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ABSTRACT OF THE DISSERTATION

Decoding the Structural Response of Disordered Proteins to their Surrounding
Environments

by

Feng Yu

Doctor of Philosophy in Quantitative and Systems Biology

University of California, Merced, 2023

This dissertation examines how the sequence and the chemical environment of 
intrinsically disordered protein regions (IDRs) affect their structure. Unlike structured 
proteins, IDRs do not adopt a singular structure. Instead, they exist in a dynamic 
conformational ensemble. The conformations that make up this ensemble are shaped by 
a range of molecular interactions, both with the environment and within the IDR itself. 
The absence of a stable three-dimensional structure, along with their high level of 
exposure to the solvent environment, makes IDR exceptionally adaptable to changes in 
their physical and chemical surroundings. My research employs computational methods 
to investigate how IDRs respond to different chemical environments and physical 
constraints. I will discuss how we quantify the contribution of IDR structural preferences 
to their entropic forces and describe how we leverage IDR sensitivity to design 
biosensors.
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Chapter 1: Introduction
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Background

The three-dimensional structures of well-folded proteins are critical to their functions.
However, this paradigm does not hold for the entire proteome. Intrinsically disordered
protein regions (IDRs) make up over 30% of the human proteome and exist in organisms
across all kingdoms of life1–3. Unlike well-folded proteins, IDRs do not adopt fixed native
structures. Instead, they exist in a dynamic state, with constantly changing
conformations that provide them with a unique set of functional capabilities4. These
diverse and interchangeable conformations are collectively referred to as the IDR’s
ensemble (Fig. 1.1A).

Figure 1.1. (A) IDR conformational ensembles. The top part represents the overlay of simulated
p53-NTAD IDR conformations. Blue conformations are selected from the entire simulation to
show the diversity of IDR conformations. (B) The percentage of proteins that have at least one
IDR (longer than 30 amino acids) in the yeast, arabidopsis, or human proteomes. The analysis
was conducted based on the AlphaFold2 database. Terminal IDRs represent IDRs located at the
N-terminal/C-terminal of the entire protein sequence5.

IDR amino acid sequences are typically rich in polar and charged residues but depleted
in hydrophobic amino acids. This composition prevents the formation of a hydrophobic
core that is inherent in well-folded proteins. Instead, this composition maintains the IDR
in a dynamic and adaptable state6.

The distinct amino acid composition of IDRs enabled computational biologists to predict
the existence of thousands of IDR sequences in different genomes3,7 (Fig. 1.1B).
However, due to their lack of structure, the functional significance of IDRs was not
recognized. In several works in the 1990s, several IDRs were shown to play a role in
DNA recognition and transcription activation8–11. Since then, more IDRs with critical

https://paperpile.com/c/wsHyXk/CtsdW+02yZ+aNuCp
https://paperpile.com/c/wsHyXk/5VFTP
https://paperpile.com/c/wsHyXk/Z9agk
https://paperpile.com/c/wsHyXk/W3f6F
https://paperpile.com/c/wsHyXk/p0O6R+aNuCp
https://paperpile.com/c/wsHyXk/dA3uy+3AmU7+gNcaA+NUIpo
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functions have been identified by experimental methods, gaining the interest of the
biophysics community12–14.

IDR ensemble plasticity leads to important biological functions

The lack of stable structure and the ability to adopt multiple conformations of IDRs are
referred to here as IDR structural plasticity15. This plasticity is a central feature of IDRs,
intricately linked to their functions16,17. It allows them to alter their shapes and surfaces to
interact with specific binding partners18, and enables them to participate in and regulate
complex protein networks19–22. For example, in signal transduction, Hypoxia-inducible
factor 1-alpha (HIF-1α), can adopt different conformations to bind with interaction
partners including DNAs to activate several survival pathways and induce the expression
of hypoxia-related survival genes23–25. In another example, the dynamic ensemble of the
p53 N-terminal IDR alternates between a free state and interaction with the DNA-binding
domain, thereby enhancing its binding selectivity for target genes and inhibiting
nonspecific binding26. As the functional mechanisms of IDRs are deeply intertwined with
the structural plasticity of their ensemble, there is a growing interest in quantifying the
dynamic behavior of IDR ensembles.

The conformational ensembles of IDRs

Describing the structural plasticity of IDRs requires quantifying the physical properties of
their conformational ensembles. Experimentally, only the average properties of IDR
conformational ensembles can be readily resolved. These include metrics such as the
average helical propensity in the sequence, its radius of gyration (Rg), or its end-to-end
distance (Ree) (Fig. 1.2A-D). To examine specific conformations in the entire ensemble,
molecular simulations are often combined with experimental data to obtain accurate
structural properties27–29.

https://paperpile.com/c/wsHyXk/0v7b0+ehSO9+RYXw
https://paperpile.com/c/wsHyXk/NCik
https://paperpile.com/c/wsHyXk/P9zZ+JPUB
https://paperpile.com/c/wsHyXk/Q2Nt
https://paperpile.com/c/wsHyXk/UBqo+eqlS+WiTV+3nSy
https://paperpile.com/c/wsHyXk/3U7Z+8jic+xQUK
https://paperpile.com/c/wsHyXk/qQNM
https://paperpile.com/c/wsHyXk/L62O+WWkP+Zfiz
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Figure 1.2. (A) Rg and Ree can describe IDR global dimensions and structural preferences. Left: rg
and ree represent the radius of gyration and the end-to-end distance of a single IDR conformation.
Right: schematic diagram of the average Rg and Ree on a p53 N-terminal IDR ensemble consisting
of 50 individual simulation conformations. (B) Comparison between IDR helical propensity with
unique long-range structural biases. These structures are transient structures that can exist in the
same IDR ensemble at different times. (C) PUMA scrambles demonstrated different global
dimensions because of the sequence arrangement. (D) PUMA WT demonstrated helical
propensity while other scrambles demonstrated no secondary structure despite similar amino acid
composition30.

IDR ensemble-function relationship

The central dogma in structural biology is that the 3D structure of proteins determines
protein function9,31. Instead of a native structure, an IDR’s function is impacted by its
structural ensemble. With their dynamic structural preferences, IDRs mainly perform
their function by binding with their binding partners. But how does a dynamic
conformational ensemble lead to stable binding with other molecules?

https://paperpile.com/c/wsHyXk/kBm8V
https://paperpile.com/c/wsHyXk/2KIIu+3AmU7
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Figure 1.3. IDR linker global dimensions determine the binding affinity between adenovirus early
region 1A (E1A) protein SLiMs and retinoblastoma (Rb) tumor suppressor32.

One possible IDR binding mechanism is the "conformational selection" mechanism. An
IDR ensemble adopts multiple pre-existing conformations in dynamic equilibrium and,
upon binding to a ligand or another biomolecule, “selects” the conformation that has the
highest affinity for the binding partner33,34. For example, the activator for thyroid hormone
and retinoid receptors (ACTR) IDR ensemble forms an -helix and may bind to theα
nuclear coactivator binding domain (NCBD) of the CREB binding protein. Mutations that
increase helical propensity in the ACTR unbounded ensemble will stabilize the ACTR:
NCBD binding complex35. Thus, increasing helical propensity in the sequence will
enhance the affinity of ACTR to NCBD. In another example, the intrinsically disordered
c-Myb activation domain of the cAMP-response element binding (CREB) protein will form
helical structures when it binds to the KIX domain of the CREB-binding protein (CBP). It
is discovered that the association rate of binding between different c-Myc mutants is
correlated with the helix population of the IDR36. This suggests that changes in IDR
sequences will alter IDR ensemble preferences and lead to IDR functional changes37,38.

Another possible mechanism is “conformational buffering”. It suggests that dimensions of
IDR linkers between binding sites are critical and optimized for the binding affinity
between the binding partners. For example, the length of a disordered linker region can
influence the binding affinity between the adenovirus early gene 1A (E1A) protein and
the retinoblastoma (Rb) protein (Fig. 1.3B). E1A contains two important binding sites,
E2F and LxCxE, that are separated by a linker IDR. It was found that the dimensions of

https://paperpile.com/c/wsHyXk/qYf0o
https://paperpile.com/c/wsHyXk/4rVD+3Tx6
https://paperpile.com/c/wsHyXk/psSP
https://paperpile.com/c/wsHyXk/07UxT
https://paperpile.com/c/wsHyXk/N8Kyw+CxZyJ
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this linker mediate its binding to the Rb protein. A more compact IDR ensemble with a
shorter linker may hinder the simultaneous binding of both sites, reducing the binding
affinity. A more extended IDR ensemble with a longer linker may reduce the cooperativity
between two binding sites and their binding affinity. Therefore, the E1A protein maintains
the dimensions of the IDR ensemble at an optimal level, enhancing its binding
effectiveness with the Rb protein. In diverse adenoviruses and across multiple hosts, the
sequences of the linker regions between two binding sites show variations but molecular
simulations indicate that Ree of these linker regions remain conserved even across
different species32. This result further suggests the importance of IDR ensemble
preference in IDR functional mechanisms.

In summary, IDRs perform functions through specific ensemble preferences encoded
within their sequences. As a result, a comprehensive understanding of IDR ensembles is
crucial to link IDR sequences with function.

IDR ensembles in the context of their physical-chemical
environments

The cellular environment experiences changes during various biological processes or
due to external stress39–41. Such changes include physical-chemical parameters such as
pH, temperature, ionic strength, and the composition of small and large solutes and
biomolecules42–46. For example, in many cancer cells, there is a significant alteration in
the cellular metabolism which will elevate the pH in the cellular environment (also known
as the Warburg effect)47,48. In another example, intracellular pH will vary during each
stage of the cell cycle, a change that is essential to the regulation of cell growth49,50.

The examples above highlight the dynamic nature of cellular environments.
Understanding the nature of IDR conformational changes induced by these
environmental changes is crucial for elucidating the physiological roles and functional
mechanisms of IDRs. It is also vital for developing biosensors or engineered biomaterials
that can respond to cellular environmental changes. However, a biophysical
understanding of the underlying molecular rules that define environmentally-driven
structural changes in IDRs is lacking. This dissertation uncovers some of the rules that
determine how the surrounding environment changes the dimensions of IDR
ensembles.

IDR ensembles are sensitive to surrounding environments

As described above, IDRs lack stable intramolecular bonds, exhibit a flexible
conformational ensemble, and have a high degree of surface area exposure, making
them sensitive to surrounding environmental changes51–53. For example, denaturing
agents like urea are commonly used to probe the stability of protein structures. They act
by forming multiple weak attractions with the peptide backbone. These attractions cause
the backbone of the protein to expand and unfold. However, for urea to act on
well-folded proteins requires concentrations upwards of 8M. For IDRs, even low urea
concentrations, below 1M, drive a measurable increase in ensemble dimensions. The
disparity between the response of IDRs and well-folded proteins to urea underlines the

https://paperpile.com/c/wsHyXk/qYf0o
https://paperpile.com/c/wsHyXk/cCUOp+ku0jD+RML9j
https://paperpile.com/c/wsHyXk/o71LO+cWJF+aHOy+TsJI+aMBK
https://paperpile.com/c/wsHyXk/Dl8H+DMjA
https://paperpile.com/c/wsHyXk/oVrH+rbue
https://paperpile.com/c/wsHyXk/ePVxR+A3kO3+JmInW
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distinct nature of IDRs: their lack of stable tertiary and secondary structures means that
the forces maintaining their conformational integrity are much weaker and more
susceptible to disruption by weak interactions with their environment54–57. Indeed,
variations in other solution parameters, including but not limited to pH, ionic strength,
and temperature, can all induce shifts in the equilibrium of IDR conformations58–60.

IDRs are notably affected by the spatial constraints of their environment, such as
structured proteins and cell membranes. The existence of these biological constraint
surfaces will lead to a reduction in the number of conformations IDRs can adopt and a
corresponding decrease in conformational entropy. As a consequence, the IDR
conformational ensemble will be changed and will also generate a force to regain the
conformational entropy5,61,62. This will enable IDR membrane curvature sensing ability
and alter the protein binding affinity.

These examples show that environmental changes in the physical-chemical environment
of IDRs have a significant impact on their structural ensemble. Because of the role of the
ensemble in the IDR function, understanding how IDRs respond to environmental factors
is pivotal for decoding their role in the cell. The study of IDR ensemble structural
sensitivity in different physical-chemical environments, even outside of the cell, may
therefore reveal insights into the molecular basis of their involvement in regulatory
processes. This understanding can also be instrumental in designing responsive
biosensors.

Changing the surrounding environment can alter IDR functions

By changing IDR ensembles, surrounding environments can alter IDR functions. While
few examples of this have been shown unequivocally, some studies show this clearly.
For example, the binding of histone H1 and highly disordered prothymosin α (ProTα) is
significantly impacted by the presence of salt, which affects the ionic strength of the
environment. Their interaction, largely driven by electrostatic forces due to their large
and opposite net charges, is sensitive to changes in ionic strength63,64.

The surrounding chemical environment will alter IDR binding activity by screening
electrostatic interaction with electrolytes. For example, association kinetics between
PUMA IDR and Mcl-1 region is ion-dependent and salt-dependent. Overall, high ionic
concentration will decelerate the association. Divalent cations demonstrate a larger
impact on binding compared to monovalent cations such as potassium. The helical
propensity of PUMA IDR is reduced by more than 15% within salt solutions. This finding
suggests ionic strength alters IDR function by changing the IDR ensemble structure and
interrupting the IDR folding-upon-binding mechanism38.

Summary

Structural preferences of IDR ensembles are more sensitive to changes in their
surrounding environment than the structure of well-folded proteins. With an established
link between structure and function, it becomes necessary to have an accurate
description of their ensemble in various physical-chemical contexts in order to
understand their function. My Ph.D. research focuses on computational analysis to

https://paperpile.com/c/wsHyXk/JKTZ0+OrbtN+agu33+lJ5bZ
https://paperpile.com/c/wsHyXk/EgQl+ezDH+VVDJ
https://paperpile.com/c/wsHyXk/Z9agk+BjmVj+fxXa8
https://paperpile.com/c/wsHyXk/karh+PhV2
https://paperpile.com/c/wsHyXk/CxZyJ
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describe IDR response to surrounding environmental change. In this dissertation, I aim
to address how the physical-chemical environment influences IDR ensembles and
functions using computational approaches.

In Chapter 2, I will explore how solution environments impact IDR ensembles. This
chapter shows that an IDR’s solution response is encoded in its sequence and is
determined by intramolecular interactions. This builds the foundation for quantifying IDR
responses to different chemical environments.

Chapter 3, I will delve into how IDRs generate entropic force when an IDR ensemble is
limited by spatial constraints. This work demonstrates that an IDR's global dimensions
are correlated with the strength of the entropic force it exerts.

In Chapter 4, I will combine the IDR solution response elucidated in the first two chapters
to design an IDR biosensor of cellular osmotic pressure. The biosensor is designed
based on a naturally occurring, desiccation-related IDR which can form transient
secondary structure in changing chemical environments.

Finally, in Chapter 5, I will give a summary of my entire journey and discuss how these
findings contribute to the IDR field. I will also give some insights into potential
applications of my IDR solution sensitivity research.

Methodology

Importance of simulations in understanding IDR ensembles

As explained earlier, IDR ensembles can be key to understanding IDR function.
However, several challenges exist in characterizing these ensembles structurally. First
and foremost, the inability to crystallize IDRs has limited the use of one of the most
critical historical tools in structural biophysics, X-ray crystallography65. Even newer
structural methods such as Cryo-EM cannot resolve the flexible nature of the IDR
ensemble66. Instead, several methods have emerged, including, nuclear magnetic
resonance (NMR) spectroscopy, Förster resonance energy transfer (FRET), and
small-angle X-ray scattering (SAXS), that have become the primary experimental
methods for characterizing IDR structural preferences67–70.

However, these experiments provide relatively low-resolution data for dynamic IDR
ensembles71,72. SAXS can provide the average Rg of the IDR ensemble along with atom
pair distance distributions73. FRET measures the average Ree of the IDR ensemble74.
NMR can provide more detailed atomistic information about the ensemble but still can
only measure its average properties. To move beyond such average properties and
understand the full range of structural preferences contained in an ensemble, there has
been extensive use of molecular simulations27–29,75,76.

Two common computational methods used to generate IDR ensembles are molecular
dynamics (MD) and Monte Carlo (MC) simulations. MD simulations for IDR utilize force
fields to apply Newton's laws of motion, translating interatomic forces into
time-dependent changes in atom positions. By calculating these forces and integrating

https://paperpile.com/c/wsHyXk/Hyr1t
https://paperpile.com/c/wsHyXk/SCLIv
https://paperpile.com/c/wsHyXk/os3jP+tEL7n+iBWDb+UvwH9
https://paperpile.com/c/wsHyXk/dKmv1+rCGht
https://paperpile.com/c/wsHyXk/6hlua
https://paperpile.com/c/wsHyXk/EjV17
https://paperpile.com/c/wsHyXk/ExPIn+YGXgp+Zfiz+L62O+WWkP
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them over time steps, MD explores the evolution over time of IDR dynamic structural
ensembles. MC simulations, on the other hand, for IDRs involve using stochastic
algorithms to sample the conformational space that IDRs can occupy.

MC simulations can capture the broad ensemble of conformations that IDPs adopt,
offering insights into their structural properties. IDRs present a unique energy landscape
characterized by many local minima, each representing a distinct preferred
conformational state. This landscape is marked by small energy barriers that separate
these minima, allowing the IDR to transition easily between different states. Exploring
such a landscape poses significant challenges, as traditional molecular dynamics (MD)
methods can often become trapped in these local minima, unable to efficiently sample
the vast array of possible conformations. MC simulations, with their ability to randomly
propose conformations of the IDR, can scan the entire conformational space more
effectively than MD simulations, which might need multiple simulations with different
starting conformations to fully scan the IDR conformational space. For MC simulation,
we can introduce temperature variations to help the system escape the energy barriers,
facilitating broader exploration of the conformational space.

MC simulations can be more computationally efficient for IDRs. Since they do not require
the calculation of detailed atomic forces and velocities at each time step like MD, they
can sample a wider range of conformations in a shorter amount of computational time.
The MC algorithm I used for IDR simulation in this paper takes days on a single
computational core and is suitable for high-throughput simulations. In comparison, MD
simulation may require a hundred CPU cores and a GPU to simulate the conformational
ensemble of a single IDR. Despite a faster simulation speed, MC simulations still
generate accurate IDR ensembles, allowing for a good understanding of IDR structural
preferences77–79.

The central algorithm for MC simulations used in this dissertation was introduced in the
1950s and is widely known as the Metropolis–Hastings algorithm80. This algorithm is a
specific variant within the broader category of MC simulation, and it plays a crucial role in
generating thermodynamically accurate ensembles, especially in the context of studying
molecular systems like proteins. This algorithm distinguishes itself by using the
Boltzmann criterion for its accept/reject decisions. When a new conformation is proposed
during the simulation, the algorithm evaluates it based on the Boltzmann distribution,
which relates the probability of a state to its energy and the temperature of the system.

With an initial protein state A, a new random protein state B under the rigid constraints of
the protein will be generated through the random change of the torsional angle between
the residues of the protein81. This state B may not be accepted by the simulation
algorithm and is thus called a trial move.

After each trial move, an energy calculation is performed using the all-atom force field. In
my simulation, I will use the ABSINTH force field which will be introduced later. The
move is accepted or rejected based on the total energy of the states.

1. If , the state B will be accepted as a valid conformation of the protein.𝐸
𝐵

< 𝐸
𝐴

https://paperpile.com/c/wsHyXk/KTuTJ+PYCpq+b236X
https://paperpile.com/c/wsHyXk/duqe
https://paperpile.com/c/wsHyXk/BljH
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2. If , another random number will be generated. If ,𝐸
𝐵

> 𝐸
𝐴

𝑎 ∈  [0, 1] 𝑎 <  𝑒
−

𝐸
𝐵

−𝐸
𝐴

𝑘𝑇

the state B will be accepted otherwise it will be rejected.

Thus, the overall acceptance probability of state B is described as

(1.1)𝑝
𝐴−>𝐵

=  𝑚𝑖𝑛[1,  𝑒𝑥𝑝(− β * ∆𝐸)]

Here, and . State B will serve as the subsequent starting point forβ = 1
𝑘𝑇 ∆𝐸 = 𝐸

𝐵
− 𝐸

𝐴
the next step, and this process will persist until the number of simulation steps
predetermined by the user is reached. All states accepted throughout this simulation will
collectively constitute a thermodynamically accurate ensemble insofar as the forcefield
used is accurate.

Solution Space Simulation

Currently, most all-atom simulation force fields are calibrated with experimentally
measured IDR conformational ensembles in a dilute aqueous buffer. To simulate IDRs in
different solution environments, we created the Solution Space (SolSpace) simulation
method. This method is implemented with the CAMPARI MC simulation software82. To
assess the energy of each conformation (EA, EB in Eq. 1.1) we use the ABSINTH force
field. Energies are calculated using an effective Hamiltonian that quantifies the total
energy of the system, which is the sum of 4 energy terms:

(1.2)𝐸
𝑡𝑜𝑡𝑎𝑙

=  𝑊
𝑠𝑜𝑙𝑣

+ 𝑈
𝐿𝐽

+ 𝑊
𝑒𝑙

+ 𝑈
𝑐𝑜𝑟𝑟

Here, is a correlation term applied to keep the peptide dihedral predominantly in𝑈
𝑐𝑜𝑟𝑟

the trans-configuration. is the electric potential term that is the Coulomb potential𝑊
𝑒𝑙

between charged residues.

