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ABSTRACT OF THE DISSERTATION

Opportunistic Learning:

Algorithms and Methods for Cost-Sensitive and Context-Aware Learning

by

Mohammad Kachuee

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Majid Sarrafzadeh, Chair

Classical approaches to machine learning sought to improve the efficiency and accuracy of

prediction but often failed to account for the costs associated with the collection of data

and expert labels. This shortcoming is particularly limiting in the smart health setting,

where accurate classification often requires an invasive level of information querying. Fur-

thermore, in domains such as medical diagnosis, appropriate data should be collected based

on a scientific hypothesis, and ground-truth labels may only be provided by highly trained

domain experts. Additionally, in many studies, informative features are not scientifically

predetermined, and usually, there are many information sources that can be considered as

hypothetical relevant features that including all of them is not practical.

In order to address these issues, we suggest novel end-to-end solutions considering dif-

ferent aspects of a real-world learning system. Specifically, we consider feature acquisition,

labeling, model training, and prediction at test-time as different aspects of a system that

tries to achieve the goal of making accurate predictions efficiently. In this paradigm, infor-

mation is acquired incrementally based on the value it provides and the cost that should be

paid for acquiring it. In this thesis, we explore dynamic and context-aware information ac-

quisition techniques to collect the right piece of information at the right time. Additionally,

as inference using incomplete data is an inevitable part of such methods, we propose a novel

approach to not only impute missing values but also to capture prediction uncertainties.
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CHAPTER 1

Introduction

In traditional machine learning settings, it is usually assumed that a training dataset is

freely available and the objective is to train models that generalize well. In this paradigm,

the feature set is fixed, and we are dealing with complete feature vectors accompanied by

class labels that are provided for training. However, in many real-world scenarios, there

are certain costs for acquiring features as well as budgets limiting the total expenditure.

Here, the notation of cost is more general than financial cost and it also refers to other

concepts such as computational cost [BET08, KKM17], privacy impacts [PKU15], energy

consumption [KYR11], patient discomfort in medical tests [SS95, KMH17], user disruptions

in computer and user interactions [EMF16], and so forth. Take the example of the disease

diagnosis based on medical tests. Creating a complete feature vector from all the relevant

information is synonymous with conducting many tests such as MRI scan, blood test, etc.

which would not be practical. On the other hand, a physician approaches the problem by

asking a set of basic easy-to-acquire features, and then incrementally prescribes other tests

based on the current known information (i.e., context) until a reliable diagnosis can be made.

To overcome these issues, there are methods suggested in the literature trying to adapt

feature selection algorithms to consider the cost of each feature [LXL17, GAS15, MHZ14,

CZZ13]. However, another point of concern that requires attention is that selecting a fixed

set of features to be used during the training phase and using them at test-time would not be

an optimal solution; as it neglects the potential interdependence between features. In many

scenarios, there are features that are either freely available or easy to acquire at test-time.

An optimal decision about other features to include in the analysis can be highly dependent

on them. For instance, a doctor decides whether to prescribe an MRI scan based on the

1



patient’s current available information such as age, gender, symptoms and so on. In this

example, having a fixed list of required tests and asking patients to provide the results of

these tests for a clinical visit, would result in the high cost of MRI for all patients. In other

words, the decision to include each feature should be based on the learned system dynamics

as well as the available information at test-time.

In this manuscript, we suggest a novel approaches for cost-sensitive and context-aware

feature acquisition and prediction at test-time. The proposed solutions are capable of incre-

mentally asking for features to be included in the prediction based on the available context

and user-defined feature costs. Also, as the cost-sensitive feature acquisition entails dealing

with incomplete data, as a part of this work, we suggest a method for imputing missing

values and measuring prediction uncertainties arising from missing values.

The rest of this manuscript is organized as follows. Chapter 2 reviews the current rele-

vant literature. Chapter 3 introduces an approach for context-aware cost-sensitive learning

based on sensitivity analysis in autoencoder architectures. Chapter 4 suggests an alternative

solution based on deep reinforcement learning that is applicable to online stream processing

settings. Chapter 5 presents an approach based on generative adversarial networks to impute

missing values and estimate prediction uncertainties for incomplete data settings. Finally,

Chapter 6 concludes the thesis.
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CHAPTER 2

Related Work

2.1 Cost-Sensitive Learning

2.1.1 Static Feature Selection

One of the approaches to incorporate feature acquisition costs or feature costs in general is

considering the feature costs during the training phase and trading off the prediction accu-

racy with the prediction cost. An example of these approaches is limiting the number of

features that are actually used in the predictor model by using L1 regularization [EHJ04].

In this method, the L1 regularization enforces weights corresponding to certain features to

be zero, and hence they can be omitted during the test phase. There are other methods in

the literature that try to define and solve optimization problems over both the prediction

performance and prediction costs [GGR02, GAS15, JC07]. Nevertheless, in all these meth-

ods, the final set of selected features is fixed and they fail to capture and take the advantage

of the contextual information available at test-time.

2.1.2 Probabilistic Approaches

Alternatively, probabilistic methods were suggested that measure the value of each feature

based on the current evidence. For instance, Choi et al. [CXD12] introduced same decision

probability (SDP) as a criterion to measure the value of new evidence (i.e., feature) in terms

of the probability of changing the current decision after observing that evidence. Chen et al.

[CCD13, CCD14] continued that line of work suggested exact and approximate algorithms

for computing SDP.
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However, these methods are usually applicable to Bayesian networks or similar proba-

bilistic models and make limiting assumptions such as having binary features and binary

classes [CCD14]. Furthermore, these probabilistic methods are computationally expensive

(usually of the complexity of PP PP ) and intractable for large scale problems [CCD15].

2.1.3 Tree-Based Approaches

An intuitive approach to incorporate feature costs during the training phase, while consid-

ering the available context during the test phase, is using the idea of decision trees. One of

the most famous examples of this approach is the face detection cascade classifier by Viola

and Jones [VJ04]. While their goal was to increase the prediction speed by rejecting nega-

tive samples as soon as possible within a cascade of classifiers, many papers followed their

architecture and incorporated feature cost in creating cascade predictors [CXW12, XWC12].

One main drawback of cascade approaches is that cascades are only applicable to problems

with a considerable class imbalance such as face detection or spam email detection. In these

cases, the number of negative samples is significantly higher than the number of positive

samples. However, there are many real-world applications in which the classes are relatively

balanced such as document classification or image classification. To overcome this issue, in

[XKW14, KBF12] authors suggested the idea of classifier trees instead of classifier cascades

to handle the problems where cascades are not applicable.

While cascade and tree based test-time feature acquisition methods are shown to perform

reasonably well in many scenarios; there are many problems and applications such as large-

scale image classification, voice recognition, natural language processing, etc. where tree and

cascade classifiers are not intrinsically strong enough to make accurate predictions. Another

important limitation of cascade and tree based approaches is, while they include the context

information to some extent, their feature query decisions are not truly instance specific.

Specifically, they are limited by the fixed predetermined structure of the tree that enforces

the features to be acquired at each tree node. A recent work by Nan et al. [NS17] suggested a

gating method that employs adaptive linear or tree-based classifiers, alternating between low-
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cost models for easy-to-handle instances and higher-cost models to handle more complicated

cases. While this method outperforms many of the previous work on the tree-based and

cascade cost-sensitive classifiers, the low-cost model being used is limited to simple linear

classifiers or pruned random forests.

2.1.4 Sensitivity-Based Approaches

An alternative idea for measuring the informativeness of features given the context is using

sensitivity analysis at test-time to measure the influence of each feature on the predictions.

Early et al. [EFM16] introduced a method based on sensitivity analysis that exhaustively

measures the impact of acquiring each feature on the prediction outcome. Their solution does

not require training any other model, and it works in conjunction with almost any supervised

learning algorithm. However, exhaustive sensitivity measurement is computationally expen-

sive. It is impractical in problems with a large number of features to exhaustively examine

the sensitivity with respect to each unknown feature.

In Chapter 3 we suggest a novel approach that is based on the idea of sensitivity analysis.

The proposed approach incrementally asks for features based on the feature acquisition

costs and the expected effect each feature can induce on the prediction. Furthermore, the

devised method uses back-propagation of gradients and binary representation layers in neural

networks to address the computational load as well as scalability concerns [KHM17, KDM18].

2.1.5 Imitation and Reinforcement Learning Approaches

Recently, there has been great attention toward using learning methods to solve the generic

problem of cost-sensitive and context-aware feature acquisition. He et al. [HDE12] suggested

a method based on imitation learning that trains a model that is able to predict an optimal

feature query decision to be made given the available features. Contardo et al. [CDA16a,

CDA16b] introduced the idea of defining the problem as a reinforcement learning problem

and solving it as a separate problem. While these methods are successful in terms of truly

incorporating the test-time context information to the decisions, they require extra effort of
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training a feature query model in addition to the target predictor.

Imitation and reinforcement learning approaches are promising in terms of performance

and scalability. However, the value functions used in these methods are usually not intuitive

and require tuning hyper-parameters to balance the cost vs. accuracy trade-off. More

specifically, they often rely on one or more hyper-parameters to adjust the average cost at

which these models operate. On the other hand, in many real-world scenarios it is desirable

to adjust the trade-off at the prediction-time rather than the training-time. For instance,

it might be desirable to spend more resources for a certain instance or continue the feature

acquisition until a desired level of prediction confidence is achieved [KGK19].

In Chapter 4, we propose a reinforcement learning based solution which is using novel

reward function that measures the expected variations of prediction uncertainty after asking

for each feature. Furthermore, the proposed method is applicable to stream learning settings

where feature acquisition, learning, and prediction take place in an online manner [KGK19,

KKG19].

2.2 Learning from Incomplete Data

2.2.1 Traditional Approaches

One of the simplest traditional methods for handling missing values includes imputing

the occurrences of missing values with constant values such as zeros or using mean val-

ues. To enhance the accuracy of such imputations, alternatives such as k-nearest neighbors

(KNN) [HTS99] and maximum likelihood estimation (MLE) [And57] have been suggested

to estimate values to be used given an observed context. While these methods are easy to

implement and analyze, they often fail to capture the complex feature dependencies as well

as structures present in many problems.
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2.2.2 Multiple Imputation

Rubin et al. [Rub76] suggested a categorization for missingness mechanisms: missing com-

pletely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).

In this classification, a variable is MCAR if the occurrences of missing values do not depend

on any other variable. If the occurrence of missing values is only dependent on observed vari-

ables it is classified as MAR, and if it is dependent on both observed and missing variables

it is classified as MNAR. Under the assumption of MAR, the authors suggested multiple im-

putation (MI) as a stochastic imputation method. Here, instead of imputing missing values

using a single value, several values are sampled to represent the distribution over the missing

value. MI generates a few imputed complete datasets that are then used independently in

statistical modeling [SG02, LR19]. Recent work by Aleryani et al. [AWD20] trains an en-

semble of classifiers using bagging and stacking techniques based on multiple imputation of

dataset samples, and studies the variance of the predictions made by each classifier.

Usually, the final goal of MI is to measure the robustness of the final statistical analysis

amongst the imputed datasets. In other words, it measures the quality of imputations and

the statistical significance of analysis on the imputed data. It should be noted that the

number of imputations used in MI is usually very limited. Also, often strong simplifying

assumptions are made in modeling the data distribution (e.g., multi-variate Gaussian or

Student’s t distribution) which limit the applicability of this method [SG02, Mur18].

2.2.3 Solutions based on Autoencoders

More recently, autoencoder architectures have been suggested as powerful density estimators

capable of capturing complex distributions. Perhaps, denoising autoencoders (DAE) [VLB08,

RKK20] are one of the most intuitive approaches in which a neural network is trained to

reconstruct and denoise its input.

Following a more probabilistic perspective, variational autoencoders (VAE) [KW13] try

to learn the data generating distribution via a latent representation. Specifically, conditional

variational autoencoders (CVAE) [SLY15] can be used to sample missing values conditioned
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on observed values. For instance, Mattei et al. [MF18] suggested a method based on deep

latent variable models and importance sampling that offers a tighter likelihood bound com-

pared to the standard VAE bound. While these methods are powerful generative models

applicable to missing data imputation, often samples generated using autoencoders are bi-

ased toward the mode of the distribution (e.g., resulting in blurry images, for vision tasks)

[GPM14, DBP16, SKS20].

2.2.4 Solutions based on Generative Adversarial Networks

Recently, due to the success of generative adversarial networks (GAN), there has been great

attention toward applying them to impute missing values. For instance, Yoon et al. [YJV18]

suggested an imputation method based on adversarial and reconstruction loss terms. Li

et al. [LJM19] introduced the idea of using separate generator and discriminator networks

to learn the missing data structure and data distribution. These methods have been quite

successful and are able to present the state-of-the-art results. Though it should be noted

that often the presence of additional loss terms may bias the generated samples toward

the mode of the distribution being modeled. Also, these methods are often complicated to

be applied in practical setups by practitioners. For instance, Yoon et al. [YJV18] requires

setting hyperparameters to adjust the influence of an MSE loss term as well as the rate of

discriminator hint vectors. Also as another example, Li et al. [LJM19] uses three generators

and three discriminators for the final imputer architecture.

2.2.5 Impact of Missing Values on the Prediction Certainty

From the perspective of supervised analysis, imputation and handling missing values are

usually considered as a preprocessing step. A few exceptions exist such as Bayesian models

and decision trees that permit direct analysis on incomplete data [NJ09, ZQL05]. Note that

while certain Bayesian methods such as probabilistic Bayesian networks allow handling of

missing values as unobserved variables. However, given an incomplete training dataset and

without any known causal structure as a priori, learning such models is a very challenging
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problem with the complexity of at least NP-complete to learn the network architecture in

addition to an iterative EM optimization to learn model parameters [Dar09, Nea04].

Tran et al. [TZA17] suggested a genetic programming method using multiple imputation

to train a set of classifiers covering different combinations of observed features. While this

method does not require any imputation at the prediction phase, it has significant limitations

in the scale of the problems (i.e. the number of features/samples) that can be addressed due

to the often combinatorial number of classifiers required. The recent work by Khosravi et

al. [KCL19] suggests carefully designed probabilistic circuits to enable tractable inference

given samples from a generative probabilistic model. Note that their method imposes certain

structural constraints on the generative and discriminative networks. In [KVC20] authors

suggest a method for probabilistic inference in decision tree models. They estimate the

certainty of class assignments (expected prediction) based on partial assignment probabilities

computed for the tree leaves. While it is a very promising line of research, using decision

trees and requiring polynomial compute time is quite restrictive.

We argue that the simplistic approach of imputing missing values as a preprocessing step

discards uncertainties that exist in original incomplete data samples. Instead, there is a

need for methods that reflect these uncertainties on the final predicted target distribution.

