002 (d) 2003

(e) 2004 (f) 2005 (g) 2006 (h) 2007

(i) 2008 (j) 2009 (k) 2010 (l) 2011

(m) 2012 (n) 2013 (o) 2014

Note: This figure shows the annual bindingness of UCSC’s economics major restriction policy by incoming cohort,
providing evidence that the policy was hardly binding until the 2008 cohort, most binding in 2010, and became less
binding in 2013 (when the EGPA rule may have changed). Each circle represents the percent of economics majors
(y axis) among each cohort year of UCSC students who earned a given EGPA in Economics 1 and 2 (x axis). The
size of each circle corresponds to the proportion of students who earned that EGPA. Cohort years are defined by year
of entry. Majoring in economics indicates declaring any of UCSC’s three economics major tracks: economics, global
economics, or business management economics. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear
regression discontinuity specification; standard error (clustered by EGPA) in parentheses. Source: The UC-CHP
Student Database.
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Figure D.2: Trends in UCSC Economics

Note: This figure shows that the UCSC major restriction became binding following a substantial increase in student
demand for the economics major leading up to and after the 2007-2008 financial crisis. This figure shows the annual
proportion of UCSC freshman-admit students who enroll in Economics 1 or Economics 2 prior to the last quarter
of their second year, and the proportion of those students who declare the economics major. UCSC formalized its
economics major restriction in 2003; the “binding” period is defined as the years in which barely below-threshold
students are estimated to be more than 20 percentage points less likely to declare the economics major than barely
above-threshold students (see Figure D.1). Sources: The UC-CHP Student Database.
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Figure D.3: Selection into Completing the Biannual UCUES Survey

Panel A: Sophomore/Junior Year Survey

(a) Completed Survey (b) Predicted Wages by Demographics

Panel B: Junior/Senior Year Survey

(c) Completed Survey (d) Predicted Wages by Demographics

Note: This figure shows that UCUES survey response rates (among sophomore/junior respondents and junior/senior
respondents) are smooth across the threshold, as are respondents’ demographic and socioeconomic characteristics
projected onto predicted postgraduate wages. Each circle represents the percent of students who completed the UCUES
survey (for different survey timing) or respondents’ predicted wages by demographic and socioeconomic background
(y axis) among 2008-2012 UCSC students who earned a given EGPA in Economics 1 and 2 (x axis). The size of
each circle corresponds to the proportion of students who earned that EGPA. “Predicted Wages by Demographics”
estimates each student’s predicted wages by a linear regression (among 2008-2012 UCSC students outside the main
sample) of 2017-2018 wages on gender-ethnicity indicators, residency status, and third-order polynomials in SAT
score and mean ZIP Code income. 2017-2018 wages are the mean in EDD-covered California wages in those years,
omitting zeroes. Wages are CPI-adjusted to 2018 and winsorized at 2% above and below. Fit lines and beta estimate (at
the 2.8 GPA threshold) from linear regression discontinuity specification and instrumental variable specification (with
majoring in economics as the endogenous variable); standard error (clustered by EGPA) in parentheses. Source: The
UC-CHP Student Database and the CA Employment Development Department.
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Figure D.4: Grade Distribution of Potential Economics Majors

(a) Cumulative EGPA Distribution (b) 2008-2012 Grades in ECON 2

(c) 2003-2007 (d) 2008-2012

Note: This figure shows the distribution of UCSC Economics 1 and 2 grades (EGPAs), showing the absence of a
pattern suggesting that students manipulated their grades above the GPA threshold. Panel (a) shows the cumulative
distribution of Economics 1 and 2 EGPAs for three cohorts of freshman-admit UCSC students: 2000-2002, 2003-
2007, and 2008-2012. In Panel (b), each circle represents the average Economics 2 grade (y axis) among 2008-2012
UCSC students who earned a given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the
proportion of students who earned that EGPA. Panels (c) and (d) show the distribution of EGPAs among the 2003-
2007 cohorts (when the major restriction policy was less-binding) and the 2008-2012 cohorts. Source: The UC-CHP
Student Database.
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Figure D.5: Baseline Balance at the Economics Major Eligibility Threshold

(a) Female (b) URM (c) CA Residency

(d) SAT Score (e) Mean ZIP Code Income (f) Predicted Wages

Note: This figure shows that 2008-2012 UCSC students’ socioeconomic characteristics were smooth across the
economics GPA threshold, separately and together in a one-dimensional prediction of early-career earnings. Each
circle represents the mean demographic or socioeconomic characteristic (y axis) among 2008-2012 UCSC students
who earned a given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of
students who earned that EGPA. For the 4 percent UC students who submit ACT test scores instead of SAT scores,
or SAT scores on a 1600 point basis, the scores are converted to 2400-point SAT scores using standard concordance
tables. ZIP Codes are from students’ applications, and are matched to reported mean adjusted gross income in their
application year. “Predicted Wages” estimates each student’s predicted wages by a linear regression (among 2008-
2012 UCSC students who did not complete Economics 1 and 2) of 2017-2018 wages on gender-ethnicity indicators,
residency status, and third-order polynomials in SAT score and mean ZIP Code income. Predicted wages are restricted
to students with observed 2017-2018 wages. 2017-2018 wages are the mean in EDD-covered California wages in
those years, omitting zeroes; wages are CPI-adjusted to 2018 and winsorized at 2% above and below. EGPAs below
1.8 are omitted, leaving 2,839 students in the sample (2,446 with observed wages). Fit lines and beta estimate (at
the 2.8 GPA threshold) from linear regression discontinuity specification; standard error (clustered by EGPA) in
parentheses. Sources: The UC-CHP Student Database, IRS SOI, and the CA Employment Development Department.
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Figure D.6: Placebo Tests: Treatment Effect on Major and Wages with No Restriction or Less-
Binding Restriction

