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ABSTRACT OF THE DISSERTATION

A New Approach for Computationally Efficient and Reliable Carrier Integer
Ambiguity Resolution in GPS/INS

by

Yiming Chen

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2014

Professor Jay Farrell, Chairperson

This dissertation considers reliable real-time navigation with Real-Time Kinematic

(RTK) GPS aided Inertial Navigation System (INS). To improve the accuracy and

reliability of the aided INS, a Contemplative Real-Time (CRT) framework is pro-

posed by combining the conventional Kalman Filtering and the Bayesian smoothing

which considers all the navigation information over a time window. To facilitate the

formulation and the solution of the CRT problem, a probabilistic graphical model

called Factor Graph is utilized. To enhance the robustness of the navigation system

to faulty measurements, a novel robust graph optimization method referred as Hy-

pothesis Test aided Least Soft-thresholding Square (HT-LSS) is proposed. Due to

the integer ambiguity inherent in the GPS carrier phase measurements, in this work

the classical Factor Graph modeling is extended for RTK GPS/INS applications by

incorporating integer unknowns. Nonlinear Mixed Integer Least Square (NMILS)

vii



is required to solve the CRT RTK GPS/INS problem. The major contribution of

this thesis is the proposition of a novel Common-Position-Shift method to reduce the

computational cost of the NMILS in this problem. In addition, a robust real-time

differential correction computation approach was developed for reliable DGPS/RTK

applications with internet transported differential information in RTCM and Ntrip

standard. The proposed algorithms are evaluated using data acquired with the sensor

platform mounted on an automotive vehicle to illustrate the performance.
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Chapter 1

Introduction

On September 25, 2012, California Governor Jerry Brown signed legislation that

allows self-driving cars (a.k.a. autonomous car, driverless car) to operate on the states

roads [8], joining Nevada and Florida, to become the third US state that permits ve-

hicles to drive themselves on public roads [61]. This bill legalizes and encourages the

research, development, on-road tests and future volume production of the technolo-

gies that enable autonomous vehicles in California. These same technologies enable

additional semi-autonomous surface vehicle applications that will enhance safety and

mobility while decreasing environmental impact: signal phase and timing, collision

avoidance, parking location, cooperative driving, etc. One of the most critical required

technologies for autonomous vehicles is accurate and reliable estimation of vehicular

navigation state with position accuracy to at the decimeter level (i.e., where-in-lane).

Improvements in the accuracy and reliability of land vehicle navigation could not on-
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ly accelerate industry innovation, stimulate the local economy but also benefit daily

traffic and transportation of Californians significantly in terms of safety and efficien-

cy. Furthermore, the navigation and autonomous control techniques developed for

self-driving cars can be extended to other robotics research and development, e.g.,

agriculture automation and unmanned aerial vehicles.

To achieve reliable land vehicle navigation, various sensors can be integrated on

board: Global Navigation Satellite System (GNSS) receiver, odometer, radar, LI-

DAR, inertial sensors (IMU), Doppler velocity log (DVL) etc. Among these, Global

Positioning Systems aided Inertial Navigation Systems (GPS/INS) has proven an ef-

ficient integration for navigation purpose, due to their complementary natures [22].

The global positioning accuracy of GPS/INS depends on the performance of the GPS

subsystem. A well-designed GPS receiver typically can reach 3-8 meters positioning

accuracy with the the U.S. Global Positioning System (GPS) Standard Positioning

Service (SPS) [3]. To achieve reliable high precision positioning, differential GPS

(DGPS) is a promising technique. With a base station in the range of a few tens of

kilometers, DGPS accuracy is in the order of 1m (1 σ), growing at the rate of 1m

per 150km of separation [36]. The user can either set up a proprietary base station

or utilize the publicly available differential information sources, like Continuously

Operating Reference Station (CORS) [60] and Nationwide Differential Global Posi-

tioning System (NDGPS) [56]. To facilitate the internet transport of the differential

information, international standards e.g. RTCM [59] and Ntrip [57] were proposed
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and published. Although the accessibility of internet has been enhance significantly

through the vast development of the network infrastructure and the mobile commu-

nication, delays of the differential information still impairs the real-time performance

of the Differential GPS. Besides, the frequency of measurements broadcast from base

station may be lower than that of the rover receiver, such that part of rover measure-

ments cannot be compensated by the base correction. Instead of using Geodetic grade

equipment to establish base station, deploying low cost base station to realize DGPS

or even Real-Time Kinematic (RTK) positioning is also under considerable effort in

industry [63]. When low cost antenna and receiver is used and deployed in unstable

electromagnetic environments, base measurements may contains outliers which will

also impair the DGPS performance. Thus, robust DGPS correction approach for

real-time application is highly required.

Compared with the measurements broadcast from the base stations which are usu-

ally established under noise-less environment (e.g. top of mountains and high build-

ings), the measurements from the rover receiver are more prone to contain faulty data,

especially when the rover is under highly dynamic motion or in unideal electromag-

netic environment like urban canyon or under heavy foliage. Thus, outlier handling

technique is also highly required for GPS/INS to ensure reliability and robustness of

the system.

With GPS receivers which can provide carrier phase measurements, Real-Time

Kinematic (RTK) technique is able to achieve centimeter accuracy in realtime [65].
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However, the RTK technique requires fast and precise on-the-fly integer ambiguity

resolution which figures out the unknown cycles numbers in carrier phase measure-

ments. Once the integer ambiguity resolved, the carrier phase measurements work

just as the pseudorange but provide much more precise range information (centimeters

versus submeters or meters). The integer ambiguity has to be resolved by involving

an integer least square (ILS) minimization. A standard ILS problem is NP-hard

and then the resolution could be extremely time consuming. In addition, reliable

integer ambiguity resolution requires enough inlier satellite measurements. For RTK

applications with dual-frequency receivers, the integers can be resolved efficiently in

real-time with the aids of the wide-lane phase measurements and applying standard

Integer Least Square (ILS) approach, e.g. LAMBDA [33] and MLAMBDA [9]. How-

ever, for the single-frequency case, the integer ambiguity becomes pretty challenging

depending on only the halved number of GPS measurements and only the L1 car-

rier phase measurements. In [64], the RTK performance of various combinations of

low cost antennas and receivers are evaluated. It was stated that a single-frequency

receiver requires at least several minutes to achieve time-to-first-fix (TTFF) with am-

biguity resolution in the conclusion of [64]. In [75, 76], a closed form expression of the

single-frequency Ambiguity Dilution of Precision (ADOP) is presented to measure

ambiguity resolution performance empirically. Still, a large number of epochs is re-

ported in [76] to guarantee the ambiguity resolution success rate even in short baseline

situation. However, in [76] it is also concluded that multi-GNSS (e.g. GPS+Beidou)

4



could improve the ambiguity resolution significantly. Along with the existing GPS,

GLONASS, QZSS and the coming full constellations Beidou and Galileo, low cost

single-frequency multi-GNSS RTK seems promising. Thus, improvements on the ac-

curacy of integer ambiguity resolution would enable more widely application of RTK

technique, with the development of the GNSS constellations and receivers.

GPS (or GNSS) can provide global positioning, velocity and timing information,

but in a low frequency (oftentimes 1-2 Hz). For real-time motion planning and auto-

matic control of land vehicles, high frequency navigation state estimates are required.

So, inertial navigation systems (INS) which based on high frequency inertial mea-

surement unit (IMU) are usually incorporated with GPS for real-time navigation

application. Besides the high frequency position and velocity estimates, the attitude

estimates of the vehicle can also be provided by INS. To fuse the navigation infor-

mation from INS and the aiding sources (e.g., GPS), Extended Kalman Filtering is

often used as a standard framework for INS [21, 22, 53]. However, it is well known

that EKF has limitations, especially those caused by linearizations [18]. One major

disadvantage is that that EKF cannot correct previous wrong linearization points,

and thus performs poorly or even collapse when strong nonlinearities exist. Thus, to

improve the accuracy and reliability of general INS and then that of GPS/INS, better

sensor fusion framework is required.