Chapter 5 suggests the idea of training a predictor on different imputed samples to capture

the uncertainties over class assignments. Compared to MI, the suggested method interleaves

imputation and training a downstream prediction model, enabling to estimate classification

uncertainties for each instance.
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CHAPTER 3

Cost-Sensitive Feature Acquisition Based on

Sensitivity Analysis1

3.1 Problem Definition

We consider the problem of predicting target classes (y ∈ Rr) corresponding to a given

feature vector (x ∈ Rd). Each feature vector consists of known features as well as unknown

features (i.e., missing values) that are set to zero. The complete feature vector without any

missing values is denoted by x̃. To indicate unknown features, a vector k ∈ {0, 1}d is defined

that acts as a mask and indicates known and unknown features with one and zero values,

respectively. In addition, we define a feature acquisition cost vector (c ∈ Rd) that defines

the cost of acquiring each feature.

For simplicity of analysis, we consider the incremental problem of having a feature vector

(xt) and the corresponding mask vector (kt) at time step t. Additionally, we consider the

cost values to be time dependent and defined for each time step (ct). Using this notation,

at each time step t, the current feature vector can be represented as

x
(t)
j =


0 ktj = 0

x̃j ktj = 1

, (3.1)

which is acquired at the total cost of

Ct
total = (kt − k0)Tct. (3.2)

1This chapter is based on ”M. Kachuee, S. Darabi, B. Moatamed, M. Sarrafzadeh, Dynamic
Feature Acquisition Using Denoising Autoencoders, IEEE Transactions on Neural Networks
and Learning Systems (TNNLS), 2018.” c©2018 IEEE
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Apart from this, at each time step, we have an expected prediction value (yt) using a

predictor function (h) that takes xt as input:

yt = h(xt) = h(xt1, x
t
2, . . . , x

t
d) . (3.3)

In this setup, we define the feature query operator (q) as a function that acquires the

value of feature j in the incomplete feature vector xt and outputs the feature vector of the

next time step, xt+1:

xt+1 = q(xt, j),where

kt+1
j − ktj = 1 and kt+1

i − kti = 0 (i 6= j) .
(3.4)

Furthermore, we define the desired feature to be queried at time t as the feature that

decreases the prediction error significantly, while at the same time, incurs a low acquisition

cost. Mathematically speaking, we can use prediction accuracy improvement per acquisition

cost as a measure of efficiency for the feature query. Accordingly, the desired feature to be

queried at time step t can be found by

jtsel = argmin
j∈{1...d}|ktj=0

|ỹ − h(q(xt, j))| . ctj , (3.5)

where ỹ is the ground-truth target value. It is worth mentioning that the solution introduced

here is basically an incremental solution that greedily selects features to be acquired at each

step. Table 3.1 presents a summary of the notations used throughout this chapter.

3.2 Sensitivity-based Feature Acquisition

While (3.5) suggests what features to be acquired at each step, directly using this equation is

not practical. The reason behind this is the first term in this equation is usually not known

and is difficult to estimate. To resolve this issue, it is possible to use the sensitivity of model

predictions with respect to each missing feature as a measure for the potential impact of

that feature on the final predictions. As a result, (3.5) can be rewritten using the suggested
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Table 3.1: Summary of the notations used throughout this chapter.

Notation Description

ỹ ∈ Rr Ground-truth target values

y ∈ Rr Predicted target values

x ∈ Rd Incomplete feature vector at test-time

x̃ ∈ Rd Complete feature vector without any missing values

xbin ∈ Rd×l Binary representation of the feature vector

x′ ∈ Rd Reconstructed feature vector

x′bin∈ R
d×l Binary representation of the reconstructed feature vector

k ∈ {0, 1}d Mask vector indicating known and unknown features

c ∈ Rd Feature acquisition cost vector

z ∈ Rd′ Encoded feature vector
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sensitivity measure as:

jtsel = argmax
j∈{1...d}|ktj=0

Sensitivity(h(xt), j)

ctj
. (3.6)

Note that because a higher sensitivity is synonymous with a more informative feature

to select, the argmin function in (3.5) is replaced by argmax. Furthermore, the prediction

sensitivity with respect to input j can be defined as

Sensitivity(h(xt), j) = Exj(
∂ht(xt)

∂xj
)

=

∫
|∂h(xt)

∂xj
| p(xj|xt;ht) dxj .

(3.7)

In this equation, the first term corresponds to the derivative of the predictor function with

respect to each missing feature. The second term is the probability of the j’th feature given

the available context and model parameters. By substituting this into (3.6), the feature

query criterion can be written as

jtsel = argmax
j∈{1...d}|ktj=0

∫
|∂h(x

t)
∂xj
| p(xj|xt;ht) dxj

ctj
. (3.8)

Furthermore, the continuous integral in (3.8) can be approximated by a discrete summa-

tion:

jtsel = argmax
j∈{1...d}|ktj=0

∑
xj∈RS |

∂h(xt)
∂xj
| p(xj|xt;ht)

ctj
, (3.9)

where RS is a set of samples from the range of possible values that can be taken by each

feature. By adjusting the granularity of the values in the RS set, one can trade-off between

the approximation accuracy and the computational load of the expected value approximation.

3.3 Proposed Solution

The required terms in (3.9) for finding the feature to query includes: the cost of acquiring

each feature, the derivative of the prediction function with respect to each input at different

input values, and probability of having each value for each feature given the available context.

Feature query costs are assumed to be given by the user and known for each time step. For
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Figure 3.1: Network architecture of the proposed method including: encoder, decoder, and

predictor parts. The encoder part is responsible for handling missing features. The decoder

part is used for feature density estimation. The predictor is responsible for making predic-

tions; additionally, its derivatives with respect to inputs are used for measuring sensitivities.
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the latter two, while it is possible to model and estimate each term using conventional mod-

eling methods, the solution to evaluate the summation exhaustively may be computationally

expensive and impractical in many applications. Here, we introduce a novel method based

on autoencoders with binary representation layers that can estimate the whole summation

with a single forward and backward propagation in neural networks.

The left and the upper right part of the Figure 3.1 show the architecture of the proposed

network for the context-aware and one-shot estimation of the distribution of each feature. As

depicted, an autoencoder architecture designed to convert each feature in the feature vector

(x) to a binary representation (xbin). Then, it encodes the features to a more compact

representation (z), and finally reconstructs the original feature vectors (x′) by creating a

binary decoded vector (x′
bin). Here, in order to have an estimate for the probability of each

bit being set, sigmoid non-linearity activation function is used for the binary reconstruction

layer (x′
bin). For other activation functions; however, we used the rectified linear unit (ReLU)

[NH10] non-linearity. Additionally, the network optimization cost function is defined as the

weighted sum of cross-entropies for binary feature words. Here, the term word refers to the

set of encoded bits that are representing a feature. The weights are adjusted to offset the

importance of the reconstruction error caused by errors in different bits in the word with

different significance. It is worth mentioning that the trained autoencoder as explained here,

takes an input feature vector where missing features are set to zero, and it is capable of

estimating the probability of each bit being set in the binary decode layer (x′
bin).

In addition to the autoencoder part, in the network of Figure 3.1, we create a predictor

model by stacking a few layers on the top of the encoded representation (z) and training

the encoder as well as the predictor parts of the network in a supervised fashion. Here, in

order to measure the sensitivity of the output predictions with respect to different changes

in each feature, we suggest using the summation of absolute derivatives of the output layer

neurons with respect to each bit of the missing features. The final estimation of the sum-

mation in (3.9) is achieved by the inner product of the bit probabilities estimated from the

autoencoder’s binary reconstruction layer and the sensitivities calculated from the derivative

of output layer with respect to each input feature bit. Specifically, we suggest defining the
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RS as

RS = {2−l, . . . , 2−2, 2−1, 1} , (3.10)

where l is the total number of bits used in the binary representation of each feature. Using

(3.9) and (3.10), the feature to be acquired is given by

jtsel = argmax
j∈{1...d}|ktj=0

∑b=l
b=1 |

∂h(xt)
∂xbinj,b

| x′binj,b

ctj
, (3.11)

where the sensitivity term is defined as

|∂h(xt)

∂xbinj,b

| =
i=r∑
i=1

| ∂yi
∂xbinj,b

| . (3.12)

It is worth mentioning that, in addition to the common neural network hyper-parameters,

the only hyper-parameter that is added by the suggested method is the parameter l which

is used for controlling the accuracy of the binary representation. Additionally, as we do

not make any assumptions on the values used as feature costs and the proposed method is

incremental, it can be applied to the scenarios where feature costs are subject to change

during the course of operation at test-time. However, in our experiments, in order to make

the comparison of results easier, we evaluate the proposed method on scenarios where feature

acquisition costs are constant in time.

3.4 Implementation Details

Prior to the analysis we have normalized all feature values in the dataset to the range of

zero and one. Also, throughout the experiments we used Tensorflow numerical computation

library [AAB16] and explored feed-forward neural network architectures. Also, ReLU non-

linearity [NH10] is used for all hidden layers except the binary representation layers. For

converting feature values to the suggested binary representation, we implemented the bit by

bit recursive conversion in an efficient and parallel manner. Also, for converting back from

the binary representation, we implemented the weighted summation of bit values utilizing

a fully parallel matrix multiplication, reshape, and addition. In this work, the Adaptive

Moment (Adam) optimization algorithm [KB14] is used to train each network. The Adam
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hyper-parameters: learning rate (α), decay rate for the first moment (β1), and decay rate

for the second raw moment (β2) are set to 0.001, 0.9, and 0.999, respectively.

The process of training the network starts with training the autoencoder part using a

weighted cross-entropy loss between the binary representation of the complete feature vectors

and the estimated probabilities from the binary reconstruction layer:

f(x, θ) =
d∑
j=1

l∑
b=0

2−b ( x̃′binj,b
log(x′binj,b

) +

(1− x̃′binj,b
)log(1− x′binj,b

) ) .

(3.13)

In order to train the denoising autoencoder, for each training instance, we sample random

values from a latent Beta distribution and use the sampled values as the probability of

missing each feature in the training data. After training the autoencoder part, the trained

autoencoder network weights are stored, and a few prediction layers are added on top of the

encoder part. The reason we store autoencoder weights is that fine-tuning the weights for

the prediction task would affect the distribution estimation functionality of the originally

trained autoencoder. In other words, we do fine-tuning for the supervised prediction task,

while a copy of the original not fine-tuned autoencoder is used for probabilistic modeling.

Here, to train the predictor network, we use a smaller learning rate (α = 0.0001) for the

pre-trained encoder and a larger learning rate (α = 0.001) for the new predictor weights.

For the efficient calculation of derivatives we use back-propagation from the values in

the output prediction layer to each binary input bit. In this section, we only described the

general architecture and training procedures, as we have conducted various experiments on

different datasets, the exact network architecture of each case is explained in Chapter 3.5.

3.5 Experimental Results

3.5.1 Datasets and Experiments

The proposed method is evaluated on seven different real-world datasets including human ac-

tivity recognition (HAPT) [ROS16], hand-written character recognition (MNIST) [LCB98],
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Table 3.2: The summary of datasets and experimental settings.

Dataset Instances Features Classes Network Architecture Latent Missing Distribution

MNIST 70000 784 a 10 Encoder: [697×8, 64, 32] Beta Distribution

[LCB98] Predictor: [16,10] α = 3.5, β = 1.5

Yahoo LTRC 34815 519 5 Encoder: [519×8, 128, 32] Beta Distribution

[CC11] Predictor: [16, 8] α = 1.5, β = 1.5

HAPT 10929 561 12 Encoder: [561×8, 64, 32] Beta Distribution

[ROS16] Predictor: [16] α = 1.5, β = 1.5

Reuters R8 7674 1000 8 Encoder: [1000×8, 64, 32] Beta Distribution

[Lew97] Predictor: [16, 8] α = 3.5, β = 1.5

UCI Mushroom 8124 22 b 2 Encoder: [116×8, 16] Beta Distribution

[Sch81] Predictor: [4] α = 5.5, β = 1.5

UCI Landsat 6435 36 7 Encoder: [36×8, 16, 8] Beta Distribution

[BM98] Predictor: [4] α = 1.5, β = 1.5

UCI CTG 2126 23 3 Encoder: [23×8, 8] Beta Distribution

[CBG00] Predictor: [4] α = 1.5, β = 1.5

Synthesized 16000 64 2 Encoder: [64×8, 16, 10] Beta Distribution

(Section 3.5.4) Predictor: [8, 4] α = 1.5, β = 1.5

Thyroid 279 16 3 Encoder: [16×8, 8] Beta Distribution

(Section 3.5.5) Predictor: [4] α = 1.5, β = 1.5

a697 features after omitting features with STD of less than 0.0001 corresponding to margin pixels.

b116 features after one-hot encoding of categorical features.
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document classification (Reuters R8) [Lew97], and web ranking (Yahoo LTRC) [CC11] as

well as three other classification datasets. Apart from these, we have evaluated the method

on a synthesized dataset which is explained in Section 3.5.4 and a dataset in health domain

explained in Section 3.5.5. Table 3.2 presents a summery of the conducted experiments. The

table also includes the network architecture and the missing value distribution used during

the training phase. In each case, the architecture column contains encoder layer sizes for

the binary layers, encoder layers, and predictor layers. In this table, the decoder layers are

not shown and are equal to the encoder layer sizes in reverse order. We used an 8-bit binary

representation throughout the experiments. Regarding the feature size of each dataset, we

report both the nominal feature count and the number of features we have used in our ex-

periments. Specifically, for the MNIST dataset, each pixel is considered as a feature and we

removed features corresponding to pixels near the margin that are almost always zero with

the standard deviation of less than 0.0001 across all samples. Also, regarding the Mushroom

dataset, one-hot encoding of 22 categorical features resulted in 116 features to be used as

input. An important point to consider for these features is that, during sensitivity measure-

ment and acquisition, we should consider acquisition of all one-hot features corresponding

to a categorical feature as a single feature to acquire.

Regarding the feature acquisition costs, for the LTRC dataset, as suggested by [XKW14],

we used real cost values in the range of 1 to 150 based on the time required to extract each

feature. In order to introduce feature costs to the MNIST dataset, we have followed the

method suggested by [TS13]. Using this method, we create feature vectors by concatenating

MNIST images at different resolutions including 28×28, 14×14, 7×7, and 4×4 with feature

acquisition costs of 4, 3, 2, and 1 for acquiring feature at each resolution, respectively. For the

Landsat dataset, each sample consists of features from four different frequency bands. Here,

we considered features of the same frequency band to have the same acquisition cost from 1

to 4, equal to the frequency band number. At last, for the CTG dataset, we assumed that

features that are measuring event counts to have cost value of 1, features measuring statistical

information to have the cost value of 2, and histogram features to have the cost of 3. For

the synthesized and diabetes datasets, a complete explanation experiments is presented in
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Table 3.3: Results of evaluating the proposed method on different datasets.

