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Abstract of the Thesis

Dense Spatial Pyramid Mesh Warping

for Registering Moving Cameras in 3D Scene Map

by

Jiadi Yang

Master of Science in Computer Science

University of California, Los Angeles, 2015

Professor Song-Chun Zhu, Chair

We propose a robust multi-modal method for automatically registering a moving camera

(e.g. mounted on a robot) in 3D scene map. Our approach takes advantages of both

Global Positioning System (GPS) and visual sensors to obtain high-precision geographic

location for a moving camera at each time. The proposed method distinguishes from

past works in the following three aspects: i) we introduce a spatial pyramid mesh warp-

ing method to obtain dense correspondences between consecutive frames, which can be

used to remove unexpected camera motion for robust registration ; ii) we introduced

a robust feature tracking method to tracking feature points in consecutive frames; and

iii) we utilize a continuous polynomial function to describe camera motion w.r.t time,

which can be solved by minimizing the errors of interpolating both visual observations

and GPS locations. We evaluate the proposed method on a set of challenging videos

for both stabilization and registration tasks. Results with comparisons to other popu-

lar methods showed that our method is capable of achieving high-quality results under

various challenges, e.g. lighting changes, motion blurs, scene noises etc.
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CHAPTER 1

Introduction

Accurately registering a moving sensor in 3D scene map is capable of providing scene

context for high-level video understanding tasks, e.g. behavior analysis, action recog-

nition etc. The basic objectives are two folds: registering a video frame geographically

and estimating camera parameters (e.g. viewing angles) at each time. Traditional meth-

ods utilize optical flow algorithm [LYTa] [IMH05] to estimate correspondences between

interest points in consecutive frames, from which relative camera motions can be esti-

mated. Although impressive results achieved, the geo-registration problem still remain

challenges, especially for noisy scenarios, because of two major issues: i) for each pair of

frames, it is difficult to get accurate feature correspondences while encountering motion

blurs, low-resolution, or frequent foreground intersection; ii) while the errors are accu-

mulated over several frames, the trajectory estimation shall drift with arbitrarily large

errors.

In this work, we develop a robust method to address the above-mentioned issues.

Figure. 1.1 (a) shows a frame from the video sequence captured by a moving camera.

Figure. 1.1 (b) plots the estimated camera trajectories and the Field of View (FOV) on the

map. The original GPS points (smoothed and interpolated) are plotted for comparisons.

One crucial step of our method is to stabilize input videos captured by a moving

camera, e.g. being mounted on a bicycle or a robot, i.e. to remove the high-frequency

camera motion. These unconscious movements bring in motion blurs and ambiguities

which challenges the later visual measurement steps. In this work, we propose a stabi-

lization algorithm based on spatial pyramid mesh warping, which first generates frame-

to-frame correspondences between interest points, and then smooths camera trajectory
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Fitted Trajectory

(a) (b)

Figure 1.1: Registering moving cameras in 3D scene map. (a) input video frame captured

by a moving camera (mounted on a bike); (b) scene map overlaid with estimated camera

trajectory.

over time to get stabilized video frames. Our warping algorithm starts with detecting

and matching interest points, based on which we warp uniform grid mesh in one frame

into the next frame such that local shapes (e.g. triangles) are preserved. Moreover, we

perform mesh warping over multiple scales simultaneously and impose cross-scale con-

sistency. To the end, this multi-resolution strategy is able to i) exploit both short-range

and long-range information to preserve visual content; and ii) automatically deal with

local regions without interest points detected. We shall demonstrate that our method can

work well against scenes noise, motion blurs, repetitive patterns and other challenges.

To address the drifting issue, we introduce a multi-modal method to exploit both

GPS locations and visual observations. Despite being reliable to access, GPS locations

are usually noisy, sparse (available at a time-step of a few seconds), with large errors (up

to 10- meters on average) and it might not work for certain scenarios (e.g. with occlusions,

close to building etc.) or bad weathers. On the other hand, we could measure relative
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camera motion from cross-frame correspondences which are continuous, less sensitive to

environment (e.g. weather), or other challenges. Therefore, it is natural to fuse both cues

for robust camera geo-registration. In this work, we describe a camera trajectory as a

polynomial piece-wise smoothing function of camera position over time, and introduce a

robust fitting method to interpolate the synchronized geographical points and measured

camera positions. We shall demonstrate that the fusion of two modalities could obtain

better geo-localization results than utilizing individual modality.