Panel A: 2000-2002 Cohorts (No Restriction)

(a) Economics Major (b) Annual 2008-2009 Wages

Panel B: 2003-2007 Cohorts (Less-Binding Restriction)

(c) Economics Major (d) Annual 2012-2013 Wages

Note: This figure presents two placebo tests showing (A) that major choice and wages were smooth across the 2000-
2002 2.8 EGPA threshold (prior to the policy’s initial implementation) and (B) both slightly discontinuous in 2003-
2007 (during the policy’s less-binding phase), generating a similar (but noisy) instrumental variable estimate of the
impact of economics major choice on early-career wages. Each circle represents the proportion of economics majors
or mean annual wages of UCSC students (y axis) among those who earned a given EGPA in Economics 1 and
2 (x axis), restricted to the 2000-2002 or 2003-2007 UCSC cohorts. The size of each circle corresponds to the
proportion of students who earned that EGPA. EGPAs below 1.8 are omitted. UCSC did not restrict the economics
department to the 2000-2002, and only maintained a loosely-binding major restriction for the 2003-2007 cohorts.
Wages are presented for each cohort when they were approximately the same age as in the main analysis. 2008-2009
and 2012-2013 wages are the mean in EDD-observed California wages in those years; individuals with no wages in
one year are assigned the other year’s wages, and those with no observed wages in either are omitted. Wages are CPI-
adjusted to 2018 and winsorized at 2% above and below. Fit lines and beta estimate (at the 2.8 GPA threshold) from
linear regression discontinuity specification and instrumental variable specification (with majoring in economics as the
endogenous variable); standard error (clustered by EGPA) in parentheses. Source: The UC-CHP Student Database
and the CA Employment Development Department.
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Figure D.7: Earnings Effect Heterogeneity at the Economics GPA Threshold, 2008-2012

(a) Male (b) Female (c) URM (d) Non-URM

(e) 2017 Wages (f) 2018 Wages (g) 2010-2012 Cohorts (h) 2008-2010 Cohorts

Note: This figure shows that the wage return to majoring in economics is of similar magnitude when measured among male and female students or among
underrepresented minority (URM) and non-URM students, is of similar magnitude when measured in 2017 or 2018, and appears somewhat larger for earlier (and
thus older) cohorts. Each circle represents the mean annual wages of UCSC students (y axis) among 2008-2012 UCSC students who earned a given EGPA in
Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students who earned that EGPA. Panels (a) to (d) restrict the sample to
male, female, URM (Black, Hispanic, or Native American), and non-URM students, respectively. Panels (e) and (f) measure wages in 2017 or 2018, respectively;
all other panels measure wages as the mean between EDD-observed 2017 and 2018 California wages in those years, where individuals with no wages in one year
are assigned the other year’s wages. Panels (g) and (h) restrict the sample to only the 2010-2012 and the 2008-2010 cohorts, respectively. EGPAs below 1.8 are
omitted. Wages are CPI-adjusted to 2018 and winsorized at 2% above and below. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression
discontinuity specification and instrumental variable specification (with majoring in economics as the endogenous variable); standard error (clustered by EGPA)
in parentheses. Source: The UC-CHP Student Database and the CA Employment Development Department.
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Figure D.8: Lifetime Earnings Difference for Economics Majors in the ACS

Note: This figure shows that the relative observational return to majoring in economics increases with age in workers’
20s and 30s and remains large throughout workers’ careers, resulting in a $536,000 observational net present value of
majoring in economics (relative to barely above-threshold UCSC students’ distribution of second-choice majors).
This figure shows annual median wages of economics majors and other majors (weighted by policy compliers’
counterfactual likelihood of earning that major; see Figure 5.6) by age among all 22-62 ACS respondents between
2009 and 2018, CPI-adjusting wages to 2018 dollars. The “Age 22-62 NPV” is the net present value (at age 22) of
majoring in economics, assuming that a worker working full-time and full-year would receive the median economics
wage at each age between 22 and 62 if she majors in economics and the weighted other majors’ median wage at each
age otherwise (and assuming a 3 percent discount rate). The shaded area overlaps with our observed sample, enabling
empirical validation. Wages are CPI-adjusted to 2018 and winsorized at 2% above and below. Sources: The UC-CHP
Student Database and the American Community Survey (Ruggles et al., 2020).
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Figure D.9: California Employment at the Economics GPA Threshold, 2008-2012

(a) 2017-2018

Note: This figure shows that 2017-2018 California employment is high (over 85 percent) for UCSC students near
the GPA threshold, with some evidence (depending on specification) of slightly increased employment likelihood just
above the economics GPA threshold. Each circle represents the percent of 2017-2018 California employment (y axis)
among 2008-2012 UCSC students who earned a given EGPA in Economics 1 and 2 (x axis). The size of each circle
corresponds to the proportion of students who earned that EGPA. Employment is defined as earning non-zero EDD
wages in either 2017 or 2018. EGPAs below 1.8 are omitted. Fit lines and beta estimate (at the 2.8 GPA threshold)
from linear regression discontinuity specification and instrumental variable specification (with majoring in economics
as the endogenous variable); standard error (clustered by EGPA) in parentheses. Source: The UC-CHP Student
Database and the CA Employment Development Department.
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Figure D.10: Effect of Economics Major Access on Other Educational Outcomes

Panel A: Educational Experience
(a) Median Class Size (b) # Hours/Week Studying (c) Years Enrolled

Panel B: Student Grade Point Average Measures
(d) Standard GPA (e) Standard Relative GPA (f) GPA Net Course FEs