Considering the above challenges within current GPS/INS research and devel-

opment, the major contribution of this dissertation is the proposition of a novel
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Common-Position-Shift (CPS) approach for solving integer ambiguity over a time

window reliably and efficiently. This dissertation also has the following other contri-

butions to improve the accuracy, reliability and robustness of INS, especially for land

vehicle applications with GPS aiding:

• Instead of the traditional filtering frame which only considers one epoch aiding

measurements, Bayesian smoothing with all navigation information over a time

window is applied for INS. Then, for RTK GPS/INS case, the integer ambiguity

resolution is executed with a window of IMU and GPS measurements which

provide more constraints and improve the accuracy and reliability.

• Probabilistic graphical modeling is introduced to represent the more compli-

cated estimation problem in the smoothing for aided INS. Furthermore, Factor

Graph modeling which is widely applied in robotics community, is extended

for the RTK GPS/INS application by incorporating the integral unknowns to

resolve integer ambiguity.

• To overcome the linearization issue inherited from EKF, iterative nonlinear opti-

mization is applied to solve the Maximum-a-Posteriori estimation derived from

the graphical model. Thus, previous wrong linearization points can corrected

when more measurements included in the optimization of the later windows.

For RTK GPS/INS case, the method of solving the Nonlinear Mixed Integer

Least Square (NMILS) for smoothing is proposed.

6



• A novel robust optimization approach is proposed by introducing hypothesis

tests to improve the existing methods. This method can be applied in graph

optimization base INS, and also fit general least square problems.

• A Contemplative Real-Time (CRT) framework, which combines traditional fil-

tering and the robust graph optimization based smoothing, is proposed for

general INS and implemented especially for RTK GPS/INS.

• A novel base correction computation approach is proposed for real-time appli-

cation with enhanced robustness.

The organization of this dissertation is as follows. Chapter 2 proposes the nov-

el approach for robust base correction computation ensuring real-time performance.

Chapter 3 presents the graphical modeling and optimization approach for general

Inertial Navigation Systems with aiding measurements. Chapter 4 proposes a hy-

pothesis test based robust optimization approach and uses graph optimization based

GPS/INS as an implementation example. Chapter 5 presents the Contemplative

Real-Time framework for INS and especially for RTK GPS/INS. Chapter 6 presents

a Common-Position-Shift method which could reduce the computational cost of in-

teger ambiguity resolutions in Chapter 5. Chapter 7 concludes this dissertation and

discusses potential future works.
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Chapter 2

Internet Transport based

Differential GPS

As the most widely applied Global Navigation Satellite System (GNSS), Global

Positioning System (GPS) plays crucial roles in modern society by providing global

Positioning-Velocity-Timing (PVT) services. A well-designed GPS receiver with an-

tenna typically can reach 3-8 meter positioning accuracy with the the U.S. Global

Positioning System (GPS) Standard Positioning Service (SPS) [3].

To achieve reliable higher precision positioning, differential GPS (DGPS) is a

promising. The DGPS relies on extra infrastructure which often called base station.

A base station is another set of GPS receiver and antenna but it is stationary during

the rover operation. The DGPS techniques aim to remove the spatial-common errors

between the rover receiver and the base receiver (see Section 2.2). Standard DGPS

8



requires the global position of the base station is well-surveyed such that the spatial-

common errors can be calculated precisely. With a base station in the range of a few

tens of kilometers, DGPS accuracy is in the order of 1m (1 σ), growing at the rate of

1m per 150km of separation [36].

In practice, the user can either set up a base station on their own [21, 78] or utilize

the publicly available correction service, e.g. Continuously Operating Reference Sta-

tion (CORS) [60], Nationwide Differential Global Positioning System (NDGPS) [56]

and EUREF [19]. To facilitate the internet transport of the differential information,

international standards e.g. RTCM [59] and Ntrip [57] were proposed and published.

As the mobile communication networks (4G or WiFi) becomes readily available, the

DGPS technique can be used in various scenarios.

This chapter first reviews the standard differential GPS technique and measure-

ment models in Section 2.1. Then, the internet transport standard for differential

GPS information is introduced. Finally, a novel differential correction computation

method is proposed to utilize the internet transported differential information in real-

time application efficiently and robustly.

2.1 GPS Measurement Models

GPS measurements are made through estimating the travel time of the electro-

magnetic signals broadcast from the satellite vehicle antenna to the rover antenna.
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In this dissertation, two major types of GPS measurements are used: pseudorange

measurements and carrier phase measurements.

2.1.1 Pseudorange Measurements

The L1 and L2 pseudorange measurements for the i-th satellite at time t can be

modeled as

ρ̃ir1(t) = ‖pr(t)− pi(t)‖2 + cδtr(t) +
f2

f1

I ir(t) + T ir(t) +M i
ρ1

(t) + niρ1
(t), (2.1)

ρ̃ir2(t) = ‖pr(t)− pi(t)‖2 + cδtr(t) +
f1

f2

I ir(t) + T ir(t) +M i
ρ2

(t) + niρ2
(t), (2.2)

where

• ‖pr−pi‖2 is the geometric distance between the rover position pr ∈ R3 and the

i-th satellite vehicle position pi ∈ R3,

• c is the light speed and δtr ∈ R is the receiver clock bias which is identical to

all channels of the receiver,

• f1 = 1575.42MHz and f2 = 1227.60MHz are the frequencies for L1 and L2

carrier for GPS signal,

• I ir is the Ionospheric delay caused by the ionization effect in the Ionosphere,

• T ir is the Tropospheric delay caused by the block from the Troposphere for the

L-Band signal,
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• M i
ρ1

and M i
ρ2

are multipath errors caused by signal reflections,

• niρ1
, niρ2

∼ N (0, σiρ
2
) is the (non-common mode) measurement noise.

In practice, the position of the satellite vehicle is estimated from the orbital data

which is broadcasted in a data format called ephemeris. Based on the ephemeris

data, the satellite orbit can be fitted through the Kepler model [3]. The fitted error

in each satellite orbit is unavoidable and called ephemeris error Ei. Also, the clock on

the satellite is also estimated with error. Thus, the true range between the satellite

vehicle and the rover can be represented as

‖pr − pi‖2 = ‖pr − p̂i‖2 + Ei + cδti, (2.3)

where p̂i is the estimated satellite vehicle position from the ephemeris and δti is the

satellite clock error.

The various errors in eqn. (2.1 - 2.1) can be divided into two categories: common

mode and non-common mode. The satellite related errors Ei and cδti are common to

all receivers using the same ephemeris. The atmospheric errors I ir and T ir are common

to spatial nearby (< 15-20km) receivers. The multipath errors M i
ρj

and receiver noise

niρj depending on the local electromagnetic environment are non-common between

different receivers. Rewriting the common mode error for the i-th satellite as

Ei
cm1 , Ei + cδti +

f2

f1

I ir + T ir , (2.4)

Ei
cm2 , Ei + cδti +

f1

f2

I ir + T ir , (2.5)
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the eqn. (2.1) and (2.2) can be simplified as

ρ̃ir1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + Ei
cm1(t) +M i

ρ1
(t) + niρ1

(t), (2.6)

ρ̃ir2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + Ei
cm2(t) +M i

ρ2
(t) + niρ2

(t). (2.7)

Table 2.1.1 from [22] indicates the magnitude of the above errors.