The rest of this paper is organized as follows. In Chapter 2, the relationships to

the previous literature are discussed and summarized. In Chapter 3 we first introduce

a robust video stabilization method and then present the proposed camera registration

method. In Section 4.3 we evaluate the proposed method on challenging videos for both

video stabilization and 3D registration of moving cameras. In Chapter 5 we summa-

rize this work by discussing the limitations of our approach and remarking the future

directions.
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CHAPTER 2

Related Works

This work is closely related to three research streams in computer vision and graphics.

Video-Stabilization or motion compensation aims to remove high-frequency camera

motion, or unexpected image motion caused by unintentional move of the camera it-

self. The past efforts can be divided into two categories: 2D methods and 3D methods.

The first category of algorithms directly estimates 2D frame-to-frame transformations.

Igarashi et al. [IMH05] proposed a as-rigid-as-possible formulation for warping images to

encourage each triangle in the original mesh to undergo a rigid transform (rotation+shift).

This pioneering work was extended in different aspects, including moving-least-squares

method [SMW], matrix form [ZCH09] and as-similar-as possible [LYTb], and applied

in image re-targeting [ZCH09], video re-targeting [MOG06], panoramas and content-

preserving rotation [HCS12]. Recent works proposed to warp grid mesh such that local

shapes ,e.g. straight lines [CAA10] [CC12], triangles [LGJ], are preserved in the new

mesh. Chen et al. [CLH08] used polynomial curves to describe camera motion. Grund-

mann et al. [GKC12] used a bundle of homograph to describe camera motion and for-

mulate motion estimation as a L1-norm minimization problem [GKC12]. Yasuyuki et al.

[MOG06] proposed a method for filling missing image area while stabilizing video jitter

videos. The proposed method belongs to this category and follows the shape-preserving

methodology. In contrast, we perform mesh warping in multiple scales and enforce cross-

scale consistency which can access both long-range and short-range information.

The second category of stabilization methods aims to recover 3D camera motion which

usually requires a full 3D reconstruction of the scene and the camera trajectory. Buehler

et al. [BBM01] proposed to utilize structure-from-motion method for estimating camera
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motion. Fitzgibbon et al. [FWZ05] proposed to render novel viewpoints along camera

trajectories based on the input video frames. These 3D methods can achieve high-quality

stabilization results. But they usually require long-term tracking of feature points and

are sensitive to scene noises. Liu et al.[LGJ] built a robust system to utilize both 2D

estimations and 3D reconstruction and achieved impressive results.

Visual Odometry is to measure relative camera motion from visual frames. The key

step of VO is to match keypoints (e.g. SURF [BTG08] or SIFT [LYTa]) in consecutive

frames. Recently there was significant improvement in visual odometry with development

of real applications, e.g. self-driving cars. In particular, Zhang and Singh [ZS14] proposed

to measure visual odometry from lidar sensors in real-time and achieved the state-of-the-

arts results on public benchmark KITTI [GLU12]. Badino et al. [BYK13] introduce a

stereo system that integrates feature correspondences between multiple frames instead

of a single frame to improve measurement accuracy. Geiger et al. [GZS11] and Song

et al. [SC14] applied Structure-from-motion method over monocular video sequences to

estimate camera motion. The later work [SC14] proposed to estimate the ground plane

and its scale change while a vehicle-mounted camera is moving. In contrast with stereo

system, monocular videos are usually more challenging because of the drifting issue,

which is however the commonly used environment in real applications. In this work,

we work on monocular videos and propose to fuse Visual Odometry with noisy GPS

locations to avoid drifting issues.

Geo-localization of a moving intelligent platform is usually achieved by Simultaneous

Localization and Mapping (SLAM) method or its variants [SSS] [LSC02]. Recently there

has been another stream [WKR] [Dav] [SBS07] [VZS12] [ZS10] that utilize geo-tagged

scene images to help localize a moving sensor. Although great successes achieved, such

a system suffers from two limitations: i) it is very time-consuming to prepare the geo-

tagged images; ii) the current view of the sensor might be arbitrarily different from the

pre-store images due to the environment changes. Another shortcoming of these methods

is the low-precision of geo-localization (up to few meters, or even worse than GPS). In

this work, we proposed to localize a moving platform with meter-level precision. To do
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Figure 2.1: Flowchart of our approach. Input: video sequence captured by a moving

camera; Output: registered camera trajectory in 3D scene map. The proposed algorithm

includes four major steps: stabilization, feature tracking, motion estimation, and camera

registration.

this, we utilize both GPS locations and visual odometry (robustly estimated) for robust

inference.
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CHAPTER 3

Geo-Registration of Moving Cameras

In this chapter, we first introduce the pipeline of our approach and then describe in

details each step.