(1.3)𝑊
𝑒𝑙

 =  
𝑖=1

𝑁
𝐶𝐺

∑
𝑘=1

𝑛
𝑖

∑
𝑗=𝑖+1

𝑁
𝐶𝐺

∑
𝑙=1

𝑛
𝑗

∑ 𝑓
𝑖𝑗

𝑞
𝑘
𝑖 𝑞

𝑙
𝑗

4πε
0
𝑟

𝑘𝑙
𝑠

𝑘𝑙

Here, represent the number of charge groups of the molecule defined by the defined𝑁
𝐶𝐺

reference force field such as OPLSAA or CHARMM. represent the number of point𝑛
𝑖

charges in the charge groups. The Coulomb interaction will not be calculated if the
charge groups possess atoms that are (1-2)- or (1-3)-bonded to one another. In this
case, will be zero otherwise unity. represent the solvent electrostatic screening𝑓

𝑖𝑗
𝑠

𝑘𝑙
effect on the Coulomb interaction between point charges.

In addition, is the Lennard-Jones potential between protein residues.𝑈
𝐿𝐽

(1.4)𝑈
𝐿𝐽

=  4
𝑖

∑
𝑗<𝑖
∑ 𝑓

𝑖𝑗
ε

𝑖𝑗
[(

σ
𝑖𝑗

𝑟
𝑖𝑗

)
12

− (
σ

𝑖𝑗

𝑟
𝑖𝑗

)
6

]

https://paperpile.com/c/wsHyXk/u1fOW


11

describes the distance between atoms i and j. is the distance where is zero,𝑟
𝑖𝑗

σ
𝑖𝑗

𝑈
𝐿𝐽

referred to as a pairwise size parameter. represents the dispersion energy. will be 1ε
𝑖𝑗

𝑓
𝑖𝑗

if atom i and j are separated by more than one rotatable bond. Otherwise will be zero𝑓
𝑖𝑗

and we will ignore the Lennard-Jones interaction between those two atoms.

The Lennard-Jones potential is a simplified model to describe how the potential energy
between two residues varies with distance: it predicts a strong repulsion as they get very
close and a weaker attraction at moderate distances, attributable to transient induced
dipole-dipole (van der Waals) forces83,84.

is the effective solution-protein interaction energy function based on the implicit𝑊
𝑠𝑜𝑙𝑣

solvent model. In implicit solvent models, the solvent is not represented as individual
molecules but rather through its averaged effects on the solute. In the ABSINTH model,
the interactions between the solvent and the molecule are determined by considering the
free volume surrounding the molecule's atoms. This approach calculates the
solvent-accessible surface area based on the extent to which the space around each
target atom is unoccupied by other atoms. When an area around a target atom is
completely free of other atoms, it is considered to be fully solvated. This will simplify the
calculation of solvent and reduce computational costs because it will neglect the
interaction between solvent molecules but with some tradeoff in structural accuracy.82
The fundamental discrete solvent-molecule interactions to continuum solvent interaction
field approximation in the simplified model leads to the omission of the finite size of water
molecules and tightly bound water molecules, which may be crucial for the function or
stability of some conformations85. Below I give some explanation about the energy𝑊

𝑠𝑜𝑙𝑣
function term.

With SolSpace simulations, are modified based on transfer-free energy (TFE). TFE𝑊
𝑠𝑜𝑙𝑣

is the free energy cost of moving a molecule from one solution to another (Fig. 1.4)86.
TFEs are calculated per amino acid surface area exposed to the solution. Thus, changes
in solution might make one conformation less favorable than another, shifting the
structural biases within IDR ensembles (Fig. 1.4). To account for this effect, the solvent
accessible surface area (SASA) for each conformation of an IDR needs to be calculated,
and the transfer free energy calculated by55 :∆𝐺

𝑡𝑟

(1.5)∆𝐺
𝑡𝑟

=
𝑖=1

𝑁
𝑅𝐺

∑ α
𝑖
∆𝑔

𝑖

Here, is the total number of IDR amino acids. Solvation groups represent the type of𝑁
𝑅𝐺

amino acid side chain or the backbone units which all have the same transfer-free
energy. is the total surface area of the IDR solvation group i. is the group transferα

𝑖
∆𝑔

𝑖
free energy per surface area in the solvation group i. The values of for all amino acid∆𝑔

𝑖
side chains and backbone in some solvents have been previously measured
experimentally86,87.

https://paperpile.com/c/wsHyXk/40uJ+zMDx
https://paperpile.com/c/wsHyXk/u1fOW
https://paperpile.com/c/wsHyXk/MuqD
https://paperpile.com/c/wsHyXk/x6heO
https://paperpile.com/c/wsHyXk/OrbtN
https://paperpile.com/c/wsHyXk/gBeiO+x6heO
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Figure 1.4. IDR may adopt different conformations in different solutions. TFE is the free energy
change when the protein is moved from Solution A to Solution B.

To simulate transferring an IDR between different solution conditions, we need to
eliminate the effect of conformational change and set up a reference point for the TFE
calculation. Therefore, we defined the maximum possible TFE (MTFE) of the IDR
corresponding to the TFE of the most extended IDR conformation. MTFE is calculated
analytically for a given sequence using the following formula:

(1.6)𝑊
𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 =

𝑖=1

𝑁
𝑆𝐺

∑ (𝑛
𝑖
∆𝑔

𝑖
+ 𝑛

𝑖
θ

𝑖
∆𝑔

𝐵𝐵
)

Here, represents the number of amino acid side chain groups. is the element𝑁
𝑆𝐺

𝑛
𝑖

number in the i th side-chain group. is the group transfer energy of the i th side-chain∆𝑔
𝑖

group to a given solution. is the group transfer energy of the backbone. is the∆𝑔
𝐵𝐵

θ
𝑖

correction factor that responds to the backbone SASA fraction of different amino acids.
For example, glycine does not have a sidechain, so it will have while . Forθ = 1 ∆𝑔

𝑖
= 0

phenylalanine is around 0.6. For a given sequence, MTFE represents for theθ 𝑊
𝑠𝑜𝑙𝑣

most expanded conformation of the chain. This maximally expanded conformation does
not change regardless of the solute identity, and so altering by a certain𝑊

𝑠𝑜𝑙𝑣
𝑚𝑎𝑥

percentage difference corresponds to a change in IDP: solution interactions. This is
measured by

(1.7)ψ =
𝑊

𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − 𝑊

𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 (𝑤𝑎𝑡𝑒𝑟)

𝑊
𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 (𝑤𝑎𝑡𝑒𝑟)

 ×100%
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If , the model solution is attractive to the IDR compared to the buffer condition. Ifψ > 0
, the model solution is repulsive to the IDR compared to the buffer condition. Usingψ < 0

our model solution condition, we can observe IDR behavior in different solution
conditions and compare solution sensitivity across IDR sequences.

In the upcoming chapters, I will utilize SolSpace simulations to analyze over 170
sequences across seven different solution conditions. This extensive dataset will enable
us to explore the correlation and relationship between IDR sequences, their ensemble
structures, and their environmental responses. Chapter 2 focuses on using this
simulation data to characterize IDR solution response, specifically how IDR dimensions
(Rg/Ree) vary with changes in solution conditions. Chapter 3 will delve into the connection
between solution sensitivity and IDR entropic force strength, again using SolSpace
simulations for analysis. Finally, in Chapter 4, the emphasis will be on leveraging these
insights from SolSpace simulations to advance the design of IDR biosensors.
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Abstract
Intrinsically disordered protein regions (IDRs) make up roughly 30% of the human
proteome and are central to a wide range of biological processes. Given a lack of
persistent tertiary structure, all residues in IDRs are, to some extent, solvent-exposed.
This extensive surface area, coupled with the absence of strong intramolecular contacts,
makes IDRs inherently sensitive to their chemical environment. We report a combined
experimental, computational, and analytical framework for high-throughput
characterization of IDR sensitivity. Our framework reveals that IDRs can expand or
compact in response to changes in their solution environment. Importantly, the direction
and magnitude of conformational change depend on both protein sequence and cosolute
identity. For example, some solutes such as short polyethylene glycol chains exert an
expanding effect on some IDRs and a compacting effect on others. Despite this complex
behavior, we can rationally interpret IDR responsiveness to solution composition
changes using relatively simple polymer models. Our results imply that
solution-responsive IDRs are ubiquitous and can provide an additional layer of regulation
to biological systems.
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Introduction
Intrinsically disordered proteins and protein regions (IDRs) play key roles in mediating
cellular signaling, transcriptional regulation, and homeostatic functions1. IDRs differ from
well-folded proteins in that they exist in an ensemble of rapidly changing configurations
(Fig. 2.1A). This conformational ensemble is often tied to IDR function2–4. IDR
ensembles have extensive surface area exposed to the surrounding solution, and few
non-covalent intramolecular bonds that constrain their structure. As such, IDR
ensembles are highly malleable and can be strongly affected by the chemistry of their
surrounding environment5. Inside the cell, the chemical composition can change due to
routine cell-cycle events or external stress6–10. The plasticity of IDR ensembles makes
them ideal sensors and actuators of these changes11–13, but perhaps also impairs their
activity in deleterious environments such as metabolically rewired cancer cells14. Still,
little effort has been directed at systematically characterizing IDR sensitivity to solution
changes.
The effects of solution chemical changes on protein structure can be likened to a
“tug-of-war” between intra-protein interactions and interactions between protein moieties
and the surrounding solution. This tug-of-war is a balance that can be shifted by
changes to sequence (mutations or post-translational modifications)15,16, but also by
changes in the physical-chemical composition of the intracellular environment9,14. While
the sensitivity of IDRs to solution composition has been discussed13,17,18, it has not been
systematically characterized. Here we set out to systematically evaluate the sensitivity of
IDRs to changes in their surrounding environment.

Methods
For the discussion about the experimental and computational methods of this section,
please refer to Appendix A.

Results and Discussion

A high-throughput approach to reveal IDR dimensions using
ensemble FRET

We use “solution space” scanning to characterize IDR sensitivity to solution composition
changes. This is analogous to “sequence space” scanning, but uses different chemical
environments instead of sequence mutations to probe protein behavior. To scan IDRs in
solution space at high throughput, we developed a protocol that leverages ensemble
FRET to report on changes in the average distance between their termini. We use a
protein construct comprising an IDR of interest sandwiched between two fluorescent
proteins (FPs) that together form a Fӧrster resonance energy transfer (FRET) pair (Fig.
2.1A). The FPs selected were mTurquoise219 (donor) and mNeonGreen20 (acceptor)21,22.
We chose four IDRs whose ensembles play functional roles: the 61-residue N-terminal
transactivation domain of p53 (p53)4; the 34-residue BH3 domain of apoptosis regulating
protein PUMA (PUMA)3; the 83-residue C-terminal domain of the yeast transcription
factor Ash1 (Ash1)23; the 40-residue N-terminal domain of the adenoviral hub protein
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E1A (E1A)24. For each of these constructs the FRET efficiency, , was determined as
described in Appendix A1.5.
To derive changes in IDR dimensions from we began by measuring a series of
Gly-Ser (GS) repeats in our FRET backbone to generate a length-dependent point of
reference. for these constructs scales linearly with GS repeats as expected (Fig.
2.1B, and see Appendix A1.6), allowing us to interpolate for a GS linker of a given
length to create a ratio :

(2.1)

where is the end-to-end distance between donor and acceptor FPs obtained from
as described in Appendix A1.7, and the superscript or refers to a specific IDR
sequence or a GS linker of the equivalent length, respectively. Thus, a negative value
indicates the chain is more compact, while a positive value indicates it is more
expanded, than a GS linker of the equivalent length. Conveniently, allows us to plot
IDRs of different lengths on the same axes. Our calculations of in neat buffer (i.e. in
buffer without additional co-solutes) for different FRET constructs reveal a range of
behaviors, with Ash1 and p53 having more expanded, and PUMA and E1A more
compact, ensembles (Fig. 2.1C).

Figure 2.1. (A) Fluorescence spectra normalized to donor peak intensity of a FRET construct in
compacting (red), buffer (black), and expanding (blue) solutions. Cyan and green areas are base
spectra of donor and acceptor FPs, respectively. Inset shows single configurations for various
degrees of expansion. (B) FRET efficiency of Gly-Ser repeat linkers vs. number of residues (N) in
a buffer solution. UT is a solution of untethered, equimolar donor and acceptor. Dashed line
shows linear fit of the data. (C) Calculated for FRET constructs in buffer determined by
experiment (average of four repeats with 6 replicates each) and simulation (average of five
repeats). Error bars are SD of all replicates/repeats.

https://paperpile.com/c/Os6CUO/y4TJ
https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi%3D%5Cfrac%7BR_%7Be%7D%5E%7Bi%7D%7D%7BR_%7Be%7D%5E%7BGS%7D%7D-1#0
https://www.codecogs.com/eqnedit.php?latex=R_%7Be%7D#0
https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=GS#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0


24

IDR ensemble dimensions are sensitive to solution composition and
protein sequence, but not to length

We next investigate how IDR dimensions change in different chemical environments.
The solutions we use are not representative of the cellular environment. Instead,
solutions containing osmolytes, polymeric crowders, polyols, free amino acids,
denaturants and salts probe IDR structure by “pushing” or “pulling” against the
attractions or repulsions of intra-protein interactions. We calculated for each
combination of IDR/solution as described in Appendix A1.7. The resulting changes in
reveal a distinctive solution-space "fingerprint" for each IDR (Fig. 2.2A) and highlight that
different sequences have different sensitivities to the same solute25,26. This is in sharp
contrast to the sensitivity of GS linkers, which all display a similar fingerprint regardless
of length (Fig. A1).

Focusing on several solute archetypes reveals interesting trends (Fig. 2.2B). Short
polyethylene glycol (PEG) chains, such as PEG200, display disparate effects on different
sequences, causing only Ash1 to compact, and the rest to expand, in line with other
observations27. Larger polymers such as PEG2000 and Ficoll appear to compact the
dimensions of all IDRs as shown for other disordered proteins28, with a
sequence-dependent magnitude that is stronger for Ash1 and PUMA as previously
reported29. Smaller solutes like sarcosine and tricine also reveal a linear expanding or
compacting effect, but show that different proteins expand or compact by different
magnitudes under the same solution. Salts like NaCl display a characteristic
non-monotonic effect, as described previously8,30,31. In ionic solutes, the initial expansion
likely stems from screening of attractive electrostatic interactions that may in fact arise
not only from the IDR chain but also from the FP tags, as indicated by the effect on
uncharged GS linkers (Fig. A1), while the compaction trend stems from specific ion
effects, and differs between protein types32. Overall, the picture that emerges is that
different solution environments affect IDRs in a way that strongly depends on sequence
composition and arrangement, but much less on length. The full dataset is available in
Tables S1-S2 mentioned in Appendix A.
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Figure 2.2. (A) Solution space scans of IDRs. Each data point shows the average vs.
concentration of a specific solute for each protein taken from two repeats. Vertical grey bars show
spread of data, and are often too small to see. Proteins vary down columns, and solutes across
rows. Background color represents the sensitivity of change to solute addition: stronger colors
imply higher sensitivity, red hues indicate compaction, and blue hues indicate expansion. Purple
background indicates non-monotonic behavior. (B) Differential response of IDRs to individual
solutes. Each panel point shows vs. concentration from two
repeats of a specific solute for several different constructs. Vertical lines are the spread of the
data.

IDR dimensions in neat buffer predict sensitivity to solution changes

To see how sensitivities play out in a larger range of IDRs, we turn to all-atom
simulations. We use the ABSINTH forcefield that has previously been shown to
reproduce experimentally measured IDR ensembles (see Appendix A Section
2.1)23,33–35. To maintain connection with experiments, we start by simulating GS linkers of
various lengths (Fig. A2), and use ensemble-averaged to calculate for simulated
IDRs according to Eq. 2.1. The simulation-derived for the four different proteins used
in our experiments qualitatively agrees with our FRET experiments, aside from Ash1
which is significantly more expanded in simulations than our FRET experiments show
(Fig. 2.1C). It is important to note that the absence of FPs in these simulations dictates
that the value of is necessarily different between experiment and simulations, and a
quantitative match is not expected.
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Figure 2.3. All-atom simulations of IDR sensitivity to solutions. (A) Heatmap of protein sensitivity
and molecular features. Protein identity varies from top to bottom across cells, and molecular
features vary left to right. Colormaps are shown for each molecular feature. (B) The magnitude

in attractive (blue) or repulsive (red) solutions as a function of in aqueous solution for each
protein in (A). Darker points represent proteins shows in Fig. 2.1C. Error bars calculated from SD
of 5 repeats. 70 points are plotted in each condition. All data available in Table S3.

We next wanted to see how other naturally occurring disordered sequences would
respond to different solution conditions. We have previously designed and calibrated an
approach to perform computational solution space scanning with ABSINTH12. We
selected 70 experimentally identified IDRs36, and used our computational solution space
scanning approach to change interactions between the solvent and the backbone of
these proteins, akin to the effect of osmolytes and denaturants37–39 (data in Table S3).
We quantified the sensitivity of the protein to compacting or expanding solutions based
on the extent of change in (Fig. A3). The dataset is sorted from compact to expanded
(negative to positive ) in Fig. 2.3A and shows little correlation with many
sequence-based parameters, but relatively strong correlation with the change

in solutions that cause the sequence to compact
(repulsive solutions) or expand (attractive solutions). We refer to this value as the
“solution sensitivity” of the protein. We plot the solution sensitivity , , vs. protein
dimensions in buffer, , in Fig. 2.3B. As expected from Fig. 2.3A, sequences with a
negative have a larger tendency to expand, but a limited ability to compact, and vice
versa for positive . Remarkably, both compaction and expansion show the same
dependence on , even at different solution interaction strengths (see Fig. A4).
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Predicting the extent of solution sensitivity in intrinsically disordered
chains

To see if the non-monotonic trend shown in Fig. 2.3B can be generalized, we measured
solution-induced expansion and compaction in a lattice-based heteropolymer model
detailed in Appendix A Section 2.2.23,35. We simulated a total of 104 sequences with
lengths ranging from 20 to 100 residues in 11 solution conditions, and quantified and

for each sequence/solution pair (Fig. A5). The trends from all-atom simulations,
re-drawn as a density map in Fig. 2.4A, match the coarse-grained simulations shown in
Fig. 2.4B. A non-monotonic change in is observed, with the inflection point centered
approximately around = 0.0 and a ‘dead zone’ in the center of the plot. For naturally
expanded chains ( → 0.4) solution sensitivity is minimized, while for naturally compact
chains ( → –0.4) a broad distribution of sensitivity is observed with respect to
expansion, while sensitivity through compaction trends to zero.

Based on these results, we developed an analytical homopolymer model to relate
changes in chain-solvent interaction to chain dimensions (see Appendix A Section 2.3).
Using this model we generated chains with a specific value in buffer and perturbed the
chain-solvent interactions, and directly calculated (Fig. 2.4C, Fig. A6). Despite
being a simplified homopolymer model, our analytical expression revealed the same
phenomenological pattern as obtained in our all-atom and coarse-grained simulations.

The -dependence of the chain-solvent interaction strength is shown in Fig. 2.4D (black
line), which reveals that depends on both the strength of the change in
chain-solvent interaction and the value in an aqueous solution. Our model offers direct
physical intuition as to the origin of the complex relationship between χ and Δχ. Perhaps
most importantly, it implies that while expanded or compact proteins display a wide
range of sensitivities, IDRs where ~ 0 display a basal sensitivity to solution
interactions. In this region, where most IDRs fall40, even small changes to solution
composition are predicted to have a measurable effect on IDR dimensions and/or
residual structure.12

Under the assumption that cosolute-protein interactions scale linearly25,41, we globally fit
our experimental data onto our analytical model leveraging the fact that all experimental
measurements start in the same neat buffer (Fig. 2.4E, Fig. A7). All solution
perturbations can be rationally interpreted as driving sequence-dependent shifts along
the coil-to-globule transition, in which the magnitude of the shift maps directly to
modulation of chain-solvent interactions. The scaling factors required for this mapping
qualitatively mirror known co-solute interaction coefficients, and reveal quantitative
sequence-dependent differences in the solution response (Fig. A8). Chain dimensions
can also be represented using an apparent scaling exponent (νapp) (see Appendix A
Section 2.4)42,43. The solvent-induced changes observed are substantial, and for many
solutes drive changes equal to or greater than changes observed in IDRs due to
mutagenesis35.
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Fig. 2.4 (A-C). Density maps of all-atom simulations shown in Fig, 2.3B (A), PIMMS
coarse-grained simulations (B), and an analytical model (C) for solution sensitivity vs
dimensions in the aqueous buffer . (D) Coil-to-globule transition obtained from an analytical
model (SARC = self-avoiding random coil). is measured as the height of the blue
(contraction) or red (expansion) shaded regions. When the same chain-solvent perturbation (Δsol)
is applied to a 100-residue chain with different starting values, very different are expected.
(E) Projection of experimental data for Ash1 onto the analytical model from (D), with solute
concentrations scaled to the change in mean-field chain-solvent interaction as compared with
neat buffer. The X axis here represents the same units as in panel D but reports on the change in
chain:solvent interaction relative to aqueous solvent, which is set to 0. Chain dimensions are also
shown by their apparent scaling exponent νapp. The mapping of other proteins is shown in Fig.
A7.