2.1.2 Carrier Phase Measurements

The L1 and L2 carrier phase measurements ϕ̃ir1 and ϕ̃ir2 for the i-th satellite at

time t can be modeled as

λ1ϕ̃
i
r1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ1N

i
1(t) + Ei

cm3(t) +M i
ϕ1

(t) + niϕ1
(t), (2.8)

λ2ϕ̃
i
r2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ2N

i
2(t) + Ei

cm4(t) +M i
ϕ2

(t) + niϕ2
(t), (2.9)

where

• λ1 and λ2 are the wavelength of the corresponding carrier signals,

• N i is the ambiguous integers representing the unknown number of whole cycles,

Common Mode Errors L1, σ, meters
Ionosphere 7-10

Troposphere 1
Sv Clock 2

Sv Ephemeris 2
Non-common Mode Errors

Multipath 0.1-3.0
Receiver Noise 0.1-0.7

Table 2.1: Table of User Range Error (URE) standard deviation.
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• Ei
cm3 and Ei

cm4 are common mode errors similar to Ei
cm1 and Ei

cm2 detailed in

Section 2.1.1

Ei
cm3 = Ei + cδti − f2

f1

I ir + T ir , (2.10)

Ei
cm4 = Ei + cδti − f1

f2

I ir + T ir , (2.11)

• M i
ϕ1

, niϕ1
, M i

ϕ2
, niϕ2

are non-common mode errors similar to those of pseudorange

measurements.

Note that the magnitude of M i
ϕ1

, niϕ1
, M i

ϕ2
, niϕ2

are typically less of 1% of the re-

spective errors in pseudorange measurements [22]. Thus, carrier phase measurements

have much lower noise level but are biased by the unknown integer ambiguity {N i}.

One crucial fact about the integer N i is that when the Phase-Lock-Loop (PLL) of the

corresponding channel for the i−th satellite is maintained (i.e., no cycle-slip happens)

in the receiver, N i(t) ≡ N i is constant. So, if N i is estimated in previous epoch and

no cycle-slip happens, this estimated integer should be used for current and later

epochs. In operation, GPS receiver keeps reporting the lock status of the PLL.

2.2 DGPS and Networked Transport Standards

This section reviews the differential GPS technique and the Internet transporta-

tion standard and framework for GNSS differential information transportation.
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2.2.1 Differential GPS

In DGPS, it is assumed that there exists a nearby (within 15-20km) sationary

(i.e., pb(t) ≡ pb ∈ R3 ) base station which can provide GPS measurements from the

base station receiver to the rover. In other words, the following measurements are

available to the rover,

ρ̃ib1(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + Eib
cm1(t) +M ib

ρ1
(t) + nibρ1

(t), (2.12)

ρ̃ib2(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + Eib
cm2(t) +M ib

ρ2
(t) + nibρ2

(t), (2.13)

λ1ϕ̃
i
b1(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + λN ib

1 (t) + Eib
cm3(t) +M ib

ϕ1
(t) + nibϕ1

(t), (2.14)

λ2ϕ̃
i
b2(t) = ‖pb − p̂i(t)‖2 + cδtb(t) + λN ib

2 (t) + Eib
cm4(t) +M ib

ϕ2
(t) + nibϕ2

(t). (2.15)

Base stations should be established in a good electromagnetic environment (e.g. on

the top of the hill or high building with open sky, no multipath effects), such that it is

valid to assume that M ib
ρ1

= M ib
ρ2

= M ib
ϕ1

= M ib
ϕ2
≡ 0. Furthermore, the base position

pb should be well surveyed with respect to the global frame, such that with the

differential technique, more precise global positioning can be realized. Herein, with

the known base station position pb, four corrections are defined for later convenience,

αi1(t), ρ̃ib1(t)− ‖pb − p̂i(t)‖2, (2.16)

αi2(t), ρ̃ib2(t)− ‖pb − p̂i(t)‖2, (2.17)

αi3(t),λ1ϕ̃
i
b1(t)− ‖pb − p̂i(t)‖2, (2.18)

αi4(t),λ2ϕ̃
i
b2(t)− ‖pb − p̂i(t)‖2. (2.19)
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Then, with unsubstantial multipath effects around the base station antenna, these

four corrections can be modeled as

αi1(t) =Eib
cm1(t) + cδtb(t) + nibρ1

(t), (2.20)

αi2(t) =Eib
cm2(t) + cδtb(t) + nibρ2

(t), (2.21)

αi3(t) =Eib
cm3(t) + cδtb(t) + λN ib

1 (t) + nibϕ1
(t), (2.22)

αi4(t) =Eib
cm4(t) + cδtb(t) + λN ib

2 (t) + nibϕ2
(t). (2.23)

If the base station is close to the rover, the following identity is valid

Ei
cm1(t) = Eib

cm1(t), Ei
cm2(t) = Eib

cm2(t), Ei
cm3(t) = Eib

cm3(t), Ei
cm4(t) = Eib

cm4(t),

(2.24)

since the satellite related errors Ei and cδti are common to all receivers at the same

epoch, and the atmospheric errors I ir and T ir depend on the locations. If {αij(t)}4
j=1 is

well known, then the raw rover measurements at the same epoch t can be compensated

as,

αρ̃idr1 = ρ̃ir1 − α
i
1,

αρ̃idr2 = ρ̃ir2 − α
i
2, λ1

αϕ̃idr1 = λ1ϕ̃
i
r1 − αi3, λ2

αϕ̃idr2 = λ1ϕ̃
i
r2 − αi4 (2.25)
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The measurements defined in eqn. (2.25) are often referred as the single-differenced

measurements with the model

αρ̃idr1(t) = ‖pr(t)− p̂i(t)‖2 + cδtrb(t) +M i
ρ1

(t) + nidρ1
(t), (2.26)

αρ̃idr2(t) = ‖pr(t)− p̂i(t)‖2 + cδtrb(t) +M i
ρ2

(t) + nidρ2
(t), (2.27)

λ1
αϕ̃idr1(t) = ‖pr(t)− p̂i(t)‖2 + cδtrb(t) + λ1N

id
1 (t) +M i

ϕ1
(t) + nidϕ1

(t), (2.28)

λ1
αϕ̃idr2(t) = ‖pr(t)− p̂i(t)‖2 + cδtrb(t) + λ2N

id
2 (t) +M i

ϕ2
(t) + nidϕ2

(t), (2.29)

where δtrb , δtr − δtb ∈ R and N id
j , N i

j −N ib
j ∈ N, j = 1, 2 are the differenced clock

bias and the differenced integer between the rover receiver and the base receiver, as

well as the noise

nidρ1
, niρ1

− nibρ1
, nidρ2

, niρ2
− nibρ2

, nidϕ1
, niϕ1

− nibϕ1
, nidϕ2

, niϕ2
− nibϕ2

.

In DGPS applications, the single-differenced measurements are used for position-

ing practice instead of using the raw measurements in eqn. (2.1, 2.2, 2.8, 2.9). DGPS

provides higher accuracy since the common mode errors are compensated. Since the

common mode errors are time-varying, the rover measurements should be compen-

sated with the base correction at the same epoch. In post-processing, the time-stamp

correspondence can be realized by matching the GPS time-of-week of the measure-

ments. However, in real-time implementations, the differential data transportation

from the base station is delayed. In Section 2.3, a real-time differential correction

approach is proposed to handle this issue.
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2.2.2 RTCM and Ntrip Standard

To transmit the differential GNSS message, inproprietary and efficient protocols

are highly required. For this purpose, the Special Committee 104 on DGNSS of the

Radio Technical Commission for Maritime Services (RTCM) proposed a standard

for the dissemination of the differential information in binary messages [59]. This

standard is usually referred as the RTCM standard, and the current version is 3.1.

“Networked Transport of RTCM via Internet Protocol” (Ntrip) stands for an

application level protocol streaming GNSS data over the Internet. Ntrip is a generic,

stateless protocol based on the Hypertext Transfer Protocol (HTTP/1.1) and the

Real Time Streaming Protocol (RTSP). Ntrip has been designed for disseminating

differential correction data (e.g. in the formats of RTCM Special Committee 104) or

other kinds of GNSS streaming data to stationary or mobile users over the Internet.

Ntrip consists of three system software components: clients, servers and casters.