3.1 Overview of Our Approach

Fig. 2.1 summarizes the sketch of the proposed registration algorithms. It takes monoc-

ular video sequence and noisy GPS locations as inputs and estimates accurate camera

position in 3D scene map at each time-step. Our method starts from detecting interest

points (e.g. SURF) and proceeds the following four major steps:

• Video Stabilization is used to remove high-frequency camera motion which is usu-

ally generated, taking hand-held cameras for instances, by unconscious shaking or

movement. This step works as a pre-processing for the 3D camera geo-registration.

• Feature Tracking We tracking each detected points into the next frame to build

correspondences. We formulate this task as an energy minimization problem and

solve it efficiently using belief propagation (BP) algorithm

• Motion Estimation We apply the standard Visual Odometry algorithm [Nis03] over

frame-to-frame correspondences to estimate camera movement at each time-step.

• Camera Registration We first register the estimated continuous camera motion to

the noisy discrete GPS locations by computing a similarity deformation. Then

we introduce a piece-wise smoothing function to describe the camera 3D location

changes over time. In particular, we use B-Spline in this work to interpolate the
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warped camera motion and GPS locations simultaneously.

We conduct the above-mentioned components sequentially to obtain the camera geo-

location. In practice, since the video-stabilization step also needs feature correspon-

dences, we can iterate the first two steps multiple times to boost system performance. In

this work, we simply run the whole pipeline once.

3.2 Spatial Pyramid Mesh Warping for Video Stabilization

We propose a spatial pyramid mesh warping method to represent the motion between

two consecutive frames, which can be used for stabilizing video sequence [LYTb] captured

by a moving camera. At each frame, we detect interest feature points and match them

into next frames. As in [LGJ], we extract camera motion by warping uniform grid mesh,

instead of features, between consecutive frames. Each feature point shares the same

homograph determined from the motion of the four enclosing vertices. This motion

model makes a tradeoff between global homograph and per-pixel optical flow.

Different from past works that define a uniform grid mesh, in this work, we introduce

a spatial pyramid mesh as illustrated in Fig. 3.1. Each grid cell is divided into four cells in

a recursive way. The camera motion is thus described by the cross-frame deformation of

the grid mesh at each scale while preserving cross-scale consistency. Note that encoding

motion in spatial pyramid is crucial since some of the cells (at a certain scale) might not

include sufficient features.

Given two consecutive frames, We estimate the camera motion by minimizing three

energy terms: a data term for matching appearance features; a regularization term of

shape-preserving constraint (as-similar-as-possible [IMH05]) and a consistency constraint

across different scales. The former two terms are defined over individual scales while the

last term is defined to enforce constraints across scales.

Data Term At each scale s, let (p, q) ∈ Υs denote the matched feature pair from

the frame t to t+1. We rewrite p as the bilinear interpolation of the four vertices of

the enclosing grid cell: p = Vpwp, where the matrix Vp include four cell coordinates as

8



(a) (b)

Figure 3.1: Mesh Grid for video stabilization. (a) spatial pyramid of a cell grid; (b) a

vertex in the warped mesh grid is represented in the local coordinate system (u,v) of its

opposite edge .

column, and whose wp is a encoding vector and
∑

iwp(i) = 1. The feature q should share

the same encoding coefficients as p once the grid Vp is warped into the next frame. Let

V̄p denote the warped grid, the data term is defined as:

F d(V̄ s) =
∑

(p,q)∈Υs

‖q − V̄pwp‖2 (3.1)

where V̄ s pools all the warped mesh vertices at the scale s.

Shape-Preserving We utilize the shape-preserving term in [LGJ] that requires a

triple of neighbor vertices follow a similarity transformation. In particular, each vertex is

represented in a local image coordinate system formed by the vector between the other

two vertices and its orthogonal vector. Fig. 3.1 (b) illustrates such a coordinate system.