In this work, we set out to measure the ability of IDRs to respond to chemical
composition changes in their surrounding solution. Although the solutions used here do
not represent real cellular environments, they reveal that IDR ensembles carry an
inherent, sequence-encoded sensitivity to changes in their chemical environment. This
sensitivity can stem from different molecular features, and as far as we determined
correlates only with the dimensions of the sequence ( ) in the aqueous buffer. IDR
function through conformational selection has been reported for numerous proteins. In
this mechanism, the function is linked to the conformational ensemble of the IDR, directly
linking environment-induced ensemble changes to IDR activity. The most exciting idea
our data suggests is that changes in the chemical composition that commonly occur in
the cell can tune the function (or malfunction) of intrinsically disordered proteins.
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Data Availability
All experimental and computational methods, as well as equations for analytical models
are available in Appendix A. All code and data used to prepare the figures are available
for download from https://github.com/sukeniklab/HiddenSensitivity.
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Chapter 3: Structural Preferences Shape the
Entropic Force of Disordered Protein Ensembles
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Abstract

Intrinsically disordered protein regions (IDRs) make up over 30% of the human proteome
and exist in a dynamic conformational ensemble instead of a native, well-folded
structure. Tethering IDRs to a surface (for example, the surface of a well-folded region of
the same protein) can reduce the number of accessible conformations in these
ensembles. This reduces the ensemble’s conformational entropy, generating an effective
entropic force that pulls away from the point of tethering. Recent experimental work has
shown that this entropic force causes measurable, physiologically relevant changes to
protein function. But how the magnitude of this force depends on the IDR sequence
remains unexplored. Here we use all-atom simulations to analyze how structural
preferences in IDR ensembles contribute to the entropic force they exert upon tethering.
We show that sequence-encoded structural preferences play an important role in
determining the magnitude of this force: compact, spherical ensembles generate an
entropic force that can be several times higher than more extended ensembles. We
further show that changes in the surrounding solution’s chemistry can modulate IDR
entropic force strength. We propose that the entropic force is a sequence-dependent,
environmentally tunable property of terminal IDR sequences.
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Introduction

Intrinsically disordered proteins and protein regions (IDRs) do not have a native
structure. Instead, IDRs exist in a constantly interchanging conformational ensemble that
contains transient and relatively weak intramolecular interactions. These interactions
define the structural preferences and the resulting average shape of the ensemble.
Decades of work have linked the structural preferences of IDRs to their biological
functions1–4.

Unlike well-folded proteins, IDR ensembles have a high conformational entropy. This
conformational entropy can be reduced by covalently linking, or tethering, the IDR
through one of its termini to a surface (Fig. 3.1A). In this case, entropy is reduced due to
the constraint placed upon the ensemble by the surface it is tethered to. As a result,
upon tethering an IDR will try to maximize its conformational entropy by producing an
effective force that pulls up and away from the point of tethering, gaining entropy by
increasing its number of accessible conformations generating an entropic force (Fig.
3.1B)5,6.

This tethering scenario may seem rare when considering naturally occurring proteins,
but it is rather common: in eukaryotes, IDRs are often tethered to a more rigid surface
that constrains the chain’s conformational entropy, and this tethering results in
measurable effects. For example, IDRs tethered to a cell membrane can sense the
curvature of the membrane and help to facilitate the endocytosis process through
entropic force7–10. The same entropic force can also help translocate IDRs through the
bacterial cell wall to the extracellular environment, an essential process for bacterial
infection11,12. An even more prevalent scenario occurs when disordered N- or C-terminal
IDRs are attached to a well-folded protein region (Fig. 3.1A). The entropic force exerted
by such disordered terminal regions can influence protein function, including ligand
binding affinity and thermodynamic stability13,14. These examples suggest that entropic
force may be an important and prevalent mechanism unique to IDRs that mediates
biological function.

To address the dynamics of IDR ensembles, previous studies have successfully applied
analytical polymer models to describe IDR structural preferences (e.g. self-avoiding
random chains and worm-like chains). These models can predict the average properties
of IDR ensembles and have been systematically validated using experimental methods
including small-angle X-ray scattering and single-molecule FRET experiments3,15–21. In
addition, polymer models have been used previously to understand how chains exert an
entropic force. Beyond the steric and chemical features of the monomers, these studies
have implicated the length and the geometry of the constraining surface as major factors
affecting polymer entropic force strength5,6,22.

Thus, previous entropic force studies of IDRs also focused on the role of sequence
length and the geometry of the constraining surface9,11,13. IDR length is indeed a critical
factor in determining entropic force magnitude8,13, since the longer the chain, the higher
the number of conformations available. But is chain length always the most dominant
factor affecting entropic force magnitude? Previous research has shown that, unlike
homopolymers, IDR ensembles have distinct sequence-encoded structural
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preferences17,18,20,23–28. These structural biases affect the average shape occupied by IDR
ensembles29,30, but their role in determining IDR entropic force strength has not been
tested.

To link IDR structural biases with entropic force strength, we use all-atom Monte Carlo
simulations to sample the conformational ensembles of over 90 experimentally validated
IDR sequences. To gauge the magnitude of the entropic force sequences can exert, we
measure the reduction in the number of allowed conformations upon tethering their
ensembles to a flat surface. Our simulations show that the entropic force depends not
only on the length of the IDR but also on its sequence-encoded ensemble shape, with
more compact ensembles exerting a stronger entropic force. To further test this finding,
we alter the dimensions of each ensemble by changing their interaction with the
surrounding solution (while keeping the sequence intact). We show that solution-induced
compaction also increases the entropic force, but only for a subset of the sequences.
Our findings reveal how sequence-encoded intramolecular and protein:solution
interactions combine to modulate the magnitude of the entropic force exerted by
tethered IDR. They also suggest that the entropic force can be tuned by evolution to
exert an optimized effect on full-length proteins.

Methods

Intrinsically disordered protein prediction with AlphaFold database

Systematic evaluations of AlphaFold2 (AF2) previously showed that it is a good predictor
of intrinsically disordered regions31–33. We downloaded the predicted structures of three
different proteomes (Saccharomyces cerevisiae: UP000002311, Arabidopsis thaliana:
UP000006548, Homo sapiens: UP000005640) from the AF2 database version 3.34 The
disorder predictions are obtained from AF2’s pLDDT score. Based on a previous
report31, we used 30 consecutive residues with pLDDT < 50% as an indicator for IDRs.
Detected IDRs are labeled as terminal if they start at the N-terminal or end at the
C-terminal of the protein in the AF2 database.
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Figure 3.1. Dynamic IDR conformational ensemble generates an entropic force (A) IDR
tethered to a well-folded domain. Here, the C-terminal IDR tail of the UDP-glucose
6-dehydrogenase (UGDH) protein is shown in blue (with 5 overlapping conformations to illustrate
the variability in the ensemble) tethered to the main folded domain of the enzyme (in grey).
Structure obtained from Alphafold232. (B) Schematic showing how a constraining surface alters
the conformational entropy of an IDR ensemble. (1) A few representative conformations from an
IDR ensemble (blue) occupy an extended volume. (2) as the ensemble is tethered at the terminal
to a surface (grey), some conformations clash with the surface (colored in red), causing them to
be disallowed and lowering the conformational entropy. (3 and 4) The number of accessible
tethered states ( ) can be regained by “pulling up” against and pinching the surface (arrow). TheΩ

𝑇
ratio between the allowed and total number of conformations for a given ensemble is proportional
to the entropic force strength (see Eq. 3.3). (C) Enhanced conformational sampling. All
conformations of an IDR are aligned along the vector AB connecting the first two atoms. The𝐶

α
distance d between the constraining surface Sc and point A is varied to represent tether flexibility.
The angle between vector AB and the constraint surface, , is varied to represent one degree ofθ
rotation for the ensemble, and a second angle, , represents the rotation angle along the ABϕ
vector.

All-atom Monte-Carlo simulation

All IDRs were simulated with the ABSINTH implicit solvent force field using the
CAMPARI simulation suite v2_09052017.35 We chose the ABSINTH forcefield and the
CAMPARI simulation suite because of their extensive benchmarking and their
computational efficiency, allowing us to simulate sequences that are 30-100 residues
long in 2-4 days on a single processor. The example parameter file and simulation
settings are provided in the GitHub repository. Simulations were conducted at 310 K with
107 steps of equilibration. After calibration, production conformations were written every
12,500 steps. For each IDR, we performed five independent simulations with ~5,600
individual conformations in each repeat. This leads to a total of ~28,000 conformations
for each IDR (details in Table S1 in Appendix B). For PUMA scrambles, we performed
three individual repeats, leading to ~16,800 conformations.
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Calculation of ensemble properties

Normalized end-to-end distance. The end-to-end distance of polymers can be𝑅
𝑒𝑒

calculated based on the number of residues in the chain (N) using 17 The𝑅
𝑒𝑒

=  𝑅
0
𝑁ν.

scaling law can have a range of fractional values. Specifically, for expandedν ν =  0. 59
chains, for ideal (or -state) polymers, and for collapsed/compactedν =  0. 5 θ ν =  0. 33
polymers17,36. For homopolymers, the prefactor is constant and depends on the𝑅

0
segment length of the monomer17,37. Seven glycine-serine dipeptide repeat (GS-repeats)
sequences with 8, 16, 24, 32, 40, 48, and 64 GS segments were simulated and analyzed
as described above with five individual repeats. We use GS-repeats because it
maintains a consistent, experimentally validated point of reference for the entire dataset.
The GS-repeat data were fitted using Scipy curve_fit function to the power law𝑅

𝑒𝑒
equation above (Fig. B1). The results of the fit gave a prefactor and𝑅

0
= 0. 55 ± 0. 06

an exponent for GS repeats, demonstrating ideal polymer behavior.ν =  0. 48±0. 03
This is in agreement with the previous experimental data38,39. We use this fitted curve to
normalize IDR for comparison across IDRs of different lengths. We interpolate and𝑅

𝑒𝑒
extrapolate corresponding GS-repeats based on the length of the IDR of interest.𝑅

𝑒𝑒
We calculate the normalized using the following equation.𝑅

𝑒𝑒

(3.1).𝑅
𝑒𝑒

=  
𝑅

𝑒𝑒

𝑅
𝑒𝑒
𝐺𝑆 − 1

Here, is the normalized end-to-end distance, is the end-to-end distance of the𝑅
𝑒𝑒

𝑅
𝑒𝑒

target IDR, and is the calculated end-to-end distance of a GS-repeat sequence of𝑅
𝑒𝑒
𝐺𝑆

the same length as the target IDR (obtained from the fit shown in Fig. B1).

Asphericity. IDR ensemble properties were analyzed using the MDtraj python library40.
was calculated between the of the first and last residue of the IDR. Helicity was𝑅

𝑒𝑒
𝐶

α
calculated using the DSSP algorithm integrated into MDtraj41. Asphericity was calculated
using the gyration tensor of the simulated IDR ensemble as described previously42–44.

(3.2).δ =  1 − 3
λ

1
λ

2
+ λ

2
λ

3
 + λ

3
λ

1

(λ
1
+λ

2
+λ

3
)2( )

Here, is the asphericity, and are the three principal moments of the gyrationδ λ
1, 2, 3

tensor. The standard deviation of all these properties was calculated based on the
averages from the five independent repeats. Analysis scripts are available at the
accompanying GitHub repository at https://github.com/sukeniklab/Entropic_Force.
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Entropy analysis

To calculate the effect of tethering on IDR conformational entropy we count the number
of allowed conformations in the ensemble upon tethering (Fig. 3.1B). To do this, we first
tether each conformation of each simulated IDR ensemble to a single point on a flat
surface and then calculate the number of allowed conformations from the totalΩ

𝑇
number of conformations in the simulated ensemble . Tethering is done relative to theΩ

𝑈
first, second, and third coordinates of each conformation, labeled here as A, B, C𝐶

α
(Fig. 3.1C). For each conformation, we move A to the origin of the coordinate system.
We plot the constraint surface, perpendicular to the surface containing atoms A, B,𝑆

𝑐
,

and C.

Enhanced sampling. In order to better understand the spatial relationship between the
ensemble and the constraining surface, we perform several geometric transformations
on each sampled conformation for calculating : (1) To account for the possibility ofΩ

𝑇
stretching at the point of tethering, we vary the distance between point A and . (2) To𝑑 𝑆

𝑐
account for the possibility of rotation around the point of tethering, we vary the half-angle
formed between the norm vector to with vector AB. (3) We rotate the vector AB withθ 𝑆

𝑐
an angle . All the coordinates specified here are illustrated in Fig. 3.1C. In total, weϕ
make 36 transformations (3 values for , 3 values for , and 6 values for ) for each𝑑 θ ϕ
conformation of each simulated ensemble.

Entropy calculation. We consider the interaction between IDR and the constraint
surface as a hard sphere interaction. Accessible conformations are defined as those with
no that is positioned below the constraining surface. We use the dot product between𝐶

α
the norm vector of and the coordinate of to calculate and determine the relative𝑆

𝑐
𝐶

α
position of the to the surface . We then count the number of all accessible𝐶

α
𝑆

𝑐
conformations in the tethered, original ensemble and all , , and permutations.𝑑 θ ϕ
Finally, we sum the number of accessible states from these perturbations and calculate
the entropic force strength. The entropic force is then given by:13

(3.3).Δ𝑆 = 𝑘
𝐵

𝑙𝑛(Ω
𝑇
/Ω

𝑈
)

Here is the Boltzmann constant, is the total number of possible IDR conformations𝑘
𝐵

 Ω
𝑇

when the ensemble is tethered to a surface and is the total number of conformationsΩ
𝑈

sampled for the same IDR ensemble when untethered. The entropic force strength is
proportional to the . The transformation and analysis scripts are provided as JupyterΔ𝑆
notebooks at https://github.com/sukeniklab/Entropic_Force.

Ensemble XZ-projections. For each IDR conformation, we move A to the origin of the
coordinate system and rotate the conformation to make AB fall on the Z-axis (Z>0).
XZ-coordinate of each will provide an ensemble projection of IDR ensemble on the XZ𝐶

α
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plane. The density was normalized by the number of amino acids in the sequence,𝐶
α

the frame number of trajectories, and the bin size.

Solution Space Scanning simulations

Solution space scanning simulations are conducted as described previously23,35,45.
Briefly, we modify the effective Hamiltonian of the ABSINTH force field to alter protein
backbone:solvent interactions. The ABSINTH Hamiltonian is a sum of four energy terms:

(3.4).𝐸
𝑡𝑜𝑡𝑎𝑙

=  𝑊
𝑠𝑜𝑙𝑣

+ 𝑈
𝐿𝐽

+ 𝑊
𝑒𝑙

+ 𝑈
𝑐𝑜𝑟𝑟

, , and represent Lennard-Jones (LJ) potential, electrostatic interaction, and𝑈
𝐿𝐽

𝑊
𝑒𝑙

𝑈
𝑐𝑜𝑟𝑟

torsional correction terms for dihedral angles. is the solvation free-energy and𝑊
𝑠𝑜𝑙𝑣

 
equal to the transfer free energy between vacuum and diluted aqueous solution.
Changing the free energy term such that results in a change in the protein:solvent𝑊

𝑠𝑜𝑙𝑣
 

relative interaction strength, defined by

(3.5).
𝑊

𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − 𝑊

𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 (𝑤𝑎𝑡𝑒𝑟)

𝑊
𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 (𝑤𝑎𝑡𝑒𝑟)

 ×100%

is the solvation free-energy calculated based on fully extended protein𝑊
𝑠𝑜𝑙𝑣
𝑚𝑎𝑥

conformation in different solution conditions. Negative values of protein:solvent
interaction represent solutions that are attractive to the protein backbone, such as urea
solutions, while positive values represent solutions that are repulsive to the protein
backbone, such as those containing protective osmolytes. A value of 0 represents a
buffered, aqueous solution with no cosolutes. We simulated seven different solution
conditions for each IDR with a protein:solvent relative interaction strength ranging from
+3% (equivalent roughly to 1 M TMAO) to -3% (equivalent roughly to 1.5 M Urea)45. It is
important to note, however, that even the most attractive solutions used here are not
sufficient to unfold well-folded protein domains. We use the same temperature and
sampling method for each solution condition as we do for aqueous solutions. The
simulation averages of ensemble properties and entropic force in all solution conditions,
as well as sequence details, are reported for all IDRs in Table S1 in Appendix B.

Limitations and drawbacks of entropic force calculations

In our calculations, we completely neglect any interactions between the IDR and the
surface other than steric, hard-core repulsions. We also assume that the constraining
surface is completely flat. In the context of an actual, full-length protein, constraining
surfaces will have distinct chemical moieties, including hydrophobic, polar, and charged
residues. Specific surface chemistries will introduce an enthalpic component to the free
energy change upon IDR tethering which can alter, and sometimes completely reverse,
the force induced by tethering. These effects are very important as shown in several
cases, especially when charges are introduced8,46,47.
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Another limitation is that the constraint surface we use is fixed, flat, and does not change
over time. The surface of folded domains displays irregular shapes, fluctuations and
motions that may change the number of allowed conformations or change the overall
entropy of the entire system which we didn’t consider here. Indeed, some of the solution
chemistry changes we use in this work may also act to alter these fluctuations.

To mitigate these limitations, we stress that the entire dataset was obtained using the
same methods and analysis, and compared against the same GS-repeat benchmarks.
This self-consistency is what allows us to probe the role of the ensemble itself on the
entropic force, all other factors being held constant.

Results and Discussion

The human proteome is rich in disordered terminal sequences

We define terminal IDRs as those that exist at the N or C termini of proteins, and reason
that with one free end, such IDRs can exert an entropic force against the more rigid,
folded protein domain to which they are connected (Fig. 3.1A). To see if terminal IDRs
are common in proteomes, we tested their prevalence in the yeast, arabidopsis, and
human proteomes. using the AlphaFold Protein Structure Database v3 48 (Fig. 3.2A).
The confidence score of AlphaFold2 (pLDDT) has been previously shown to be a good
indicator of potential disordered regions31 and so was used to identify disordered regions
in the three proteomes. A protein segment was marked as disordered when it had more
than 30 consecutive residues with a ‘very low’ pLDDT score (< 50%). For the proteomes
we tested, over 40% of proteins have at least one disordered segment, in line with
previous studies49 (Fig. 3.2A, left). In the human proteome specifically, over half of the
proteins that contain IDRs have at least one at either the N- or C terminal (Fig. 3.2A,
right). This result indicates that terminal-tethered IDRs exist widely in eukaryotes and
that the entropic force scenario described above can occur in many proteins.

Based on past work, we reasoned that length is a factor that contributes strongly to the
entropic force mechanism in these IDRs8,13. We therefore wanted to test if there is a
significant difference in the length distribution of terminal vs. non-terminal IDRs50,51. Our
analysis reveals that the length distribution is roughly the same between the terminal and
non-terminal IDRs (Fig. 3.2B).



42

Figure 3.2. Entropic force may be a widely existing IDR function mechanism in the
proteome. (A) The percentage of proteins that have a terminal IDR in the yeast, arabidopsis, or
human proteomes. (B) Distribution of the number of amino acids in the IDRs of the human
proteome.

An IDR simulation database reveals structural diversity

With IDR sequence length being roughly the same in both terminal and non-terminal
sequences, we turned our attention to the structural preferences of their ensemble.
Ensemble average end-to-end distance ( ) has been widely used to quantify the global𝑅

𝑒𝑒
dimensions and the internal structure of dynamic IDR conformational ensembles17,18.
Since ensemble dimensions cannot be accurately predicted from the sequence, we used
the ABSINTH forcefield to gain an atomic-level simulation of over 90 IDR ensembles.
Most of these sequences are experimentally validated IDR sequences from the DisProt
database52 (Table S1 in Appendix B). These sequences have a diverse distribution of
properties including the length, fraction of charged residues (FCR), and net charge per
residue (NCPR) (Fig. 3.3A-C).

Simulations reveal a large distribution of (sometimes more than a factor of 2 for𝑅
𝑒𝑒

sequences with the same number of amino acids), indicating distinct structural
preferences in these sequences. To compare different IDRs of various lengths across
the proteome, we use Gly-Ser repeat peptides (GS-repeats) as a homopolymer
point-of-reference. It has been shown experimentally that GS-repeats have a similar
ensemble to an ideal homopolymer (a polymer where scales as )17,36,53. We𝑅

𝑒𝑒
𝑁0.5

simulated several different lengths of GS-repeat sequences using the ABSINTH
forcefield. Our simulation data shows of GS-repeats follows a scaling law with an𝑅

𝑒𝑒
exponent of 0.48 ± 0.03 (Fig. B1), which matches previously reported experimental
results38. Our analysis shows that a large majority of the sequences measured deviate
from the GS-repeat line (Fig. 3.3D).
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Figure 3.3. IDR simulation database shows diverse sequence properties and structural
preferences. (A) The sequence length distribution of the IDR simulation database. (B) The
fraction of charged residues (FCR) distribution of the IDR simulation database. (C) The net
charge per residue (NCPR) distribution of the IDR simulation database. (D) End-to-end distance
vs the number of residues for each simulated IDR. Error bars are calculated from five
independent simulations of the same sequence. GS-repeat simulations are shown in red. The red
curve is a power law fit of the GS-repeat data (see also Fig. B1). The green curve is the 𝑅

𝑒𝑒
prediction of the GS-repeats with an exponent of 0.59 and the purple curve is the prediction of the
GS-repeats with an exponent of 0.33, which represents the limits of an extended and compact
homopolymer36.