Fig. 2.1 shows the basic structure of a Ntrip system. In a typical Ntrip system,

Ntrip servers transmit the RTCM message generated from base station receivers to

the Ntrip Caster. One Ntrip Caster can carry multiple Ntrip servers. Ntrip Clients on

the rover would request single or multiple Ntrip streams from Ntrip Caster with valid

authorizations. By parsing the RTCM message in the Ntrip stream, the differential

information (e.g. base receiver measurements or corrections) can be obtained. Fig.

2.2 shows the basic structure of the DGPS positioning routine on the rover: Ntrip
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client communicates with the Ntrip caster to get the required RTCM stream, then

the binary RTCM messages are parsed by a parser, then the differential correction

is calculated (see Section 2.3), and then after compensating the rover measurements

with differential corrections, DGPS positioning can be executed.

Ntrip Caster

Ntrip Server 1 with 
GNSS source 1 (base)

Ntrip Server M with 
GNSS source M (base)

...

Ntrip Client 1 Ntrip Client N...

HTTP streams

HTTP streams

Figure 2.1: Ntrip system structure with Ntrip Casters, Ntrip Servers, Ntrip Clients
and base stations.

2.3 Real-Time Robust Correction Calculation

As shown in Section 2.2, the key procedure in DGPS is to compute the correction

{αij(t)}4
j=1. While the access to the internet is quite available in nowadays due to

the development of network technology and infrastructures, transport delays of the
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Figure 2.2: Structure of the positioning routine of the rover with a Ntrip client.

differential data still can happen frequently on a fast moving rover, or with limited

connections. Thus, the base corrections cannot be calculated in real-time. Further-

more, when the differential data is from a temporary base station equipped with low

cost antenna and receiver, or in an noisy electromagnetic environment, there may

exist outliers in the base measurements. This section presents a base correction cal-

culation method which can improve the real-time performance of DGPS and ensure

robustness of the correction calculation.

Without loss of generality, let us only consider the correction calculation of L1 code

and phase measurements. The proposed method can be extended to dual frequency

cases straightforwardly. Then, the description of the correction calculation problem

can be stated as follows: given that
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• the surveyed base ECEF (Earth-Centered-Earth-Fixed) position pb ∈ R3

• circular buffers for each satellite maintain the code and phase measurements

{ρ̃ib1(tk−d)}, k = 1, . . . , K and {λ1ϕ̃
i
b1(tk−d)}, k = 1, . . . , K, where d ∈ Z+ indi-

cates the delay in epoch numbers and K is the circular buffer length,

• the satellite vehicle ECEF positions {p̂i(tk−d)} estimated with the ephemeris

from the rover receiver,

the real-time corrections {αij(tK)}4
j=1 defined in eqn. (2.16 - 2.19) are expected to be

estimated, where tK indicates the time-of-week of the latest GPS measurement from

the rover receiver.

The above problem statement implies that the real-time differential correction cal-

culation with delayed data is a regression/prediction problem. To decide the proper

model for this regression, the patterns of the corrections {αij(tK)}4
j=1 are first inves-

tigated. In Fig. 2.3, the differential corrections αi1(t) for L1 code measurements of

different satellites are plotted with different color over a 1000s time interval. Two

instant observations can be derived from Fig. 2.3:

• αi1(t) has a high frequency (fast-varying) and a low frequency (slowly-varying)

components;

• the high frequency components for different satellites have similar pattern.
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Since the satellite related errors Ei and cδti and the atmospheric errors I ir and T ir

are all slowly-varying signals, the common mode errors defined in eqn. (2.4 - 2.11)

are the low frequency components in αi1(t). On the other hand, Fig. 2.4 shows the

estimated GPS receiver clock bias in positioning and indicates that the base receiver

clock bias is in the high frequency components of αi1(t). Due to the mixture of low

frequency and high frequency components, it is not straightforward to predict αi1(t).

Define

βi1(t),αi1(t)− cδtb(t) = Eib
cm1(t) + nibρ1

(t), (2.30)

βi2(t),αi2(t)− cδtb(t) = Eib
cm2(t) + nibρ2

(t), (2.31)

βi3(t),αi3(t)− cδtb(t) = Eib
cm3(t) + λN ib

1 (t) + nibϕ1
(t), (2.32)

βi4(t),αi4(t)− cδtb(t) = Eib
cm4(t) + λN ib

2 (t) + nibϕ2
(t), (2.33)

then another version of single-differenced measurements can be defined as

β ρ̃
id

r1
= ρ̃ir1 − β

i
1,

β ρ̃
id

r2
= ρ̃ir2 − β

i
2, λ1

βϕ̃
id

r1 = λ1ϕ̃
i
r1 − βi3, λ2

βϕ̃
id

r2 = λ1ϕ̃
i
r2 − βi4 (2.34)

with the models

β ρ̃
id

r1
(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) +M i

ρ1
(t) + nidρ1

(t), (2.35)

β ρ̃
id

r2
(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) +M i

ρ2
(t) + nidρ2

(t), (2.36)

λ1
βϕ̃

id

r1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ1N
id
1 (t) +M i

ϕ1
(t) + nidϕ1

(t), (2.37)

λ1
βϕ̃

id

r2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ2N
id
2 (t) +M i

ϕ2
(t) + nidϕ2

(t). (2.38)
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Figure 2.3: All corrections {αi1(t)} for L1 code measurements over a 1000s interval.
Different colors are for different satellites.

Note that the only differences between eqn. (2.26-2.29) and eqn. (2.35-2.38) are

that in eqn. (2.35-2.38) the rover receiver biases cδtr(t) are not mixed with the base

receiver biases cδtb(t). It can be proved that the positioning results from these two

versions of single-differenced measurements are identical. If the base receiver locks are

maintained, then λN ib
1 (t) ≡ λN ib

1 ∈ Z and λN ib
2 (t) ≡ λN ib

2 ∈ Z are integral constants.

Along with that the common errors {Eib
cmj(t)}4

j=1 are slowly-varying variables, a linear

regression based method is proposed in the following to estimate the corrections

{βij(t)}4
j=1 in real-time. Thus, the single-differenced measurements β ρ̃

id
r1

, β ρ̃
id
r2

, βϕ̃
id
r2,

βϕ̃
id
r2 can be calculated. The procedures of the proposed method are as follows
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Figure 2.4: GPS clock bias (fine-steering enabled) estimates from single epoch
positioning.

• Pass {αi1(t1−d), . . . , α
i
1(tK−d)} computed through eqn. (2.16) for each satel-

lite to a low-pass filter (e.g. moving average filter) C(s) to obtain the output

{α̂i1(t1−d), . . . , α̂
i
1(tK−d)},

• Take the median of the error εi1(t) , αi1(t) − α̂i1(t) over all available satellites

(i = 1, . . . ,m) to get an estimate of the base clock bias

clk(t) , median(εi1(t)), (2.39)

and Fig. shows an example for this step.

• Evaluate {γij(t)}4
j=1 as

γij(t) , αij(t)− clk(t)

and keep them in circular buffers with length L. Use {γij(tK−d−L+1), . . . , γij(tK−d)}

to fit a linear model β̂ij(t) for estimating βij(tK).
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Figure 2.5: Filtered noise εi1(t) and the estimate of the base clock bias clk(t).