Note: This figure shows that barely above-threshold UCSC students had larger classes but spent similar time studying
when compared to below-threshold peers. They also had smooth (or slightly lower) average grades, average grades
compared to their peers, and average grades partialing out course fixed effects (from a two-way FE model). This
suggests both both that students’ educational intensity and performance cannot explain their labor market success and
that the students hardly (if at all) struggled in the courses they were nearly restricted from. Each circle represents the
mean educational characteristic (y axis) among 2008-2012 UCSC students who earned a givenEGPA in Economics 1
and 2 (x axis). The size of each circle corresponds to the proportion of students who earned that EGPA. Median class
size measured by course department, number, and term. Number of hours studying per week measured among 789
in-sample UCUES survey respondents in their third or fourth year (the survey is biannual). Years enrolled measures
the number of academic years (of the seven following high school graduation) in which the student is observed as
enrolled in NSC but has not yet earned a Bachelor’s degree. Standard GPA is a weighted average over students’ grades
by units. Standardized Relative GPA is the credit-unit-weighted average over students’ within-course standardized
grades (using course grade means and standard deviations). GPA Net Course FEs is calculated as each student’s
credit-unit-weighted mean of the differences between students’ grades and each course’s fixed effect from a two-way
fixed effect model of UCSC course grades on student and course effects, with a 2013 writing course as the omitted
course. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression discontinuity specification and
instrumental variable specification (with majoring in economics as the endogenous variable); standard error (clustered
by EGPA) in parentheses. Sources: The UC-CHP Student Database and the Student Experience in the Research
University (SERU) database.

280



Figure D.11: Major Choice at the Economics GPA Threshold, 2008-2012

Panel A: Change in Major Choice

(a) Economics (b) Humanities (c) Other Social Sciences (d) Natural Sciences (e) Engineering

Panel B: Change in Course Enrollment

(f) Economics (g) Humanities (h) Other Social Sciences (i) Math/Statistics (j) Other Natural Sciences

Note: This figure shows that about two-thirds of barely above-threshold policy compliers would have otherwise earned degrees in the other social sciences, and that
about 8.5 of economics majors additional 13 economics courses would have otherwise been in other social science departments (though there is no net change in
their number of completed mathematics and statistics courses). Each circle represents the mean percent of students in the major area or the mean number of courses
taken in an area (y axis) among 2008-2012 UCSC students who earned a given EGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the
proportion of students who earned that EGPA. Major indicators include students with multiple majors. Majoring in economics indicates declaring any of UCSC’s
three economics major tracks: economics, global economics, or business management economics. “Other social sciences” includes all social sciences other than
economics. “Math/Statistics” includes all courses in the Mathematics or Applied Mathematics and Statistics departments; “other natural sciences” includes all other
natural sciences. Source: The UC-CHP Student Database.
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Figure D.12: Detailed Economics Course Completions at the Economics GPA Threshold, 2008-
2012

(a) Economics Sub-Disciplines (b) Business Sub-Disciplines (c) Quant. Method. Courses

Note: This figure shows that the 13 additional economics courses taken by barely above-threshold economics majors
were split between traditional economics sub-disciplines and business and finance sub-disciplines, and that economics
majors took two additional quantitative methodology courses across departments. Each circle represents the mean
number of courses taken in an area (y axis) among 2008-2012 UCSC students who earned a given EGPA in
Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students who earned that EGPA.
Business sub-disciplines include all accounting or “business management upper division electives” as designated by
UCSC, which include courses in management, finance, and marketing; traditional economics subdisciplines include
all other courses in offered by the Department of Economics. Quantitative methodology courses include any course
that mentions ‘statistics’, ‘econometrics’, ‘psychometrics’ or ‘quantitative/math/research/information methods’ in its
title. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression discontinuity specification and
instrumental variable specification (with majoring in economics as the endogenous variable); standard error (clustered
by EGPA) in parentheses. Source: The UC-CHP Student Database.
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Figure D.13: Histograms of Economics Courses taken by UCSC Economics Majors and Non-
Majors

Panel A: All Economics Courses
(a) All Non-Economics Majors (b) Excluding TIM Majors

Panel B: Upper-Division Economics Courses

(c) All Non-Economics Majors (d) Excluding TIM Majors

Note: Histograms showing the number of freshman-admit UCSC graduates from the 2008-2012 cohorts by the number
of economics courses they completed. The sample is split by whether the student earned a major in economics, with
‘non-majors’ including (excluding) Technology and Information Management (TIM) majors in panels a and c (b and
d). Panel A includes all economics courses; Panel B includes only upper-division economics courses (that is, with
course numbers above 99). Course counts are winsorized at 25 for all courses and 21 for upper-division courses, with
fewer than 25 students having taken more such courses. Some bars are taller than the chosen y-axis. Source: The
UC-CHP Student Database.
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Figure D.14: Additional Specifications of the Intended Career in Business/Finance Survey
Responses at the 2008-2012 Economics GPA Threshold

Panel A: Freshman UCUES Survey Responses on Intend Career in Bus/Fin.