Quantifying the entropic force of disordered ensembles using
enhanced sampling

We next wanted to probe if these structural preferences alter the magnitude of the
entropic force these sequences exert. To assess how ensemble structural preferences
change the entropic force, we quantified the change in IDR conformational entropy upon
tethering the simulated ensemble to a flat surface and the change in allowed
conformations/accessible states (as described in Methods and in Eq. 3.3). The change
in conformational entropy upon tethering, , is directly correlated to the magnitudeΔ𝑆/𝑘

𝐵
of the entropic force (Fig. 3.1B).
To obtain the number of allowed conformations in the tethered state, , we tethered ourΩ

𝑇
simulated IDR conformational ensemble to a flat surface through the N-terminal .𝐶

𝑎
Beyond the conformations included in the ensemble, the geometry of the tethering point
can also affect the magnitude of . To account for this, we introduced an enhancedΔ𝑆/𝑘

𝐵
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sampling method to vary tethering configurations and measure the entropic force at
various ensemble orientations relative to the tethered surface (Fig. 3.1C, Methods).
With these variations, we generate additional conformations and plot an accessible state
heatmap to visualize the number of allowed conformations in each orientation (Fig.
3.4A). To obtain a measure of the entropic force that will be comparable between all
sequences, we sum the number of allowed conformations in all different orientations to
provide a single entropic force strength for each sequence (Fig. 3.4B).

Validation of the entropic force calculation using experimental data

Several studies have highlighted the importance of IDR length on the entropic force it
exerts9,11. A recent study by Keul et al. demonstrated that the length of a terminal IDR tail
was the only factor determining its functional effect on the folded enzyme to which it was
tethered13. The study focused on the C-terminal IDR of a key glycolytic enzyme, UDP
glucose 6-dehydrogenase (UGDH). The study showed that the C-terminal IDR acts,
through the entropic force it exerts, as an allosteric switch that alters the affinity of the
protein to its allosteric feedback inhibitor UDP-xylose. The authors discovered that the
entropic force (and the measured binding affinity) depend solely on the length of the
terminal IDR, and not on its amino acid composition or sequence (Table S1). As a test of
our method, we wanted to see if this length-dependent behavior for the UGDH IDR
sequence is reproduced in our simulations.

The homopolymeric GS-repeat entropic force was fitted to an exponential decay
function, indicating it is solely determined by the sequence length5. In agreement with
Kuel et al.’s observations, UGDH-derived sequences of different lengths also fell on the
same line as the GS-repeats (Fig. 3.4B). This indicates that the terminal UGDH IDR has
entropic force strength similar to that of a homopolymer. However, UGDH might be a
special case resulting from the specific amino acid composition. Indeed, two other IDR
sequences display significantly different despite having the same number ofΔ𝑆/𝑘

𝐵
residues (Fig. 3.4B). For example, we selected a disordered region of the type II
methyltransferase (M.PvuII, Disprot ID: DP00060r010) from the DisProt database, and
compared it to the C-terminal intracellular region of the mu-type opioid receptor (MOR-1,
Disprot ID: DP00974r002). Both sequences are 38 residues long. Despite this, the
C-terminal region of the MOR-1 has half as many accessible states as M.Pvull when
tethered to a constraining surface, generating a stronger entropic force (Fig. 3.4B).

Is the magnitude of the entropic force dependent on amino acid composition alone, or on
the sequence of the IDR? To answer this question, we generated a library of scrambled
sequences of a naturally occurring sequence, the BH3 IDR domain of the
p53-upregulated modulator of apoptosis (PUMA)54 (Fig. 3.4C). Despite having the same
sequence length and same amino acid composition, scrambles of the PUMA sequence
demonstrated a significant difference in entropic force strength. The maximum entropic
force of PUMA scrambles is more than two times the minimum force. We observed that
scrambled sequences can exert both a stronger and a weaker entropic force upon
tethering compared to the wild-type sequence. This result suggests that the order of
amino acids in an IDR sequence, and not just amino acid composition, plays a vital role
in determining entropic force strength (Fig. 3.4C).
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Overall, our simulations recapitulated experimental observables that implicate IDR length
as a key factor affecting IDR entropic force but also highlighted the role of amino acid
composition and sequence in the magnitude of this force.

Figure 3.4. The role of IDR sequence length in determining entropic force strength. (A) The
variables and are varied discreetly to assess the number of allowed states for the𝑑 θ Ω

𝑇
ensemble when tethered to the constraint surface. The color in each position on the grid
represents the number of allowed states from 6 different values. The total number ofΩ

𝑇
ϕ

accessible states is used to calculate the entropic force strength for each construct. (B)
Sequence length determines the entropic force strength of homopolymer-like IDRs. Red curve: an
exponential fit of the GS-repeats entropic force strength. Grey dots: UGDH segments as
measured in Ref. 13 show a similar entropic force as the equivalent GS-repeat homopolymer. (C)
A histogram of the entropic force of 96 PUMA scramble sequences. The red dashed line shows
the entropic force strength of the same-length GS-repeat sequence.

Systematic analysis of IDR entropic force

We next wanted to understand the role that sequence plays in determining IDR entropic
force. We looked for sequence feature correlations with entropic force but found no
strong correlations with most individual sequence features18,19 (Fig. B2). One exception
was the hydropathy decoration parameter proposed by Mittal and co-workers21, which
showed a strong negative correlation with entropic force (Fig. B2H), though this can be
largely attributed to the length dependence of this metric (Fig. B2I). We therefore
focused our attention on IDR ensemble dimensions, which are encoded in the sequence
but are difficult to predict from structure3,18. We applied our enhanced sampling analysis
to 94 IDR sequences obtained from the DisProt database. We observed IDRs generating
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both higher and lower entropic force compared to GS-repeats, despite having the same
length (Fig. 3.5A).

To ascertain how ensemble dimensions may play a role in determining , we mustΔ𝑆/𝑘
𝐵

first find a way to compare the ensembles of IDRs of various lengths. To do this, we
normalize the average of all IDRs against the of a GS-repeat sequence of the𝑅

𝑒𝑒
𝑅

𝑒𝑒
 

same length to get normalized end-to-end distance (Eq. 3.1, Methods). has a𝑅
𝑒𝑒

𝑅
𝑒𝑒

negative value when the ensemble is more compact than a GS-repeat, and a positive
value when an ensemble is more expanded. We plot for each sequence as aΔ𝑆/𝑘

𝐵
function of this normalized distance in Fig. 3.5B. It is immediately noticeable that the
vertical red line drawn at separates sequences with a higher entropic force𝑅

𝑒𝑒
= 0

(purple markers) from those with a weaker entropic force (green markers). This means
ensembles that are on average more compact than an equivalent GS-repeat (as
indicated by a negative ) tend to generate a stronger entropic force, while more𝑅

𝑒𝑒
expanded ensembles tend to generate a weaker entropic force than equivalent
GS-repeats.

This seemed counterintuitive since our initial thought was that an expanded ensemble
should take up more space and would therefore lose more conformational entropy upon
tethering to the constraint surface. However, a more expanded ensemble will tend to
have a higher persistence length and a more ellipsoid shape55. These properties mean
that the backbone will point away from the tethered surface (because of this longer
persistence length), reducing the number of conformations that will sterically clash with
the surface. To validate this hypothesis, we calculated the average asphericity of the IDR
ensemble42. Similar to , ensembles with low asphericity have a lower entropic force,𝑅

𝑒𝑒
and ensembles with a high asphericity have a stronger entropic force than that of
GS-repeats (Fig. B3, B4). This suggests that a more spherical ensemble tends to have a
higher possibility of clashing with the constraining surface and thus generates a stronger
entropic force, while a more elongated ensemble tends to have less interaction with the
constraining surface. To verify this, we visualized the position of atoms on an XZ𝐶

α
plane that is normal to the constraining surface for several sequences (Fig. 3.5C). This
visualization highlights how spherical ensembles with a low asphericity tend to have
more atoms at or under the constraint surface (located at Z=0) while ellipsoidal
ensembles with a high asphericity tend to expand with a higher atom density above the
constraint surface.

Changes in solution chemistry alter IDR entropic force strength

An alternative way to change ensemble dimensions, and one that does not involve a
change in IDR sequence is to expose IDRs to different solution environments23,45.
Previously, we found that IDRs tend to be more sensitive than folded proteins to changes
in the chemical composition of their surrounding solution. We designed the Solution
Space Scanning method to simulate IDR ensemble structural preferences under
changing solution conditions45. Briefly, the method alters IDR ensembles by tuning the
protein backbone:solvent interactions of the ABSINTH forcefield to be more or less
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repulsive than the value for water (see Methods). Usually, IDRs have a more compact
conformational ensemble in repulsive solutions (e.g. in the presence of an osmolyte or a
more crowded environment). In attractive solutions (e.g. urea or other denaturants),
IDRs have an expanded conformational ensemble. However, this general trend can be
mitigated and sometimes even reversed based on the IDR sequence23,24,45.

Figure 3.5. IDR structural preferences divide between weak and strong entropic force. (A)
Entropic force vs. the number of residues in 94 different IDRs. The black curve is an exponential
fit of GS-repeat data. Each point represents the entropic force of a single sequence calculated
from 5 independent repeats. The color-coding shows the entropic difference between the IDR and
the same-length GS-repeat ( ), with purple (green) markers showing a stronger∆𝑆‾ = Δ𝑆/Δ𝑆𝐺𝑆 − 1
(weaker) entropic force compared to the equivalent GS-repeat. (B) Entropic force vs the
GS-repeat normalized end-to-end distance (see Eq. 3.3). Each marker represents a single𝑅

𝑒𝑒
IDR color-coded as in (A). (C) XZ-projections of density for 3 different IDRs with increasing𝐶

α
asphericity. The constraint plane is normal to Z=0 such that the density at Z>0 will avoid the
surface and the density at Z<0 clashes with the surface (the disallowed region is indicated by the
red color).

To see how solution-induced changes in the ensemble affect entropic force, we used
Solution Space Scanning to simulate the ensemble average of the proteins shown in𝑅

𝑒𝑒
Fig. 3.2B and Fig. 3.5 in five different solution conditions. We observed significant
compaction of the ensemble in the repulsive solution, and the ensemble change is
correlated with protein:solvent interaction strength (Fig. 3.6A). To quantify how Δ𝑆
changes with solution condition change, we use the change in entropic force between
solute and buffer with the following equation:
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(7).ΔΔ𝑆/𝑘
𝐵

=  Δ𝑆/𝑘
𝐵

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − Δ𝑆/𝑘
𝐵

𝑎𝑞𝑢𝑒𝑜𝑢𝑠

Here, represents the change in the entropic force in different protein:solventΔΔ𝑆/𝑘
𝐵

interactions. We calculate the entropic force change between the buffer/aqueous
condition and other solution conditions. Our analysis shows that, on average, IDRs will
generate a stronger entropic force when their ensemble is compacted due to the
presence of a repulsive solution (Fig. 3.6B). This result strengthens our conclusion that
compact IDR ensembles tend to exert a larger entropic force than extended ensembles.

Figure 3.6 Solution conditions alter IDR entropic force. (A) End-to-end distance for UGDH-fl
as a function of backbone:solvent interactions. The blow-up ensembles show representative
conformations in attractive, neutral (aqueous), and repulsive solutions. (B) Box plot showing the
change in entropic force due to change in protein backbone:solvent interactions. Boxes show the
median as a central line, the median 50% as the box limits, and the median 90% of the data as
the whiskers. Individual sequences are shown as points overlaid on each box. (C) Solution
sensitivity of three IDR ensembles. Solution sensitivity is quantified using relative compared to𝑅

𝑒𝑒
the of the same IDR in the neutral (aqueous) solution. (D) The change in entropic force due to𝑅

𝑒𝑒
solution condition changes for the three IDR ensembles.

However, not every IDR is sensitive to solution condition changes. We observed that
some IDRs do not have a significant entropic force change, despite significant changes
in their ensemble (Fig. 3.6C, D). For example, M.PvuII displays a significant change in
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, but almost no change in entropic force (Fig. 3.6C). On the other hand, the ensemble𝑅
𝑒𝑒

of the IDR of the regulator of nonsense transcripts 2 (hUpf2, Disprot ID: DP00949r013) is
very sensitive to solution changes, and changes accordingly. This suggests thatΔ𝑆/𝑘

𝐵
solution-driven changes in entropic force response are highly sequence-dependent.
Different sequences encode diverse structural ensembles that in turn influence IDR
environmental response. Interestingly, the UGDH IDR has a low sensitivity of entropic
force despite its high sensitivity ensemble. Considering UGDH performs an allosteric
function through its entropic force, this indicates some sequences may evolve to
generate a stable entropic force for performing their function. This has been previously
proposed as a general property of proline-rich domains in the Wnt signaling pathway56.

Conclusions

Here we report on a computational method to quantify the conformational entropic force
of tethered IDRs using all-atom Monte Carlo simulations. Compared to coarse-grained or
analytical models, this method offers an accurate, quantitative metric of how IDR
entropic force is determined by sequence-encoded conformational ensemble
preferences. Our method is compared against and qualitatively matches previously
published experimental measurements of entropic force (Fig. 3.4B). Our results also
support the current literature and highlight that IDR sequence length is indeed a key
factor in the entropic force it exerts (Fig. 3.4B). Despite its drawbacks and limitations
(see the section in Methods), our method offers an accessible description of the entropic
force which is computationally easy to calculate and a self-consistent dataset from which
to draw conclusions linking between IDR sequence and entropic force.

Our simulations show that there is more to the story of entropic force than just the length
of the sequence. We reveal that IDR structural preferences can determine the magnitude
of entropic force strength. We show that the structural preferences of IDR ensembles are
encoded not just in amino acid composition but also in their arrangement in the
sequence, which can be an important factor in determining entropic force strength.
Perhaps counterintuitively, we find that more expanded IDR ensembles can extract a
weaker entropic force than more compact IDR ensembles when tethered to a flat surface
(Fig. 3.5A, 3.5B, B4).

We also show that the entropic force exerted by an IDR can change when the
surrounding chemical environment changes. By modulating protein backbone:solvent
interactions, we altered IDR ensembles and showed that the entropic force magnitude of
most IDRs increased as their ensembles became more compact, validating the trend
shown for different sequences (Fig. 3.6B). This result also suggests the possibility of
manipulating IDR entropic force by altering the physical-chemical composition of the
cellular environment 23,24,57.

Since the dimensional properties of IDR sequences are sequence-encoded58, we
propose that some sequences have evolved to exert an outsized entropic force on the
protein they are tethered to, while other sequences have evolved to exert a weak force.
Our study further suggests that this entropic force can be modulated by
post-translational modifications, binding of small molecules or other proteins59, and
changes in the cellular environment that are known to alter IDR ensembles1,2,24,60. Taken
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together, the entropic force is a sequence-encoded, tunable function that may be more
common than previously realized in IDR-containing proteins.

Data Availability

Appendix B contains Figures B1-B4. Appendix B provided the link to Table S1 which
contains all IDR sequences, the ensemble analysis result, and the entropic force
analysis result of the simulation database. All code and data used to generate the
figures in this chapter are provided at: https://github.com/sukeniklab/Entropic_Force

https://github.com/sukeniklab/Entropic_Force
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Abstract

In the preceding chapters of this dissertation, we have explored the complex landscape
of IDR conformational ensembles and showed their sensitivity to the surrounding
physical environment. Building on this foundation, this chapter explores the significance
of IDR solution sensitivity within the cellular environment. We focus particularly on the
context of desiccation protection-related IDRs. This examination sheds light on how
these dynamic IDR ensembles respond to the effects of cellular dehydration and osmotic
pressure changes. We take advantage of SolSpace simulations and FRET experiments
to engineer a novel IDR-based biosensor, Sensor Expressing Disordered Protein 1
(SED1). SED1 employs the Arabidopsis AtLEA4-5 IDR attached to FRET
fluorescent-protein pairs to monitor cellular responses to osmotic pressure. The ability of
this construct to sense its surrounding environment is then validated across various
organisms. This innovative biosensor utilizes IDRs to monitor and respond to
environmental changes, showcasing the practical application of our fundamental
research on IDR ensemble and solution sensitivities. This work underscores the potential
of leveraging IDR solution sensitivity to create functional protein and can be a key to
unlocking new bioengineering capabilities.
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Introduction

IDR transient secondary structure enables IDR desiccation protection
Understanding how desiccation affects molecular biology is critical for several reasons. It
provides insights into how the loss of water at the cellular level affects biomolecules and
cellular structures. It is also vital for comprehending how organisms adapt to and survive
in environments with limited water availability. This is especially pertinent in the context
of climate change, where increasing areas of the globe are experiencing drought
conditions.

During desiccation, the cellular environment undergoes a dramatic transformation that
poses significant challenges to organismal survival. As water is progressively lost from
the cell, it leads to a decrease in cell volume and can cause the environment of the
cytoplasm to become crowded and viscous1. The loss of water significantly disrupts the
balance of ions within the cell, a critical aspect of maintaining cellular homeostasis. This
ionic imbalance can have detrimental effects on the cell's metabolic processes2–4.
Furthermore, the dehydrated state poses a risk to the structural integrity and function of
cellular structures and enzymes5. Proteins, for instance, may denature or aggregate in
such stressful conditions, losing their functional shape and thus impairing the cell's
biochemical processes1,6–8.

Despite their sensitivity to the drastic changes in desiccating environments, IDRs have
been reported to act as essential protectants against desiccation in organisms from all
kingdoms of life9–11. In this context, it is particularly intriguing to ask how the flexible and
dynamic ensemble of protective IDRs responds and adapts to the dramatic
environmental changes brought about by desiccation. Can we link our IDR solution
response to explain their protective function?

With thousands of IDRs reported to be linked to desiccation, we focus on IDR sequences
from the Arabidopsis Late Embryogenesis Abundant (AtLEA) proteins. The LEA protein
family has been involved in desiccation protection across different organisms10,12. LEA
proteins were first identified in plant seeds during the late stages of embryogenesis,
particularly under conditions of water deficit. Most LEAs are predicted to be fully
disordered and classified into different groups based on their unique motifs13,14. In some
cases, their presence was shown to enhance the plant tolerance to desiccation and
water deficit15–17. Despite the overall structural disorder in aqueous solutions, previous
research on AtLEA4-5 suggests that the N-terminal region can form a transient
amphipathic α-helix structure under water stress10. We suggest that the formation of
α-helices in AtLEA4-5 upon dehydration leads to compaction of their structural
ensemble. This conformational change, triggered by environmental stressors, is likely
critical to their functional mechanism in conferring desiccation tolerance18,19.

Leveraging this ensemble structural change, we have developed an innovative IDR
sensor that uses the AtLEA4-5 protein as a basis, to detect and measure changes in
osmotic pressure in the cellular environment. This sensor is the first example of how the
environmental sensitivity of IDRs can be a tool for understanding and monitoring cellular
responses to changes in cellular physical chemistry.

https://paperpile.com/c/Qt6oAW/MPQT
https://paperpile.com/c/Qt6oAW/4R3t+i0FR+JFoA
https://paperpile.com/c/Qt6oAW/JjYW
https://paperpile.com/c/Qt6oAW/7gq6+BFy9+Df78+MPQT
https://paperpile.com/c/Qt6oAW/Arq7+0ZYh+RBGh
https://paperpile.com/c/Qt6oAW/0ZYh+R6dO
https://paperpile.com/c/Qt6oAW/oFIc+pXWM
https://paperpile.com/c/Qt6oAW/PIDr+2RAG+rZcw
https://paperpile.com/c/Qt6oAW/0ZYh
https://paperpile.com/c/Qt6oAW/5uyN+Ghjb
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Methods
For a detailed description of the experimental and computational methods for this section
please refer to Appendix C and D.

Results and Discussion

IDR solution sensitivity enables IDR environmental sensing
We have already demonstrated that fluorescence resonance energy transfer (FRET) can
detect changes in IDR ensembles in different chemical environments in Chapter 2. Our
in vitro FRET construct can be coupled to IDR whose ensembles are sensitive to
solution chemistry changes to create FRET-based sensors for monitoring the cellular
environment, as has been done for well-folded proteins20. The high osmotic pressure on
cells may lead to high macromolecular crowding in the cellular environment. In Chapter
2, IDRs demonstrated a compact ensemble under crowding triggered by the osmolytes.
Thus, we propose that the FRET sensor expressed in cells will form a compact
ensemble due to the solution sensitivity of the IDR under a high osmotic pressure
environment and thus generate a stronger FRET signal compared to under a normal
environment. Therefore, observing the change in FRET signal can monitor the osmotic
pressure change around the cell.

To validate that the AtLEA4-5 has a high solution sensitivity and is a good candidate for
the biosensor, we first ran SolSpace simulations of the AtLEA4-5 sequence and its
scrambles (Fig. 4.1A). Our results have proven highly encouraging, as they indicate that
AtLEA4-5 exhibits a high degree of solution sensitivity when compared to other IDRs in
our extensive simulation database (gray curves in Fig. 4.1C, also described in Chapter
2). In addition, we generated 5 sequence scrambles with the same length and the same
amino-acid composition with AtLEA4-5. None of those demonstrated a solution
sensitivity higher than the wild-type sequence (Fig. 4.1C). This suggests the AtLEA4-5
solution sensitivity is high compared to other IDRs and determined by its unique
sequence rather than the amino acid composition.