• Finally, the rover uses the estimated DGPS measurements

γ ρ̃idr1 = ρ̃ir1 − β̂
i
1,

γ ρ̃idr2 = ρ̃ir2 − β̂
i
2, λ1

γϕ̃idr1 = λ1ϕ̃
i
r1 − β̂i3, λ2

γϕ̃idr2 = λ1ϕ̃
i
r2 − β̂i4

(2.40)

with the models

γ ρ̃idr1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) +M i
ρ1

(t) + nidρ1
(t), (2.41)

γ ρ̃idr2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) +M i
ρ2

(t) + nidρ2
(t), (2.42)

λ1
γϕ̃idr1(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ1N

id
1 +M i

ϕ1
(t) + nidϕ1

(t), (2.43)

λ1
γϕ̃idr2(t) = ‖pr(t)− p̂i(t)‖2 + cδtr(t) + λ2N

id
2 +M i

ϕ2
(t) + nidϕ2

(t). (2.44)

to do positioning.
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Note that in eqn. (2.43-2.44), integer ambiguities N id
1 and N id

2 get rid of the

time stamp, since it is assumed that the phase-lock-loop of the base receiver for

the i-th satellite is maintained. This assumption is often satisfied since most of

base stations are established in a good electromagnetic environment, e.g. on the

top of the mountain or high buildings with high quality antenna (see CORS stations

[60]). With low cost single frequency receivers in noisy environment as the base, the

proposed correction calculation method can enhance the robustness of the differential

positioning significantly. The reason is that all data in a window is used for the

correction fitting which improves the degree-of-freedom of the estimation problem.

As shown in Chapter 4, robust optimization technique can be applied in the proposed

correction calculation method to handle faulty measurements caused by unexpected

noise or undetected cycle slips.

Fig. 2.6 shows the overall process of the differential correction calculation for L1

code measurements. Comparing γi1(t) with αi1(t), it can be seen that the high fre-

quency component caused by the clock bias and the measurement noise are removed,

such that a linear model can be fitted to calculate β̂i1(t).

In the rest of this chapter, several example results of differential GPS are presented

to illustrate the proposed method. Since only positioning is focused on, in all the

following experiments, the rover is stationary over a 30-minute window. The ground

truth of rover’s global position is surveyed with geodetic grade dual frequency receiver

and antenna. The survey data was processed by Online Positioning User Service
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(OPUS) [1] aided with measurements from nearby differential stations. The accuracy

of the survey is ±(0.02, 0.02, 0.02)m in North-East-Down directions.

Totally six experiments in no-baseline, short-baseline and long-baseline scenar-

ios were done as shown in the following table. Herein, the baseline is defined as

the distance between the rover receiver and the base station receiver. Among the

experiments, no-baseline and short-baseline experiment data was collected with UC

Riverside Ntrip station (ntrip.engr.ucr.edu@2101) and a rover receiver and antenna

on UCR campus. In particular, no-baseline experiments were done by connecting the

base and rover receivers to the same antenna. The long-baseline experiment data

was collected with ESRI GISA Ntrip station (esricaster.esri.com@2101) and a rover

receiver and antenna on UCR campus. Fig. 2.7 and 2.8 show that in no-baseline

condition, even there is time delay in Ntrip stream, the base correction computed by

the proposed method can cancel the common error and realize unbiased positioning

result. Fig. 2.9 and 2.10 show the expected centimeter-level accuracy of the RTK

technique. Fig. 2.11 to 2.18 show that although the positioning error of DGPS grows

as the baseline expands, the RTK technique with the calculated base corrections still

can realize centimeter level positioning accuracy.

In the rest of this dissertation, the proposed base correction computation approach

is applied in all GPS/INS implementations.
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Table 2.2: Base Correction Computation Experiments

Baseline (km) Measurement used Ntrip delay (sec) Figure number

0 L1 Code 3-5 2.7, 2.8
0 L1 Code+Phase 3-5 2.9, 2.10
< 1 L1 Code 3-5 2.11, 2.12
< 1 L1 Code+Phase 3-5 2.13, 2.14
15 L1 Code 1-2 2.15, 2.16
15 L1 Code+Phase 1-2 2.17, 2.18
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Figure 2.6: Real-time correction computation process.
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Figure 2.7: L1 DGPS Code-only positioning: no-baseline result.
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Figure 2.8: L1 DGPS Code-only positioning: no-baseline result on tangent plane.
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Figure 2.9: L1 DGPS Code+Phase positioning: no-baseline result.
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Figure 2.10: L1 DGPS Code+Phase positioning: no-baseline result on tangent plane.
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Figure 2.11: L1 DGPS Code-only positioning: short-baseline result.
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Figure 2.12: L1 DGPS Code-only positioning: short-baseline result on tangent plane.
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Figure 2.13: L1 DGPS Code+Phase positioning: short-baseline result.
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Figure 2.14: L1 DGPS Code+Phase positioning: short-baseline result on tangent
plane.
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Figure 2.15: L1 DGPS Code-only positioning: long-baseline result.
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Figure 2.16: L1 DGPS Code-only positioning: long-baseline result on tangent plane.
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Figure 2.17: L1 DGPS Code+Phase positioning: long-baseline result.
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Figure 2.18: L1 DGPS Code+Phase positioning: long-baseline result on tangent
plane.
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Chapter 3

Graph Optimization based Inertial

Navigation Systems (GOINS)

In this chapter, a graph optimization based smoothing method is proposed for

Aided Inertial Navigation Systems (INS) [22]. The goal of the smoothing is to improve

the accuracy and reliability of the INS which is traditionally constructed under EKF

framework. Furthermore, the robust optimization approach proposed in Chapter 4

can applied to enhance the robustness of the system to faulty measurements. To

make this dissertation self-contained, this chapter first reviews the EKF based INS

mechanism and notation. Then, the graph optimization based INS is proposed and

the details of the solution are given.
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3.1 Inertial Navigation Systems

Nowadays, Inertial Navigation Systems are widely applied in different areas to

provide position, velocity and attitude estimates of robot, land vehicle [21], underwa-

ter vehicle[53], and pedestrian [47]. In this dissertation, it is assumed that the INS is

based on a 6-axis Inertial Measurement Unit (IMU) which provides high frequency 3D

acceleration and angular rate measurements from a 3-axis accelerometer and a 3-axis

gyroscope. This section reviews the basic notation and mathematical derivation of

EKF based aided INS.

Let x ∈ Rns denote the rover state vector. The kinematic equations for the rover

state can be described by

ẋ = f(x,u), (3.1)

where f : Rns×R6 7→ Rns is the kinematic model, u ∈ R6 is the vector of accelerations

and angular rates (representing the external control input to the system).The function

f is accurately known (see Chapter 11 in [22]). Given an initial condition for the

state vector x̂(0) ∈ Rn and measurements ũ of u, an Inertial Navigation System

(INS) propagates an estimate of the vehicle state between aiding measurements as a

solution of

˙̂x = f(x̂, ũ), (3.2)

where x̂ denotes the estimate of x. Due to initial condition errors, system calibration

errors, and measurement noise, the state estimation error δx(t) = x(t)− x̂(t) devel-
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ops over time. Although the dynamics and stochastic properties of this estimation

error are well understood [22], a brief derivation is presented in this section for the

convenience of later discussions and the completeness of this dissertation.

3.1.1 Preliminary

This subsection clarifies some notations and preliminaries [22, 51] may be used in

later discussion:

• pa/b ∈ R3 denotes the translation from the origin of frame a to that of frame b.

• va/b ∈ R3 denotes the relative velocity of frame b with respect to frame a.

• ωa/b ∈ R3 denotes the relative rate of rotation of frame b with respect to frame

a.

• The superscript indicates the frame of reference, e.g., pca/b denotes pa/b repre-

sented in frame c.

• Rb
a ∈ SO(3)1 denotes the rotation matrix transforming vectors from frame b to

frame a, e.g., pba/b = Rb
ap

a
a/b. The rotation matrix has the following properties:

|Rb
a| = 1 and (Rb

a)
ᵀRb

a = I3.

1SO(3) = {R ∈ R3×3|RᵀR = I, det(R) = +1} denotes the group of special orthogonal matrix,
see [51].
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• Let ω = [ω1,ω2,ω3]ᵀ, then

[ω×] ,


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3)2,

denotes the skew-symmetric matrix associated to ω. A skew-symmetric matrix

has the property [ω×]ᵀ = −[ω×].

• For the angular rate ωba/b, it is often defined that Ωb
a/b , [ωba/b×].