Dataset FACT Accuracy (%) RFC Accuracy Denoising Rand DPFQ3 FACT

% of total cost used1 (%) (%) (AUACC2) (AUACC) (AUACC)

0% 25% 50% 75% 100% 100% total cost1

MNIST 10.63 94.95 96.19 96.17 96.17 97.07 60.08 0.63 0.71 0.82

Yahoo LTRC 20.70 47.16 49.41 50.48 50.39 50.51 94.03 0.47 0.47 0.48

HAPT 16.60 87.57 90.22 90.71 90.77 91.75 90.09 0.65 0.69 0.76

Reuters R8 50.74 94.78 95.56 94.78 94.70 94.61 14.92 0.87 0.89 0.93

UCI Mushroom 50.41 99.26 99.83 99.91 99.93 99.99 57.69 0.61 0.85 0.85

UCI Landsat 27.66 80.10 83.73 87.35 88.49 91.08 93.88 0.65 0.68 0.72

UCI CTG 74.52 84.90 88.68 88.99 90.88 89.62 77.48 0.83 0.84 0.86

Synthesized 50.43 96.72 98.19 98.25 98.33 99.41 88.78 0.64 0.73 0.78

Thyroid 26.83 65.85 70.73 75.61 78.05 80.85 44.07 0.59 0.59 0.71

1 Total cost defined as the total cost of acquiring all features.

2 AUACC is defined as the area under the accuracy and the feature acquisition cost curve.

3 Cost-aware version of the method suggested in [KHM17].

Section 3.5.4 and Section 3.5.5, respectively. Lastly, for the other three datasets, we assumed

feature costs to be equal for all features.

Based on the aforementioned experimental setup, in the following parts of this section, we

evaluate the proposed method for feature acquisition considering costs at test-time (FACT)

on each dataset.

3.5.2 Performance Evaluation

We split each dataset into three parts: 15% for test, 15% for validation, and the rest for

training. During the training phase, we use the validation and train sets to train the networks

as explained in Section 3.4 and following the setups introduced in Table 3.2. It is worth noting

that the proposed method does not necessary require all training features to be known. In

fact, as explained in Section 3.4, we use a latent Beta distribution to simulate the existence
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of unknown features. After the training phase, we use the test set to simulate the case of

feature acquisition using the proposed method by assuming all the features to be initially

unknown and using the feature query criterion of (3.11) to ask for features incrementally. In

our experiments (except experiments in Section 3.5.4), we continue the feature query until

querying all the features and report the accuracy as well as the cost at each point during

feature acquisition. In real applications; however, the incremental acquisition should be

stopped after reaching a certain criterion such as a minimum confidence of predictions.

Table 3.3 presents the results of the proposed method on each dataset. The table contains

the test accuracy of each dataset while asking for different percentage of the total cost from

the original feature set. Here, total cost is defined as the cost of acquiring all features. As a

baseline, we have reported the test performance of using a random forest classifier (RFC) on

the complete feature set (i.e., acquiring all features and spending the maximum cost). The

table also reports the denoising percentage of the trained denoising autoencoder calculated

as

100 × ||x− x̃|| − ||x′ − x̃||
||x− x̃||

. (3.14)

Additionally, in this table, the area under the accuracy-cost curves (AUACC) of the proposed

feature query method as well as the AUACC of randomly asking for the unknown features

are presented. We have also included AUACC results of a cost-aware version of the method

suggested in [KHM17] in which sensitivities are normalized by feature costs (see the DPFQ

column). It is worth mentioning that AUACC values are calculated as the normalized area

under the accuracy versus the acquisition cost curve from a cost of zero to the cost at which

the accuracy converges to the maximum accuracy.

According to the results presented in Table 3.3, the proposed method can be used to

effectively reduce the cost of features to be acquired at test-time for accurate predictions.

Also, comparing the baseline accuracy of using the complete feature set, the results show that

our method trains predictor models that can make viable predictions using only a subset of

the features without sacrificing prediction performance. Regarding the denoising percentage,

in most of the cases, the achieved denoising percentage is significant and confirming that a

denoising autoencoder is capable of encoding features to reduce the feature representation
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length which results in a new representation that is more robust to the presence of missing

values. Regarding the area under the curve values, in all cases, the AUC values of using

FACT is considerably higher than its random selection counterpart. It is also noteworthy

to mention that for a few datasets (i.e., Reuters R8, UCI Landsat, HAPT, and UCI CTG)

there is a considerable class imbalance that is affecting baseline accuracies.

To further illustrate the performance of the proposed approach, we used MNIST dataset

to visualize the effect of cost and context on the selection of features to be queried. Here,

features are pixel values at different locations across each image, and the context is the

available pixel values at each time step. Figure 3.2 shows the effect of context and cost on

the order of features that are queried by the proposed algorithm as well as a static order

which is measured based on mutual information between pixels and target classes. Here, we

present results for the original MNIST dataset with single resolution images and equal feature

costs (see Figure 3.2a) as well as the introduced multi-resolution setup with different feature

costs for each resolution (see Figure 3.2c). In this figure, pixels with higher importance to

be queried are indicated by warmer colors and less important pixels are indicated by colder

colors. As it is evident from this figure, the proposed context-aware method, based on the

available pixels, acquires features with different orders and is scanning for digit edges or

discriminative areas. On the other hand, the static feature acquisition method, only asks

for central pixels of each image in a fixed order (see Figure 3.2b). In addition, regarding the

multi-resolution case, as it can be seen from the figure, the informative pixels from lower

resolutions that incur lower costs are preferred to more costly higher resolution pixels. For

instance, in the lower left corner image of Figure 3.2c, the parts that are first acquired from

the high-resolution pixels are the parts that create difference between the digits of 4 and 9

which are not clear enough in lower resolutions.

3.5.3 Comparison with Other Work

Figure 3.3 presents comparison of the proposed feature acquisition method with a feature

acquisition method based on recurrent neural networks (RADIN) [CDA16a] and a tree-
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(a) (b)

(c)

Figure 3.2: Visualization of: (a) using the proposed approach on the MNIST dataset with

equal feature costs, (b) using static feature acquisition using mutual information between

pixels and targets on MNIST dataset, and (c) using the proposed approach on the multi-

resolution MNIST dataset with different feature costs at each resolution. Pixels with more

importance/priority to be queried are indicated by warmer colors.

based feature acquisition method (GreedyMiser) [XWC12]. In this comparison, we have

used MNIST dataset to evaluate the performance of each method based on their accuracy

using a different number of features. As it can be inferred from the figure, in the case of

acquiring 10% of features, where the number of features to be queried is significantly less

than the total number of features, the achieved accuracy using FACT is lower than other

methods. Nevertheless, the rate of increase in the accuracy with respect to the number of

queried features for the presented method is significantly higher than other papers which

makes it superior in other cases. In this plot and similar cost versus accuracy plots in this

section, we provide 95% confidence intervals presented as error-bars measured by running
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Figure 3.3: Comparison of the proposed method (FACT) with RADIN [CDA16a] and

GreedyMiser [XWC12] methods on the MNIST dataset.

each experiment multiple times using different random initializations.

Figure 3.4 presents a comparison between the feature acquisition and cost curve of the

proposed method with three other approaches that use classifier cascades or trees in the

literature including CSTC [XKW14], Cronus [CXW12], and Early Exit [CZC10]. Here, we

used the LTRC dataset with the feature costs as suggested by [XKW14] to plot the feature

acquisition cost versus the corresponding normalized discounted cumulative gain (NDCG)

[JK02] performance measure. NDCG is a well-known measure of ranking quality that is used

to measure the effectiveness and the relevance of ranking results in search engines. As it can

be seen from this figure, FACT is significantly more powerful and more efficient compared

to others.

In order to evaluate the performance of the proposed method for the estimation of sen-

sitivity values, we have implemented an exhaustive feature query method as suggested by

[EFM16] using sensitivity as the utility function. To make a fair comparison, we have used

the trained predictor network, and exhaustively measured the effect of changing each input
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Figure 3.4: Comparison of the proposed method (FACT) with CSTC [XKW14], Cronus

[CXW12], and Early Exit [CZC10] methods on the LTRC dataset.

on the prediction probabilities. Here, in order to estimate the probability of each change, we

have used a 5-bin histogram for each feature. Figure 3.5 presents a comparison between the

accuracy achieved using FACT and the exhaustive sensitivity-based method on the Landsat

dataset. As a baseline, we have also included the curve corresponding to randomly selecting

and acquiring features. As it is evident from the figure, the proposed method is almost equiv-

alent to the exhaustive method in terms of the accuracy achieved at each total acquisition

cost. This is promising considering the fact that the proposed approach tries to approximate

the exhaustive sensitivity measurement in an efficient and scalable manner. In other words,

compared to the proposed method, the exhaustive method is significantly slower and less

efficient at test-time. Specifically, the average processing time of the exhaustive method was

about 2400 ms for each sample, while the corresponding processing time for FACT was about

20 ms (i.e., about 120 times faster). In other test cases with more features, comparing with

the exhaustive method was not possible due to the exponentially increasing computational

load of evaluating the exhaustive method.

It worth mentioning that this computational advantage comes from the fact that, for

25



0 5 10 15 20 25 30 35 40

Acquisition Cost

0

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

FACT

Exhaustive

Rand

Figure 3.5: Comparison of the proposed method (FACT) with exhaustive sensitivity-based

(Exhaustive) [EFM16] and random selection (Rand) methods on the Landsat dataset. This

figure shows that the proposed method is able to approximate the ground-truth sensitivity

values accurately and efficiently.

each incremental feature query, we approximate the summation of (3.11) for all unknown

features using one forward and one backward network computation. However, the exhaustive

sensitivity measurement computes the summation for each feature and over the range of all

possible values, separately. In other words, the proposed method scales linearly with the

growth in the number of unknown features, while the exhaustive method scales in polynomial

time.

3.5.4 Evaluation using Synthesized Data

In order to get more insight about the performance of the proposed method, we have used

a synthesized dataset to evaluate the suggested approach. The synthesized dataset is gen-

erated as follows: first, we have randomly sampled 16 cluster centers from a 32-dimensional

space. Then, 1000 points sampled around each cluster center from a normal distribution
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Figure 3.6: Evaluation of the proposed method on synthesized data. (a) Cost and static

importance of each feature. (b) The feature acquisition order for 50 different test samples

(warmer colors mean more priority). (c) Accuracy versus acquisition cost curves for the

proposed method (FACT), acquisition using static order, and random selection.
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with the mean of zero and variance of 0.25. Afterwards, we have randomly assigned each

cluster to a class from a set of two different classes. To each feature vector created so far

containing 32 features, we have appended another 32 features with random values from a

normal distribution. These are features without any predictive value. Accordingly, the re-

sulting feature vectors are of size 64. Finally, we made the dataset cost-sensitive by defining

feature costs for the first and second 32 features to be a monotonically increasing function

from 1 to 32. See Figure 3.6a for a visualization of feature costs and the static importance

computed using the mutual information between features and labels.

Figure 3.6b demonstrates the order in which each feature is acquired using the proposed

method. In this figure, each row corresponds to a test sample (here only 50 samples are

visualized) and each column represents a feature. The features that are acquired earlier are

indicated with warmer colors. Here, we have continued the feature acquisition until we reach

95% of the maximum achievable accuracy. As it can be seen, the second half of features

which are not informative are mainly skipped by the proposed method. Specifically, only

about 5.2% of features from the second half are selected by FACT, which means that most of

the uninformative features are not acquired by the algorithm. On the other hand, based on

the cost and value of each feature from the first half, the proposed method acquired features

that are more informative and have lower cost values. Apart from this, Figure 3.6c presents

the accuracy versus total feature acquisition cost on the test set. As it can be seen from the

curve, FACT converges to the maximum accuracy much faster than the static and random

acquisition methods. It is mainly due to the fact that the proposed method highly prefers

informative features with low cost while other methods disregard this information.

3.5.5 Evaluation using Real-World Health Data

In order to evaluate the performance of the proposed method on a dataset in health domain

where feature acquisition costs are inherently important, we have used thyroid classification

dataset [DK17]2. Here, we have features from different categories including demographics,

2Available at: http://archive.ics.uci.edu/ml/datasets/thyroid+disease
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questionnaire, examination, and lab results. Furthermore, this dataset provides the acqui-

sition costs corresponding to each feature which ranges from 1.0 for features such as age to

22.78 for certain blood tests.

Figure 3.7a presents a visualization of orders which each feature is acquired for 40 ran-

domly selected test samples. As it can be observed from this visualization, FACT gives more

priority to low cost features and costly but informative features are acquired a with lower

priority. Apart from this, Figure 3.7b presents the accuracy versus acquisition cost curve for

FACT, static, and random methods. As it can be seen from this figure, FACT outperforms

other baseline approaches.
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Figure 3.7: Evaluation of the proposed method on thyroid disease classification task. (a) The

feature acquisition order for 50 different test samples (warmer colors mean more priority).

(b) Accuracy versus acquisition cost curves for the proposed method (FACT), acquisition

using static order, and random selection.
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CHAPTER 4

Budgeted Cost-Sensitive Learning from Data Streams1

4.1 Preliminaries

4.1.1 Problem Settings

In this chapter, we consider the general scenario of having a stream of samples as input (Si).

Each sample Si corresponds to a data point of a certain class in Rd, where there is a cost for

acquiring each feature (cj; 1 ≤ j ≤ d). For each sample, initially, we do not know the value

of any feature. Subsequently, at each time step t, we only have access to a partial realization

of the feature vector denoted by xti that consists of features that are acquired so far. There

is a maximum feature acquisition budget (B) that is available for each sample. Note that

the acquisition may also be terminated before reaching the maximum budget, based on any

other termination condition such as reaching a certain prediction confidence. Furthermore,

for each Si, there is a ground truth target label ỹi. It is also worth noting that we consider

the online stream processing task in which acquiring features is only possible for the current

sample being processed. In other words, any decision should take place in an online fashion.

In this setting, the goal of an Opportunistic Learning (OL) solution is to make accurate

predictions for each sample by acquiring as many features as necessary. At the same time,

learning should take place by updating the model while maintaining the budgets. Please

note that, in this setup, we are assuming that the feature acquisition algorithm is processing

a stream of input samples and there are no distinct training or test samples. However, we

1This chapter is based on ”M. Kachuee, O. Goldstein, K. Krkkinen, S. Darabi, M. Sar-
rafzadeh, Opportunistic Learning: Budgeted Cost-Sensitive Learning from Data Streams, In-
ternational Conference on Learning Representations (ICLR), 2019.”
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assume that ground truth labels are only available to us after the prediction and for a subset

of samples.

More formally, we define a mask vector kti ∈ {0, 1}d where each element of k indicates if

the corresponding feature is available in xti. Using this notation, the total feature acquisition

cost at each time step can be represented as

Ct
total,i = (kti − k0

i )
Tc . (4.1)

Furthermore, we define the feature query operator (q) as

xt+1
i = q(xti, j), where kt+1

i,j − kti,j = 1 . (4.2)

In Section 4.2, we use these primitive operations and notations for presenting the suggested

solution.