(a) First-Year Respondents

Panel B: Alternative Sample Specifications of Sophomore/Junior Responses

(b) Full 2008-2012 Sample (c) Omitting Outliers (d) 2008-2011 Sample

Note: This figure shows that (A) there was no difference in first-year survey respondents’ baseline business/finance
career intentions (prior to taking many economics courses), and (B) estimated differences in sophomore-junior
responses are sensitive to six 2.7-EGPA 2012 sophomore economics major “outliers” (who make up 75% of all 2.7-
EGPA UCUES respondents, and all intend business/finance careers). Each circle represents the percent of students
in different samples who report intending business/finance careers (y axis) among 2008-2012 UCSC students who
earned a givenEGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students
who earned that EGPA. Panel A is restricted to the 338 in-sample students who completed the survey in the spring
of their first year; Panel B is restricted to the 874 students who completed in it in their second or third year. Panel (c)
further omits six “outlier” students easily-observable in (b): they are all 2012 second-year respondents with 2.7 (below-
threshold) EGPAs, economics majors, and report intending business/finance careers, which given their closeness to
the threshold strongly shifts the estimated effect of majoring in economics despite their non-compliance and small
number. Panel (d) instead omits all 2012 respondents, showing a similar pattern to (c). Fit lines and beta estimate (at
the 2.8 GPA threshold) from linear regression discontinuity specification and instrumental variable specification (with
majoring in economics as the endogenous variable); standard error (clustered by EGPA) in parentheses. Source: The
UC-CHP Student Database.
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Figure D.15: Share of 2008-2012 UCSC Economics Majors on the “Business Management
Economics” Track

Note: This figure shows that the proportion of economics majors on the business economics track is relatively smooth
across the GPA threshold, implying that the wage returns at the threshold are unlikely to arise as a result of access
specifically to the business economics track changing at the GPA threshold. Each circle represents the percent of
economics majors on the business management economics track (y axis) among 2008-2012 UCSC students who
earned a givenEGPA in Economics 1 and 2 (x axis). The size of each circle corresponds to the proportion of students
who earned that EGPA. EGPAs below 1.8 are omitted, leaving 1,671 economics majors. Fit lines and beta estimate
(at the 2.8 GPA threshold) from linear regression discontinuity specification and instrumental variable specification
(with majoring in economics as the endogenous variable); standard error (clustered byEGPA) in parentheses. Source:
The UC-CHP Student Database.
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Figure D.16: Median Wages in the 2008-2012 UCSC Cohorts’ Chosen Majors, Imputed from
Different Samples

(a) UCSC Economics 1&2 Students (b) All UCSC Students

(c) All California Workers (d) All U.S. Workers

Note: This figure shows that when wages are imputed for each student by the median wages of similar-age workers
with their same major choice – among the 2008-2012 main UCSC sample, among all 2008-2012 UCSC students,
among all similar-age California-residing ACS respondents, or among all similar-age ACS respodents – the imputed
wages increase across the GPA threshold by $6,700 to $8,200, similar (or slightly smaller) magnitude to the true
change in students’ early-career wages. Each circle represents the imputed wages associated with students’ chosen
majors (y axis) among 2008-2012 UCSC students who earned a given EGPA in Economics 1 and 2 (x axis). The
size of each circle corresponds to the proportion of students who earned that EGPA. Wage-by-major medians are
calculated using 2017-2018 wages for four groups: (a) 2008-2012 freshman-admit UCSC students who completed
Economics 1 and 2; (b) all 2008-2012 freshman-admit UCSC students; (c) 23-to-27-year-olds in the 2017 ACS and
24-to-28-year-olds in the 2018 ACS employed in California; and (d) all employed ACS respondents of those same
ages. Students with double majors are characterized by that double-major (irrespective of order) in both data sets,
with independent wage medians for each major pair. ACS medians are weighted by sample weights. Wages are CPI-
adjusted to 2018 and winsorized at 2% above and below. EGPAs below 1.8 are omitted, leaving 2,839 students. Fit
lines and beta estimate (at the 2.8 GPA threshold) from linear regression discontinuity specification and instrumental
variable specification (with majoring in economics as the endogenous variable); standard error (clustered by EGPA)
in parentheses. Sources: The UC-CHP Student Database, the CA Employment Development Department, and the
American Community Survey (Ruggles et al., 2020). 286



Figure D.17: Median Early-Career 2009-2010 Wages of the Majors Chosen by the 2008-2012
UCSC Cohorts

(a) Medians of UCSC Economics 1&2 Students (b) Medians of All UCSC Students

(c) Medians of All California Workers (d) Medians of All U.S. Workers

Note: This figure shows that imputing wages using wage-by-major medians (as in Figure D.16), but using 2009-
2010 CPI-adjusted medians from the 2000-2004 cohorts, provides highly similar estimates, implying average wage
differences across majors are relatively persistent over time. Each circle represents the imputed wages associated with
students’ chosen majors (y axis) among 2008-2012 UCSC students who earned a given EGPA in Economics 1 and
2 (x axis). The size of each circle corresponds to the proportion of students who earned that EGPA. Wage-by-major
medians are calculated using 2009-2010 wages for four groups: (a) 2000-2004 freshman-admit UCSC students who
completed Economics 1 and 2; (b) all 2000-2004 freshman-admit UCSC students; (c) 23-to-27-year-olds in the 2009
ACS and 24-to-28-year-olds in the 2010 ACS employed in California; and (d) all employed ACS respondents of those
same ages. Students with double majors are characterized by that double-major (irrespective of order) in both data
sets, with independent wage medians for each major pair. ACS medians are weighted by sample weights. Wages
are CPI-adjusted to 2018 and winsorized at 2% above and below. EGPAs below 1.8 are omitted, leaving 2,839
students. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression discontinuity specification and
instrumental variable specification (with majoring in economics as the endogenous variable); standard error (clustered
by EGPA) in parentheses. Sources: The UC-CHP Student Database, the CA Employment Development Department,
and the American Community Survey (Ruggles et al., 2020).
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Figure D.18: Median Wages in the 2008-2012 UCSC Cohorts’ Chosen Majors, Imputed from
States Dissimilar to California