• The derivative of the rotation matrix Rb
a has the following relation with the

angular rate ωa/b (and then Ωa/b),

Ṙb
a(t) = Rb

a(t)Ω
a
a/b = −Ωb

a/bR
b
a(t). (3.3)

• Suppose that the rotation from frame a to frame b is an infinitesimal rotation

denoted by δθ = [δθ1, δθ2, δθ3]ᵀ, then the rotation matrix from frame a to frame

b can be approximated as

Rb
a = I3 − δΘ, (3.4)

where δΘ , [δθ×].

• Let θ ∈ [−π, π] be an angle, in this dissertation the following notations are used

for simplicity: sθ , sin(θ), cθ , cos θ and tθ , tan θ.

2so(3) = {[ω×] ∈ R3×3|ω ∈ R3} denotes the space of all skew-symmetric matrices, see [51].
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3.1.2 Kinematic Model Derivation

The navigation model used in this dissertation is based on the well-understood

kinematic relationships for rigid body motion [22]. The origin of the inertial frame is

picked coincident with that of the Earth Center Earth Fixed (ECEF) frame, i.e. the

translation pi/e = 0. Suppose that the rover operates on a fixed tangent frame with

a North-East-Down (NED) coordinate system, and then the translation pe/t and

the rotation Re/t are well-known constants. Then, the rover position and velocity

represented in the inertial frame of reference is

pii/b =pii/t +Ri
tp
t
t/b, (3.5)

vii/b = ṗii/t +Ri
t

[
Ωt
i/tp

t
t/p + ṗtt/p

]
, (3.6)

where Ωt
i/t = [ωti/t×]. Eqn. (3.6) is from eqn. (3.3). In eqn. (3.6), ωti/t represents the

rotation rate of the tangent frame t with respect to inertial frame i, in the tangent

frame. Then, the acceleration of the rover relative to the inertial frame can be derived

by differentiating eqn. (3.6),

v̇ii/b = p̈ii/t +Ri
tΩ

t
i/t

[
Ωt
i/tp

t
t/b + ṗtt/b

]
+Ri

t

[
Ω̇t
i/tp

t
t/b + Ωt

i/tṗ
t
t/b + p̈tt/b

]
,

and it follows that 3

v̇ti/b = Rt
iv̇
i
i/b = Ωt

i/t

[
Ωt
i/tp

t
t/b + ṗtt/b

]
+ Ω̇t

i/tp
t
t/b + Ωt

i/tṗ
t
t/b + p̈tt/b. (3.7)

3p̈ii/t ≡ 0, since the tangent frame is fixed.
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With eqn. (3.7), the acceleration of the rover relative to the tangent frame is

v̇tt/b = p̈tt/b = v̇ti/b −Ωt
i/tΩ

t
i/tp

t
t/b − 2Ωt

i/tṗ
t
t/b − Ω̇t

i/tp
t
t/b.

Using the definition of the specific force [22]

fi/b = v̇i/b −Gi/b, (3.8)

it follows that 4

v̇tt/b = f ti/b + Gt
i/b −Ωt

i/tΩ
t
i/tp

t
t/b − 2Ωt

i/tṗ
t
t/b,

=Rt
bf
b
i/b + gti/b − 2Ωt

i/tṗ
t
t/b, (3.9)

where gti/b = Gt
i/b − Ωt

i/tΩ
t
i/tp

t
t/b is the local gravity vector. In particular, the local

gravity vector gti/b is composed of the gravitational force and the centripetal acceler-

ation caused by Earth rotation. The centripetal acceleration −Ωt
i/tΩ

t
i/tp

t
t/b depends

on the global location of the rover, since ωti/t = ωti/e = ωi/e[cos φ̄, 0,− sin φ̄]ᵀ where φ̄

is the latitude and

ωi/e ≈ 7.292115× 10−5 rad

sec

is the Earth rotation rate.

To represent the attitude of the rover in tangent frame, the Euler angle with a

rotation sequence z-y-x is used [22]. Let qbt = [φ, θ, ψ]ᵀ be the roll-pitch-yaw vector,

then the rotation matrix Rb
t ∈ SO(3) from the tangent frame to the body frame is

Rb
t = R1(φ)R2(θ)R3(ψ), (3.10)

4Ω̇t
i/t ≡ 0, since the Earth rotation rate is assumed constant.
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where

R1(φ) =


1 0 0

0 cφ sφ

0 −sφ cφ

 ,R2(θ) =


cθ 0 −sθ

0 1 0

sθ 0 cθ

 ,R3(ψ) =


cψ sψ 0

−sψ cψ 0

0 0 1

 .

To obtain the derivative of the Euler angle q̇bt = [φ̇, θ̇, ψ̇]ᵀ, it should be noted

that q̇bt is not related to the angular rate ωbt/b through only one rotation. This is

because each of (φ, θ, ψ) and then (φ̇, θ̇, ψ̇) is defined in a different reference frame

[22]. Instead, ωbt/b can be divided into 3 components corresponding to 3 rotations in

the z-y-x sequence,

ωbt/b = ωbt/1 + ωb1/2 + ωb2/b, (3.11)

where

ωbt/1 = R1(φ)R2(θ)


0

0

1

 ψ̇, ωb1/2 = R1(φ)


0

1

0

 θ̇, ωb2/b =


1

0

0

 φ̇.

Thus, eqn. (3.11) yields

ωbt/b =


1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ




φ̇

θ̇

ψ̇

 , (3.12)
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and then

q̇bt =


φ̇

θ̇

ψ̇

 =


1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ



−1

ωbt/b , Ω−1
E ω

b
t/b. (3.13)

In eqn. (3.13), when θ = ±π/2, i.e., pitch is ±90◦,

Ω−1
E =


1 sφ · tθ cφ · tθ

0 cφ −sφ

0 sφ/cθ cφ/cθ


reaches singularity. For the navigation scenarios (i.e., underwater, land vehicle) fo-

cused on in this dissertation, the pitch angle is expect to rarely reach ±90◦. So, in this

dissertation the Euler angle representation is proper for use. For other cases where

the pitch angle can reach ±90◦, alternative representations, e.g. quaternion [74], can

be used to approach the singularity.

With eqn. (3.9), (3.13) and ωt/b = ωi/b − ωi/t, the continuous-time kinematic

model is

ṗtt/b = vtt/b

v̇tt/b = Rt
bf
b
i/b + gti/b − 2Ωt

i/tv
t
t/b

q̇bt = Ω−1
E

(
ωbi/b −Rb

tω
t
i/e

)


. (3.14)

3.1.3 Inertial Measurements

As a high-rate sensor, Inertial Measurement Unit (IMU) give samples of the spe-

cific force vector (see eqn. (3.8)) via an accelerometer and the angular rate of rotation
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via a gyroscope,

ỹa = f bi/b + ba + na, (3.15)

ỹg =ωbi/b + bg + ng, (3.16)

where ba, bg are bias vectors and na, ng are noise vectors. It is conventional to

assume that na and ng are white Gaussian processes and

na ∼ N (0, σ2
aI), ng ∼ N (0, σ2

gI).

Furthermore, the bias ba and bg are often modeled with random walks as

ḃa = υa,
˙̂
ba = 0, (3.17)

ḃg = υg,
˙̂
bg = 0, (3.18)

where the driving noise υa and υg are also assumed white Gaussian,

υa ∼ N (0, σ2
baI), υg ∼ N (0, σ2

bgI).