4.1.2 Prediction Certainty

As prediction certainty is used extensively throughout this chapter, we devote this section to

certainty measurement. The softmax output layer in neural networks are traditionally used

as a measure of prediction certainty. However, interpreting softmax values as probabilities is

an ad hoc approach prone to errors and inaccurate certainty estimates [SZS13]. In order to

mitigate this issue, we follow the idea of Bayesian neural networks and Monte Carlo dropout

(MC dropout) [Wil97, GG16]. Here we consider the distribution of model parameters at

each layer l in an L layer neural network as:

ω̂l ∼ p(ωl), where 1 ≤ l ≤ L , (4.3)

where ω̂l is a realization of layer parameters from the probability distribution of p(ωl). In this

setting, a probability estimate conditioned on the input and stochastic model parameters is

represented as:

p(y|x, ω̂) = softmax(f ω̂D (x)) , (4.4)

where f ω̂D is the output activation of a neural network with parameters ω̂ trained on dataset

D. In order to find the uncertainty of final predictions with respect to inputs, we integrate
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(4.4) with respect to ω:

p(y|x,D) =

∫
p(y|x, ω)p(ω|D)dω . (4.5)

Finally, MC dropout suggests interpreting the dropout forward path evaluations as Monte

Carlo samples (ωt) from the ω distribution and approximating the prediction probability as:

p(y|x,D) =
1

T

T∑
t=1

p(y|x, ωt) . (4.6)

With reasonable dropout probability and number of samples, the MC dropout estimate can

be considered as an accurate estimate of the prediction uncertainty. Readers are referred to

[GG16] for a more detailed discussion. In this chapter, we denote the certainty of prediction

for a given sample (Cert(xti)) as a vector providing the probability of the sample belonging

to each class in (4.6).

4.2 Proposed Solution

4.2.1 Cost-Sensitive Feature Acquisition

We formulate the problem at hand as a generic reinforcement learning problem. Each episode

is basically consisting of a sequence of interactions between the suggested algorithm and a

single data instance (i.e., sample). At each point, the current state is defined as the current

realization of the feature vector (i.e., xti) for a given instance. At each state, the set of valid

actions consists of acquiring any feature that is not acquired yet (i.e., Ati = {j = 1 . . . d|kti,j =

0}). In this setting, each action along with the state transition as well as a reward, defined

in the following, is characterizing an experience.

We suggest incremental feature acquisition based on the value per unit cost of each

feature. Here, the value of acquiring a feature is defined as the expected amount of change

in the prediction uncertainty that acquiring the feature causes. Specifically, we define the

value of each unknown feature as:

rti,j =
||Cert(xti)− Cert(q(xti, j))||

cj
, (4.7)
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where rti,j is the value of acquiring feature j for sample i at time step t. It can be interpreted

as the expected change of the hypothesis due to acquiring each feature per unit of the cost.

Other reinforcement learning based feature acquisition methods in the literature usually use

the final prediction accuracy and feature acquisition costs as components of reward function

[HMK16, SHY17, JPL17]. However, the reward function of (4.7) is modeling the weighted

changes of hypothesis after acquiring each feature. Consequently, it results in an incremental

solution which is selecting the most informative feature to be acquired at each point. As

it is demonstrated in our experiments, this property is particularly beneficial when a single

model is to be used under a budget determined at the prediction-time or any other, not

predefined, termination condition.

While it is possible to directly use the measure introduced in (4.7) to find features to be

acquired at each time, it would be computationally expensive; because it requires exhaus-

tively measuring the value function for all features at each time. Instead, in addition to a

predictor model, we train an action value (i.e., feature value) function which estimates the

gain of acquiring each feature based on the current context. For this purpose, we follow

the idea of the deep Q-network (DQN) [MKS15, MKS13]. Briefly, DQN suggests end-to-end

learning of the action-value function. It is achieved by exploring the space through taking

actions using an ε-greedy policy, storing experiences in a replay memory, and gradually up-

dating the value function used for exploration. Due to space limitations, readers are referred

to [MKS15] for a more detailed discussion.

Figure 4.1 presents the network architecture of the proposed method for prediction and

feature acquisition. In this architecture, a predictor network (P-Network) is trained jointly

with an action value network (Q-Network). The P-Network is responsible for making pre-

diction and consists of dropout layers that are sampled in order to find the prediction un-

certainty. The Q-Network estimates the value of each unknown feature being acquired.

Here, we suggest sharing the representations learned from the P-Network with the Q-

Network. Specifically, the activations of each layer in the P-Network serve as input to the

adjacent layers of the Q-Network (see Figure 4.1). Note that, in order to increase model

stability during the training, we do not allow back-propagation from Q-Network outputs to
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Figure 4.1: Network architecture of the proposed approach for prediction and action value

estimation.

P-Network weights. We also explored other architectures and sharing methods including

using fully-shared layers between P- and Q-Networks that are trained jointly or only sharing

the first few layers. According to our experiments, the suggested sharing method of Figure 4.1

is reasonably efficient, while introducing a minimal burden on the prediction performance.

Algorithm 1 summarizes the procedures for cost-sensitive feature acquisition and training

the networks. This algorithm is designed to operate on a stream of input instances, actively

acquire features, make predictions, and optimize the models. In this algorithm, if any features

are available for free we include them in the initial feature vector; otherwise, we start with all

features not being available initially. Here, the feature acquisition is terminated when either

a maximum budget is exceeded, a user-defined stopping function decides to stop, or there

is no unknown feature left to acquire. It is worth noting that, in Algorithm 1, to simplify

the presentation, we assumed that ground-truth labels are available at the beginning of each

episode. However, in the actual implementation, we store experiences within an episode in a

temporary buffer, excluding the label. At last, after the termination of the feature acquisition

procedure, a prediction is being made and upon the availability of label for that sample, the

temporary experiences along with the ground-truth label are pushed to the experience replay

memory.

In our experiments, for the simplicity of presentation, we assume that all features are
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independently acquirable at a certain cost, while in many scenarios, features are bundled and

acquired together (e.g., certain clinical measurements). However, it should be noted that

the current formulation presented in this chapter allows for having bundled feature sets. In

this case, each action would be acquiring each bundle and the reward function is evaluated

for the acquisition of the bundle by measuring the variations of uncertainty before and after
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acquiring the bundle.

Algorithm 1: Suggested Cost-Sensitive Feature Acquisition, Prediction, and Training

Input: total budget (B), stream of samples (Si), acquisition cost of features (cj)

Initialize: experience replay memory, random exploration probability (Prrand) ← 1

1 for Si in the stream do

2 Prrand ← decay factor × Prrand

3 t← 0, total cost← 0

4 xti ← known features of Si // if there are any features available

5 ỹi ← class label of Si

6 terminate flag ← False

7 while not terminate flag do // collect experiences from each episode

8 if new random in [0, 1) < Prrand then // if it is a random exploration

9 j ← index of a randomly selected unknown feature

10 else // if it is an exploration using policy

11 j ← index of the unknown feature with maximum Q value

12 xt+1
i ← q(xti, j) // acquire feature j

13 total cost← total cost+ cj // pay the cost of j

14 rti,j ←
||Cert(xt

i)−Cert(x
t+1
i )||

cj

15 push (xti,x
t+1
i , j, rti,j, ỹi) into the replay memory

16 t← t+ 1

17 if total cost ≥ B or stop condition() or no unknown feature then

18 terminate flag ← True // terminate if all the budget is used

19 if update condition() then

20 train batch← random mini-batch from the replay memory

21 update P, Q, and target Q networks using train batch // Train P & Q

22 end

23 end
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4.2.2 Implementation Details

In this chapter, PyTorch numerical computational library [PGC17] is used for the implemen-

tation of the proposed method. The experiments took between a few hours to a couple days

on a GPU server, depending on the experiment. Here, we explored fully connected multi-

layer neural network architectures; however, the approach taken can be readily applied to

other neural network and deep learning architectures. We normalize features prior to our

experiments statistically (µ = 0, σ = 1) and impute missing features with zeros. Note that,

in our implementation, for efficiency reasons, we use NaN (not a number) values to represent

features that are not available and impute them with zeros during the forward/backward

computation.

Cross-entropy and mean squared error (MSE) loss functions were used as the objective

functions for the P and Q networks, respectively. Furthermore, the Adam optimization

algorithm [KB14] was used throughout this work for training the networks. We used dropout

with the probability of 0.5 for all hidden layers of the P-Network and no dropout for the

Q-Network. The target Q-Network was updated softly with the rate of 0.001. We update

P, Q, and target Q networks every 1 +
nfe

100
experiences, where nfe is the total number of

features in an experiment. In addition, the replay memory size is set to store 1000×nfe most

recent experiences. The random exploration probability is decayed such that eventually it

reaches the probability of 0.1. We determined these hyper-parameters using the validation

set. Based on our experiments, the suggested solution is not much sensitive to these values

and any reasonable setting, given enough training iterations, would result in reasonable

a performance. A more detailed explanation of implementation details for each specific

experiment is provided in Section 4.3.
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4.3 Results and Experiments

4.3.1 Datasets and Experiments

We evaluated the proposed method on three different datasets: MNIST handwritten digits

[LCB98], Yahoo Learning to Rank (LTRC) [CC11], and a health informatics dataset. The

MNIST dataset is used as it is a widely used benchmark. For this dataset, we assume equal

feature acquisition cost of 1 for all features. It is worth noting that we are considering

the permutation invariant setup for MNIST where each pixel is a feature discarding the

spatial information. Regarding the LTRC dataset, we use feature acquisition costs provided

by Yahoo! that corresponding to the computational cost of each feature. Furthermore,

we evaluated our method using a real-world health dataset for diabetes classification where

feature acquisition costs and budgets are natural and essential to be considered. The national

health and nutrition examination survey (NAHNES) data [nha18] was used for this purpose.

A feature set including: (i) demographic information (age, gender, ethnicity, etc.), (ii) lab

results (total cholesterol, triglyceride, etc.), (iii) examination data (weight, height, etc.) ,

and (iv) questionnaire answers (smoking, alcohol, sleep habits, etc.) is used here. An expert

with experience in medical studies is asked to suggest costs for each feature based on the

overall financial burden, patient privacy, and patient inconvenience. Finally, the fasting

glucose values were used to define three classes: normal, pre-diabetes, and diabetes based

on standard threshold values. The final dataset consists of 92062 samples of 45 features.

In the current study, we use reinforcement learning as an optimization algorithm, while

processing data in a sequential manner. Throughout all experiments, we used fully-connected

neural networks with ReLU non-linearity and dropout applied to hidden layers. We apply

MC dropout sampling using 1000 evaluations of the predictor network for confidence mea-

surements and finding the reward values. Meanwhile, 100 evaluations are used for prediction

at test-time. We selected these value for our experiments as it showed stable prediction and

uncertainty estimates. Each dataset was randomly splitted to 15% for test, 15% for valida-

tion, and the rest for train. During the training and validation phase, we use the random

exploration mechanism. For comparison of the results with other work in the literature, as
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they are all offline methods, the random exploration is not used during the feature acquisi-

tion. However, intuitively we believe in datasets with non-stationary distributions, it may be

helpful to use random exploration as it helps to capture concept drift. Furthermore, we do

model training multiple time for each experiment and average the outcomes. It is also worth

noting that, as the proposed method is incremental, we continued feature acquisition until

all features were acquired and reported the average accuracy corresponding to each feature

acquisition budget.

Table 4.1 presents a summary of datasets and network architectures used throughout

the experiments. In this table, we report the number of hidden neurons at each network

layer of the P and Q networks. For the Q-Network architecture, the number of neurons in

each hidden layer is reported as the number of shared neurons from the P-Network plus the

number of neurons specific to the Q-Network.

Table 4.1: The summary of datasets and experimental settings.

Dataset Instances Features Classes P-Net Architecture Q-Net Architecture

MNIST [LCB98] 70000 784 10 [512, 512, 128, 64] [512 + 512, 512 + 256, 128 + 65, 64 + 16]

LTRC [CC11] 34815 519 5 [128, 32] [128 + 128, 32 + 8]

Diabetes (Sec. 4.3.1) 92062 45 3 [64, 32, 16] [64 + 64, 32 + 16, 16 + 10]

4.3.2 Performance of the Proposed Approach

Figure 4.2 presents the accuracy versus acquisition cost curve for the MNIST dataset. Here,

we compared results of the proposed method (OL) with a feature acquisition method based

on recurrent neural networks (RADIN) [CDA16a], a tree-based feature acquisition method

(GreedyMiser) [XWC12], and a recent work using reinforcement learning ideas (RL-Based)

[JPL17]. As it can be seen from this figure, our cost-sensitive feature acquisition method

achieves higher accuracies at a lower cost compared to other competitors. Regarding the

RL-Based method, [JPL17], to make a fair comparison, we used the similar network sizes

and learning algorithms as with the OL method. Also, it is worth mentioning that the
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RL-based curve is the result of training many models with different cost-accuracy trade-off

hyper-parameter values, while training the OL model gives us a complete curve. Accordingly,

evaluating the method of [JPL17] took more than 10 times compared to OL.

Figure 4.3 presents the accuracy versus acquisition cost curve for the LTRC dataset.

As LTRC is a ranking dataset, in order to have a fair comparison with other work in the

literature, we have used the normalized discounted cumulative gain (NDCG) [JK02] perfor-

mance measure. In short, NDCG is the ratio of the discounted relevance achieved using a

suggested ranking method to the discounted relevance achieved using the ideal ranking. In-

ferring from Figure 4.3, the proposed method is able to achieve higher NDCG values using a

much lower acquisition budget compared to tree-based approaches in the literature including

CSTC [XKW14], Cronus [CXW12], and Early Exit [CZC10].

Figure 4.4a shows a visualization of the OL feature acquisition on the diabetes dataset.