Let (i, j, k) ∈ Λs index three vertices that form a triangle in the mesh at the scale s, we

first calculate the local coordinates ui, vi in the original mesh such that:

pi = pj + ui(pk − pj) + viR90(pk − pj) (3.2)

where R90 = [0, 1;−1, 0]. We expect the warped vertices qi share the same local coordi-
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nates as pi and thus have the following shape-preserving term:

F r(V̄ s) =
∑

(i,j,k)∈Λs

‖qi − qj + ui(qk − qj) + viR90(qk − qj)‖2 (3.3)

Note that for each vertex, we sum the above shape-preserving term over all eight

triangles for robust inference against noises or occasional errors.

Cross-scale Consistency The warped grid vertices at different scales should be

consistently solved as illustrated in Fig. 3.1 (a) where the four vertices in the top row are

inherited by the other two scales. Let (i, j) ∈ Q denote a pair of vertices that locate on

the same position yet on different scales in the original mesh. We define the cross-scale

consistency as:

F c(V̄ ) =
∑

(i,j)∈Q

‖qi − qj‖2 (3.4)

Thus, we integrate Eq.s (3.2) (3.3) (3.4) to form the following quadratic function to

minimize:

arg min
V̄

∑
s

F d(V̄ s) + λrF r(V̄ s) + λcF c(V̄ ) (3.5)

which can be solved analytically. In this work, we use three scales of mesh: 16× 16, 32×

32, 64× 64.

Note that each feature point will have different encoding coefficients at different scales

since the encoding vertices are different. In this way, at the coarser scale, the warping

of a grid pool feature matches from longer range than that at the finer scale. Enforcing

consistency across scales will lead to adaptively fuse information from both long and

short ranges. After jointly solving the three scales of mesh, we simply use the mesh at

the finest scale to stabilize video frames as in [LGJ].

To make the motion estimation more robust, we apply RANSAC [FB81] to fit a global

affine transformation between two frames and discard the outliers. This helps to get rid

of the fast-moving foreground objects and mismatched feature points.

After having the warped grid vertices, we estimate local homography Hi(t) in each

10



(a)

(b)

(c)

Figure 3.2: Warping to previous frame. (a) frame t; (b) frame t+1; (c) frame t+1 warped

by the estimated local homography (contents outside frame t have been cropped).

grid cell i of frame t by solving the linear equation:

V̄i = Hi(t)Vi (3.6)
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where Vi and V̄i are the four grid vertices before and after the warping.

Fig 3.2 shows the warping result. For more obvious visual effect, we choose frame

t+ 1 and frame t with a difference of 1 second in time and display the mesh at the scale

of 16× 16. Note how Fig 3.2 (c) is aligned with Fig 3.2 (a).

3.3 Robust Feature Tracking

Once video frames are stabilized, we extract local SURF (Speeded Up Robust Features)

points [BTG08] in a frame and track them into the next frame. SURF descriptor is a

sparse feature detection and feature extraction. In this work, we set the strongest feature

threshold to be 1000, the number of octave to be 3, and the number of scale levels to be

4.

We formulate feature tracking as an energy minimization problem.

Let I t, I t+1 denote two consecutive frames, i indexes SURF points in I t, and (xi, yi)

is the coordinate of the ith point. Let (i, j) ∈ ε denote two neighbor points. Our goal is

to estimate a motion field (∆xi,∆yi) such that the following objectives are maximized:

E({∆xi,∆yi}) =
∑
i

‖I t(xi, yi)− I t+1(xi + ∆xi, yi + ∆yi)‖2

+λ‖(∆xi,∆yi)‖2 + β
∑

(i,j)∈ε

[‖∆xi −∆uj‖+ ‖∆yi −∆vj‖] (3.7)

which includes three terms: appearance discrepancy, displacement and spatial smooth-

ness regularization. Similar method has been used in [LYTa] to obtain dense correspon-

dences between partially overlapped images. In contrast, we aim to track interest points

over time while preserving local spatial geometry. We adopt the Loopy belief Propagation

algorithm to optimize Eq. (3.7) [SZS08].