Thus, with the IMU measurements and the estimated bias vectors, the specific

force and the angular rate can be evaluated as

f̂ bi/b = ỹa − b̂a, ω̂bi/b = ỹg − b̂g. (3.19)

3.1.4 INS Propagation

By defining the INS state vector

x =
[(
ptt/b
)ᵀ (

vtt/b
)ᵀ (

qbt
)ᵀ

bᵀa bᵀg
]ᵀ
, (3.20)
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as well as the input vector

u =
[(

f bi/b
)ᵀ (

ωbi/b
)ᵀ]ᵀ

, (3.21)

the continuous-time model in eqn. (3.1) can be specified as

ṗtt/b = vtt/b

v̇tt/b = Rt
b (ỹa − ba − na) + gti/b − 2Ωt

i/tv
t
t/b

q̇bt = Ω−1
E

(
ỹg − bg − ng −Rb

tω
t
i/e

)
ḃa = υa

ḃg = υg



. (3.22)

In operations, INS keeps propagating the state estimate

x̂ =
[(
p̂tt/b
)ᵀ (

v̂tt/b
)ᵀ (

q̂bt
)ᵀ

b̂ᵀa b̂ᵀg

]ᵀ
, (3.23)

through numerical integration of

˙̂ptt/b = ˙̂vtt/b

˙̂vtt/b = R̂t
b

(
ỹa − b̂a

)
+ ĝti/b − 2Ω̂t

i/tv̂
t
t/b

˙̂qbt = Ω̂−1
E

(
ỹg − b̂g − R̂b

tω̂
t
i/e

)
˙̂
ba = 0

˙̂
bg = 0



, (3.24)

where the local gravity vector ĝti/b(p̂
t
t/b) and the tangent frame rotation rate Ω̂t

i/t(p̂
t
t/b)

are functions of the estimated position. By rewriting eqn. (3.22) and (3.24) compactly,

the eqn. (3.1) and (3.2) can be derived.
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Let δx denote the INS error state from the estimated state to the true system

state,

δx =
[(
δptt/b

)ᵀ (
δvtt/b

)ᵀ
(δθ)ᵀ δbᵀa δbᵀg

]ᵀ ∈ Rns , (3.25)

where ns ∈ Z+ is the dimension of the INS error state, and δθ represent the small-

angle rotation from the estimate body frame to true body frame such that

Rt
b = (I3 − [δθ×]) R̂t

b. (3.26)

For any initial state x(τk), the solution to (3.1) for t ∈ [τk, τk+1] is

x(t) = x(τk) +

∫ t

τk

f(x(τ),u(τ))dτ. (3.27)

While nature solves (3.27) in continuous time, the INS only has IMU and aiding

measurements at discrete time instants; therefore, the INS numerically solves

x̂(τk+1) =φ
(
x̂(τk), ũ(τk)

)
= x̂(τk) +

∫ τk+1

τk

f(x̂(τ), ũ(τ))dτ, (3.28)

where φ is defined as the integration operator. The result of the numeric integration

of (3.28) is the INS state estimate of x̂(τk+1) given x̂(τk) and û(τk). The numeric

integration repeats to propagate the state measurements between the times of aid-

ing measurements. The aiding measurement times can be unequally spaced in time

without causing any complications.
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Let Ũj = {ũ(τk), τk ∈ [tj, tj+1]}, then eqn. (3.28) can be called recursively to

compute x̂(tj+1) from x̂(tj) and Ũj, denote this as

x̂(tj+1) =φ
(
x̂(tj), Ũj)

)
. (3.29)

At the same time, nature is integrating eqn. (3.27) which it denoted as

x(tj+1) =φ
(
x(tj),Uj)

)
. (3.30)

The linearized error growth model is

δx̂(tj+1) = Φjδx̂(tj) +wj (3.31)

where ωj ∼ N(0,Qj) is the discretized noise due to the existence of [na ng υa υg],

and Φj is the error state transition matrix.

The INS provides both Qj and Φj, for example see Section 7.2.5.2 in [22]. In [44],

other popular methods computing the error transition matrix Φj are well discussed,

and furthermore a closed-form solution is presented.

3.1.5 Extended Kalman Filtering based Aided INS

When (standard) aiding measurements of the form

z̃(t) = h(x(t)) + nz(t), nz ∼ N (0,Rz), (3.32)

are available, various methods are available to use the initial state, inertial mea-

surements, and aiding measurement information to estimate the vehicle state vector

46



[7, 22, 37]. Extended Kalman Filter (EKF) is widely applied as the estimator of the

aided INS systems, due to its simplicity for implementation and the real-time effi-

ciency.

The standard EKF can be revisited in a Weighted Least Square (WLS) form

[22, 27]. Given the INS prior and the aiding measurements at time step tk,

x̂−k =xk + δx−k , δx−k ∼ N (0,P−k ), (3.33)

z̃k =hk(xk) + nk, nk ∼ N (0,Rk), (3.34)

as well as the standard White-Gaussian-Noise (WGN) assumption on the process

noise wk and the measurement noise nk [7, 22, 37], a Maximum Likelihood estimation

of the state correction δxk at tk can be formulated as,

δx+
k = arg max

δxk

pδx−
k

(δxk)pnk(z̃k −Hkx̂
−
k −Hkδxk), (3.35)

where Hk = ∂hk
∂x

∣∣
x=x̂−

k

is the Jacobian matrix of the measurement model evaluated at

the INS prior x̂−k .

Furthermore, the following Least Square problem can be derived by evaluating

the negative log-likelihood of the right hand side of eqn. (3.36),

δx+
k = arg min

δxk

‖δxk‖2
P−

k
+ ‖δzk −Hkδxk‖2

Rk
, (3.36)

where δzk , z̃k − Hkx̂
−
k is the measurement residual (a.k.a. innovation) and the

notation ‖x‖2
C , xᵀC−1x is defined as the Mahalanobis distance.
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Letting

Ak =

 I

Hk

 , Ck =

P−k 0

0 Rk

 and δZk =

 0

δzk

 ,
then the Kalman Filter measurement update can be derived by solving the Weighted

Least Square,

min
δx
‖δZk −Akδx‖Ck

. (3.37)

The solution of eqn. (3.37) is

δx+
k =

(
Aᵀ
kC
−1
k Ak

)−1
Aᵀ
kC
−1
k δZk, (3.38)

and the corresponding covariance of δx+
k is P+

k =
(
Aᵀ
kC
−1
k Ak

)−1
. With δx+

k , the INS

state is updated as

x̂+
k = x̂−k + δx+

k ,

and the renowned Kalman gain

Kk =
(
Aᵀ
kC
−1
k Ak

)−1
Aᵀ
kC
−1
k = P−k Hᵀ

k

(
Rk + HkP

−
k Hᵀ

k

)
can also be derived by expanding

(
Aᵀ
kC
−1
k Ak

)−1
Aᵀ
kC
−1
k .

EKF works as a standard framework for many inertial navigation application,

e.g. GPS-INS [22], Underwater-INS [53], Vision-Inertial-Odemetry (VIO) [43–49, 55].

However, the performance of the EKF significantly depends on initial conditions

and nonlinearities (see [18]). This is due to the fact that previous improper EKF
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Figure 3.1: Divergence of EKF under poor initialization.
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linearization points cannot be corrected at later times. Fig. (3.1) shows the divergence

of EKF when the initial yaw is set wrong.

To overcome this challenge of the EKF method, a smoothing approach has attract-

ed considerable attention in the Simultaneous Localization and Mapping (SLAM)

research community (see [18, 34, 35]). In Section 3.2, the graph optimization based s-

moothing method is extended to INS, in order to enhance the navigation performance

in accuracy and reliability.

3.2 Graph Modeling for Inertial Navigation

A key point of smoothing in the SLAM context is keeping the complete robot

trajectory in the estimation, so all the useful information over the time window can

be considered to reach statistically optimality. Nonlinear optimization is considered

and solved iteratively. Thus, the previous linearization point of the system and the

measurement models can be corrected in later runs, when new data comes. Although

the computational cost is higher than EKF, by exploring the sparsity of the involved

matrices and introducing incremental solution, the smoothing approach is claimed to

be fast and efficient for practical applications (see [35]).