In this figure, the y-axis corresponds to 50 random test samples and the x-axis corresponds to

each feature. Here, warmer colors represent features that were acquired with more priority

and colder colors represent less acquisition priority. It can be observed from this figure

that OL acquires features based on the available context rather than having a static feature

importance and ordering. It can also be seen that OL gives more priority to less costly and

yet informative features such as demographics and examinations. Furthermore, Figure 4.4b

demonstrates the accuracy versus acquisition cost for the diabetes classification. As it can

be observed from this figure, OL achieves a superior accuracy with a lower acquisition cost

compared to other approaches. Here, we used the exhaustive feature query method as

suggested by [EFM16] using sensitivity as the utility function, the method suggested by

[JPL17] (RL-Based), as well a recent paper using gating functions and adaptively trained

random forests [NS17] (Adapt-GBRT).
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Figure 4.2: Evaluation of the proposed method on MNIST dataset. Accuracy vs. number

of acquired features for OL, RADIN [CDA16a], GreedyMiser [XWC12], and a recent work

based on reinforcement learning (RL-Based) [JPL17].
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Figure 4.3: Evaluation of the proposed method on LTRC dataset. NDCG vs. cost of acquired

features for OL, CSTC [XKW14], Cronus [CXW12], and Early Exit [CZC10] approaches.
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4.3.3 Analysis

4.3.3.1 Ablation Study

In this section we show the effectiveness of three ideas suggested in this work i.e, using

model uncertainty as a feature-value measure, representation sharing between the P and Q

networks, and using MC-dropout as a measure of prediction uncertainty. Additionally, we

study the influence of the available budget on the performance of the algorithm. In these

experiments, we used the diabetes dataset. A comparison between the suggested feature-

value function (OL) in this chapter with a traditional feature-value function (RL-Based) was

presented in Figure 4.2 and Figure 4.4b. We implemented the RL-Based method such that

it is using a similar architecture and learning algorithm as the OL, while the reward function

is simply the the negative of feature costs for acquiring each feature and a positive value for

making correct predictions. As it can be seen from the comparison of these approaches, the

reward function suggested in this chapter results in a more efficient feature acquisition.

In order to demonstrate the importance of MC-dropout, we measured the average of ac-

curacy at each certainty value. Statistically, confidence values indicate the average accuracy

of predictions [GPS17]. For instance, if we measure the certainty of prediction for a group

of samples to be 90%, we expect to correctly classify samples of that group 90% of the time.

Figure 4.5 shows the average prediction accuracy versus the certainty of samples reported

using the MC-dropout method (using 1000 samples) and directly using the softmax output

values. As it can be inferred from this figure, MC-dropout estimates are highly accurate,

while softmax estimates are mostly over-confident and inaccurate. Note that the accuracy

of certainty estimates are crucially important to us as any inaccuracy in these values results

in having inaccurate reward values. Figure 4.5b shows the accuracy versus cost curves that

the suggested architecture achieves using the accurate MC-dropout certainty estimates and

using the inaccurate softmax estimates. It can be seen from this figure that more accurate

MC-dropout estimates are essential.

Figure 4.6 demonstrates the speed of convergence using the suggested sharing between

the P and Q networks (W/ Sharing) as well as not using the sharing architecture (W/O
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Sharing). Here, we use the normalized area under the accuracy-cost curve (AUACC) as

measure of acquisition performance at each episode. Please note that we adjust the number

of hidden neurons such that the number of Q-Network parameters is the same for each

corresponding layer between the two cases. As it can be seen from this figure, the suggested

representation sharing between the P and Q networks increases the speed of convergence.

Figure 4.7 shows the performance of the OL method having various limited budgets

during the operation. Here, we report the accuracy-cost curves for 25%, 50%, 75%, and

100% of the budget required to acquire all features. As it can be inferred from this figure,

the suggested method is able to efficiently operate at different enforced budget constraints.

4.3.3.2 Convergence Analysis

Figure 4.8a and 4.8b demonstrate the validation accuracy and AUACC values measured

during the processing of the data stream at each episode for the MNIST and Diabetes

datasets, respectively. As it can be seen from this figure, as the algorithm observes more data

samples, it achieves higher validation accuracy/AUACC values, and it eventually converges

after a certain number of episodes. It should be noted that, in general, convergence in

reinforcement learning setups is dependent on the training algorithm and parameters used.

For instance, the random exploration strategy, the update condition, and the update strategy

for the target Q network would influence the overall time behavior of the algorithm. In this

chapter, we use conservative and reasonable strategies as reported in Section 4.2.2 that

results in stable results across a wide range of experiments.
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Figure 4.4: Evaluation of the proposed method on the diabetes dataset. (a) Visualization of

feature acquisition orders for 50 test samples (warmer colors represent more priority). (b)

Accuracy vs. cost of acquired features for this work (OL), an exhaustive sensitivity-based

method (Exhaustive) [EFM16], the method suggested by [JPL17] (RL-Based), and using

gating functions and adaptively trained random forests [NS17] (Adapt-GBRT).
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Figure 4.5: (a) The average prediction accuracy versus the certainty of samples reported

using the MC-dropout method (1000 samples) and directly using the softmax output values.

(b) The accuracy versus cost curves for using the MC-dropout method and directly using

the softmax output values.
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Figure 4.6: The speed of convergence using the suggested sharing between the P and Q

networks (W/ Sharing) compared with not using the sharing architecture (W/O Sharing).

0 20 40 60 80 100
Acquisition Cost

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

B=25 %
B=50 %
B=75 %
B=100 %

Figure 4.7: Accuracy versus cost curves achieved using different budget levels: 25 %, 50%,

75%, and 100% of the cost of acquiring all features.
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Figure 4.8: The validation set accuracy and AUACC values versus the number of episodes

for the (a) MNIST and (b) Diabetes datasets.
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CHAPTER 5

Generative Imputation and Stochastic Prediction1

5.1 Problem Definition

We make the general assumption of having access to an incomplete dataset D consisting of a

set of feature vector, mask vector, and target class pairs (xi,ki, yi). For each feature vector,

xi ∈ Rd, only a subset of the features is available. The mask vector ki ∈ {0, 1}d is used

to indicate available features and missing features by ones and zeros, respectively. Here, to

represent features as fixed-width vectors, arbitrary (or NaN) values are used to fill missing

values. Also, for convenience, we often use xobsi and xmissi to refer to the set of observed and

missing features for the feature vector xi. Note that the (xobsi ,xmissi ) notation does not use

vectors for representation and instead is using sets for a more abstract representation rather

than the fixed-length vector notation of (xi,ki).

We define our objective in two steps: (i) Imputing missing values via sampling from the

conditional distribution of missing features given observed features i.e., P (xmissi |xobsi ). (ii)

Estimating the distribution of target classes given the observed features and the distribution

of missing features i.e., P (y|xobsi ,xmissi ). For the first part, we are interested in sampling

from the conditional distribution rather than finding the mode of the distribution as the

most probable imputation. Similarly, for the second part, we are interested in obtaining a

distribution over the possible target assignments and the confidence of each class rather than

maximum likelihood class assignments.

1This chapter is based on ”M. Kachuee, K. Karkkainen, O. Goldstein, S. Darabi, M. Sar-
rafzadeh, Generative Imputation and Stochastic Prediction, IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2020.” c©2020 IEEE
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5.2 Generative Imputation

To generate samples from the distribution of missing features conditioned on the observed

features, we follow the idea first suggested by Yoon et al. [YJV18]. In this paradigm, a

generator network is responsible for generating imputations while a discriminator is trying

to distinguish imputed features from observed features (see Figure 5.1).

Figure 5.1: Block diagram of the proposed adversarial imputation method. h represents the

blending function of (5.1), and L is the adversarial loss function of (5.2).

Specifically, the generator function G(xi,ki, z) ∈ Rd generates an imputed feature vector,

based on observed features, the corresponding mask, and a Gaussian noise vector (z). Here,

xi is not revealing any information about missing values as they are represented by invalid

values in xi and are indicated by the mask vector ki. In order to achieve the final imputed

vector, x̂i, we blend (or, merge) the output of the generator with the input features to replace

generated values with the exact values of observed features:

x̂i,j =


xi,j if ki,j = 1

G(xi,ki, z)j if ki,j = 0

, (5.1)

where xi,j refers to j’th feature of sample i. Also, note that by sampling z multiple times,

we can obtain different imputation samples from the conditional distribution indicated by

x̂li where l is the sample number.

A discriminator network, D(x̂i), is trained to distinguish real and imputed features by

generating a predicted softmax mask output, k̂i. Here a binary cross-entropy loss per mask

element is used as the adversarial objective function:

max
G

min
D

L(G,D) = Ek∼D,k̂∼D(G(x,k,z)) [kT log(k̂) + (1− k)T log(1− k̂)]. (5.2)
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The intuition behind this adversarial loss function is that given a generator function

which captures the data distribution successfully, the discriminator would not be able to

distinguish the parts of the feature vector that were originally missing.

Compared to Yoon et al. [YJV18], the objective function of (5.2) does not have an MSE

loss term. Instead, we use recent advances in GAN stabilization and training to improve the

training process (see Section 4.2.2). While it is quite prevalent in the adversarial learning lit-

erature to use additional loss terms such as mean squared error (MSE) to enhance the quality

of generated samples, we decided to keep our solution as simple as possible. Additionally, in

our experiments, we provide supporting evidence that this simple loss function enables us to

sample from the conditional distribution and prevents biased inclinations toward distribution

modes.

5.3 Stochastic Prediction

To capture the distribution of target classes given incomplete data, we suggest the idea of

stochastic prediction. As indicated in the previous section, the generator can be used to

sample from the conditional distribution. Here, a predictor is trained based on the imputed

samples to predict class assignments and to calculate the confidence of these assignments

(see Figure 5.2). For instance, for a specific test sample at hand, if a certain missing feature

is a strong indicator of the target class, we would like to observe the impact of different

imputations for that feature on the final hypothesis.

Figure 5.2: Block diagram of the proposed stochastic prediction method. G represents a

trained generative imputer (Section 5.2), L is the prediction loss function, and Ψ is the

estimated classification certainty defined in (5.7).

51



Formally, we are interested in finding the certainty of class assignments given observed

features:

Ψ = P (y|xobsi ). (5.3)

Here, Ψ is a vector where each element is representing a certain class. Rewriting (5.3) as a

marginal we have:

Ψ =

∫
P (xmissi )P (y|xobsi ,xmissi ) dxmissi . (5.4)

Approximating the integration using a summation, given enough samples, Ψ can be estimated

by:

Ψ ≈ 1

N

∑
P (y|xobsi , x̂missi ), (5.5)

where x̂missi are samples taken from the conditional distribution of missing features given

observed ones. We use the suggested generative imputation method to generate samples

required for this approximation. Rewriting (5.1) using Hadamard product and as function

of the noise vector:

x̂i = ki � xi + (1− ki)�G(xi,ki, z) (5.6)

Assuming that a predictor, Fθ, is available which predicts class assignments for a complete

feature vector, Ψ can be estimated as:

Ψ = Ez[Fθ(x̂i)] ≈
1

N

∑N
l=1Fθ(x̂

l
i) . (5.7)

Algorithm 2 presents the suggested algorithm for training the predictor. It consists of

taking samples from the incomplete dataset, then imputing them using our generator net-

work, and using the imputed samples to update the predictor. Note that, on each epoch and

for each sample, the generator generates a new sample from the conditional distribution.

Intuitively, it means that the predictor observes and learns to operate under different impu-

tations for a given sample. This is different from approaches such as multiple imputation

where several predictors are trained on different imputed versions of a dataset.

Algorithm 3 presents the suggested algorithm for making predictions and estimating

target distributions given a trained predictor model. Here, a sample is imputed N times

and inference on this set results in an ensemble of predictions over different imputations.
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The output of this algorithm can be interpreted as a distribution over the confidence of class

assignments given a partially observed test sample. The following claims justify the validity

of Algorithm 2 and Algorithm 3.

Algorithm 2: Training the predictor.

Input: G (trained imputer), D (dataset)

Output: Fθ (trained predictor)

1 foreach Training Epoch do

2 foreach (xi, ki, yi) in D do

3 z ∼ N(0, I)

4 x̂i ← ki � xi + (1− ki)�G(xi,ki, z)

5 ypredi ← Fθ(x̂i)

6 loss← L(yi, y
pred
i )

7 Backpropagate loss

8 Update Fθ

9 end

10 end

Claim 1. (Generalization of the predictor). If we assume imputed x̂is are samples from

the underlying feature distribution, then the assigned training set labels can be modeled as

labels generated from a noisy labeling process.

Claim 1 permits the analysis of the generalization and convergence for the predictor

trained using Algorithm 2 based on current literature in training models with noisy labels

[NDR13, RLA14, CLC19]. From the analysis provided by Chen et al. [CLC19], test accuracy

in asymmetric label noise conditions is a quadratic function of the label noise:

P (yi = ŷi) = (1− ε)2 + ε2, (5.8)

where ŷi is underlying true label for the imputed feature vector (x̂i), and yi is the label

provided by the incomplete dataset. In (5.8), label noise ratio, ε, represents the probability
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Algorithm 3: Estimating target distributions.

Input: G (trained imputer), Fθ (trained predictor), (x, k) (test sample), N (ensemble

samples)

Output: Ψ (distribution over target classes)

1 Ψ← zeros ∈ R#classes

2 foreach Ensemble Sample 1 to N do

3 z ∼ N(0, I)

4 x̂← k � x + (1− k)�G(x,k, z)

5 ypred ← Fθ(x̂)

6 j ← argmax(ypred)

7 Ψj ← Ψj + 1
N

8 end

of the label transition from a certain target class to another:

ε = 1− P (ŷi = j|yi = j). (5.9)

In practice, ε is determined by the problem-specific underlying data distribution as well as

the distribution of missing values.

Justification for claim 1 is straightforward, assume that {ŷi1 . . . ŷiN} are underlying true

labels for each of {x̂i1 . . . x̂iN}. During training, for any imputed sample in {x̂i1 . . . x̂iN}, we

use the dataset provided label, yi, to calculate the loss and to update model parameters:

Lossi =
N∑
l=1

L(yi, Fθ(x̂i
l)). (5.10)

In the case that any of {ŷi1 . . . ŷiN} is different from yi, the loss term corresponding to that

term would be calculated using a wrong label. Here, if we consider the average impact on

gradients for batches of samples rather than individual cases, the overall impact on training

would be very similar to the case of training using noisy labels:

Loss =

|D|∑
i=1

N∑
l=1

L(yi, Fθ(x̂i
l)), (5.11)
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where |D| is the number of dataset samples. Further, in this case, we can find the average

label noise as:

ε =

∑|D|
i=1

∑N
l=1 1(yi 6= ŷi

l)

|D|.N
(5.12)

Claim 2. (Approximation of the target distribution). If we assume:

(i) imputed x̂is are valid samples from the underlying feature distribution: x̂i ∼ P (x|xobsi ),

(ii) a good predictor can be trained using the incomplete data (claim 1),

(iii) enough samples are used and the Monte Carlo estimator is unbiased: 1
N

∑N
l=1Fθ(x̂

l
i)→

Ez[Fθ(x̂i)] for N →∞,

then the target distribution, Ψ, can be estimated accurately.

This claim supports Algorithm 2 that is suggested to estimate the target distribution

given a partially observed feature vector.

The first assumption is consistent with the theoretical analysis of generative adversarial

networks that they can converge to the true underlying distribution [ARZ18, LBC17]. The

second assumption is supported by Claim 1. Regarding the last assumption, each sample

requires one forward computation of the generator and predictor networks which, based on

the scalability of current network architectures, usually permits thousands of samples to be

taken at a reasonable computational cost.