(a) State PCA Decomposition (b) Imputed Wages by Major

Note: This figure shows that when wages are imputed for each UCSC student by the median wages of similar-age
workers with their same major choice from states with highly-dissimilar college-educated labor markets from
California’s, economics majors do not have higher average wages than college graduates with the second-choice
majors chosen by policy compliers below UCSC’s GPA threshold. Panel (a) shows the 15 states most-dissimilar
from California in distance on the first two principal components of college-educated employment shares by industry,
measured using the full ACS industry codes of the 23-to-27-year-old respondents in the 2017 ACS and 24-to-28-year-
olds in the 2018 ACS. In Panel (b), each circle represents the imputed wages associated with students’ chosen majors
(y axis) among 2008-2012 UCSC students who earned a givenEGPA in Economics 1 and 2 (x axis). The size of each
circle corresponds to the proportion of students who earned thatEGPA. Wage-by-major medians are calculated using
the 2017-2018 wages of all employed ACS respondents of those same ages who reside in one of the fifteen states most-
dissimilar from California. Students with double majors are characterized by that double-major (irrespective of order)
in both data sets, with independent wage medians for each major pair. ACS medians are weighted by sample weights.
Wages are CPI-adjusted to 2018 and winsorized at 2% above and below. EGPAs below 1.8 are omitted, leaving 2,839
students. Fit lines and beta estimate (at the 2.8 GPA threshold) from linear regression discontinuity specification and
instrumental variable specification (with majoring in economics as the endogenous variable); standard error (clustered
by EGPA) in parentheses. Sources: The UC-CHP Student Database and the American Community Survey (Ruggles
et al., 2020).
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Table D.1: Alternative RD Model Specifications for Figures 5.1 and 5.2

Major in Predicted Wages by Demographics 2017-2018 2017-2018 2017-2018
Economics All Emp. 17-18 UCUES Wages Log Wages CA Employ.

Baseline 36.1 -15.0 998.9 -15.0 7,989 0.21 4.1
(2.7) (392.3) (733.9) (392.3) (1,885) (0.05) (1.0)

Quadratic 31.8 -114.6 405.9 -114.6 12,584 0.29 2.8
Run. Var. (5.5) (661.4) (839.2) (661.4) (2,979) (0.07) (1.8)

Detailed 35.2 -288.1 -159.4 -288.1 8,579 0.19 4.7
Covariates (4.4) (258.2) (504.8) (258.2) (2,599) (0.08) (2.8)

Narrow 37.5 -346.2 -766.2 -346.2 12,336 0.31 3.9
Bandwidth (4.3) (821.1) (951.6) (821.1) (3,242) (0.07) (2.2)

“Honest” 29.4 554.3 2,590.3 554.3 10,977 0.18 4.3
Local Lin. (7.9) (1,047.5) (2,357.2) (1,047.5) (5,020) (0.15) (5.5)

Note: This table shows that the results presented in Figures 5.1 and 5.2 are highly robust to alternative regression
specifications, though the conservative “honest” local linear estimation on log wages estimates a statistically-
insignificant effect on log wages (because its wide bandwidth just includes EGPA = 2.35, which has unexpectedly
high wages). Regression discontinuity specifications estimating the reduced-form effect of economics major access on
major choice and labor market outcomes for 2008-2012 UCSC students who completed Economics 1 and 2. Baseline
specification is the beta coefficient from a regression discontinuity OLS model linear in the running variable (Econ
EGPA). The second specification includes quadratic terms in the running variable on either side of the threshold.
The third specification includes linear running variable terms along with gender-ethnicity indicators, cohort indicators,
and high school indicators. The fourth specification includes linear running variable terms but restricts the sample to
within 0.5EGPA points of the threshold, resulting in 10 availableEGPAs. The fifth specification estimates “honest”
local linear RD coefficients with optimal bandwidth, triangular kernel, and an assumed constant bound on the second
derivative of the conditional expectation function following Kolesar and Rothe (2018). “Major in economics” indicates
declaring any of UCSC’s three economics major tracks: economics, global economics, or business management
economics. “Predicted Wages by Demographics” estimates each student’s predicted wages by a linear regression
(among 2008-2012 UCSC students outside the main sample) of 2017-2018 wages on gender-ethnicity indicators,
residency status, and third-order polynomials in SAT score and mean ZIP Code income. The effects on predicted
wages are included for three samples: the full sample, those who are employed in 2017-2018, and those who complete
the UCUES survey in their junior or senior year (see Figure D.3). 2017-2018 wages are the mean in EDD-covered
California wages in those years, omitting zeroes. Wages are CPI-adjusted to 2018 and winsorized at 2% above and
below. Employment is defined as earning non-zero EDD wages in either 2017 or 2018. EGPAs below 1.8 are omitted,
leaving 2,839 students in the sample (2,446 with observed wages). All standard errors are clustered by the 20 available
EGPAs earned by students in Economics 1 and 2.
Sources: The UC-CHP Student Database and the CA Employment Development Department
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Table D.2: Alternative RD Model Specifications for Figure 4

College Degree Years Grad. Median # Hours/Week # Econ.
GPA Attain. Enr. Deg. Enr. Class Size Studying Courses

Baseline -0.05 -0.4 0.00 -2.3 7.0 0.4 4.7
(0.02) (1.5) (0.05) (2.2) (2.3) (0.8) (0.3)

Quadratic 0.00 -3.8 -0.07 -2.8 6.5 0.8 4.0
Run. Var. (0.03) (2.1) (0.08) (4.1) (4.0) (1.3) (0.6)

Detailed -0.05 -1.6 -0.06 -2.5 9.1 0.3 4.6
Covariates (0.02) (1.9) (0.05) (4.8) (2.3) (0.8) (0.5)

Narrow -0.02 -2.6 -0.09 -1.4 7.2 -0.0 4.4
Bandwidth (0.03) (2.0) (0.06) (3.8) (3.4) (1.3) (0.4)