3.4 Motion Estimation

We briefly review the Visual Odometry (VO) algorithm [Nis03] that includes three major

steps. First, we compute the essential matrix from feature correspondences using epipo-

12



lar constraints between two frames. The essential matrix contains the camera motion

parameters up to an unknown scale factor for the camera translation. The minimal case

solution involves five correspondences and we use the efficient implementation proposed

by Nister [Nis03]. Second, we extract rotation matrix and translation (up to an unknown

scale) from the estimated essential matrix. With orthogonal constraints over the rotation

matrix, there are in general four decompositions for one essential matrix yet only one of

them is plausible (i.e. all points are in front of the camera). Nister et al. proposed an

efficient way to identify the correct decomposition. Third, we compute relative scale and

rescale the translation accordingly.

Note that the re-scaling step requires additional assumption (e.g. fixed camera height

and pitch angle) or calculation (e.g. estimating 3D positions of interest points), which

are not reliable in practice. In the following, we shall introduce a registration method

which can work well without knowing the scale factor and making those assumptions.

3.5 Camera Registration

We register visual odometry with GPS locations over time by computing a similarity

transformation (i.e. rotation, scale, translation) between these two types of trajectories.

Let M denote the similarity transformation matrix, x̄i, x̂i denote homogeneous coordi-

nates of the VO point and the GPS location at time i, respectively. Thus, we have the

following least square problem:

arg min
M
‖M ∗ x̄i − x̂i‖2 (3.8)

The matrix M is used to register the estimated VO point at each time step with the

GPS locations which are not available at each time.

Fig 3.3 plots GPS points in red and the warped VO points in red. As shown, the

two shape are complementary to each other and the broken segments missed by GPS are

recovered by VO points. Note that the warped VO shape still has significant deviations

with the GPS shape, especially in areas of complex background structure (e.g. repetition

patterns), and thus we need a robust method to fuse these two shapes.

13
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Figure 3.3: Warped Visual Odometry(VO). We linearly interpolate the GPS locations (in

red) and compute similarity transform to the VO points ( in blue, only matched points

are plotted).

Our method represents the camera trajectory as a continuous polynomial smoothing

function of 3D positions w.r.t time τ : t→ xt. In particular, we consider B-Spline whose

first derivative and second derivative are both continuous. These high-order continuous

constraints are used to enforce smoothness over the desired camera trajectory. Let d

denote the order of B-Spline and we set d = 3 in this work. Let Bl(t) denote the

quadratic basis function, the spline function τ(t) can be written as a linear combination

of basis functions:

τ(t) =
∑
l

αlBl(t) (3.9)

where the basis functions Bl can be directly obtained given time interval and order d.

We use one single spline function to interpolate both the warped VO point and the

14



original GPS location at each time-step, formulated as follows:

arg min
{αl}

∑
l

∑
t

‖M ∗ x̄t − αlBl(t)‖2

+γ‖x̂i − αlBl(t)‖2 (3.10)

where γ is a constant. In order to address noises and errors, we utilize the RANSAC

method to alternately estimate inlier points and the parameter αl.
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CHAPTER 4

Experiments

4.1 Video Dataset

We test our method on our own dataset of videos taken from a parking lot. The dataset

includes videos taken from a driving car and videos taken from a riding bike together

with the GPS position. We test our pipeline on segments of these videos when the vehicle

is moving. Each video segment lasts for about 30-60 seconds with a frame rate of 30.

Bike videos have a 1080 × 1920 resolution. Car videos have a 1920 × 1080 resolution.

Videos taken from cars have their lower part occupied by the car’s front hood so we crop

out the lower 1/3 of the frames. The GPS coordinates are recorded at 1Hz.

4.2 Implementation

We first calculate the spatial pyramid mesh warping based on tracked feature correspon-

dence. Each frame is then warped to a smoothed path to get the stabilized video. We

do visual odometry on the stabilized video to get the camera trajectory. Then the cam-

era trajectory is aligned with the GPS and together fit a cubic spline as the smoothed

trajectory. Finally we register the fitted trajectory to the map. For videos taken from a

driving car, the camera is mounted above the dashboard. For videos taken from a riding

bike, the camera is mounted on the handlebar and thus is shaky and suffers more serious

jittering.