5.4 Implementation Details

As we conduct experiments on image and tabular datasets, we use different architectures for

each. For image datasets, we used a generator and discriminator architectures similar to the

ones suggested by Wang et al. [WLZ18]. However, we improved these architectures using

self-attention layers [ZGM18]. It should be noted that, while Zhang et al. [ZGM18] suggests

using a single self-attention layer in the middle of the network, we observed consistent im-

provements by inserting multiple self-attention layers before each residual block within the

network. Furthermore, as input to the generator, we concatenate input image, mask, and a

random z frame along the channels dimension and use it as input. For tabular datasets, we
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use a simple 4 layer network consisting of fully-connected and batch-norm layers. Also, the

input to the generator is the concatenation of a feature vector, mask vector, and a z vector

of size 1
8

of the input. For all experiments, we use an ensemble size (N) equal to 128.

We used Adam [KB14] for model optimization. Two time-scale update rule (TTUR)

[HRU17] was used to balance training the generator and discriminator networks. We ex-

plored best TTUR learning-rate settings from the set of {0.001, 0.0005, 0.0001, 0.00005}.

Here, Adam parameters β1 and β2 are set to 0.5 and 0.999, respectively. Also, spectral

normalization was used to stabilize both the generator and discriminator network in our ex-

periments with image data [MKK18]. For the predictor network, we used the default Adam

settings as suggested by Kingma et al. [KB14]. In all training procedures, we decay learning

rate by a factor of 5 after reaching a plateau. For all experiments, we use a batch size of

64. Based on our experiments, we found that pretraining the discriminator while fixing the

generator network for the first 5% of the training epochs helps the stability of training.

5.5 Experiments

5.5.1 Datasets

To evaluate the proposed method we use CIFAR-10 [KH09] and MNIST benchmark [LCB98]

as image classification datasets as well as five non-image datasets: UCI Landsat [DG17]2,

MIT-BIH arrhythmia [MM01], Diabetes, Cholesterol, and Hypertension classification [KKG19]

3 . CIFAR-10 dataset consists of 60,000 32x32 images from 10 different classes. For this task,

we use train and test sets as provided by the dataset. As a preprocessing step, we normalize

pixel values to the range of [0,1] and subtract the mean image. The only data augmentation

we use for this task is to randomly flip training images for each batch.

UCI Landsat consists of 6435 samples of 36 features from 6 different categories. We

follow the same train and test split as provided by the dataset. MIT-BIH dataset consists

2https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)

3https://github.com/mkachuee/Opportunistic
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of annotated heartbeat signals from which we used the preprocessed version available on-

line4 consisting of 92,062 samples of 5 different arrhythmia classes. Diabetes dataset is a

real-world health dataset of 92,062 samples and 45 features from different categories such

as questionnaire, demographics, medical examination, and lab results. The objective is to

classify between three different diabetes conditions i.e., normal, pre-diabetes, and diabetes.

Similarly, Cholesterol and Hypertension datasets have about 120 features and 50,000 sam-

ples each [KKG19]. As MIT-BIH, Diabetes, Cholesterol, and Hypertension datasets do not

provide explicit train and test sets, we randomly select 80% of samples as a training set and

the rest as a test set. To preprocess our tabular datasets, statistical and unity based normal-

ization are used to balance the variance of different features and center them around zero.

Also, while different encoding and representation methods are suggested in the literature to

handle categorical features [JGP16, NOG18], here we take the simple approach of encoding

categorical variables using one-hot representation and smoothing them by adding Gaussian

noise with zero mean and variance equal to 5% of feature variances. In our experiments,

we observed a reasonable performance using the suggested simple smoothing; however, more

advanced encoding methods are also applicable in this setup and can be applied to enhance

the performances even further.

Table 5.1 shows the exact architectures used in this chapter. To show each layer or

block we used the following notation. CxSyPz-t represents a 2-d convolution layer of kernel

size x, stride y, padding z, and number of output channels t followed by ReLU activation.

Attn represents a self-attention layer similar to Zhang et al. [ZGM18]. R-x represents a

residual block consisting of two 2-d convolutions with kernel size 3 (padding size 1), batch

normalization, and ReLU activation. CTxSyPz-t is the convolution transpose corresponding

to CxSyPz-t. FC-x is representing a linear fully-connected layer of x output neurons with

biases. We use spectral normalization as suggested by [MKK18] for all convolutional layers

in both generator and discriminator networks.

4https://www.kaggle.com/shayanfazeli/heartbeat
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Table 5.1: Network architectures used in our experiments.

Dataset Generator/Discriminator Architecture Predictor Architecture

C7S1P3-64, C3S2P1-128, Attn, R-128,

CIFAR-10 Attn, R-128, Attn, R-128, Attn, ResNet-18 [HZR16]a

R-128, CT3S2P1-128, CT7S1P3-3, Tanh/Sigmoid

Landsat
FC-64, Sigmoid, BNorm, FC-64, Sigmoid, BNorm, FC-64, ReLU, BNorm, FC-64,

FC-64, Sigmoid, BNorm, FC-36, Tanh/Sigmoid ReLU, BNorm, FC-6, Softmax

MIT-BIH
FC-1860, ReLU, BNorm, FC-1860, ReLU, BNorm, FC-1860, ReLU, BNorm, FC-1860,

FC-1860, ReLU, BNorm, FC-186, Tanh/Sigmoid ReLU, BNorm, FC-5, Softmax

Diabetes
FC-45, ReLU, BNorm, FC-45, ReLU, BNorm, FC-22, ReLU, BNorm, FC-22,

FC-45, ReLU, BNorm, FC-45, Tanh/Sigmoid ReLU, BNorm, FC-3, Softmax

Cholesterol
FC-242, ReLU, BNorm, FC-242, ReLU, BNorm, FC-242, ReLU, BNorm, FC-242,

FC-242, ReLU, BNorm, FC-121, Tanh/Sigmoid ReLU, BNorm, FC-2, Softmax

Hypertension
FC-240, ReLU, BNorm, FC-240, ReLU, BNorm, FC-240, ReLU, BNorm, FC-240,

FC-240, ReLU, BNorm, FC-120, Tanh/Sigmoid ReLU, BNorm, FC-2, Softmax

MNIST
FC-1568, ReLU, BNorm, FC-1568, ReLU, BNorm, FC-1568, ReLU, BNorm, FC-1568,

FC-1568, ReLU, BNorm, FC-784, Tanh/Sigmoid ReLU, BNorm, FC-10, Softmax

ahttps://github.com/kuangliu/pytorch-cifar

5.5.2 Missingness Mechanisms

In our experiments, we consider MCAR uniform and MCAR rectangular missingness struc-

tures. In MCAR uniform, each feature of each sample is missing based on a Bernoulli

distribution with a certain missingness probability (i.e., missing rate) independent of other

features. In addition to the case of uniform missingness, for image tasks, we use rectangular

missingness/observation structure where rectangular regions of dataset images are miss-

ing/observed. To control the rate of missingness and decide on the regions that are missing

for each case, we use a latent beta distribution that samples rectangular region’s width and

height such that the average missing rate is maintained. For missing rates less than 50%

we make the assumption of having a random rectangular region to be missing, whereas for

missing rates more than 50% we assume that only a random rectangular region is observed

and the rest of the image is missing.
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We would like to note that while the suggested solution in this chapter is readily com-

patible with MAR structures, in our experiments, to simplify the presentation of results and

to have a fair comparison with other work that does not support the MAR assumption,

we limited the scope of our experiments to MCAR. Furthermore, to simulate incomplete

datasets and to make sure the same features are missing without explicitly storing masks,

we use hashed feature vectors to seed random number generators used to sample missing

features.

Algorithm 4 presents the procedure used for generating missing values with uniform

structure. This algorithm is sampling independent Bernoulli distributions with probabilities

equal to the missing rate. Algorithm 5 shows the outline for the rectangular missing structure

used in image experiments. It consists of selecting a random point as the center of the

rectangle and then deciding on parameters to be used for the beta distribution based on the

missing rate. Finally, the width and height of the rectangular region are sampled from the

latent beta distribution. In other words, we generate rectangular regions centered at random

locations within the image which have width and height values determined by samples from

a latent beta distribution. Here, distribution parameters, α and β, are used to control

the average missing rate. The outcome would be rectangular regions of different shape at

different locations within the frame with the expected portion of missing area equal to the

missing rate.

Algorithm 4: MCAR uniform generation.

Input: x (complete feature), r (missing rate)

Output: xm (incomplete feature)

1 seedx ← hash(x)

2 k← 1−Bernoulli(seedx, shape(x), prob = r)

3 xm ← k � x + (1− k)�NaN

In order to decide on the beta distribution parameters i.e. α and β we use numerical

simulations. Specifically, we fix one of the parameters to 1 and change the other parameter in

the range of [1,10], while measuring the average missing rate caused by each case. Figure 5.3
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Algorithm 5: MCAR rect. generation.

Input: x (complete feature), r (missing rate)

Output: xm (incomplete feature)

1 seedx ← hash(x)

2 nx, ny ← shape(x)

3 (px, py) ∼ (uniform(0, nx), uniform(0, ny))

4 α, β ← beta params(r) // beta params gives α, β for each missing rate based

on numerical simulations

5 (w, h) ∼ (Beta(α, β)× nx), Beta(α, β)× ny))

6 k← rect mask(px, py, w, h)

7 xm ← k � x + (1− k)�NaN

shows the missing rates caused by different beta distribution parameters. The first half of

Figure 5.3 (missing rates less than about 0.18) corresponds to setting β to 1 and changing

α values; and the other half fixing α to 1 and changing β values. To generate missing rates

more than 50% we invert our masks and limit the observation to the rectangular region while

the rest of the image is missing. Note that missing rates indicate the ratio of features that

are missing on the average case. As we are using a latent model for sampling width and

height for the rectangles, the actual missing ratios for each specific sample differs between

samples. See Table 5.2 for visual examples of different missing rates and missing structures.

5.5.3 Evaluation Measures

Frchet inception distance (FID) [HRU17] score is used to measure the quality of missing data

imputation in experiments with images5. We also considered using root means squared error

(RMSE); however, we decided to only include this result in the appendices as we observed an

inconsistent behavior using RMSE in our comparisons as RMSE favors methods that show

less variance rather than realistic and sharp samples from the distribution. Also, for each

5https://github.com/mseitzer/pytorch-fid is adapted to measure the FID scores.
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Figure 5.3: Simulation results for measuring average missing rate given different beta distri-

bution parameters.

dataset and each missingness scenario, we report top-1 classification accuracy based on the

majority vote estimated using Algorithm 3. Another measure that we use is the comparison

between the estimated target certainties and average accuracies achieved for each confidence

assignment. We run each experiment multiple times: 4 times for CIFAR-10 and 8 times for

tabular datasets. We report the mean and standard deviation of results for each case.

We compare our results with MisGAN [LJM19] and GAIN [YJV18] as the state of the art

imputation algorithms based on GANs as well as basic denoising autoencoder (DAE) [VLB08]

and multiple imputation by chained equations (MICE) [BG10] as baselines. For experiments

using MisGAN, we used the same architectures and hyper-parameters as suggested by the

MisGAN authors6. The only modification was to adapt the last generator layer to generate

images with resolutions as we use. Regarding GAIN, we used the same network architecture

as our implementation of GI and hyper-parameters as used by the GAIN authors7. In the

DAE implementation, due to the incomplete data assumption, only observed features appear

in the loss function, ignoring reconstruction terms corresponding to missing features. Due

6https://github.com/steveli/misgan

7https://github.com/jsyoon0823/GAIN
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Table 5.2: Examples of uniform and rectangular missing structures at different missing rates.

Original 20% 40% 60% 80%

Uniform

Rect.

to scalability issues, we were only able to use MICE for the smaller non-image datasets.

For these methods, to train and evaluate classifiers, we use predictors trained on imputed

datasets rather than the stochastic predictor suggested in Algorithm 2.

5.5.4 Results

Figure 5.4 presents the comparison of FID scores on the CIFAR-10 dataset at different

missing rates for uniform and rectangular missingness. As it can be inferred from these

plots, GI outperforms other alternatives in all cases. Also, it can be seen that GAIN is

able to provide more reasonable results for uniform missing data structure compared to

MisGAN which is mainly effective in the rectangular missing data structure. One possible

explanation for this behavior might be the fact that GAIN has an MSE loss term acting

similar to an autoencoder loss smoothing noisy missing pixels. On the other hand, MisGAN

tries to explicitly model missingness structure and is more successful in capturing a more

structured missingness such as the case of a rectangular structure.

Table 5.3 provides a comparison between the top-1 classification accuracy achieved using

each method at different missing rates and structures. From this table, GI outperforms other

work by achieving the best results in 5 out of 6 cases.

Table 5.4 presents a comparison of classification accuracies for Landsat, MIT-BIH, Di-
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Figure 5.4: Comparison of FID scores on CIFAR-10 dataset for (a) uniform and (b) rectan-

gular missingness. Lower FID score is better. In many cases, variance values are very small

and only observable by magnifying the figures.
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Table 5.3: Top-1 CIFAR-10 classification accuracy for different missing rates and structures.

Accuracy at Missing Rate (%)

MCAR Uniform MCAR Rect.

Method 20% 40% 60% 20% 40% 60%

GI 89.5 (±0.45) 87.1 (±0.54) 80.3 (±0.26) 84.0 (±0.03) 76.9 (±0.03) 66.1 (±0.16)

MisGAN 86.5 (±0.31) 83.7 (±0.40) 78.7 (±0.26) 82.9 (±0.44) 75.6 (±0.20) 65.0 (±0.31)

GAIN 88.7 (±0.45) 86.0 (±0.86) 81.8 (±0.03) 81.7 (±0.03) 73.6 (±0.35) 58.4 (±1.66)

DAE 88.0 (±0.22) 84.0 (±0.50) 79.8 (±0.71) 83.3 (±0.64) 75.5 (±0.44) 63.8 (±0.24)

Mean 85.7 (±0.02) 83.4 (±0.38) 79.2 (±0.16) 82.7 (±0.15) 75.3 (±0.16) 64.0 (±0.32)

abetes, Cholesterol, Hypertension, and MNIST datasets at different missing rates. In the

Landsat, Cholesterol, Hypertension, and MNIST benchmarks, GI outperforms other work

in all cases. Regarding the MIT-BIH experiemts, GI outperforms other work for missing

rates more than 30% while achieving similar accuracies to GAIN for lower missing rates. In

the diabetes classification task, GI appears to be most effective imputing missing rates more

than 20%.

Figure 5.5 shows a comparison of accuracy versus certainty plots for GI, MisGAN, and

GAIN on Landsat dataset at different missing rates. To generate these figures we trained

each imputation method and then used Algorithm 2 to train predictors on imputed samples.

Finally, Algorithm 3 used to measure the average accuracy at different prediction confidence

levels based on a sample of 128 imputations for each test example. As it can be seen from the

plots, GI provides results closest to the ideal case of having average confidence values equal

to average accuracies. As suggested in (5.7) and supported by the experimental results, the

proposed method is better calibrated compared to the traditional approach of imputing each

sample as a preprocessing step prior to the prediction, ignoring the imputation uncertainties.
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Figure 5.5: Accuracy versus certainty plots for (a) GI, (b) MisGAN, and (c) GAIN on

Landsat dataset at the missing rate of 30%, 40%, and 50%.