“Honest” -0.00 1.3 0.07 1.3 12.0 0.5 2.9
Local Lin. (0.05) (3.6) (0.13) (6.2) (6.8) (2.7) (1.4)

Note: This table shows that the results presented in Figure 4 are highly robust to alternative regression specifications.
Regression discontinuity specifications estimating the reduced-form effect of economics major access on educational
outcomes for 2008-2012 UCSC students who completed Economics 1 and 2. Baseline specification is the beta
coefficient from a regression discontinuity OLS model linear in the running variable (Econ EGPA). The second
specification includes quadratic terms in the running variable on either side of the threshold. The third specification
includes linear running variable terms along with gender-ethnicity indicators, cohort indicators, and high school
indicators. The fourth specification includes linear running variable terms but restricts the sample to within 0.5EGPA
points of the threshold, resulting in 10 available EGPAs. The fifth specification estimates “honest” local linear RD
coefficients with optimal bandwidth, triangular kernel, and an assumed constant bound on the second derivative of
the conditional expectation function following Kolesar and Rothe (2018). College GPA includes all courses and is
weighted by units. Degree attainment measured in 2019 and includes degrees earned at other institutions (by students
who transfer away from UCSC) measured in NSC. Years enrolled measures the number of academic years (of the
seven following high school graduation) in which the student is observed as enrolled in NSC but has not yet earned
a Bachelor’s degree. Graduate degree enrollment indicates having enrolled in a graduate degree (measured in NSC)
within seven years of high school graduation. Median class size measured by course department, number, and term.
Number of hours studying per week measured among 789 in-sample UCUES survey respondents in their third or
fourth year (the survey is biannual). Number of economics courses measures the number of courses listed on the
student’s transcript as having been taught in the Department of Economics. All standard errors are clustered by the 20
available EGPAs earned by students in Economics 1 and 2, with the sample restricted to EGPAs above 1.8.
Sources: The UC-CHP Student Database, the Student Experience in the Research University (SERU) database, and
the National Student Clearinghouse
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Table D.3: Alternative RD Model Specifications for Figure 5

Intend. In Intend. In FIRE and Imp. UCSC
Bus/Fin† Bus/Fin Account. FIRE Account. Wages by Ind.

Baseline 16.1 10.8 9.1 6.3 3.4 3,937
(6.9) (9.5) (2.3) (2.3) (1.1) (1,166)

Quadratic 24.7 12.3 11.4 10.0 3.2 6,431
Run. Var. (7.7) (17.5) (3.2) (2.9) (1.7) (1,473)

Detailed 17.0 12.5 9.6 7.1 2.4 3,471
Covariates (6.9) (8.6) (3.7) (4.0) (1.3) (1,604)

Narrow 18.4 8.9 6.8 4.3 3.6 7,374
Bandwidth (10.1) (16.7) (2.9) (2.5) (1.5) (1,053)

“Honest” 36.9 -13.0 11.0 8.9 5.1 9,498
Local Lin. (15.9) (14.6) (5.3) (5.2) (3.6) (3,387)

Note: This table shows that the results presented in Figure 5 are highly robust to alternative regression specifications,
though some specifications find larger estimates on imputed wages by industry. Regression discontinuity specifications
estimating the reduced-form effect of economics major access on educational outcomes for 2008-2012 UCSC students
who completed Economics 1 and 2. Baseline specification is the beta coefficient from a regression discontinuity
OLS model linear in the running variable (Econ EGPA). The second specification includes quadratic terms in
the running variable on either side of the threshold. The third specification includes linear running variable terms
along with gender-ethnicity indicators, cohort indicators, and high school indicators. The fourth specification includes
linear running variable terms but restricts the sample to within 0.5 EGPA points of the threshold, resulting in 10
available EGPAs. The fifth specification estimates “honest” local linear RD coefficients with optimal bandwidth,
triangular kernel, and an assumed constant bound on the second derivative of the conditional expectation function
following Kolesar and Rothe (2018). Intended career in business/finance indicates selecting “Business, finance-related
professions” on a survey asking “Career hope to eventually have after education complete” (see Appendix A) among
834 in-sample UCUES survey respondents in their second or third year (the survey is biannual). Employment in
FIRE and accounting indicates 2017 or 2018 employment in the finance, insurance, and real estate (NAICS codes
52 and 531) or accounting (541211) industries, both of which employ large shares of UCSC economics majors; see
Figure D.5. Imputed wages by industry (6-digit NAICS) are calculated as the mean 2017-2018 wages of all 2008-2012
freshman-admit UCSC students. Imputed wages are CPI-adjusted to 2018 and winsorized at 2% above and below. All
standard errors are clustered by the 20 available EGPAs earned by students in Economics 1 and 2, with the sample
restricted to EGPAs above 1.8. † Six 2012 sophomore respondents – economics majors with 2.7 EGPAs – were
omitted from estimation; see Figure D.14.
Sources: The UC-CHP Student Database, the Student Experience in the Research University (SERU) database, and
the CA Employment Development Department
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Table D.4: Alternative RD Model Specifications for Figure 5.6

UCSC OLS Coef. Median Wages
No Cont. Controls UCSC CA U.S.