Based on these findings, we proposed that the sensitivity of AtLEA4-5 to the chemical
environment could be harnessed to develop biosensors for detecting osmotic pressure
changes surrounding cells. To turn the sequence into a biosensor, we combined the
AtLEA4-5 with mCerulean3 and mCitrine fluorescence proteins, attached to the N- and
C-terminal, respectively. These two fluorescence proteins create a FRET pair that
facilitates sensing. We named this construct Sensor Expressing Disordered Protein 1
(SED1) (Fig. 4.1B).

https://paperpile.com/c/Qt6oAW/LrBv
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Figure 4.1. AtLEA4-5 has a high solution sensitivity. (A) AtLEA4-5 and its random scramble
sequences as the candidate for the biosensor (B) Representative conformations of the SED
osmotic pressure FRET sensor in an expanded (top) and compact state (bottom). (C)
Computational solution space scan of the normalized radius of gyration (Rg) of AtLEA4-5 (blue),
five different scrambled sequences shown in (A) (red), and 70 different naturally occurring IDRs
(gray) under different solution repulsion levels.

To validate the effectiveness of our biosensor design, we've expressed the biosensor in
a range of organisms, including yeast, E. coli, and mammalian cells. To measure the
degree of sensing, we introduced osmotic stress to the cellular environment by changing
the concentration of NaCl in the solution. When exposed to a high NaCl concentration
that induces elevated osmotic pressure inside the cell, SED1 FRET efficiency increases
in all organisms tested (Fig. 4.2A, B, C). This result proves that when exposed to
hyperosmotic conditions, the FRET signal intensifies significantly, whereas hypoosmotic
conditions result in a slight reduction in the FRET signal (Fig. C3). The construct and
experimental details are described in Appendix C.
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Figure 4.2. SED1 osmotic pressure sensing in different cell types. (A) SED1 can sense the
osmotic pressure in yeast cells. The X-axis demonstrated the osmotic pressure modified by NaCl
concentration. The y-axis is the normalized FRET signal described in Appendix C. A previously
designed Crowding biosensor (CS) is based on an artificially synthesized helix-turn-helix
structured motif21. (B) SED1 sensing of osmotic pressure in E. coli cells. (C) SED1 sensing of
osmotic pressure in human-derived U-2 OS cells.

The creation of IDR biosensors is a critical milestone in our ability to leverage the unique
properties of IDRs for technological uses. It underscores the significance of IDR
ensemble sensitivity as a key aspect of IDR functionality. By harnessing IDR sensitivity,
we are not only advancing our knowledge of these dynamic protein regions but also
opening up new avenues for exploring and manipulating cellular environments with
profound implications for both research and practical applications.

Discussion

We hypothesized that the SED1 biosensor utilized the transient helical propensity of
AtLEA4-5 to sense the surrounding environment. However, many IDR sequences and
their ensemble have no tendency to form a helical structure. How do their IDR
ensembles sense the surrounding environmental change? Is there any other hidden
structure that can determine IDR solution response?

To address this, we created three sequence scrambles for the BH3 IDR of the p53
upregulated apoptosis modulator (PUMA). The PUMA wild-type IDR is reported to
exhibit helical propensity in an unbound state and to form a stable helical structure upon
binding with the Mcl-1 region22. Scrambling the PUMA sequence maintains the same
amino acid composition but disrupts the helical propensity. By comparing the solution
responses of these sequences, we aim to verify whether -helix formation is crucial forα
the IDR solution response.

https://paperpile.com/c/Qt6oAW/tC6j
https://paperpile.com/c/Qt6oAW/XUyj
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Figure 4.3. Assessing the sensitivity of PUMA and its scrambles to cellular osmotic challenges.
(A) of PUMA constructs. represents FRET efficiency in vitro. High represents a𝐸

𝑓
𝑎𝑝𝑝 𝐸

𝑓
𝑎𝑝𝑝 𝐸

𝑓
𝑎𝑝𝑝

low average Ree between FRET pairs and a compact IDR ensemble. Error bars represent errors
from two repeats. Here the dashed line represents the expected value for a GS-repeat (described
in Chapter 2) construct of the same length (34 residues) as PUMA WT and scrambles. (B) of𝐸

𝑓
𝑐𝑒𝑙𝑙

PUMA constructs. represents FRET efficiency in vivo. (C) The osmotic challenge of𝐸
𝑓
𝑐𝑒𝑙𝑙

HEK293T cells expressing PUMA constructs. Violin plots represent the data for PUMA constructs
and squares represent the change of FRET efficiency of a GS-repeat equivalent.

To test the design of PUMA scrambles, I conducted CD experiments on PUMA variant
sequences. Under buffer conditions, the PUMA wild-type (WT) sequences demonstrated
a concentration-dependent helical propensity as indicated by the minimum at 208 nm
and 222 nm on the CD spectra. Higher concentrations of PUMA led to greater helical
propensity in the buffer. In contrast, the PUMA scrambles showed little tendency to form
a secondary structure, as designed and predicted (Figure D10, Figure 1.2D in Chapter
1).

We further measured the ensemble dimensions of the PUMA scrambles (S1, S2, S3) to
uncover their hidden structural preferences. The ensemble global dimension of PUMA
scrambles is compared to the same length ideal polymer behavior GS-repeats reported
in Chapter 2 and Chapter 3. The GS-repeats are homopolymeric sequences that have
been reported to have an unbiased IDR ensemble23. Thus a more compact ensemble

https://paperpile.com/c/Qt6oAW/y4G7
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compared to GS-repeats suggests attractive intramolecular interactions. A more
expanded ensemble compared to GS-repeats suggests repulsive intramolecular
interactions. The relative Ree of IDR ensembles was using the in-vitro FRET method
mentioned in Chapter 2 (Fig. 4.3A). Here, a higher represents a compact ensemble 𝐸

𝑓
with a small Ree. A smaller represents a more expanded ensemble with a large Ree 𝐸

𝑓
(The conversion and calculation of can be found in Appendix D.). The result shows 𝐸

𝑓
that PUMA WT possesses the most compact ensemble. This may be due to the high
helical propensity. Despite lacking helical propensity, the ensemble of scrambles showed
significant differences. The S1 ensemble exhibits a more compact formation, whereas
the S2 ensemble presents a more expanded ensemble. To verify this finding, the
average Rg of the FRET constructs was measured using Size-Exclusion
Chromatography coupled with Small-Angle X-ray Scattering (SEC-SAXS) (Figure 1.2B
in Chapter 1). The trend of ensemble dimension is the same compared to the FRET
method as the PUMA WT shows the most compact ensemble while the S2 possesses
the most expanded ensemble.

The ensemble difference of PUMA scramble suggests that helicity is not required to
compact the IDR ensemble and thus proves the presence of other intramolecular
interactions between residues that shape the ensemble, even in live cells. These
interactions may include long-range interactions between charged or aromatic residues
performing like intramolecular “stickers”, as indicated by polymer models and other
experimental research24. The in vivo FRET analysis correlated well with the outcomes
from the in-vitro method and SAXS data, indicating that the compactness of the
ensemble is a fundamental characteristic of the IDR sequence. Additionally, this
reinforces the accuracy of measuring the dimensions of the IDR ensemble using FRET
pairs under both setups.

Furthermore, these differences in hidden structure significantly affect the IDR solution
sensitivity. Using a construct similar to the SED1 biosensor, we measured the response
of these scrambles to osmotic pressure changes in cells. Under the buffer condition and
in HEK293T cell, the average ensemble dimension of each construct measured with  𝐸

𝑓
shows the same trend as in vitro (Fig. 4.3A, B). When we introduced the osmotic
pressure change surrounding the cell, we compared the solution response of PUMA to
the solution response of GS-repeat peptides with the same length. The PUMA solution
sensitivity is measured by the FRET signal change ( ) under different osmotic∆𝐸

𝑓
𝑐𝑒𝑙𝑙

pressures. Compared to the PUMA WT, which tends to form a secondary structure, S1
and S3 demonstrated greater ensemble change and sensitivity to hyperosmotic
pressure. Meanwhile, S2 showed a stable ensemble with little change in global
dimensions under both hyperosmotic and hypoosmotic conditions (Fig. 4.3C). This
suggests that PUMA scrambles possess a similar ability to sense change in osmotic
pressure, even without the formation of helices. Thus the ability of IDR to sense the
surrounding environment is encoded by its ensemble flexibility and plasticity rather than
just the tendency to form secondary structures.

Our findings revealed that IDRs can still show significant changes in response to osmotic
pressure changes despite a lack of helical propensity. This suggests that other forms of
intramolecular interactions are influential in IDR behavior, pointing at a more complex

https://paperpile.com/c/Qt6oAW/jXgc
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mechanism underlying IDR environmental sensitivity. Future computational and
experimental research can be focused on uncovering the mechanism and design of IDR
intramolecular interactions to improve the efficiency of biosensors. This application also
suggests the IDR biosensor FRET construct can be used as a tool to track IDR
ensemble change in vivo which broadens the application of the biosensor.

Conclusions

This chapter applies the research of the previous 2 chapters and demonstrates how IDR
ensemble sensitivity and structural preference impact IDR function in rapidly changing
environments. Building on our understanding of IDR sensitivity, we have engineered a
novel IDR-based FRET biosensor, SED1, based on AtLEA4-5 protein, which is a
desiccation protection IDR that can form helix under osmotic stress. My simulation data
verified that AtLEA4-5 has a high solution sensitivity under different solution conditions.
This makes AtLEA4-5 a good IDR to monitor cellular responses to osmotic pressure
across various organisms. Furthermore, SED1 shows ideal sensing ability in E. coli,
yeast, and mammalian cells suggesting the success of biosensor design. With the
biosensor construct and PUMA scrambles, we discovered that intramolecular
interactions can determine IDR solution sensitivity instead of helicity, which points out
the new direction for improving and designing the biosensor. Overall, this research not
only creates a unique IDR biosensor that can be applied to multiple species but also
provides a solid in vivo experimental method to measure IDR solution sensitivity to
discover more potential of IDR solution response in the bioengineering field.

My computational research can be leveraged across multiple disciplines to create
disorder-based sensors. With the advancement of IDR research, we anticipate that such
computational models and simulations will find utility in a diverse range of scientific
inquiries, from the design of novel biosensors to the understanding of IDR ensemble in
cells This cross-disciplinary potential underscores the transformative power of
computational research in IDR field.
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This dissertation has provided a comprehensive exploration of how the surrounding
physical-chemical environment impacts IDR ensembles. Using simulations and other
computational approaches, we discovered that IDR solution response is correlated with
IDR ensemble dimensions and encoded in the arrangement of amino acids rather than
their composition. Then I applied these findings to create biosensors based on IDRs,
proving the value of my computational approach.

Chapter 1 introduced IDR ensembles and how their structural preferences play important
roles in determining their function. IDR ensembles are sensitive to changes in the
surrounding cellular environment, including factors such as ionic strength and
temperature. This sensitivity is due to their high degree of surface area exposure and a
lack of intramolecular interactions. To quantify IDR ensemble response to the
surrounding environments, I used Monte-Carlo simulations and SolSpace scans to
investigate IDR ensemble compaction and repulsion in varying physical-chemical
environments.

Chapter 2 revealed how solution responses are encoded within IDR sequences rather
than amino acid composition. I identified a correlation between IDR solution sensitivity
and IDR ensemble dimensions which was verified by in vitro experiments. This sets the
stage for appreciating how IDRs interact with their environment, emphasizing the
predictive power of computational analysis in understanding IDR behavior. Based on this
result, we hypothesize that IDR solution responses may be coded in their structural
preferences and intramolecular interactions.

Moving forward, Chapter 3 expanded upon the understanding of chemical solution
sensitivity to physical constraint by examining the generation of entropic force by IDR
when confined by surrounding membrane/macromolecules. The discovery that an IDR's
global dimensions are intimately linked to the strength of the entropic force it generates
further underscores the importance of IDR ensemble dimensions. This has profound
implications for the functional mechanisms of IDRs, suggesting that their shape and
extent are not merely passive features but are active determinants of their role within
crowding environments such as cytoplasm or cell membranes.

Finally, Chapter 4 leveraged the work shown in the previous chapters and showed a
proof-of-principle for the design of an IDR biosensor to detect osmotic pressure change
around cells. Starting with desiccation protection IDRs, we investigated how to
manipulate IDR solution sensitivity to design IDR biosensors and understand IDR
functional mechanisms. The creation of biosensors is a significant step forward for the
IDR research community, offering a platform to detect cellular environmental change
under osmotic pressure.

Looking ahead, the IDR simulation dataset and simulation protocols in this dissertation
were developed to provide large datasets for exploring IDR ensemble dynamics. The
expansion of this dataset can lead to the development of predictive models that further
link IDR solution sensitivity with its sequence. By utilizing these models and datasets,
researchers can strategically design IDR sequences to modify IDR ensembles within
various cellular environments. In this regard, I hope my computational framework can
advance drug development strategies that target IDR function in cellular environments.
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Appendix A
Supplementary information for Publication:
Revealing the Hidden Sensitivity of Intrinsically
Disordered Proteins to their Chemical
Environment
The material originally appeared in the following: David Moses, Feng Yu, Garrett M.
Ginell, Nora M. Shamoon, Patrick S. Koenig, Alex S. Holehouse, and Shahar Sukenik
The Journal of Physical Chemistry Letters 2020 11 (23), 10131-10136.

Table S1-S4 can be found at this link:
https://github.com/sukeniklab/HiddenSensitivity

A1 Experimental Methods

A1.1 FRET construct design and cloning

FRET backbone (called fIDR_pET-28a(+)-TEV, Fig. A9) was prepared by ligating
mTurquoise2 and mNeonGreen into pET28a-TEV backbone using 5’ NdeI and 3’ XhoI
restriction sites. Genes encoding for IDR regions were obtained from GenScript, and
ligated between the two fluorescent proteins using 5’ NdeI and 3’ HindIII restriction sites.
Cloned plasmids were amplified in XL1 Blue (Invitrogen) cell lines using manufacturer
supplied protocol. Sequences of all IDR sequence inserts are available in Table S4.

A1.2 FRET construct expression and purification

Plasmids encoding for FRET constructs were expressed in BL21 (DE3) cells in LB
medium with 50 μg/mL kanamycin. Cultures were incubated at 37 °C while shaking at
225 rpm until OD600 of 0.6 was reached (approx. 3 h), then induced with 1 mM IPTG
and incubated for 20 h at 16 °C while shaking at 225 rpm. Cells were harvested by
centrifugation for 15 min at 3,000 rcf, the supernatant was discarded, and the cells were
lysed in lysis buffer (50 mM NaH2PO4, pH 8, 0.5 M NaCl) using an Avestin Emulsiflex C3
homogenizer. Lysate was centrifuged for 1 h at 20,000 rcf and the supernatant collected
and flowed through a column packed with Ni-NTA beads (Qiagen). FRET construct was
eluted with 50 mM NaH2PO4, pH 8, 0.5 M NaCl, 250 mM imidazole, and further purified
using size-exclusion chromatography on a Superdex 200 PG column (GE Healthcare) in
an AKTA go protein purification system (GE Healthcare). The purified FRET constructs
were aliquoted into 200 μL aliquots, flash-frozen in liquid nitrogen, and stored at -80 °C
in 20 mM sodium phosphate buffer, pH 7.4, with the addition of 100 mM NaCl. Protein
concentration was measured after thawing and before use using UV-vis absorbance at
434 and 506 nm (the peak absorbance wavelengths for mTurquoise2 and mNeonGreen,
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respectively; the molar absorbance coefficients for mTurquoise2 and mNeonGreen are
30,000 cm-1M-1 and 116,000 cm-1M-1, respectively.1 Calculations of concentration based
on = 434 nm produced slightly higher values than calculations based on = 506 nm,
so the concentrations based on the measurement at = 506 nm were used), and purity
was assessed by SDS-PAGE after thawing and before use.

A1.3 Solution preparation and specifics

Solutes were purchased from Alfa Aesar (Dextran, Xylitol, L-Tryptophan, Sarcosine,
PEG200, PEG400, PEG1500, PEG2000, PEG4000, PEG6000, PEG8000, PEG10000),
VWR (D-Sorbitol), GE Healthcare (Ficoll), TCI (Meso-Erythritol, D-(+)-Trehalose
Dihydrate), Thermo Scientific (Guanidine Hydrochloride), Acros Organics (D-Mannitol,
Betaine Monohydrate, L(+)-Arabinose), Sigma-Aldrich (Myo-Inositol, Taurine), and Fisher
BioReagents (Ethylene Glycol, D-Galactose, Glycerol, Glycine, L-Proline, Tricine,
Potassium Chloride, Sodium Chloride, Urea), and used without further purification. Stock
solutions were made by mixing the solute with 20 mM sodium phosphate buffer, pH 7.4,
with the addition of 100 mM NaCl except for NaCl and KCl solutions, which were free of
additional salt. The same buffer was used for all dilutions.

A1.4 FRET experiments

FRET experiments were conducted in black plastic 96-well plates (Nunc) using a
CLARIOstar plate reader (BMG LABTECH). Buffer, stock solution, and purified protein
solution were mixed in each well to reach a volume of 150 μL containing the desired
concentrations of the solute and the FRET construct, with a final concentration of 1 μM
protein (or of each FP in the case of the “untethered” control). Fluorescence
measurements were taken from above, at a focal height of 5.7 mm, with gain fixed at
1020 for all samples. For each FRET construct, two repeats with 12 replicates each were
performed for each protein in neat buffer, and at least two repeats were done in every
other solution condition. Fluorescence spectra were obtained for each FRET construct in
each solution condition by exciting the sample in a 16-nm band centered at = 420 nm,
with a dichroic at = 436.5 nm, and measuring fluorescence emission from = 450 to
600 nm, averaging over a 10 nm window moved at intervals of 0.5 nm. Base donor and
acceptor spectra for each solution condition were obtained using the same excitation
and emission parameters on solutions containing 1 μM mTurquoise2 or mNeonGreen
alone, and measuring fluorescence emission from 450 to 600 nm1,2.

A1.5 Calculation of
The process of calculating the FRET efficiency for a FRET construct in one solute at
a range of concentrations is summarized in Fig. A10. Specifically, of each FRET
construct in each solution condition was calculated by linear regression of the
fluorescence spectrum of the FRET construct with the spectra of the separate donor and
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acceptor emission spectra (in order to correct for solute-dependent effects on
fluorophore emission) in the same solution conditions. was calculated using :

where is the decoupled donor contribution, is the decoupled acceptor
contribution, is the area-normalized donor spectrum, is the area-normalized
acceptor spectrum, is the quantum yield of the donor, and is the
quantum yield of the acceptor2,3.

More specifically, the data for each series of solution conditions consisting of increasing
concentrations of a single solute was processed in the following manner:

1. Raw spectra for the free donor and free acceptor in the various solution conditions
were loaded, and the averages of all repeats in each solution condition were computed.
These averages are referred to as the "raw" donor and acceptor spectra below because
they will be further corrected.

2. The donor and acceptor peak intensities were assumed to change in a linear fashion
with increasing solute concentration, so peak height of donor or acceptor-only spectra
vs. concentrations were linearly fit.

3. To correct for artifacts (such as variations in FRET construct concentration between
different wells) that may contribute to unexpected differences in fluorescence intensity, a
correction factor was applied to each raw donor and acceptor spectrum to bring the peak
intensity to the linear fit described in step 2, resulting in "corrected" donor and acceptor
spectra. Importantly, while this corrected well-to-well variations in raw data, it did little to
affect the overall values or trends in (e.g., without this correction Fig. 2.1 and 2.2
would vary by less than 5%).

4. The raw FRET construct fluorescence spectra for the series were loaded.

5. To compensate for unintended direct excitation of the acceptor by donor excitation
frequency, the corrected acceptor spectrum for each solution condition was subtracted
from the FRET construct spectrum for each solution condition, resulting in "corrected"
FRET construct spectra.

6. The corrected donor, acceptor and FRET construct spectrum for each solution
condition was fitted with a linear regression function to determine the decoupled
contributions of the donor and acceptor to the FRET construct spectrum.

7. of each FRET construct in each solution condition was calculated using the
equation shown above.
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A1.6 Assessment of the expected scaling behavior for interprotein
distances

For flexible polymers, the end-to-end distance (Re) and radius of gyration (Rg) follow
well-defined scaling relationships defined by R = ANν. Here, R is a physical distance (i.e.,
Re or Rg), A is a constant in units of distance, N is the unitless degree of polymerization
(i.e., number of residues) ν is a unitless scaling exponent4,5. In the limit of finite-sized
polymers, ν is more correctly written as νapp. For constructs with two fluorescent proteins
connected by a flexible linker, in the limit of infinitely long linkers, the inter-fluorescent
protein distance will approximately equal the end-to-end distance of the intervening
linker. However, in the limit of finite-length linkers where the linker dimensions are on par
with the dimensions of the fluorescent proteins, we anticipated that deviations from
conventional scaling theory might arise due at least in part to the excluded volume
effects of the fluorescent proteins.

To assess the role of excluded volume effects in deviation, we examined the expected
intra-fluorescent protein distance dependence on linker length for a well-defined
self-avoiding random coil system. Such a model is convenient in that the dependence of
the end-to-end distance for a flexible self-avoiding polymer is well-defined analytically as
Re = BN0.59.

We built a series of fluorescent-protein linker constructs with linkers of various lengths
and performed simulations at all-atom resolution using the CAMPARI simulation engine
and the ABSINTH implicit solvent model (see also SI Section A2.1). To achieve
behavior in the true self-avoiding random coil limit, the Hamiltonian (which here refers to
the instantaneous potential energy function) used to generate the ensemble does not
experience a contribution from the attractive portion of the Lennard-Jones potential for
short-range non-bonded interactions, nor solvation effects, nor electrostatic interactions,
as described previously6. The backbone dihedral angles associated with residues in the
two fluorescent proteins were held fixed, while the backbone dihedral angles associated
with residues in the linker were allowed to vary. All side chain angles were fully flexible.
In effect, this provides a “toy” system in a well-defined polymer limit which allows us to
assess the impact of the fluorescent proteins without any confounding concerns for
forcefield accuracy, sampling challenges, etc.