5.5.5 Visualization using Synthesized Data

In order to provide further insight into the operation of GI and how imputations can po-

tentially influence the outcomes of predictions, we conduct experiments on a synthesized

dataset. The original underlying data distribution is generated by sampling 5000 samples

from 4 Gaussians of standard deviation 0.1 centered on the vertices of a unit square. We

assign two different classes to each cluster such that diagonal vertices are of the same class
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(see Figure 5.6a, classes are represented with colors). From this underlying distribution, we

make an incomplete dataset with 50% of values missing.
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Figure 5.6: Evaluation using synthesized data: (a) samples from the underlying distribution,

(b) samples from the conditional underlying distribution, (c-f) samples from the conditional

distribution generate by GI, MisGAN, GAIN, and DAE.

The incomplete synthesized dataset is used to train GI and other imputation methods.

We take a random test sample in which the second feature has a value of about 0.1 and

the other feature is missing. Ideally, in the imputation phase, we would like to sample from

the condition distribution i.e. P (x1|x2 = 0.1) (see Figure 5.6b). Here, in the prediction

phase, an ideal method would decide on not making a confident classification and report

the uncertainty. Note that solely observing the value of 0.1 for the second feature does not

provide any useful evidence for the prediction. Figure 5.6c-f provide samples and classifica-

tion results for GI, MisGAN, GAIN, and DAE. As it can be inferred from these figures, GI

generates samples relatively similar to samples from the conditional distribution, and it also

reflects this uncertainty over the prediction. On the other hand MisGAN, probably due to
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its complexity of using three different generators and discriminator pairs, is suffering from

mode collapse to a higher degree and is unable to generate samples from the other class,

resulting in over-confident assignments. Note that mode collapse is a well-known shortcom-

ing of GANs, and although we observed a better behavior in our models, the results do not

perfectly match the ground-truth distribution. GAIN, perhaps due to the MSE loss terms,

is inclined towards the mean of the conditional distribution at the origin. DAE, as expected,

due to its MSE loss term, only captures the expected value of the distribution mean hence

reducing the MSE error and generates over-smoothed imputations.

5.6 Ablation Study

5.6.1 Impact of the Self-Attention Layers

Figure 5.7 presents a comparison between using (GI W/ Atten.) and not using (GI W/O

Atten.) self-attention layers before each residual block in the proposed architecture. We

report FID scores on CIFAR-10 with rectangular missingness. As it can be inferred from

this comparison, using self-attention achieves a consistent improvement over the baseline. We

also examined the case of uniform missingness; however, we did not observe any significant

improvement for this case. One possible explanation could be the fact that imputing missing

data with a uniform structure can be done by processing local regions and does not require

attending to different distant regions across the image.

5.6.2 Impact of Ensemble Size

Figure 5.8 shows a comparison of classification accuracies for the Landsat dataset achieved

using different ensemble sizes (N). As it can be seen from this figure, higher values of N

result in improved accuracies, especially for higher missing rates. Also, it can be observed

that for N values more than 64 the difference is negligible.

To study the benefits of the suggested stochastic predictor, we conducted experiments

comparing GI with its non-stochastic variation (N=1). Here, the CIFAR-10 dataset with
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Figure 5.7: Comparison of FID scores achieved with (GI W/ Atten.) and without (GI W/O

Atten.) self-attention layers on CIFAR-10 dataset and rectangular missingness. Lower FID

score is better.

the rectangular missing structure and missing rates from 20% to as high as 90% is used.

From Table 5.5 it can be inferred that as the rate of missingness increases, the benefits

of the suggested predictor algorithm increase significantly. We hypothesize that at higher

rates of missingness, the conditional distribution of missing features becomes multimodal. In

such a scenario, the suggested method captures the uncertainties over the target distribution

resulting in the predictor to make more reliable class assignments.

5.6.3 Impact of Training Noise

Addition of noise to input vectors often serves as an input augmentation and results in

improved generalization accuracies. In order to verify that the improved GI performance

is not merely due to the introduction of noise in the suggested architecture, we conducted

an experiment by adding different amounts of Gaussian noise during the training process

for GAIN and GI. Specifically, we compared how the CIFAR-10 test accuracies change at
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Figure 5.8: Comparison of classification accuracies achieved with different ensemble size (N).

different degrees of training noise for uniform and rectangular missingess structures at the

average missing rate of 40%.

According to Table 5.6, adding small amounts of Gaussian noise (e.g., std=0.0125) im-

proves the generalization under uniform missingness for both GI and GAIN. Even in this

case, GI is still outperforming GAIN in terms of final classification performance. It is also

interesting to point out that for the case of rectangular missingness adding Gaussian noise

results in a consistent reduction in the classification accuracy for both methods.

5.6.4 Impact of the MSE Loss Term

In our earlier discussions, we stated that the MSE loss term used in GAIN would bias the

distribution of generated samples toward the mean of the distribution. Here, a synthesized

dataset is used to illustrate the impact of MSE loss term on the distribution of generated

samples. A hyperparameter, λ, controls the weight of the MSE term in the final objective

function. As it can be observed from Figure 5.9, the higher the λ parameter, the lower the

variance of the generated samples (i.e., more bias toward the mean of the distribution).

69



0.0 0.2 0.4 0.6 0.8 1.0
X

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
eq

.

Original ( =0.13)

(a)

0.00 0.25 0.50 0.75 1.00
X

0.0

0.2

0.4

Fr
eq

.

= 10 1 ( =0.08)

0.00 0.25 0.50 0.75 1.00
X

0.0

0.1

0.2

Fr
eq

.
= 10 2 ( =0.09)

0.00 0.25 0.50 0.75 1.00
X

0.0

0.1

Fr
eq

.

0 ( =0.17)

0.00 0.25 0.50 0.75 1.00
X

0.0

0.2

0.4

Fr
eq

.

= 10+1 ( =0.03)

(b)
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significance of the MSE term (controlled by λ).
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5.6.5 Impact of the Discriminator Hint Vector

Yoon et al. [YJV18] suggested the idea of guiding the discriminator network using a hint

mechanism. A hint vector reveals a subset of features that are missing to the discriminator.

In Figure 5.10 and 5.11 we provide a comparison of learning curves for GI implemented

using different hint rates. From Figure 5.10, using the hint mechanism does not result in any

noticeable improvement in the final imputation quality justifying the added complexity. For

the case of the rectangular missing structure in Figure 5.11; however, using the hint vector

causes instabilities in the training process. One possible explanation is: providing even a

small portion of the mask as a hint, due to the deterministic nature of the rectangular shape

it is equivalent to providing region boundaries to the discriminator making it obvious for the

discriminator. In GAN training we generally want to have equal competition between the

generator and discriminator.

5.6.6 Visual Results

Figure 5.12 provides examples of masked CIFAR-10 images that are imputed using the

proposed method. The variance among imputed samples is representing different possibilities

for completing the missing parts. For each input sample, we also show the class assignment

certainties estimated from an ensemble of 128 imputations, of which three randomly selected

samples are shown here. In certain examples, the missing part is not causing a noticeable

uncertainty over target assignments, while in others it leads to some confusion over target

assignments based on the different viable imputations.
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Figure 5.10: Learning curves for CIFAR-10 with uniform missing structure at different dis-

criminator hint rates.
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Table 5.4: Comparison of classification accuracies at different missing rates.

Accuracy at Missing Rate (%)a

Dataset Method 10% 20% 30% 40%

Landsat [DG17]

GI 89.9 (±0.36) 89.6 (±0.36) 89.0 (±0.03) 88.0 (±0.22)

MisGAN 87.2 (±0.01) 85.7 (±0.19) 84.0 (±0.61) 82.9 (±0.75)

GAIN 89.7 (±0.42) 89.4 (±0.56) 88.4 (±0.71) 87.7 (±0.10)

DAE 89.4 (±0.10) 88.6 (±0.54) 87.5 (±0.14) 86.6 (±0.21)

MICE 89.5 (±0.16) 89.3 (±0.10) 88.1 (±0.49) 87.5 (±0.03)

MIT-BIH [MM01]

GI 98.5 (±0.02) 98.4 (±0.03) 98.2 (±0.07) 97.7 (±0.03)

MisGAN 97.8 (±0.13) 97.4 (±0.07) 96.7 (±0.07) 96.2 (±0.09)

GAIN 98.5 (±0.02) 98.4 (±0.06) 98.0 (±0.09) 97.5 (±0.18)

DAE 98.4 (±0.02) 98.2 (±0.11) 97.9 (±0.09) 97.4 (±0.02)

MICE 98.4 (±0.01) 98.3 (±0.01) 98.1 (±0.01) 97.5 (±0.12)

Diabetes [KKG19]

GI 89.6 (±0.13) 89.0 (±0.03) 88.2 (±0.62) 86.8 (±0.38)

MisGAN 89.7 (±0.01) 88.9 (±0.30) 87.6 (±0.02) 86.4 (±0.68)

GAIN 89.2 (±0.09) 88.3 (±0.02) 86.9 (±0.09) 83.8 (±1.44)

DAE 89.3 (±0.05) 88.2 (±0.19) 86.9 (±0.09) 84.8 (±0.03)

MICE 89.8 (±0.08) 88.8 (±0.01) 88.0 (±0.08) 86.1 (±0.02)

Cholesterol [KKG19]

GI 73.2 (±0.12) 72.2 (±0.14) 71.6 (±0.30) 70.4 (±0.20)

MisGAN 72.8 (±0.31) 71.6 (±0.13) 70.7 (±0.15) 69.9 (±0.13)

GAIN 72.8 (±0.22) 71.7 (±0.27) 71.2 (±0.05) 70.1 (±0.08)

DAE 73.0 (±0.19) 71.6 (±0.24) 70.8 (±0.33) 70.2 (±0.04)

MICE 71.2 (±0.10) 69.9 (±0.13) 68.7 (±0.02) 67.3 (±0.21)

Hypertension [KKG19]

GI 77.8 (±0.15) 77.3 (±0.32) 77.2 (±0.30) 76.2 (±0.07)

MisGAN 77.0 (±0.21) 76.9 (±0.16) 76.1 (±0.04) 75.4 (±0.49)

GAIN 77.5 (±0.10) 76.8 (±0.25) 76.6 (±0.37) 75.8 (±0.14)

DAE 77.5 (±0.30) 76.8 (±0.11) 76.4 (±0.58) 76.1 (±0.05)

MICE 76.7 (±0.19) 75.9 (±0.08) 74.7 (±0.20) 73.0 (±0.16)

MNIST [LCB98]

GI 99.0 (±0.01) 98.9 (±0.07) 98.7 (±0.01) 98.6 (±0.01)

MisGAN 98.6 (±0.02) 98.3 (±0.06) 98.1 (±0.02) 97.5 (±0.06)

GAIN 98.8 (±0.02) 98.7 (±0.03) 98.6 (±0.02) 98.5 (±0.03)

DAE 98.8 (±0.08) 98.7 (±0.03) 98.5 (±0.08) 98.0 (±0.06)

MICE 98.7 (±0.02) 98.6 (±0.06) 98.4 (±0.07) 98.3 (±0.06)

aBaseline accuracies for complete datasets (zero missing rate) are Landsat:90.9%, MIT-BIH:98.6%, Dia-

betes:90.7%, Cholesterol:73.6%, Hypertension:77.9%, MNIST:99.2%.
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Table 5.5: Comparison of CIFAR-10 accuracies for the stochastic (N=128) and the deter-

ministic (N=1) predictor under rectangular missingness.

Accuracy at Missing Rate (%)

Method 20% 40% 60% 70% 80% 90%

GI (N=128) 84.0 76.9 66.1 59.1 46.0 32.1

GI (N=1) 83.6 75.7 65.1 56.7 42.8 29.4

% difference (normalized) 0.5 1.6 1.5 4.1 6.9 8.4

Table 5.6: Top-1 CIFAR-10 classification accuracy at 40% missing rate using added training

noise.

Accuracy (%)

MCAR Uniform (40%) MCAR Rect. (40%)

Noise STD GI GAIN GI GAIN

0.0 87.1 86.0 76.9 73.6

0.0125 87.3 86.3 76.8 73.3

0.025 86.5 86.6 76.7 73.2

0.05 85.6 84.7 73.7 72.4

0.1 82.0 80.6 68.7 67.0
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Figure 5.12: Visual samples of imputed CIFAR-10 images and estimated classification cer-

tainties from each incomplete input. The estimated certainty for each target class assignment

is represented by a bar for each class, where the height shows the relative confidence.
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CHAPTER 6

Conclusion

In this thesis, we investigated algorithms and methods for cost-sensitive and context-aware

learning. Specifically, we suggested a novel approach based on sensitivity analysis in au-

toencoder architectures. Alternatively, a deep reinforcement learning solution is proposed

to enable online cost-sensitive learning from data streams. We evaluated the suggested

methods on multiple real-world and synthesized datasets. According to the experimental

results, the proposed methods are capable of efficiently acquiring features while account-

ing for the feature costs and context. Additionally, as acquiring only a subset of features

is synonymous with having missing values, proper handling of missing values is a critical

component in any real-world realization of cost-sensitives learning systems. We hypothe-

size that having missing values entails an uncertainty over the value of each missing feature

which should be appropriately modeled and considered in the inference. As a part of this

thesis, we address this problem by suggesting a method to impute missing values and to

estimate prediction uncertainties. We conduct extensive experiments and ablation studies

to demonstrate the importance of proper handling of missing values and the effectiveness of

the suggested method.
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APPENDIX A

Nutrition and Health Data for Cost-Sensitive Learning

1

A.1 Methodology

A.1.1 Data Source

We use the National Health and Nutrition Examination Survey (NHANES) [nha18] between

1999 to 2016 as our data source. NHANES is an ongoing survey which is designed to assess

the well-being of adults and children in the United States. Each year, health and nutrition

data is collected from few thousand individuals and consisting of demographics, question-

naire, examination, and laboratory data. Not all data is collected from each individual (e.g.,

certain blood tests are not used for young children) and there is a slight variation between

the information being collected in each year (e.g., the prevalence of disease change over time

causing changes on the data collection focus). For more information about NHANES please

refer to the documentation[nha18],2.

A.1.2 Data Preparation

We developed a general data processing pipeline which can be used for different tasks and

settings. The data preparation starts with loading raw data files associated with each variable

in the dataset containing values of that variable for each subject. Here, a variable can be

1This chapter is based on: ”M. Kachuee, K. Karkkainen, O. Goldstein, D. Zaman-
zadeh, M. Sarrafzadeh, Cost-Sensitive Diagnosis and Learning Leveraging Public Health Data,
arXiv:1902.07102, 2019.”