For feature tracking, we detect 500-800 SURF [BTG08] features and track them

through the frames. When current visible features are fewer than 50% we reacquire new

features to track. In spacial pyramid mesh warping we use three scales of mesh: 16× 16,

16



32× 32, 64× 64. We apply an adaptive regularization parameter similar to [LYTb] when

estimating the warping mesh to adapt to various image contents. For each frame we try

10 values of the adaptive weight α from 0.5 to 5 and automatically choose a value that

minimizes the total error. The system tends to choose a large α when the data term

is weak, for example when there are large areas with insufficient features or when the

camera suffers serious motion blurs. The system will choose a small α when there are

reliable features distributed over the whole image.

We implement our method in Matlab R2014a and we run our method on an Intel i7

2.8GHZ Quad-Core machine with 16G RAM. For a video of 1920× 1080 resolution, the

warping estimation takes 150 milliseconds per frame, synthesizing the stabilized video

takes 450 milliseconds per frame and the visual odometry takes about 350 milliseconds

per frame. Spline fitting and map registering takes less than 30 milliseconds per frame.

4.3 Results

Below we show two results from videos taken from a riding bike and one result from a

video taken from a driving car. For each video we show (a) tracking results with red

dot for the tracked feature in previous frame, green circles for current position of those

features and yellow lines connecting them; (b) original mesh grid of the previous frame;

(c) mesh grid of the current frame warped to the previous frame; (d) Trajectory calculated

from visual odometry aligned to geographic coordinates (in cyan), GPS position (in red)

and the smoothed trajectory (in green); (e) The final registration result on the map. For

more obvious visual effect, we show results calculated from two frames which differ by

0.5 second in time instead of using two consecutive frames.

Videos taken from a riding bike involves a lot of sudden camera rotation and trans-

lation which often causes the visual odometry to fail if we directly apply VO. After

stabilizing the video, we get rid of the fast movement and obtain a reasonable VO tra-

jectory.

The fast counterclockwise rotation of the camera can be seen from tracking result in
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(a) (c)

(d) (e)

(b)

Figure 4.1: Intermediate and final results of a video taken from a bike.

Fig 4.2 (a) and the rotated mesh grid in Fig 4.1 (c). The visual odometry results are not

so desirable as seen from Fig 4.2 (d) because the camera is facing the sun. But with the

polynomial smoothing we get a reasonable good trajectory.

The camera mounted on a car suffers less shaking and jittering. As seen from Fig 4.3

(c), the deformation of the mesh is relatively small. However due to the error in GPS,

the fitted camera trajectory is not very accurate. As in Fig 4.3 (e), the camera path goes

across the trees by the road.
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(a) (c)

(d) (e)

(b)

Figure 4.2: Intermediate and final results of a video taken from a bike.

19



(d) (e)

(a)

(b)

(c)

Figure 4.3: Intermediate and final results of a video taken from a car.

20



CHAPTER 5

Conclusion and Discussion

Moving camera registration can help providing better scene context for video understand-

ing tasks including action recognition and behavior analysis. Geo-registration often have

the issues of inaccurate correspondence and accumulated drifting errors over frames. To

address the motion blurs, low resolution and repetitive patterns that are often encoun-

tered in motion estimation process, this thesis proposes a video stabilization method

based on spatial pyramid mesh warping to get a stabilized video. To solve the accumu-

lated drifting issue, we introduce a method to exploit and fuse both GPS information

and visual odometry results. While GPS data is sparse and often suffers fluctuation and

noise, motion estimating based on visual observation are continuous but is difficult to

recover the true scale. Exploiting both cues help us get a robust camera geo-registration.

For videos taken from shaky camera, our stabilization method successfully remove the

unintentional high-frequency camera motion which almost always cause visual odometry

to get bad results. Our spatial pyramid mesh warping utilizes both short-range and long-

range information to preserve the visual content. This is effective when the image has

large areas of insufficient interest point (sky and the ground) and against noise. Utilizing

GPS positions helps to correctly scale the camera trajectory without reconstructing the

3D scene and thus makes our method less sensitive to scene noises.

However, there are still several issues that cause errors in the motion estimation.

Visual odometry will generate bad results when the camera is facing the glaring sun and

when there are rolling shutter effect (like when facing a building) which our model does

not address. In the stabilization step, our method relies only on 2D information to remove

unintended camera motion which requires correctly estimating the image background
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motion. Since we use RANSAC to pick the inlier interest points which are believed to

be in the background, the estimation will fail when there are many foreground objects

moving. Future work could be done to use more sophisticated approaches to robustly

estimate the background motion, or use 3D stabilization methods for more complex

scenes.
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