Baseline 7,178 5,579 8,065 6,945 6,728
(547) (1,333) (599) (641) (422)

Quadratic 7,731 7,491 8,100 7,250 6,969
Run. Var. (715) (1,475) (996) (1,151) (620)

Detailed 6,693 1,778 7,727 7,082 6,592
Covariates (823) (2,123) (830) (1,018) (683)

Narrow 8,156 8,111 9,106 7,590 7,557
Bandwidth (674) (1,360) (861) (1,001) (603)

“Honest” 8,072 6,873 8,404 7,075 6,868
Local Lin. (1,894) (2,269) (1,753) (1,437) (1,252)

Note: This table shows that the reduced-form versions of the RD IV estimates presented in Figure 5.6 are highly
robust to alternative regression specifications. Regression discontinuity specifications estimating the reduced-form
effect of economics major access on imputed wages (by college majors) for 2008-2012 UCSC students who completed
Economics 1 and 2. Baseline specification is the beta coefficient from a regression discontinuity OLS model linear
in the running variable (Econ EGPA). The second specification includes quadratic terms in the running variable on
either side of the threshold. The third specification includes linear running variable terms along with gender-ethnicity
indicators, cohort indicators, and high school indicators. The fourth specification includes linear running variable
terms but restricts the sample to within 0.5 EGPA points of the threshold, resulting in 10 available EGPAs. The
fifth specification estimates “honest” local linear RD coefficients with optimal bandwidth, triangular kernel, and an
assumed constant bound on the second derivative of the conditional expectation function following Kolesar and Rothe
(2018). The outcome variables assign each 2008-2012 UCSC student to their corresponding majors’ average wage –
partitioning students by their set of majors, and in the UCSC no-controls sample using leave-one-out models – and
estimates the linear RD IV model on the resulting imputed wages. OLS coefficients from a linear regression of wages
on major dummies with or without covariates (gender-ethnicity, cohort year, and high school), partitioning students by
majors and omitting Business Management Economics. Median wages calculated by majors for UCSC sample, for the
ACS sample of California residents, and for the full ACS sample. See the appendix for UCSC-ACS major mapping.
Wages are CPI-adjusted to 2018 and winsorized at 2% above and below. All standard errors are clustered by the 20
available EGPAs earned by students in Economics 1 and 2, with the sample restricted to EGPAs above 1.8.
Sources: The UC-CHP Student Database, the CA Employment Development Department, and the American
Community Survey (Ruggles et al., 2020).
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Table D.5: Changes in 2017-18 Industry

Econ. Maj. Young Coll.
Two-Digit IV Share Work. Share
NAICS Industry Est. (β) (s.e.) UCSC U.S. UCSC U.S.

FIRE 17.2 (5.4) 14.0 24.0 4.9 7.3
Accounting 9.3 (2.8) 10.8 3.1 1.6 1.7
Professional Services 5.7 (10.0) 32.6 18.8 20.5 12.9
Public Administration 4.2 (4.3) 4.2 5.8 5.3 5.2
Construction 4.0 (2.3) 2.0 1.5 1.3 1.9
Transportation 4.0 (2.9) 2.2 2.5 1.6 1.6
Management Firms 3.5 (1.5) 0.5 0.4 0.3 0.2
Agriculture 2.1 (2.3) 1.6 0.5 1.2 0.6
Manufacturing 1.8 (6.0) 7.6 4.5 6.5 6.6
Utilities 1.2 (1.3) 0.6 0.4 0.3 0.5
Admin. Support 0.5 (4.3) 10.9 2.6 10.2 2.6
Rental/Leasing 0.0 (1.3) 0.7 0.4 0.5 0.4
Arts and Entertainment -0.7 (3.7) 2.4 1.6 4.3 2.8
Other Services -1.0 (2.8) 2.0 2.7 4.8 3.3
Information -1.3 (10.0) 9.9 3.8 7.2 3.4
Accomodation and Food -4.1 (2.9) 5.3 3.2 8.4 4.8
Retail Trade -5.1 (8.8) 8.2 6.8 9.9 7.9
Education -8.1 (4.0) 6.6 10.8 19.5 18.3
Wholesale Trade -8.5 (6.6) 5.2 2.2 3.3 1.8
Healthcare and Social Assist. -8.6 (3.4) 4.6 3.9 15.1 15.6

Note: This table shows the two-digit-NAICS industries of 2017-2018 employment most impacted across the 2008-
2012 UCSC economics GPA threshold, with workers flowing most into FIRE and out of education, healthcare and
social assistance, and (noisily) wholesale trade, along with the worker shares at UCSC and across the country (for
economics majors and all college graduates). Columns one and two show estimates from instrumental variable
regression discontinuity specifications of indicators for 2017 or 2018 employment in each two-digit NAICS industry
on economics major choice (instrumented by the 2.8 EGPA threshold; standard error (clustered by EGPA) in
parentheses. The remaining columns show the proportion of 2008-2012 UCSC students or 23-to-28-year-old 2017-
2018 ACS respondents employed (in 2017-2018) in each industry, overall and among economics majors. The
following NAICS codes are combined for similarity: 52/531 (FIRE), 31/32/33 (manufacturing), 44/45 (retail trade),
and 48/49 (transportation). Accounting (541211, or 5412 in the ACS) is separated out from professional services.
Employment industry is the reported NAICS code of an individual’s highest-paying position in the year’s fourth
quarter.
Sources: The UC-CHP Student Database, the CA Employment Development Department, and the American
Community Survey (Ruggles et al., 2020).
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Table D.6: Counterfactual Major Choice and Average Wages by Major

% of Grads ∆ Among UCSC OLS Coef. Median Wages
Major UCSC U.S. Comp. (%) No Cont. Controls UCSC CA U.S.