2https://www.cdc.gov/nchs/nhanes
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answer to a demographics question, a certain factor in a blood test, result of a certain

examination, etc. Please note that we merge columns and rows based on variable and

subject identifiers so that, logically, all variables appear as columns and individuals appears

as a row. For a certain task, any available variable could be defined as a feature or a target,

depending on the task.

The dataset consists of 9385 unique variables of different types including categorical,

real-valued, multiple choice, etc. Accordingly, we use different preprocessing functions such

as statistical normalization for real-valued variables and one-hot encoding for categorical

variables to prepare each variable for further analysis. Also, it should be noted that, for each

individual, only a subset of these variables is available and the rest are missing.

To define each certain task (e.g. diabetes classification), a target should be defined as

a function of available variables (e.g., blood glucose level categories). Two methods are

suggested to determine variables to be used as input features and appropriate preprocessing

functions : (i) explicitly defining a list of variables and their corresponding preprocessing

functions (ii) automatically selecting relevant features by searching over the space of variables

and automatically deciding on appropriate preprocessing functions. Regarding the second

method, one can limit the number of features being eventually used by setting a threshold

on the mutual information between the target and each feature as well as a threshold on

the percentage of available (not missing) features for each selected variable. Applying this

thresholds limits the feature set to features that are informative for the task and are available

for a certain percentage of dataset samples.

A.1.3 Cost Assignment

In order to assign costs corresponding to each feature, we conducted a survey to collect the

level of overall inconvenience that asking for each feature would cause to subjects. Specif-

ically, we collected survey data from 108 individuals using the Amazon Mechanical Turk

framework. Since the data is collected from individuals in the United States, we limited

our survey to the same population. Table A.1 presents the questionnaire used in this study.
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Figure A.1: Visualization of the proposed preprocessing and cost assignment pipeline.

Table A.1: The questionnaire used in this study.

No. Question Answer

1 Convenience of answering general demographics related questions 1. . . 10

(e.g., age, gender, race, etc.)

2 Convenience of answering general behavioral/life-style related questions 1. . . 10

(e.g., smoking habits, sleeping habits, alcohol consumption, drug usage etc.)

3 Convenience of getting typical examinations such as weight, height, or blood pressure measurement 1. . . 10

4 Convenience of taking a blood or urine test at a lab 1. . . 10

Before starting the questionnaire, we asked the turkers to pay attention to the following

instructions:

• Please rate each question in terms of the total inconvenience they will cause you (in-
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Figure A.2: Distribution of answers for the level of convenience collecting information about:

(a) demographics, (b) behavioral/life-style, (c) medical examinations, and (d) lab tests.

cluding time burden, financial cost, discomfort, etc.).

• Assume that each item will provide you with useful health information; however, there

is no urgency to do any of these.

• The scale is 1 to 10, 10 being the most convenient. Rate each item based on the relative

level of inconvenience.

• After completing the sheet, please review and adjust, if necessary.

The median of survey results for each question is used as a level of convenience for

each question. In order to convert these values to cost values (i.e., the higher the more
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expensive), we subtract each convenience value from 11 and consider the resulting value

as the cost of acquiring features of that category. Accordingly, the final cost for feature

categories corresponding to questions 1 to 4 of Table A.1 is determined to be 2, 4, 5 and

9, respectively. See Figure A.1 for an overview of the data preparation methodology and

Figure A.2 for the distribution of answers.

A.1.4 Problem Definition

In this chapter, we consider the general scenario of supervised classification using a set of

features xi ∈ Rd and ground truth target labels ỹi. However, initially, the values of features

are not available and there is a cost for acquiring each feature (cj; 1 ≤ j ≤ d). Consequently,

for sample i, at each time step t, we only have access to a partial realization of the feature

vector denoted by xti consisting of features that are acquired until t. There might be a

maximum budget (B) or a user-defined termination condition (e.g., prediction confidence)

which limits the features being acquired eventually.

More formally, we define a mask vector kti ∈ {0, 1}d where each element of k indicates if

the corresponding feature is available in xti. Using this notation, the total feature acquisition

cost at each time step can be represented as

Ct
total,i = (kti − k0

i )
Tc . (A.1)

Intuitively, it measures the total budget spent from the initial state to the current state at

time t. Furthermore, we define the feature query operator (q) as

xt+1
i = q(xti, j), where kt+1

i,j − kti,j = 1 . (A.2)

Note that acquiring a feature at time t results in the transition to a new state, t + 1,

having access to the value of that feature. In this setting, the objective of a cost-sensitive

feature acquisition algorithm is to balance the accuracy versus cost trade-off via efficiently

acquiring as many features as necessary at test-time.
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A.1.5 Sensitivity-Based Approach

Sensitivity-based approaches use trained classifier models and select features that have the

most influence on the model predictions. This influence can be used as a utility function

which measures the importance of having access to each feature value.

Early et al. [EFM16] suggested an exhaustive measurement of expected sensitivity for

each feature:

E[U(xt, j)] =

∫
p(xj = r|xt)U(xt, xj = r)dr, (A.3)

where U(xt, j) is the expected utility of acquiring feature j given the feature vector at t, and

with the abuse of notation, U(xt, xj = r) is the utility of that feature assuming its value after

acquisition would be equal to r. It should be noted that as this method requires modeling

joint probability distributions as well as integration over feature values, it is not scalable to

datasets consisting of many features.

In [KDM18], we suggested an approximation of (A.3) using a binary representation layer

in denoising autoencoder architectures:

jtsel = argmax
j∈{1...d}|ktj=0

∑
xj∈RS |

∂h(xt)
∂xj
| p(xj|xt;ht)

ctj
, (A.4)

where RS = {2−l, . . . , 2−2, 2−1, 1} and h(xt) is the classification function. It is worth noting

that this approximation leads to much faster computation based on a single forward and

backward evaluation of the network. Specifically, approximating p(xj|xt;ht) terms using a

denoising autoencoder with a binary layer and approximating |∂h(x
t)

∂xj
| terms via a backprop-

agation from outputs to the binary input layer.

A.1.6 Reinforcement Learning Approach

The cost-sensitive feature acquisition problem can be formulated as a reinforcement learning

problem. In this setting, each state would be the features that are acquired at each point.

Additionally, each action would be to pay for a certain feature and to acquire its value,

transitioning to a new state. Here, the objective would be to learn a policy function that
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results in an efficient feature acquisition. One possible reward function which is frequently

used in the literature [JPL17, SHY17] is:

r(xti, a) =


−cj a is acquiring feature j

0 a is making a correct prediction

−λ a is making an incorrect prediction

, (A.5)

where λ is a hyperparameter controlling the acquisition cost and prediction accuracy trade-

off. In this equation, −λ is to penalise incorrect predictions and −cj is to penalise acquiring

each feature according to its cost. Therefore, using higher λ values increases the prediction

accuracy while increasing the total cost expenditures.

Alternatively, the variations of model certainty weighted by feature costs can be used to

define a reward function [KGK19]:

rti,j =
‖Cert(xti)− Cert(q(xti, j))‖

cj
, (A.6)

where Cert(x) represents the prediction certainty[GG16] using a feature vector x. Intuitively,

it measures the value of each feature based on the amount which having access to that

feature would contribute to making more confident predictions. This method is shown to

offer the state of the art results for cost-sensitive feature acquisition at test-time [KGK19].

Furthermore, it is highly scalable and applicable to online stream processing. This can be

particularly useful in clinical setups in which prompt decisions are vitally important. For

instance, prescribing certain tests and making fast and yet reasonably accurate diagnosis can

be life saving.

A.2 Experiments

In order to evaluate and provide baselines for the proposed dataset, in this section, we

define specific cost-sensitive classification tasks and present comparison results for several

recent cost-sensitive learning methods. Specifically, we compare: i) a method based on

reinforcement learning where a hyper-parameter is balancing the cost vs. accuracy trade-off
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[JPL17], ii) Opportunistic Learning (OL) [KGK19] a method based on deep Q-learning with

variations of model uncertainty as the reward function, iii) a method based on exhaustive

measurements of the sensitivity [EFM16], and iv) a method based on approximation of

sensitivities using denoising autoencoders (FACT) [KDM18]. Table A.2 presents a summary

of dataset tasks we defined including the number of instances, features, and classes as well

as baseline classification accuracies for each task.

Table A.2: The summary of datasets and experimental settings.

Task Instances Features Classes Baseline Accuracy

Diabetes 92062 45 3 84.2%

Heart Disease 49509 97 2 79.7%

Hypertension 22270 31 2 81.9%

We use PyTorch computational library [PGC17] to train and evaluate multi-layer neural

network architectures. Throughout experiments, adaptive momentum (Adam) is used as

the optimization algorithm [KB14]. Each experiment took between a few hours to a day

on a GPU server. It is worth noting that we normalize dataset features to have zero mean

and unit variance prior to our experiments. This normalization permits using the value of

zero for missing features during the prediction to act as mean imputation. Regarding the

number of layers and hidden neurons, we used a similar number of trainable parameters

for OL [KGK19] and RL-Based [JPL17], while due to the inherent differences, we had to

use different architectures for FACT [KDM18] and Exhustive [EFM16]. Nonetheless, for

each classification task, the compared models reach a similar baseline accuracy (i.e., average

accuracy after acquiring all the features). In the following, we provide a brief explanation of

each task. For more details about specific features and setups please refer to the Git page3.

We defined diabetes as the classification objective to predict the blood glucose categories

3https://github.com/mkachuee/Opportunistic
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that fall into the following three categories: normal (blood sugar less than 100 mg/dL), pre-

diabetes (blood sugar between 100-125 mg/dL), and diabetes (blood sugar more than 125

mg/dL). We specifically defined and used 45 relevant features from demographics, question-

naire, examinations, and lab tests. Figure A.3 presents a comparison of results based on this

task. As it can be seen from this figure, FACT and OL achieve superior results compared to

other work. Figure A.4 provides a visualization of feature acquisition order of 50 randomly

selected samples for demographic, examination, laboratory, and questionnaire feature cate-

gories. In this figure, features that are acquired by OL with more priority are indicated with

warmer colors. As it can be inferred from this figure, questionnaire information are usually

being acquired with more priority as they provide valuable information at a reasonable cost.
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Figure A.3: Accuracy versus cost curve for the diabetes classification task comparing OL

[KGK19], FACT [KDM18], Exhaustive [EFM16], and RL-Based [JPL17] methods.

As another task, we consider heart disease classification which is defined as binary classi-

fication task. Here, positive samples are individuals that reported any heart disease related

issue in their history (e.g., heart attack, heart failure, etc.). For this task, we used the auto-

mated feature selection method as explained in the Data Preparation section resulting in 97

features. Figure A.7 shows the relative importance for the 16 most relevant features used in
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Demographic Examination Lab Questionnaire

Figure A.4: Visualization of feature acquisition orders using OL [KGK19] method on the

diabetes dataset. Warmer colors indicate more priority.

the heart disease classification task. Here, the feature importance is measured based on the

relative magnitude of weights for a logistic classifier trained on this dataset. As it can be

seen from this figure, the suggested automated variable selection used for this task selects

features that are intuitively relevant to heart conditions. Furthermore, Figure A.5 presents

the comparison of results for this task. It can be inferred that this task is relatively simple

and most approaches were able to achieve a reasonable performance.

At last, we consider the problem of predicting the existence of hypertension condition

in individuals. Specifically, we consider subjects with systolic blood pressure of more than

140 mmHg as positive (hypertensive) class. Figure A.6 shows the performance of different

methods on this dataset. It can be inferred from this figure that this task is relatively easy

and all methods were able to achieve a reasonable performance. The only exception is the
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Figure A.5: Accuracy versus cost curve for the heart disease classification task comparing

OL [KGK19], FACT [KDM18], Exhaustive [EFM16], and RL-Based [JPL17] methods.

RL-based method which we were not able to find hyper-parameters resulting in cost values

in the range of 0 and 5.

A.3 Discussion

Classical approaches to machine learning sought to improve the efficiency and accuracy of

prediction but often failed to account for the costs associated with the collection of data and

expert labels; the acquisition of some features might incur more costs (monetary and non-

monetary) than others. This shortcoming is particularly limiting in the health informatics,

where accurate classification often requires an invasive level of information querying. Fur-

thermore, in domains such as medical diagnosis, appropriate data should be collected based

on scientific hypothesis, and ground-truth labels may only be provided by highly trained

domain experts. Additionally, in many studies, informative features are not scientifically

predetermined, and usually, there are many information sources that can be considered as

hypothetical relevant features which including all of them is not practical. This is one of the
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Figure A.6: Accuracy versus cost curve for the hypertension classification task comparing

OL [KGK19], FACT [KDM18], Exhaustive [EFM16], and RL-Based [JPL17] methods.

reasons healthcare data remains underutilized. With the explosion of data that the world

of IoT brings to the healthcare domain, solutions that are able to efficiently take the unique

requirements of smart-health, and scale effectively to the amount of data that is available,

are needed. Developing intelligent aggregation methods that leverage available data, enables

us to collect the right information at the right time.

In order to address these issues, cost-sensitive and context-aware learning methods were

suggested that consider different aspects of a real-world learning-based system. Specifically,

addressing all components needed in such a system; including feature acquisition, labeling,

model training, and prediction at test-time, each trying to achieve the goal of making accu-

rate predictions efficiently. In this paradigm, information is acquired incrementally based on

the value it provides and the cost that should be paid for acquiring it. For instance, in the

medical diagnosis use case, while asking for an MRI scan might be more informative than

a simple blood test, asking for the blood test might be a better option to start with, based

on the information gain per unit of cost for a blood test. This can potentially result in huge
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Figure A.7: The relative importance for the 16 most relevant features used in the heart

disease classification task.

monetary and non-monetary savings. Finally, in this paradigm, data collection and train-

ing are coupled with each other which results in collecting data as much as required while

making accurate predictions. This is in contrast to the traditional machine learning setup

which collecting a reasonable size of data is assumed to be happening before conducting any

analysis.

In this chapter, we explored dynamic and context-aware information acquisition tech-

niques to collect the right piece of information at the right time. The proposed solution,

in healthcare settings, enhances the human subject compliance and experience by reducing

the cost and inconvenience of medical tests and the data collection. We extensively stud-

ied these techniques under the name of ”Dynamic Cost-Aware Feature Acquisition”[KDM18]

and ”Opportunistic Learning”[KGK19]. In this framework, each information piece has a cost

which can be predetermined by the user or the expert. In this study, we presented a com-

parison between the applicability of these methods as well as related work in the literature

to health domain problems. Additionally, the scarcity of datasets in healthcare that provide

feature costs limited the application of cost-sensitive methods in this domain. We suggested
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a methodology for creating such a dataset and published the relevant data and related source

code. We hope this study to motivate the development and implementation of cost-sensitive

learning techniques for healthcare problems in which the notion of data collection costs,

human subject compliance, and patient discomfort are of paramount importance.
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