We first established that a flexible linker between two FPs indeed scales as expected for
a self-avoiding random coil. The scaling exponent obtained by fitting a number of GS
repeats vs. intra-chain distances revealed a scaling exponent of 0.61 - extremely close
to the value of 0.59 expected from analytical theory (Fig. A11).

We then repeated the same analysis for the same system assessing the inter-domain
distance between the chromophores in the fluorescent proteins - i.e., the
inter-fluorescent protein distance (Fig. A12). Unlike the intra-chain distances (Fig. A11),
the inter-domain distances showed a linear dependence on linker length. This behavior
is readily explained by the excluded volume impact of the fluorescent proteins. For
shorter chains, the inter-fluorescent protein distance is much larger than the distance
between the ends of an analogous flexible polymer because the excluded volume from
the fluorescent proteins effectively acts as repulsors at the chain ends. However, as
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chain length increases this effect becomes less significant, the offset becomes negligible
and the system returns to a power-law dependence. This behavior is not specific to the
self-avoiding random coil, and as such we expected an approximately linear
dependence of inferred distance on the number of GS repeats. Indeed, this linear
dependence mirrors what we observed experimentally, providing confidence that our
experimentally-derived distances are following expected trends given the physical nature
of the setup.

A1.7 Calculation of

For each FRET construct in each solution condition, was calculated in three steps:

1. The mean FRET efficiency values for 24 replicates (in 4 repeats) each for linkers of 8,
16, 24, 32 and 48 GS repeats (16, 32, 48, 64 and 96 amino acids in length) in a buffer
solution (20 mM NaH2PO4, 100 mM NaCl) were linearly fit to arrive at a relation between
FRET efficiency in buffer to the number of amino acids (N) in the GS linker.

2. The resulting slope and y-intercept (shown in Fig. 2.1B) were used to interpolate an

implied FRET efficiency ( ) for a GS linker of the same length N as the IDR of
interest.

3. was then calculated as:

where is the Förster distance, defined as the distance between the FPs at which
= 0.5, the superscript indicates the IDR we are measuring, the superscript
indicates a GS linker of length equivalent to that of IDR , and is the refractive index of
the solution in which the IDR is measured. We have tried modulating the refractive index
between 1.33 (for neat buffer) and 1.37 (the refractive index of 24 w/w% PEG10000)7
and noticed no significant changes in the trends of our data, and an absolute change of
< 5% in absolute values of . We therefore decided not to use this correction for the
work presented in Fig. 2.1 and 2.2.

A1.8 Impact of macromolecular crowding

To assess the impact of macromolecular crowding, we computed the overlap
concentration using the established scaling relationship for PEG derived by Devanand
and Selser8. Specifically, this states that Rg = 0.0215M0.583 where M is the PEG molecular
weight and Rg is measured in nanometers. Using PEG-dependent Rg values we
computed the overlap concentration in molars, first by computing the chain volume:
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where Rg is the radius of gyration in meters and Vl is the chain volume in liters. The
overlap concentration is then defined as:

where Na is Avogadro's number and c* is the overlap concentration in moles per liter. We
then made the approximation that molarity and molality are sufficiently close under the
concentration regimes explored, allowing us to determine the overlap concentration in
weight/weight (%).

In parallel, we computed the end-to-end distance of the shorter synthetic construct
examined (GS8) using all-atom simulations in which the linker was allowed to move
freely (see Fig. A11 and A12). The radius of gyration of this system is approximately 4.6
nm. In comparison, the radius of gyration of the largest PEG used (PEG10000) is
computed to be 4.6 nm. As such, in essential every scenario the crowder is equal to or
smaller than the size of the protein reporter of interest.

For each protein, we assessed how χ varies as a function of PEG with the
PEG-dependent overlap concentrations annotated (Fig. A17-A18). For GS-linker
constructs, we observe a systematic drop in χ as a function of PEG concentration (Fig.
A17). While this decrease becomes increasingly pronounced as a function of PEG
molecular weight, there is minimal dependence on the number of GS repeats. Moreover,
the overlap concentration does not represent an obvious threshold but instead demarks
the beginning of a regime where a gradual drop in χ is observed as a function of
concentration. For example, χ values for systems in which the PEG concentration is at
12% are relatively similar, regardless of whether the PEG concentration is above the
overlap concentration (PEG1500) or far below the overlap concentration (PEG10000).
The same cannot be said at higher PEG concentrations, however, where
crowding-induced compaction affects longer GS linkers more substantially than shorter
linkers, as expected.

For non-GS IDRs, more complex behavior is observed, notably sharper or weaker
dependencies, depending on the sequence (Fig. A18). For example, p53 χ values show
a shallow and essentially linear dependence on PEG concentration, where the
χ-dependence becomes steeper as PEG becomes larger. In contrast, E1A χ values
show a non-linear decrease, implying that E1A is substantially more sensitive to
crowding-induced compaction than p53.
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A2 Computational Methods

A2.1 All-atom simulations
All-atom Monte Carlo-based simulations were performed using the CAMPARI simulation
suite, with the ABSINTH implicit solvent model9. In CAMPARI, the effective Hamiltonian
is a combination of 4 energy terms:

𝐸
𝑡𝑜𝑡𝑎𝑙

= 𝑊
𝑠𝑜𝑙𝑣

+ 𝑈
𝐿𝐽

+ 𝑊
𝑒𝑙

+ 𝑈
𝑐𝑜𝑟𝑟

Here is the Lennard-Jones potential between protein residues, is the electric𝑈
𝐿𝐽

𝑊
𝑒𝑙

potential term based on coulombic potential, is a term applied to the dihedral𝑈
𝑐𝑜𝑟𝑟

angles, and is a solution-protein interaction term based on the ABSINTH implicit𝑊
𝑠𝑜𝑙𝑣

solvent model10, which is equivalent to a transfer free energy from a vacuum to a dilute
aqueous solution.

Our solution space scanning method is carried out as described previously11. Briefly, the
implicit solvation term, , is first calculated for each sequence based on its fully
extended protein conformation. This represents the maximum transfer free energy (

) since it is the most exposed configuration accessible to the protein. Solution
space is then probed by modulating by changing the attraction/repulsion of
different protein moieties in relation to the implicit solvent. We express the total strength
of solution interaction by the parameter where

In this paper we change by making interactions with the backbone less or more
attractive (negative or positive values, respectively). Our previous calibration based on
helix-to-coil transition has shown that a 1 M urea solution is equivalent to .11

Our all-atom simulation dataset consists of 70 proteins (not including GS repeats). We
selected sequences that were shown experimentally to be disordered, as collected on
the DisProt server12. All sequences were simulated at 310 K with 107 steps of
equilibration, followed by 7×107 steps of production. Conformations were written every
12,500 steps, resulting in a total of ~ 5,000 conformations for every simulation. Each
sequence was simulated in five independent repeats, resulting in an ensemble
containing 20,000 conformations per sequence. The MDtraj python library13 was used to
calculate the radius of gyration and end-to-end distance of the ensemble. Data from
analyzed all-atom trajectories for each sequence is available in Table S3.
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A2.2 Coarse-grained simulations

Our coarse-grained depiction of heteropolymer IDPs uses the PIMMS simulation
framework14. PIMMS is a lattice-based Monte Carlo simulation engine in which
inter-bead interactions are determined by nearest-neighbor interactions. All bead
interactions are anisotropic along on-lattice and diagonal directions. The system evolves
through a collection of moves that include individual crankshaft moves, chain
translation/rotation, and chain pivot moves. For our purposes, residues are represented
as beads, and a simple heteropolymer amino acid alphabet was used to generate chains
of various lengths with a heteropolymeric distribution of residues that are similar to polar,
hydrophobic, and charged amino acid residues. We emphasize that the parameters
generated here, shown in Fig. A5A, are phenomenological and not meant to reflect
specific amino acids. The set of PIMMS sequences used are available upon request.

The parameters chosen demonstrate sequence-specific coil-to-globule transitions, as
shown in Fig. A5B. The simulation temperature was set to be units of kBT. Accordingly,
the total energy of the system in a given state is calculated based on a summation over
pairwise interactions involving nearest-neighbor, non-bonded contacts, or a solution
interaction in the case that no neighbors are present. Moves are accepted or rejected via
a standard Metropolis criterion whereby the acceptance ratio is min{1,exp(–∆E/kBT)}
where kB = 1, ∆E is the energy difference between the current and proposed
configurations, and T has the same units as the contact energies thus making the ratio
∆E/kBT a dimensionless quantity. This conversion makes the point that the
parameterized interactions that reproduce the observed experimental data are in fact
relatively weak, being less than kBT, depending of course on the simulation temperature.

For each chain length, 2000 sequences were randomly generated, and each sequence
simulated in 10 solution interaction strengths (plus “buffer” condition) for a total of 11
trajectories per sequence. Each simulation consisted of a 20-step equilibration followed
by a 1020-step production run at T = 70. Upon each step, tens to hundreds of thousands
of individual Monte Carlo accept or reject moves are performed (on average 1000 local
chain perturbations per bead in the chain per step). Simulation analysis was performed
every 10 steps, and the reported distances are averages of the entire trajectory.
Simulations were performed in a sufficiently large box to avoid finite-size effects.
Average end-to-end distances vs. solution interaction strengths for the entire dataset are
shown in Fig. A5B.

A2.3 Analytical model for the solution-driven coil-to-globule transition
of a polymer

We developed a simple and generic analytical model to characterize the coil-to-globule
transition of a homopolymer as assessed by a mean-field net inter-monomer interaction
parameter. This model was then parameterized using homopolymeric PIMMS
simulations performed for a range of chain lengths and interaction strengths to provide
an analytical expression that relates the inter-monomer interaction strength to the degree
of compaction/expansion as measured by the parameter χ . While we “parameterize”
using PIMMS simulations, the simulations essentially tailor the model parameters to
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reproduce the interaction strengths and dimensions as are native to PIMMS. In principle,
any polymer model could be used to obtain key numerical parameters that dictate spatial
and interaction features.

This model is built on the assumption that the coil-to-globule transition can be empirically
mapped as a cooperative transition in which the cooperativity and midpoint show an
exponential dependence on chain length, and the end-points reflect defined expected χ
values for a flexible polymer in the globule (compact) or coil (expanded) limits.
Specifically, we define χ as

`

Where

and

The parameters in this model are defined as follows:
● L is chain length
● e is the apparent net inter-monomer interaction energy (measured in kBT)
● θ is a measure of the cooperativity of the coil-to-globule transition, and itself

depends logarithmically on L and two free parameters (c and d)
● m is a measure of the midpoint of the coil-to-globule transition and depends

exponentially on chain length and one free parameter (γ)

The free parameters (c, d, and γ) are obtained by fitting to homopolymeric PIMMS
simulations where χ is calculated directly from the simulations (Fig. A13-A14). The
specific values for these three parameters will depend on the physical nature of the
polymer model but do not ultimately influence the limiting behavior or trends of the model
behavior, assuming they retain physically realistic values. These parameters depend on
chain stiffness and monomer valence.

This model was chosen to provide a simple analytical description, under the simplifying
assumption that chain solvent-dependence can, to a first-order approximation, be
described using a simple homopolymer that expands/compacts as reported by χ.
Chain-solvent interactions are captured in terms of an apparent intra-bead interaction
parameter (e), which reports on the net favorable energy associated with
monomer-monomer interaction in a given solution.
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In the limit of a self-avoiding chain, the coil-to-globule transition is entirely determined by
the chain-solvent interaction strength. In the limit of a chain where chain-solvent
interactions are set to zero, the coil-to-globule transition is entirely determined by the
monomer-monomer interaction strength. Real chains sit somewhere between these two
limits, where both chain-chain and chain-solvent interactions contribute to the chain
dimensions. Our model is formally parameterized in the non-interacting chain-solvent
limit, but this can be recast as the non-interacting chain-chain limit in which the apparent
chain-solvent interactions are defined as half the chain-chain interactions. In this way, we
can write the coil-to-globule transition as a function of either chain-chain interactions or
chain-solvent interactions, as is shown in Fig. A15. For simplicity, we have leveraged the
chain-solvent representation, as most easily dovetails with our experimental work.

In its current format, the maximum chain expansion reflects the self-avoiding chain limit
in which chain-solvent interactions are set to zero. Note that for polypeptides with
charged residues, further expansion is possible via electrostatic repulsion15. These
longer-range repulsive interactions are not captured by our analytical model nor by the
model parameters used for our PIMMS simulations. However, they are evident in our
all-atom simulations, offering an explanation as to why the axes for the all-atom
simulations extend to substantially larger values than in either the theory or
coarse-grained simulations.

A2.4 Converting from χ to νapp

As in Eq. 1 we define χ as

.
Re can also be written as

where B is a prefactor in units of distance, and the apparent scaling exponent (νapp) is a
measure of the apparent solvent quality for the chain4,16. In both our simulations and
prior experiments, a GS linker in neat buffer behaves as a polymer in a theta solvent, a
reference state in which chain-chain and chain-solvent interactions are counterbalanced,
and where νapp = 0.50.17

Operating under this assumption, we can rewrite χ as:
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And more simply as

As such, it is trivial to convert between χ and the apparent scaling exponent ( app) for the
chain of a given length N in the limit of a homopolymer instantiation of our model under
the simplifying assumption of a fixed, sequence-independent and -independent
prefactor (B). For heteropolymers this assumption may not be valid, but as applied to our
simple homopolymer model this is a reasonable set of approximations.

The major advantage of using χ over (or app, as we have described here) reflects the
fact that while is derived from polymer scaling theory, χ is simply a ratio whereby the
denominator is some directly measurable reference state. has precise mathematical
meaning in the context of analytical polymer physics. Unfortunately, this meaning
frequently fails to hold true in the context of finite-sized heteropolymers, necessitating
finite-sized corrections18–22. Moreover, approaches for calculating in finite-size
polymers (leading to the apparent scaling exponent, app) can be method-dependent due
to necessary assumptions regarding the nature of the scaling prefactor, end-effects,
heteropolymeric interactions, and the intrinsic uncertainty associated with finite-sized
polymers5,18,19,23–26. Taken together, the application of scaling theory to finite-sized
polymers can be misleading unless bona fide scaling behavior can be shown in terms of
the dependence of global chain dimensions as a function of chain length over a
sufficiently large number of long polymers4,26,27. In contrast, χ is simply a mathematical
ratio of measured values. It imposes no assumptions other than the fact that the
denominator reflects a reference value measured for a length-matched glycine-serine
(GS) linker in aqueous (neat) buffer. Even the explicit polymeric behavior of the GS linker
is relatively unimportant, although prior work has established that GS linkers behave in a
manner at least qualitatively if not quantitatively as a flexible random coil17,28.

In the context of our FRET-based assay, the application of homopolymer theory raises
an additional challenge since our system is by definition outside of a regime in which
homopolymer physics can be easily applied owing to the relative size of the fluorescent
proteins compared to the disordered regions (Fig. A11-A12). Using χ allows us to
bypass the clear limitations that making homopolymer-based assumptions would
necessitate.
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A3 Supplementary Figures

Figure A1. (A) Solution space scans of Gly-Ser linkers. Each data point shows the average vs.
concentration of a specific solute for a specific IDR taken from two repeats. Vertical lines show
the spread of repeats, and are often too small to see. IDRs vary down columns, and solutes vary
along rows. Background color represents the sensitivity of change to solute addition: stronger
colors imply higher sensitivity, red hues indicate compaction, and blue hues indicate expansion.
Purple background indicates non-monotonic behavior. (B) Identical response of GS linkers to
individual solutes contrasts with the differential response of other sequences shown in Fig. 2.2B.
Each panel point is the average of the solution-induced change in vs. concentration of a
specific solute and construct from two repeats. Vertical lines are the spread of the data.
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Figure A2. The end-to-end distance of Gly-Ser repeat sequences as a function of their total
number of residues N, obtained from all-atom simulations in aqueous solution. Each data point is
an average of five individual repeats, with lines being the standard deviation of the data. The blue
curve is a power-law fit of the data, shown in the inset. The fitted exponent, 0.48 ± 0.03 is within
error of the exponent expected of an ideal polymer (0.5).
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Figure A3. vs strength of solution interactions (see Section A2.1) for each of the 70 IDRs
shown in Fig. 3. Each subplot represents a single IDR. Blue points are attractive solutions (

) and red points are repulsive solutions ( ). IDs are UniProt ID when available. All
protein names, sequences, and data for each IDR are available in Table S3.
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Figure A3 (cont.). vs. strength of solution interactions (see Section A2.1) for each of the
70 IDRs shown in Fig. 3. Each subplot represents a single IDR. Blue points are attractive
solutions ( ) and red points are repulsive solutions ( ). IDs are UniProt IDwhen
available. All protein names, sequences, and data for each IDR are available in Table S3.

https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpsi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpsi%20%3E%200#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpsi%20%3C%200#0


83

Figure A4. Solution sensitivity of IDRs shown in Fig. A3. Each point represents the
solution-induced change in ( ), for (weak interactions), (intermediate
interactions) or (strong interactions). Blue points represent the response to repulsive
solutions and red points represent the response to attractive solutions. Error bars are calculated
from five independent simulations. See also Fig. A6.

https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpsi%20%3D%20%5Cpm%201#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpm%202#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpm%203#0
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Figure A5. (A) Summary of the PIMMS parameters that were used for heteropolymer
simulations. Interaction energies are defined in units of kBT and were selected to approximate the
chemical diversity observed in polypeptides. B1-B4 are “bead” 1 to “bead” 4. (B) End-to-end
distances (in grid units) for PIMMS coarse-grained simulations of various sequences and chain
lengths N. These curves were used to produce Fig. 2.4B.
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Figure A6. Dependence of Δχ vs. χ as a function of the most and least sensitive chains in an
ensemble of sequences. Each figure defines the maximum and minimum perturbation to the
chain-solvent interaction. As the maximum perturbation grows (left to right), Δχ becomes larger in
a uniform manner along the χ axis. As the minimum perturbation grows (top to bottom), the
opening of a central “pore” region emerges. These two phenomena can be understood intuitively.
At the limit of the minimum perturbation being zero, this effectively means there exist chains that
are fully insensitive to changes in the solution, such that Δχ is zero. As that minimum increases,
every chain is somewhat sensitive, with a minimum sensitivity defined by this minimum value.
Chains along the coil-to-globule transition are more sensitive than at the coil or globule limits (Fig.
2.4D) such that the pore is centered around χ = 0. The maximum perturbation defines the
magnitude of Δχ, but is bounded by the chain dimensions, such that Δχ has upper and lower
bounds. As the maximum is increased, more perturbations push up against that maximum, such
that increasing Δχ density is observed at the bounds (i.e., see top right).
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Figure A7. Full fit curves for all eight IDRs. Horizontal dashed lines reflect the χ value as
measured in buffer. Black curve is a length-derived prediction from our analytic model. Note that
for many of the curves the high-molecular weight PEG solutions lead to substantial deviations
from the master curve, as expected as chain behavior enters the semidilute regime29, the
concentration regime in which PEG chains begin to overlap with one another. PUMA shows the
worst agreement with the analytical model; a behavior interpreted as being due to its
considerable residual helical structure.

https://paperpile.com/c/9DvGqz/aiI0W
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Figure A8. Derived solute-specific scalar factors that relate change in chain-solute interaction
strength to a change in χ. More positive values lead to chain expansion while more negative
values lead to chain compaction.
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Figure A9. Plasmid map for FRET construct bacterial expression vector. Disordered sequences
from Table S4 are inserted between 5’ SacI and 3’ HindIII restriction sites.
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Figure A10. Visual summary of the data processing procedure detailed in Appendix Section
1.5. All panels show intensity vs. wavelength data for solutions containing donor-only,
acceptor-only, and IDR construct (unless specified otherwise). Spectra are arranged from light to
dark going from buffer to high concentrations of solute. Beginning from raw data, base spectra
are corrected for pipetting error and protein absorbance to the plate to get corrected base
spectra. The acceptor channel is then subtracted from the raw IDR data to remove
cross-excitation artifacts. After this, both corrected base spectra are used to fit the corrected IDR
spectrum by linear regression. Results of the linear regression are used to calculate the FRET
efficiency, , as described in Appendix Section 1.5, and is used to calculate as
described in Appendix Section 1.7.