Psychology 12.9 6.4 -20.4 -26,088 -24,160 33,875 30,661 30,000
(4.3) (1,146) (1,253)

Environmental Studies 6.1 0.8 -14.1 -24,602 -23,561 38,135 40,606 33,915
(6.8) (1,473) (1,609)

Tech. & Info. Mgmt. 1.2 0.2 -11.6 3,410 1,183 61,672 48,000 49,871
(1.5) (2,682) (2,698)

Sociology 6.0 1.7 -9.8 -22,014 -19,316 37,024 35,055 32,000
(2.4) (1,341) (1,543)

Film and Dig. Media 3.4 0.7 -8.0 -28,599 -25,241 30,685 30,594 28,617
(2.7) (1,638) (1,845)

Legal Studies 2.6 0.2 -7.7 -14,636 -13,140 42,500 46,828 34,749
(1.8) (1,897) (2,054)

Mathematics 2.0 1.4 -6.5 -17,446 -12,911 44,577 50,000 38,899
(3.0) (2,256) (2,590)

Latin Amer. Studies 2.0 0.7 -5.1 -28,369 -21,465 35,112 32,007 30,661
(1.2) (2,846) (3,160)

Art 3.6 1.0 -3.9 -34,687 -31,265 25,641 30,661 28,000
(1.5) (1,809) (1,932)

Anthropology 4.7 0.7 -3.6 -26,810 -26,426 32,032 26,711 25,551
(1.8) (1,556) (1,854)

...

Economics 3.4
2.4

4.0 -8,071 -7,085 50,317
55,560 50,000(8.9) (1,623) (1,737)

Global Economics 0.9 5.9 -5,848 -7,788 53,689 55,560
(1.7) (2,947) (3,085)

Bus. Mgmt. Economics 7.1 0.2 90.1 - - 61,872 54,538 48,025
(8.2)

Weighted Sum by UCSC Major Shares 20,039 18,073 21,287 17,436 15,385
RD IV Estimate on Imputed Wages by Majors 19,247 17,461 22,171 19,293 18,794

Note: This table presents the statistics used to generate Figure 5.6, showing that observational average differences in
early-career earnings – at the university, state, or national level, and in the presence or absence of control variables –
well-approximate the causal estimate of the wage return to economics for policy compliers near the GPA threshold.
This table presents shares and average wages by major among 2008-2012 UCSC students (in 2017-2018) and 2017-
2018 ACS respondents (age 23-28), along with estimates of the difference between the average wages of majors chosen
by above-threshold policy compliers and average wages of their counterfactual majors. Columns 1 and 2 present the
proportion of students who choose each major in each sample. The third column shows the change in major choice
at the GPA threshold estimated using the linear RD IV specification described in the text; majors are ordered by this
column, with those outside the top ten (and bottom three) omitted from the table. OLS coefficients from a linear
regression of wages on major dummies with or without covariates (gender-ethnicity, SAT score, ZIP Code average
AGI, cohort year, and high school), partitioning students by major (choosing higher-earning major among in-sample
single majors for multi-major students) and omitting Business Management Economics. Median wages calculated
by higher-earning major for UCSC sample and full ACS sample. “Weighted Sum Using UCSC Major Shares”
shows the difference between the weighted sum of Econ wage values by the share of UCSC students in that major
(using highest-earning majors) and that of non-Econ wage values. “RD IV Estimate on Imputed Wages” assigns
each 2008-2012 UCSC student to their corresponding majors’ average wage – now partitioning students by their set
of majors (not their higher-earning major), and in the UCSC no-controls sample using leave-one-out averages – and
estimates the linear RD IV model on the resulting imputed wages. The ACS does not have separate major categories
for Economics and Global Economics; see the appendix for UCSC-ACS major mapping. Wages are CPI-adjusted
to 2018 and winsorized at 2% above and below. Sources: The UC-CHP Student Database, the CA Employment
Development Department, and the American Community Survey (Ruggles et al., 2020).
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Table D.7: UCSC Major to ACS Major Mapping

ACS Prop. in
Major Field Sample

American Studies 1501 0.6
Anthropology 5502 1.1
Applied Ling and Multiling 2601 0.0
Art 6000 1.7
Art History 6006 0.6
Biochemistry&Molecular Bio 3603 0.4
Bioengineering 2402 0.1
Bioinformatics 2402 0.0
Biology 3600 1.3
Business Mgmt Economics 6205 50.9
Chemistry 5003 0.4
Cognitive Science 4006 0.6
Community Studies 5403 0.4
Comp Sci Computer Game Des 2407 0.4
Computer Engineering 2407 0.4
Computer Science 2102 2.4
Critical Race&EthnicStudies 1501 0.1
Earth Sciences 5004 0.6
Ecology and Evolution 3604 0.1
Economics 5501 20.2
Electrical Engineering 2408 0.2
Environmental Studies 1301 9.5
Feminist Studies 4007 0.3
Film and Digital Media 6005 2.9
German Studies 2602 0.1
Global Economics 5501 5.5
Health Sciences 6100 0.2
History 6402 3.4
Human Biology 3699 0.1
Individual 4000 0.1
Information Systems Management 2106 1.7
Jewish Studies 1501 0.0
Language Studies 2601 0.7
Latin Amer & Latino Studies 1501 2.1
Legal Studies 3202 3.6
Linguistics 2601 0.4
Literature 3301 1.5
Marine Biology 3699 0.3
Mathematics 3700 3.5
Molec Cell Develop Biology 3603 2.1
Music 6002 0.3
Neuroscience 3611 0.2
Philosophy 4801 1.1
Physics 5007 0.2
Plant Sciences 1105 0.1
Politics 1105 5.0
Psychology 5200 8.5
Sociology 5507 4.1
Spanish Studies 2602 0.3
Technology&Info Management 2106 6.0
Theater Arts 6001 0.5
Women’s Studies 4007 0.0

Note: This table shows the employed mapping between UCSC majors and ACS “Detailed Field of Degree” codes,
along with the proportion of students in the 2008-2012 main UCSC sample in each major. Multiple UCSC majors
may be mapped to the same ACS degree field. See https://usa.ipums.org/usa-action/variables/DEGFIELD.
Sources: The UC-CHP Student Database and the American Community Survey (Ruggles et al., 2020).
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