https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=E_f#0
https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
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Figure A11. The intra-chain distance of glycine-serine (GS) linkers connecting two fluorescent
proteins in a system that rigorously behaves as a self-avoiding random coil. GS linker end-to-end
distance is measured between the first and last residue in the GS repeat region. Note that short
(3-7 residue) cloning scars are also present in our model to replicate the actual experimental
construct, and these do not contribute residues to the GS linkers in this analysis. Cloning scars
are shown as teal parts of the linker.
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Figure A12. Intra-fluorescent protein distance for the same system as in Fig. A11. The distance
here is measured between the two chromophore centers in each of the two fluorescent proteins.
Note that when intra-fluorescent protein distances are measured, we obtain a linear relationship
(as opposed to a power law relationship as in Figs. A11 and A2).
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Figure A13. Fit of length-dependent model parameters to match PIMMS homopolymer
simulations. The orange curves represent the analytical expressions defined in the Methods
using the best fit parameters to fit to the experimentally measured values. (A) The fitting of the
parameters c and d to reproduce the experimentally-derived length dependence of the
cooperativity of the coil-to-globule transition, as quantified by θ. (B) The fitting of the parameter γ
to reproduce the experimentally-derived length dependence of the midpoint on the coil-to-globule
transition, as quantified by m.
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Figure A14. Best fit of floating parameters for analytical model (line) to PIMMS simulations (filled
circles). (A) Data plotted in terms of inter-monomer interaction strength (assuming neutral
chain-solvent interactions). (B) Same data plotted in terms of chain-solvent interaction strength
(assuming neutral inter-monomer interactions). Colors denote chain lengths as specified in the
legends.
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Figure A15. Relationship between inter-monomer interaction strength and χ. As chain length
increases, cooperativity of the coil-to-globule transition increases. Note that the maximum and
minimum χ values show a modest but well-defined length dependence. (A) Data plotted in terms
of inter-monomer interaction strength (assuming neutral chain-solvent interactions). (B) Same
data plotted in terms of chain-solvent interaction strength (assuming neutral inter-monomer
interactions).
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Figure A16. Dependence of the end-to-end distance (Re) on χ. As the chain becomes longer,
both the maximum and the steepness of the Re-dependence on χ become larger.
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Figure A17: PEG-dependence of GS-linkers plotted on same axes. Blue line represents overlap
concentration (c*), with concentrations higher than c* identified by the light-blue shaded regime.
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Figure A18: PEG-dependence of χ from naturally occurring IDRs as a function of PEG
concentration and PEG molecular weight. Where present, horizontal lines are PEG-specific
overlap concentration (c*). Each of the four columns represents a distinct IDR and each row is a
distinct PEG solution. (a-i) PEG-dependence of χ for PUMA. (j-r) PEG-dependence of χ for E1A.
(s-ab) PEG-dependence of χ for p53. (ac-ak) PEG-dependence of χ for Ash1.
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Appendix B
Supporting Information for Publication:

Structural Preferences Shape the Entropic Force
of Disordered Protein Ensembles
The material originally appeared in the following: Feng Yu and Shahar Sukenik. The
Journal of Physical Chemistry B 2023 127 (19), 4235-4244

Table S1 can be found at this link:
https://github.com/sukeniklab/Entropic_Force

Figure B1. GS repeats match homopolymer scaling law under buffer conditions. The
average end-to-end distance from five repeats vs the total number of residues for a series of
Gly-Ser repeats, The error bars are the standard deviation of the five repeats. The red curve is

the result of fitting to , with nm and . Errors are𝑅
𝑒𝑒

 =  𝑅
0
𝑁ν 𝑅

0
= 0. 55±0. 06 ν = 0. 48 ±0. 03

obtained from the fit.
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Figure B2. Sequence features correlated with the entropic force strength. The entropic force
strength is plotted vs several sequence features. Unless stated otherwise, all sequence features
are calculated using the localCIDER python package. (A) : a metric for mixing of charged aminoκ
acids18 (B) FCR: fraction of charged residues, (C) NCPR: net charge per residue, (D)
Cluster_ILVAM: hydrophobic amino acid mixing calculated using the same algorithm as , (E)κ
Cluster_QNSTH: polar amino acid mixing calculated using the same algorithm as , (F)κ
Cluster_YFW, aromatic amino acid mixing calculated using the same algorithm as . (G) SCD:κ
sequence charge decoration (H) SHD: sequence hydropathy decoration (I) SHD vs sequence
length shows a strong correlation with the sequence length. This may explain at least some of the
correlation with entropic force, which is also shown to correlate with sequence length (Fig. 3.5A).
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Figure B3. GS repeat asphericity is independent of length. The average asphericity of GS
repeats vs the number of residues in the sequence. The mean of all seven data points is shown
by the red line, with .δ = 0. 39±0. 01
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Figure B4. Entropic force as a function of average asphericity. The black line represents the
length-independent asphericity of GS repeats shown in Fig. B3. Each marker represents a single
IDR, color-coded as in Fig. 3.5A , with stronger purple (green) markers showing a stronger
(weaker) entropic force compared to the GS repeat of the same size.
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Appendix C
Supporting Information for Chapter 4 Results:

The material originally appeared in the following: Cuevas-Velazquez, C.L., Vellosillo, T.,
Guadalupe, K., Schmit, B., Yu, F., et al. Intrinsically disordered protein biosensor tracks
the physical-chemical effects of osmotic stress on cells. Nat Commun 12, 5438 (2021).

Methods
The all-atom simulation and structural analysis are done by the author of this
dissertation. The protein construction and FRET measurement are done by the
collaborators.

All-atom simulation
Simulations of the AtLEA4-5 protein, its scrambles, and other IDRs were done using
Solution Space Scanning, an all-atom Monte Carlo simulation method based on the
ABSINTH force field1, that has been previously described2. Briefly, the Hamiltonian
function to be evaluated in each step can be written as the following representation.

𝐸
𝑡𝑜𝑡𝑎𝑙

=  𝑊
𝑠𝑜𝑙𝑣

+ 𝑈
𝐿𝐽

+ 𝑊
𝑒𝑙

+ 𝑈
𝑐𝑜𝑟𝑟

Here, Wsolv is the energy describing the interaction between the protein surface and the
surrounding solution. By changing the Wsolv term, we can alter this interaction and
sample a protein’s conformations in different solution conditions.

For each combination of solution condition and protein (AtLEA4-5 and each of its
sequence scrambles), we ran five independent simulations consisting of 5 × 107 Monte
Carlo steps (following 1 × 107 steps of equilibration) starting from random conformations
to ensure proper sampling. Protein conformations were written out every 12,500 steps.
The dataset of 70 other IDRs shown in Fig. (need figure number) was obtained using the
same methods, is publicly available on https://github.com/sukeniklab/HiddenSensitivity,
and has been previously described3. We analyzed the average radii of gyration of the
simulated conformation ensembles using the MDTraj Python library4. Standard
deviations were calculated based on the average of five individual repeats. Each radius
of gyration was then normalized based on the most expanding solution to highlight
solution sensitivity.

Transgene constructs
pDRFLIP38 backbone was used for biosensors yeast expression47. This plasmid
contains the constitutive promoter pPMA1, and was provided by Dr. Alexander M. Jones.
The vector was digested with XbaI (NEB) and EcoRI (NEB) to clone the open reading
frames (ORFs) of mCreluan3, AtLEA4-5, and Citrine downstream of the pPMA1
promoter. The biosensor construct was cloned using the Gibson Assembly cloning
method (NEB) by mixing the XbaI-EcoRI-digested pDRFLIP38 with the PCR-amplified

https://paperpile.com/c/PijxGC/Dtc03
https://paperpile.com/c/PijxGC/arQew
https://github.com/sukeniklab/HiddenSensitivity
https://paperpile.com/c/PijxGC/UuuSv
https://paperpile.com/c/PijxGC/XJPI9
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ORFs containing overlapping ends. The ORFs of the other fluorescent proteins
(t7.eCFP.t9, Aphrodite.t9, t7.TFP.t9, mTFP.t9, Cerulean, edCerulean, edCitrine,
edAphrodite.t9) used in this study were cloned in the same way. The sensory domains
tested (AtLEA4-2, ABP, CS, N-AtLEA4-5, C-AtLEA4-5, Scramble-1, Scramble-2,
Scramble-3, Scramble-4, Scramble-5) were cloned between mCerulean3 and Citrine
ORFs. To do this, pDRFLIP38-AtLEA4-5 was digested with SacI and BglII to remove the
AtLEA4-5 ORF. The digested plasmid was mixed with the different PCR-amplified
sensory domains-ORFs containing overlapping ends using the Gibson Assembly method
(NEB). AtLEA4-2, AtLEA4-5, N-AtLEA4-5, and C-AtLEA4-5 ORFs were amplified from
pTrc99A-AtLEA4-2 and pTrc99A-AtLEA4-5 plasmids provided by Dr. Alejandra A.
Covarrubias25. ABP ORF was amplified from pGW1araF.Ec plasmid provided by Dr.
Wolf B. Frommer26. CS ORF was amplified from Cr1-pRSET-A provided by Dr. Arnold
Boersma14. Scrambled versions were randomly designed using the Scrambler tool of
PeptideNexus (https://peptidenexus.com/). Scrambles were chosen based on disorder
propensity, α-helix prediction (AGADIR web server http://agadir.crg.es/) and charge
mixing (Kappa value)27. All AtLEA4-5 Scrambled ORFs were synthesized as gene
fragments (GenScript).

For bacterial expression, the pDEST-HisMBP backbone was used (Addgene #11085).
This plasmid contains the Tac IPTG-inducible promoter for protein expression with an
N-terminal 6x His tag and an MBP tag. The full SED1 ORF was cloned into
pENTR-D-TOPO (Thermo Fisher Scientific). Recombination of pENTR-D-TOPO-SED1
and pDEST-HisMBP was done using Gateway technology to produce
pDEST-HisMBP-SED1. The same strategy was followed for the full CS ORF to produce
pDEST-HisMBP-CS.

Transgene expression
The constructs indicated in the main text were transformed into Saccharomyces
cerevisiae protease-deficient yeast strain (BJ5465 lacking Pep4 and Prb1) using the
lithium acetate transformation method49. Transformed colonies were selected in plates
containing 6.8 g/L YNB media (Sigma-Aldrich) supplemented with 5 g/L glucose and
1.92 g/L synthetic drop-out medium without uracil (Sigma-Aldrich). Positive clones were
confirmed by colony PCR. SED1 was also transformed into wild-type and hog1Δ::G418
and pbs2Δ::G418 mutant backgrounds of the Saccharomyces cerevisiae BY4742 strain
(provided by Dr. Hugo Tapia). Transformation and selection were done as described
above.

pDEST-HisMBP-SED1 was transformed into Escherichia coli BL21 (DE3) strain using
the standard heat shock transformation protocol. Transformed colonies were selected in
plates containing LB media supplemented with ampicillin (100 μg/mL). Positive clones
were confirmed by colony PCR. The same strategy was followed for
pDEST-HisMBP-CS.

Fluorescence analysis of live Escherichia coli cells
3 mL of SED1-expressing Escherichia coli culture was grown at 37 °C in liquid LB
supplemented with ampicillin to OD600 ~1–2. No IPTG induction was needed since the
fluorescence obtained from the leaking expression of the Tac promoter was sufficient for
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measurements. Cells were centrifuged and washed twice with 50 mM MES, pH 6, and
resuspended in 3 mL of the same buffer. 50 µL of the cell suspension was loaded into
individual wells of a 96-well black F-bottom clear microplate (Greiner). 150 µL of
treatment solution (see Chapter 4 main text) was added to the cell suspension, mixing
was performed by pipetting up and down, and the fluorescence was measured
immediately after. Fluorescence readings were acquired using a Safire fluorimeter
(Tecan) for donor fluorophore (mCerulean3 excitation 433 nm, mCerulean3 emission
480 nm, abbreviated DxDm), acceptor fluorophore (Citrine excitation 510 nm, Citrine
emission 525 nm, abbreviated AxAm), and energy transfer from donor to acceptor
(mCerulean3 excitation 433 nm, Citrine emission 525 nm, abbreviated DxAm).
Fluorescence emission scans from 460 nm to 550 nm (step size 5 nm) with an excitation
wavelength of 433 nm were acquired. For all fluorescence measurements, the bandwidth
was set to 7.5 nm, the number of flashes was 10, the integration time was 40 µs, and the
gain was 100. Three independent measurements were acquired for each treatment and
construct.

Fluorescence analysis of live Saccharomyces cerevisiae cells

5 mL of yeast cells expressing the indicated constructs (see main text) were grown at
30 °C in liquid YNB media (6.8 g/L) (Sigma-Aldrich) supplemented with 5 g/L glucose and
1.92 g/L synthetic drop-out medium without uracil (Sigma-Aldrich) until OD600 ~ 1–2.
Cells were centrifuged and washed twice with 50 mM MES, pH 6 and resuspended in
5 mL of the same buffer. 50 µL of the cell suspension was loaded into individual wells of
a 96-well black F-bottom clear microplate (Greiner). 150 µL of treatment solution (see
main text) was added to the cell suspension, mixing was performed by pipetting up and
down, and the fluorescence was measured immediately after. Fluorescence readings
were acquired using a Safire fluorimeter (Tecan) for donor fluorophore (mCerulean3
excitation 433 nm, mCerulean3 emission 480 nm, abbreviated DxDm), acceptor
fluorophore (Citrine excitation 510 nm, Citrine emission 525 nm, abbreviated AxAm), and
energy transfer from donor to acceptor (mCerulean3 excitation 433 nm, Citrine emission
525 nm, abbreviated DxAm). Fluorescence emission scans from 460 nm to 550 nm (step
size 5 nm) with an excitation wavelength of 433 nm were acquired. For all fluorescence
measurements, bandwidth was set to 5 nm (7.5 nm for the emission scan), number of
flashes was 10, integration time was 40 µs, and gain was 100. For time course
measurements, the 96-well plate was kept inside the plate reader for the duration of the
experiment. Measurements were acquired every 60 s for a period of 120 to 150 min.
Shake (linear) duration was set to 3 s before every measurement. Nine independent
measurements were acquired for each treatment and construct. Experiments were
repeated three times.

U-2 OS cell culture

All U-2 OS (ATCC HTB-96) and HEK-293T (ATCC CRL-3216) cell lines used in this
study were cultured at 37 °C in 5% CO2 in high-glucose DMEM (GE Healthcare)
supplemented with 10% FBS (Atlanta Biologicals), 1 mM sodium pyruvate (Gibco), 2 mM
L-glutamine (Gemini Biosciences), 1x MEM non-essential amino acids (Gibco), 40 U/ml
penicillin and 40 μg/ml streptomycin (Gemini Biosciences). Stable U-2 OS
SED1-expressing cell lines were generated by lentiviral transduction. To produce
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lentiviral particles, the SED1 construct was first subcloned into EcoRV-HF
(NEB)-digested pLenti-CMV Puro DEST (Addgene #17452) using the NEBuilder HiFi
DNA Assembly master mix (NEB), and then transfected into HEK-293T cells together
with pMD2.G (Addgene #12259) and psPAX2 (Addgene #12260). Virus was harvested
48 h after transfection, filtered through non-binding 45 μm syringe filters (Pall
Corporation) and used to transduce U-2 OS cells. After 24 h, the virus-containing
medium was removed and replaced with selection medium containing 2 μg/ml Puromycin
(Sigma–Aldrich). After 7 days of selection, single-cell clones were derived by sorting for
the top ~60% fluorescent cells using a Sony SH800 flow cytometer. Two individual
clones were randomly selected for further use.

U-2 OS sample preparation

U-2 OS cells expressing SED1 were cultured in Corning treated flasks with Dulbecco’s
modified Eagle’s medium (DME:F-12 1X from Hyclone Cat No SH30023.01)
supplemented with 10% FBS (Gibco REF 16000-044) and 1% penicillin/streptomycin
(Gibco REF 15140-122). Cells were incubated at 37 °C and 5% CO2. Sorbitol (VWR
CAS 50-70-4) and NaCl (Fisher Bioreagents CAS 7647-14-5) stock solutions of 3 M and
5 M respectively were prepared by dissolving the corresponding amounts of sorbitol or
NaCl in autoclaved DI water and filtering using a 0.2 µm filter. The solutions used for
perturbations were obtained by diluting the stock solutions with autoclaved DI water.

Prior to imaging, 13,000 cells were plated in a µ-Plate 96-well black treated imaging
plate (Ibidi) and allowed to adhere overnight (~16 h) before perturbations. Cells were
stained with DAPI (Thermo). To prepare the stain, a 14.3 mM DAPI stock dissolved in DI
water was diluted to a final concentration of 300 µM with complete media. The media
from the cells was aspirated and DAPI-containing media was added to the cells, which
were then incubated for 15 min at 37 °C and 5% CO2. After the incubation period, the
cells were rinsed twice with PBS and 200 µL of PBS was added.

U-2 OS fluorescence microscopy

Imaging was done on a Zeiss epifluorescent microscope using a 40 × 0.9 NA dry
objective. Excitation was done with a Colibri LED excitation module and data were
collected on dual Hamamatsu Flash v3 sCMOS cameras. The cells were imaged at
room temperature before and less than 1 min following perturbation with 300 ms
exposure times. Imaging was done by exciting DAPI (385 nm) under donor excitation
(Dx, 430 nm) or acceptor excitation (Ax, 511 nm). Emitted light was passed on to the
camera using a triple bandpass dichroic (467/24, 555/25, 687/145). When measuring
FRET, emitted light was split into two channels using a downstream beamsplitter with a
520 nm cutoff. For each perturbation, the cells were focused using the DAPI channel,
and imaged with two channels using Dx, in one channel using Ax. The final osmolarities
that were used for the perturbations were: 150 mOsm, 300 mOsm (isosmotic),
525 mOsm, 600 mOsm, and 650 mOsm with sorbitol or NaCl as the osmotic agents.
From each well in the 96-well plate, 4-5 cells were analyzed. Each perturbation was
replicated at least 3 times in a single plate, and the data reported are combined from at
least two plates prepared on different days.
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U-2 OS image analysis

The images were analyzed using ImageJ. For each cell, 5 ROIs were selected: (1)
background ROI, located where no cells were present, to measure any background
changes that may have occurred due to media changes; (2–5) four ROIs in the
cytoplasm of each cell. For each ROI, the background signal was subtracted, and
average intensity values were reported in four channels: (a) donor emission under donor
excitation (DxDm), (b) acceptor emission under donor excitation (DxAm), (c) acceptor
emission under acceptor excitation (AxAm), and (d) DAPI emission under DAPI
excitation. To correct for donor bleedthrough, cells were plated and stained as previously
mentioned. Cells were imaged, the acceptor was photobleached under prolonged direct
acceptor excitation, and the cells were imaged again. ROIs of all the cells present in the
plane of view were measured. A correlation plot of donor emission against acceptor
emission was generated to determine percent bleedthrough, as shown in Fig C3B.

Quantification and statistical analysis

Data were analyzed with one-way ANOVA or two-way ANOVA for all experiments with
more than two samples, as indicated in the figure legends, with Tukey’s multiple
comparison test. For experiments with two samples, data were analyzed using unpaired
Student’s t-test. Symbols *, **, and *** indicate p-values < 0.05, 0.01, and 0.001,
respectively, unless specified differently in the figure legends.



109

Figure C1. Phasor plots (left) and donor fluorescence lifetime images (right) of live yeast cells
expressing AtLEA4-5 fused to mCerulean3 (donor-only control) under 0 M, 0.5 M, and 1 M NaCl.
Signals shifted to the left side of the phasor plot represent longer fluorescence lifetimes, whereas
those shifted to the right side represent shorter fluorescence lifetimes. Scale bar = 10 𝜇m. The
calibration bar represents the donor fluorescence lifetime in nanoseconds (ns). The experiment
was repeated 3 times independently with similar results.
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Figure C2. Fluorescence emission spectra of NaCl-treated live Escherichia coli cells expressing
SED1. Fluorescence values were normalized to the value at 515 nm.
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Figure C3. (A) Donor and acceptor fluorescence trajectories before and after the treatment of
SED1-expressing U-2 OS single cells with NaCl at the indicated osmolarities. (B) A correlation
plot of donor (DxDm) against acceptor (DxAm) emission was used to determine the bleedthrough
correction. Multiple wells were imaged and measurements of all cells present in the plain of view
were taken from the bleached images. Source Data are provided in SI Tables.
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Appendix D
Supporting Information for Chapter 4 Discussion:
The material originally appeared in the following: Structural biases in disordered
proteins are prevalent in the cells David Moses, Karina Guadalupe, Feng Yu. et al.
bioRxiv (2021)

Table S1-S3 can be found at this link:
https://www.biorxiv.org/content/10.1101/2021.11.24.469609v2.supplementary-material
Table S4 can be found at this link:
https://github.com/sukeniklab/IDP_structural_bias

Methods
The CD experiments and data analysis are done by the author of this dissertation. The
other works mentioned here are done by the collaborators.

FRET construct design and cloning

The FRET backbone for bacterial expression (fIDP_pET-28a(+)-TEV) or for mammalian
expression (fIDP_pCDNA3.1(+)) was prepared by ligating mTurquoise2 and
mNeonGreen into pET28a-TEV or pCDNA backbone using 5’ NdeI and 3’ XhoI
restriction sites. Genes encoding for IDP regions were obtained from GenScript
(Piscataway, NJ) and ligated between the two fluorescent proteins using 5’ SacI and 3’
HindIII restriction sites. Cloned plasmids were amplified in XL1 Blue (Invitrogen) cell
lines using manufacturer-supplied protocol. Sequences of all IDP inserts are available in
Table S1.

FRET construct expression and purification

BL21 (DE3) cells were transformed with fIDP_pET-28a(+)-TEV plasmids according to
manufacturer protocol and grown in LB medium with 50 μg/mL kanamycin. Cultures
were incubated at 37 °C while shaking at 225 rpm until OD600 of 0.6 was reached
(approx. 3 h), then induced with 1 mM IPTG and incubated for 20 h at 16 °C while
shaking at 225 rpm. Cells were harvested by centrifugation for 15 min at 3,000 rcf, the
supernatant was discarded, and the cells were lysed in lysis buffer (50 mM NaH2PO4, pH
8, 0.5 M NaCl) using a QSonica Q700 Sonicator (QSonica, Newtown, CT). Lysate was
centrifuged for 1 h at 20,000 rcf and the supernatant collected and flowed through a
column packed with Ni-NTA beads (Qiagen). The FRET construct was eluted with 50
mM NaH2PO4, pH 8, 0.5 M NaCl, 250 mM imidazole, and further purified using
size-exclusion chromatography on a Superdex 200 PG column (GE Healthcare) in an
AKTA go protein purification system (GE Healthcare). The purified FRET constructs
were divided into 200 μL aliquots, flash-frozen in liquid nitrogen, and stored at -80 °C in
20 mM sodium phosphate buffer, pH 7.4, with the addition of 100 mM NaCl. Protein
concentration was measured after thawing and before use using UV-vis absorbance at
434 and 506 nm (the peak absorbance wavelengths for mTurquoise2 and mNeonGreen,
respectively; the molar absorbance coefficients for mTurquoise2 and mNeonGreen are

https://www.biorxiv.org/content/10.1101/2021.11.24.469609v2.supplementary-material
https://github.com/sukeniklab/IDP_structural_bias
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30,000 cm-1M-1 and 116,000 cm-1M-1, respectively. Calculations of concentration based
on λ = 434 nm produced slightly higher values than calculations based on λ = 506 nm,
so the concentrations based on the measurement at λ = 506 nm were used), and purity
was assessed by SDS-PAGE after thawing and before use. To verify the brightness of
the FPs, we measured the UV-Vis absorbance of both donor and acceptor molecules
before each FRET assay. We used only samples that displayed an absorbance ratio
Abs506/Abs434 = ratio of 2.8 ± 0.2, a reasonable ratio given the difference in the molar
extinction coefficients of mTurquoise2 and mNeonGreen. Samples where the ratio
deviated from this value were discarded.

Preparation of solutions for solution-space scanning

Solutes were purchased from Alfa Aesar (Sarcosine, PEG2000), GE Healthcare (Ficoll),
Thermo Scientific (Guanidine Hydrochloride), and Fisher BioReagents (Glycine,
Potassium Chloride, Sodium Chloride, Urea), and used without further purification. Stock
solutions were made by mixing the solute with 20 mM sodium phosphate buffer, pH 7.4,
with the addition of 100 mM NaCl except for experiments where the concentration of
NaCl and KCl were varied, which began free of additional salt. The same buffer was
used for all dilutions.

In vitro FRET experiments

In vitro FRET experiments were conducted in black plastic 96-well plates (Nunc) with
clear bottom using a CLARIOstar plate reader (BMG LABTECH). Buffer, stock solution,
and purified protein solution were mixed in each well to reach a volume of 150 μL
containing the desired concentrations of the solute and the FRET construct, with a final
concentration of 1 μM protein. Fluorescence measurements were taken from above, at a
focal height of 5.7 mm, with gain fixed at 1020 for all samples. For each FRET construct,
two repeats from different expressions with 6 or 12 replicates each were performed in
neat buffer, and two repeats from different expressions were done in every other solution
condition. Fluorescence spectra were obtained for each FRET construct in each solution
condition by exciting the sample in a 16 nm band centered at λ = 420 nm, with a dichroic
at λ = 436.5 nm, and measuring fluorescence emission from λ = 450 to 600 nm,
averaging over a 10 nm window moved at intervals of 0.5 nm. Base donor and acceptor
spectra for each solution condition were obtained using the same excitation and
emission parameters on solutions containing 1 μM mTurquoise2 or mNeonGreen alone,
and measuring fluorescence emission from 450 to 600 nm.1,2

Calculation of FRET efficiencies and end-to-end distances

The apparent FRET efficiency ( ) of each FRET construct in each solution condition𝐸
𝑓
𝑎𝑝𝑝

was calculated by linear regression of the fluorescence spectrum of the FRET construct
with the spectra of the separate donor and acceptor emission spectra in the same
solution conditions (in order to correct for solute-dependent effects on fluorophore
emission). ( ) was calculated using the equation3:𝐸

𝑓
𝑎𝑝𝑝

𝐸
𝑓
𝑎𝑝𝑝 = 1 −

𝐹
𝑑

𝑄
𝑑
𝑓

𝑑

𝑄
𝑎
𝑓

𝑎
𝐹

𝑠
+𝐹

𝑑

https://paperpile.com/c/pNueij/YbSC+ViiJ
https://paperpile.com/c/pNueij/7VXp


115

where is the decoupled donor contribution, is the decoupled acceptor contribution,𝐹
𝑑

𝐹
𝑠

is the area-normalized donor spectrum, is the area-normalized acceptor spectrum,𝑓
𝑑

𝑓
𝑎

= 0.93 is the quantum yield of mTurquoise2, and = 0.8 is the quantum yield of𝑄
𝑑

𝑄
𝑎

mNeonGreen2,4.

The data for each series of solution conditions consisting of increasing concentrations of
a single solute was processed in the following manner:

1. Raw spectra for the free donor and free acceptor in the various solution
conditions were loaded, and the averages of all repeats in each solution condition
were computed. These averages are referred to as the “raw” donor and acceptor
spectra below because they will be further corrected.

2. The donor and acceptor peak intensities were assumed to change in a linear
fashion with increasing solute concentration, so peak height of donor- or
acceptor-only spectra vs. concentrations were linearly fit.

3. To correct for artifacts (such as variations in FRET construct concentration
between different wells) that may contribute to unexpected differences in
fluorescence intensity, a correction factor was applied to each raw donor and
acceptor spectrum to bring the peak intensity to the linear fit described in step 2,
resulting in “corrected” donor and acceptor spectra. Importantly, we have seen in
our previous work that this correction corrects well-to-well variations in raw data
but has a negligible effect on overall values and trends5.

4. The raw FRET construct fluorescence spectra for the series were loaded.
5. To compensate for unintended direct excitation of the acceptor by excitation at

the donor excitation frequency, the corrected acceptor spectrum for each solution
condition was subtracted from the FRET construct spectrum for each solution
condition, resulting in “corrected” FRET construct spectra.

6. The corrected donor, acceptor and FRET construct spectrum for each solution
condition was fitted with a linear regression function to determine the decoupled
contributions of the donor and acceptor to the FRET construct spectrum.

7. of each FRET construct in each solution condition was calculated using the𝐸
𝑓
𝑎𝑝𝑝

equation shown above.

Size exclusion chromatography and small-angle X-ray scattering experiments

Small-angle X-ray scattering (SAXS) experiments were performed at BioCAT (beamline
18ID at the Advanced Photon Source, Chicago). The experiments were performed with
in-line size exclusion chromatography (SEC-SAXS) (Fig. D1) to separate monomeric
protein from aggregates and improve the accuracy of buffer subtraction. Experiments
were conducted at 20 °C in 20 mM sodium phosphate, pH 7.4, with 100 mM NaCl.
Samples of approximately 300 µL were loaded, at concentrations in mg/mL
approximately equal to 240 divided by the molecular weights of the constructs in kD (for
example, a typical construct of molecular weight 60 kD would have a target
concentration for SEC-SAXS of 240/60 = 4 mg/mL), onto a Superdex 200 Increase
10/300 column (GE Life Sciences) and run at 0.6 mL/min using an ÄKTA Pure FPLC

https://paperpile.com/c/pNueij/ViiJ+p4se
https://paperpile.com/c/pNueij/gdxw


116

system (Cytiva). The column eluent passed through the UV monitor and proceeded
through the SAXS flow cell which consists of a 1.5 mm ID quartz capillary with 10 μm
walls. The column to X-ray beam dead volume was approximately 0.1 mL. Scattering
intensity was recorded using a Pilatus3 1M (Dectris) detector placed 3.5 m from the
sample providing access to a q-range from 0.003-0.35 Å-1. 0.5 second exposures were
acquired every 2 seconds during the elution. Data was reduced at the beamline using
BioXTAS RAW version 2.1.16,7. The contribution of the buffer to the X-ray scattering
curve was determined by averaging frames from the SEC eluent which contained
baseline levels of integrated X-ray scattering, UV absorbance and conductance. Frames
were selected as close to the protein elution as possible and, ideally, frames pre- and
post-elution were averaged. Multiple peaks for GS48, WT PUMA, E1A, and FUS were
deconvolved using evolving factor analysis (EFA) (Fig. D2)8,9 and the peak with
calculated molecular weight corresponding to the monomer was chosen for further
analysis. Final scattering profiles were generated by subtracting the average buffer trace
from all elution frames and averaging curves from elution volumes close to the maximum
integrated scattering intensity; these frames were statistically similar in both small and
large angles. Buffer subtraction and subsequent Guinier fits (Fig. D3), as well as Kratky
transformations (Fig. D4), deconvolution of peaks using EFA, molecular weight
calculations based on volume of correlation10 and Porod volume11 (Table S1), and pair
distance distribution (P(r)) analysis using the indirect Fourier transform (using the
algorithm in the GNOM program by Svergun and Semyenuk) were done in BioXTAS
RAW. Radii of gyration ( ) were calculated from the slope of the fitted line of the Guinier𝑅

𝑔
plot at maximum using the equation12:𝑞 × 𝑅

𝑔
= 1

𝑙𝑛[𝐼(𝑞)] =  𝑙𝑛[𝐼(0)] −  (
𝑅

𝑔
2

3 )𝑞2

Mammalian cell culture

HEK293T cells were cultured in Corning treated flasks with Dulbecco’s modified Eagle
medium (Advanced DMEM:F12 1X, Gibco Cat. No. 12634-010) supplemented with 10%
FBS (Gibco Cat. No. 16000-044) and 1% penicillin/streptomycin (Gibco Cat. No.
15140-122). For live-cell microscopy experiments, 5,000 cells were plated in a µ-Plate
96-well black treated imaging plate (Ibidi Cat. No. 89626) and allowed to adhere
overnight (∼16 hours) before transfection. Cells were incubated at 37 °C and 5% CO2.
Before transfection, the media was switched out with new warmed media. XtremeGene
HP (Sigma Cat. No. 6366236001) was used to transfect FRET construct plasmids into
HEK293T cells per manufacturer’s protocol. Cells were incubated at 37 °C and 5% CO2
for 48 hours. NaCl stock solution was prepared by dissolving NaCl (Fisher Bioreagents
CAS 7647-14-5) in 1X PBS (Gibco Cat. No. 70011-044) and filtering using a 0.2 µm filter.
The solutions used for perturbations were obtained by diluting the imaging media (1X
PBS) with autoclaved DI water to achieve hypoosmotic (100 mOsm) conditions or by
adding NaCl stock solution for hyperosmotic (750 mOsm) conditions. Isoosmotic (300
mOsm) conditions were obtained by adding 1X PBS. To prepare for imaging, cells were
rinsed once with 1X PBS and left in 200 μL PBS (300 mOsm) for imaging.

https://paperpile.com/c/pNueij/F1uH+aa6D
https://paperpile.com/c/pNueij/8I5f+DtDo
https://paperpile.com/c/pNueij/eBUH
https://paperpile.com/c/pNueij/5s75
https://paperpile.com/c/pNueij/xcY3
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Live-cell microscopy

Imaging was done on a Zeiss epifluorescent microscope using a 10X 0.3 NA dry
objective. Excitation was done with a Colibri LED excitation module and data was
collected on a duocam setup with two linked Hamamatsu Flash v3 sCMOS cameras.
The cells were imaged at room temperature before and after perturbation with 150 ms
exposure times. Imaging was done by exciting mTurquoise2 at 430 nm (donor and
acceptor channels) or mNeonGreen at 511 nm (direct acceptor channel). Emitted light
was passed on to the camera using a triple bandpass dichroic (467/24, 555/25,
687/145). When measuring FRET, emitted light was split into two channels using a
downstream beamsplitter with a 520 nm cutoff. For each perturbation, the cells were
focused using the acceptor channel and imaged before manually adding water
(hypoosmotic condition), PBS (isosmotic condition), or NaCl solution (hyperosmotic
condition) and pipetting up and down 10 times to ensure mixing. The final osmolarities
that were used for the perturbations were: 100 mOsm, 300 mOsm (isosmotic), and 750
mOsm with NaCl as the osmotic agent. Imaging was typically completed in ∼ 45
seconds.

Image analysis

Images were analyzed using ImageJ13. Images collected before and after osmotic
challenge, containing three channels each, were stacked and aligned using the
StackReg plugin with rigid transformation (Fig. D5)14. The aligned image was segmented
based on the donor channel before perturbation. Segmentation was done using several
methods to ensure that the results were robust. The methods included the ImageJ
built-in implementations of the Triangle and MinError algorithm, as well as a fixed
threshold that selected only pixels with intensities between 1,500 - 40,000. All methods
gave nearly identical results, so the fixed threshold method was finally selected for the
data shown in all live cell figures. The resulting mask was processed using the Open and
Watershed binary algorithms of ImageJ. Cells were selected using the Analyze Particles
option of ImageJ, picking only those with an area between 65 - 845 μm2, and with a
circularity of 0.1 - 1.0. The resulting regions of interest were averaged in each channel at
each timepoint. The resulting cells were filtered to remove cells with an intensity over
10,000 (to correlate with in vitro experiment concentrations, see Fig. D6) and cells where
the absolute change in direct acceptor emission was over 2,000 (which tended to be
cells that moved or lifted off the coverslip during measurement). To correct for donor
bleedthrough and cross-excitation, cells were transfected with the mTurquoise2 or
mNeonGreen construct only, the cells were imaged and analyzed using the same
protocol as previously mentioned, and correlation plots were generated to determine
percent bleedthrough and cross-excitation (Fig. D7). The final filtering step removed
cells with a corrected donor/acceptor ratio that was negative or higher than 6. Cell FRET
efficiency before and after perturbation ( and respectively) was𝐸

𝑓, 𝑏𝑒𝑓𝑜𝑟𝑒
𝑐𝑒𝑙𝑙 𝐸

𝑓, 𝑎𝑓𝑡𝑒𝑟
𝑐𝑒𝑙𝑙

calculated by . The resulting dataset is available as Table S2. The number𝐸
𝑓
𝑐𝑒𝑙𝑙 =

𝐹
𝐴

𝐹
𝐷

+𝐹
𝐴

of cells measured for each construct and condition from this dataset are summarized in
Table S3. Analysis code is available as an ImageJ macro at
https://github.com/sukeniklab/IDP_structural_bias.

https://paperpile.com/c/pNueij/ghB6
https://paperpile.com/c/pNueij/34M8
https://github.com/sukeniklab/IDP_structural_bias
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Label-free peptide synthesis and purification

WT PUMA and shuffled sequences were prepared via standard microwave-assisted
solid-phase peptide synthesis protocols using a Liberty Blue automated microwave
peptide synthesizer (CEM, NC, USA) and ProTide Rink Amide resin (CEM).
Fmoc-deprotection was achieved by treatment with 4-methylpiperidine (20% v/v) in
dimethylformamide (Sigma-Aldrich), and Fmoc-amino acids were activated using
N,N’-Diisopropylcarbodiimide (Sigma-Aldrich) and Oxyma Pure (CEM). Peptides were
N-terminally acetylated and C-terminally amidated. After synthesis, the peptidyl resins
were filtered and rinsed with acetone and air-dried. The crude peptides were cleaved
from the resin for 4 hours at room temperature with a 92.5% trifluoroacetic acid (TFA),
2.5% H2O, 2.5% 3,6-dioxa1,8-octane-dithiol, 2.5% triisopropylsilane cleavage solution,
precipitated with cold diethyl ether, and centrifuged at 4000 rpm for 10 min at 4 °C. After
centrifugation, the supernatants were discarded, and the pellets were dried under
vacuum overnight. Crude peptides were purified by high-performance liquid
chromatography (HPLC) using an Agilent 1260 Infinity II HPLC instrument equipped with
a preparative scale Phenomenex Kinetex XB-C18 column (250 × 30 mm, 5 μm, 100 Å)
(Fig. D8). Peptides were eluted with a linear gradient of acetonitrile-water with 0.1%
TFA. The target fractions were collected, rotovapped, and lyophilized. Purified peptides
were analyzed by mass spectrometry using a Q-Exactive Hybrid Quadrupole-Orbitrap
mass spectrometer (Thermo Scientific) (Fig. D9, Table S4).

CD spectroscopy

Lyophilized protein constructs were weighed and dissolved in a 20 mM sodium
phosphate, 100 mM NaCl buffer at pH 7.4 to make a 200 μM stock. The stock was
diluted into a concentration series to measure the CD spectra. CD spectra were
measured using a JASCO J-1500 CD spectrometer with a 1 cm quartz cell for 1 μM and
2 μM protein concentration and 0.1 cm quartz cell for other concentrations (Starna Cells,
Inc., Atascadero, CA) using a 0.1 nm step size, a bandwidth of 1 nm, and a scan speed
of 200 nm/min between 260 to 190 nm. Each spectrum was measured 7 times and
averaged to increase the signal-to-noise ratio. The buffer control spectrum was
subtracted from each protein spectrum. CD spectra were normalized using UV 280 nm
absorbance to eliminate the small concentration difference between different protein
constructs.
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Figure D1. Chromatograms from SEC-SAXS experiments in which the samples were
donor-IDP-acceptor FRET constructs in a dilute phosphate buffer solution. The vertical dotted line
labeled “GS” in each panel represents the expected elution peak position of a FRET construct
containing a GS-repeat sequence equal in length to the IDP, where N refers to the number of
amino acids. The shaded region in each panel represents the standard error of the expected GS
peak position.
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Figure D2. Screens from BioXTAS RAW software showing process of deconvolution of SEC
peaks using evolving factor analysis. Left: raw chromatograms. Center: ranges of deconvoluted
peaks. Right: 𝐼(𝑞) vs 𝑞 series, calculated radius of gyration, and calculated molecular weight for
each deconvoluted peak. Same colors in center and right panels represent the same
deconvoluted peaks.
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Figure D3. Guinier plots for donor-IDP-acceptor FRET constructs from SEC-SAXS experiments.
For IDRs that are not GS-repeat sequences, the fitted line is compared with the expected fitted
line for a construct containing a GS-repeat sequence of the same length (black dotted lines),
where N refers to the number of amino acids. Lines are fitted to a maximum 𝑞 * 𝑅 value of 1.



122

Figure D4. Dimensionless Kratky plots derived by transforming the scattering profiles from which
the values reported in the main text were calculated. For a globular protein, the peak position
should be at (shown by vertical dashed line) and the peak height should be𝑞𝑅

𝑔
= 3 ~ 1. 73

(shown by horizontal dashed line).(𝑞𝑅
𝑔
)2 *  𝐼(𝑞)/𝐼(0) = 3/𝑒~ 1. 1
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Figure D5. Analysis pipeline for live cell data. The donor channel before perturbation (Ch 1)was
segmented using a fixed threshold to include any pixels with an intensity value between 1,500 -
40,000. The ImageJ “analyze particles” algorithm was used to select thresholded regions with a
circularity between 0.1 -1.0 and a size of 65 - 845 μm². All channels were aligned using the
StackReg plugin before segmented regions were applied and measured. Final measurements
were corrected for bleedthrough and cross-excitation using slopes obtained from Fig. D3. The
complete dataset can be found in Table S2. In this table, channels 1, 2, 2 uncorrected and 3
correspond to donor ( ), corrected acceptor ( ), uncorrected acceptor ( ) and direct𝐹

𝐷
𝐹

𝐴
𝐹

𝐴, 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
acceptor ( ) before osmotic stress, respectively. Channels 5, 6, 6 uncorrected and 7𝐹

𝐴, 𝑑𝑖𝑟𝑒𝑐𝑡
correspond to donor ( ), corrected acceptor ( ), uncorrected acceptor ( ) and direct𝐹

𝐷
𝐹

𝐴
𝐹

𝐴, 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
acceptor ( ) after osmotic stress, respectively.𝐹

𝐴, 𝑑𝑖𝑟𝑒𝑐𝑡
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Figure D6. In vitro measurement of direct acceptor emission for known recombinant, purified
proteins measured on the same setup as the live cells. The dashed line shows the emission
cutoff used to select cells with a concentration range around 5 μM or lower to correlate with in
vitro experiments.
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Figure D7. Measurements of cross-excitation (left) and bleedthrough (right) from donor to
acceptor channel. To calculate cross-excitation, cells expressing mNeonGreen only were imaged.
To calculate bleedthrough, cells expressing mTurquoise2 only were imaged. In both cases, the
same imaging settings as those used for FRET constructs were used. (left) The x-axis shows
acceptor emission under acceptor excitation. (right) The x-axis shows donor emission under
donor excitation. In both figures, the y-axis shows acceptor emission under donor excitation. The
slopes of these two values were used to correct the signal from the FRET construct according to
the following equation:

𝐹
𝐴

= 𝐹
𝐴, 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

− (0. 19 × 𝐹
𝐴, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

+ 0. 53 × 𝐹
𝐷

)

where is used to calculate . The numbers 0.19 ± 0.001 and 0.53 𝐹 ± 0.001 are the slopes𝐹
𝐴

𝐸
𝑓
𝑐𝑒𝑙𝑙

from the figures above. Additionally, we performed photobleaching experiments where
mNeonGreen of various FRET constructs were bleached. These bleached constructs were used
to measure and calculate bleedthrough and similar results were obtained (slope of 0.51 ± 0.007).
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Figure D8. HPLC traces from the purification of label-free peptides. (A) PUMA WT. (B) PUMA S1.
(C) PUMA S2. (D) PUMA S3.
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Figure D9. High-resolution ESI mass spectra of purified label-free peptides. (A) PUMA WT. (B)
PUMA S1. (C) PUMA S2. (D) PUMA S3. Calculated and experimental masses are shown in
Table S4.
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Figure D10. Concentration dependence of circular dichroism measurements of PUMA WT and
sequence scrambles.
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