In this work, the smoothing method is extended to Inertial Navigation in order

to enhance the navigation performance in accuracy and reliability. Without loss of

generality, the problem stated as follows is considered in each smoothing window.
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Problem 3.1. For a system described by eqn. (3.1), to estimate the trajectory of the

rover X = [xᵀ(t0), . . . ,xᵀ(tK)]ᵀ ∈ Rns(K+1) over the time interval [t0, tK ], we have

• an initial distribution for the state x(t0) ∼ N (x0,P0),

• IMU measurements U = {Uk}K−1
k=0 , where

Uk = {ũ(τn), tk ≤ τn ≤ tk+1},

• the aiding measurements Z = {z̃k}Kk=1, where zk has a general model as

z̃k(tk) = h(X(tk)) + nz(tk), nz ∼ N (0,Rzk), (3.39)

where t0, tk ∈ (τ0, τκ] and the set {τn} contains the high frequency IMU measurement

time instants. 4

Note that at time step tk, z̃k(tk) can be a measurement depending on multiple

previous states {x(t0), . . . ,x(tk)}. This measurement model assumption is different

from that of standard EKF which only handle the measurements of current state.

Then, the objective is:

Objective 3.2. Estimate the optimal state trajectory X = [xᵀ(t0), . . . ,xᵀ(tK)]ᵀ ∈

Rns(K+1)with the given sensor measurements U, Z and the prior state density px(x(t0)).

4

Under Kalman Filtering frame, only the current state and uncertainty are main-

tained at each time step. In smoothing, when a time window of navigation data is
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considered, the formulation of the estimation problem may be complicated to handle

in practice. The state-of-art approach is to divide the smoothing framework into a

front-end representing the estimation formulation by a probabilistic graphical model

and a back-end converting the graph into matrix form and executing optimization.

In the past decade, factor graph modeling has attracted considerable attention in

signal processing, artificial intelligence, and robotics as a means to represent complex

Bayesian estimation problems [40, 50], e.g. Simultaneous Localization and Mapping

(SLAM) [17]. Often times, Maximum-a-Posteriori (MAP) estimates can be derived

from factor graphs. In MAP estimation, all the information (e.g., prior, kinematics,

sensor data) over a time window is considered, and then iterative nonlinear optimiza-

tion is applied to achieve statistical optimality. Several efficient software toolboxes of

graph optimization based estimation have been developed in robotics and computer

science community, e.g. g2o [41], GTSAM [17], MTK [79].

To illustrate the factor graph modeling idea, first a Bayes Network (BN) [39] is

shown in Fig. 3.2 to represent the inertial navigation problem defined above. For

simplicity, only states {x(t0),x(t3)} corresponding measurements are shown explic-

itly. Note that z(t1) and z(t2) are measurements of just the state at one time step,

but z(t3) is measurement of two states. There can be measurements depending more

three or more states in the trajectory. The Bayes Network is a directed acyclic graph

representing the joint distribution p(X,Z,U). Each node in the BN represents a

variable and its associated conditional density. For example, in Fig. 3.2 the node
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labeled x(t1) represents the conditional probability of the unknown state x(t1) given

x(t0) and U0. So, p(X,Z,U) can be regarded as ‘factorized’ over the BN by following

Bayes rule. This representation motivates another type of graphical model, named

Factor Graph shown in Fig. 5.3. In a factor graph, only the unknown variables are

explicitly labeled as nodes, while the edges (with black dots) represents the ‘factors’

which encode the probabilistic information (constraints) between the unknown vari-

ables. In particular, in Fig. 5.3 the factor above the node x(t0) is for the initial state

prior. The factors between two consecutive purple nodes are the probabilistic con-

straints derived from the IMU data set and kinematic constraints. The factors above

the nodes {x(tk)}3
k=1 are for the aiding measurements. The factors can be unary, e.g.

prior knowledge and z(t1), z(t2) measurements, or be binary, e.g. INS constraints

and z(t3) measurements.

x(t0)
x(t1) x(t2) x(t3)

u(t0) u(t1) u(t2)

z(t1) z(t2) z(t3)

p{x(t1)|x(t0), u(t0)}

p{z(t1)|x(t1)}

p{x(t0)}

p{u(t0)}

p{z(t3)|x(t2),x(t3)}

Figure 3.2: Bayes Network representing general INS smoothing problem
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x(t0)
x(t1) x(t2) x(t3)

Figure 3.3: The INS navigation estimation problem over a time window represent-
ed by a Factor Graph. The labeled nodes are for the unknown variables, and the
black dotted edges are the factors encoding the probabilistic information between the
unknown variables.

Factor graphs have been widely used to represent and solve complex estimation

problems, e.g. SLAM. Existing factor graph based C++ libraries [17, 41, 79] can

facilitate the formulation of complex estimation problem significantly, by maintaining

a factor graph in the front-end. Thus, including a new unknown variable or a new

measurement into the estimation problem is accomplished by simply adding a node

or a edge into the proper place of the current graph. These libraries also provide

robust and efficient solutions as a ‘back-end’ for the estimation problems represented

by the factor graph. In the factor graph based estimation solution, nonlinear least

square methods such as Levenberg-Marquardt or Powell’s Dog-Leg are applied and

the sparsity nature of the graph is exploited to achieve computational efficiency.
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With the aid of the factor graph in Fig. 5.3, the following relation can be derived

p(X,U,Z)

= p(X+,x(t0),U,Z) (3.40)

= p(X+,x(t0),U)p(Z|X+,x(t0),U) (3.41)

= p(X+,x(t0),U)p(Z|X) (3.42)

= p(x(t0),U)p(X+|x(t0),U)p(Z|X) (3.43)

= p(x(t0))p(X+|x(t0),U)p(Z|X), (3.44)

where X+ = {x(t) for t = t1, . . . , tK}. The eqn. (3.40) is from separating X into x(t0)

and X+. The eqn. (3.41) and (3.43) are from the definition of conditional probability.

The eqn. (3.42) is from the standard assumption that U, Z (i.e., measurements from

different sensors) are measured independently. The eqn. (3.44) derives from that the

fact that the prior x(t0) is independent of the IMU measurements U.

Thus, a Maximum-a-Posteriori can be formed to estimate X by maximizing the

right hand side of eqn. (6.2),

max
X∈Rns(K+1),N∈Zm

p(x(t0))p(X+|x(t0),U)p(Z|X). (3.45)
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With the Gaussian noise assumption, the negative log-likelihood of the right hand

side of eqn. (3.44) can be rewritten as

‖v‖2
W = ‖x(t0)− x0‖2

P0

+
∑
k

‖φ
(
x(tk),Uk

)
− x(tk+1)‖2

Qk
(3.46)

+
∑
k

‖h(X(tk))− z(tk)‖2
Rzk

where ‖v‖2
W = v>W−1v is the squared Mahalanobis distance with the matrix W. All

terms on the right-hand side also use this notation. The vector v is the concatenation

of each of the vectors summed in the right-hand side of eqn. (6.4). In eqn. (6.4), the

operator φ and the covariance matrix Qk are defined in the INS review portion of

the appendix. The matrix W is the positive definite block diagonal matrix formed

by the positive definite submatrices Qk, P0 and Rzk . The IMU data set Uk contains

all IMU measurements in the interval [tk, tk+1].

Let ΣW
ᵀΣW = W−1, then r , ΣWv is the weighted residual and ‖v‖2

W = ‖r‖2.

So, the MAP estimation is transformed into a Nonlinear Least Square (NLS) problem,

X∗ = arg min
X∈Rns(K+1)

‖r(X)‖2, (3.47)
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where r is a vector representing the factors in the graph model:

r(X,N) =



ΣP0 (x(t0)− x0)

ΣQ0

(
φ
(
x(t0),U0

)
− x(t1)

)
...

ΣQK−1

(
φ
(
x(tK−1),UK−1

)
− x(tK)

)
ΣRz1

(h(X(t1))− z(t1))

...

ΣRzK
(h(X(tK))− z(tK))



. (3.48)

In the following, a Gauss-Newton method is presented as an example for solving the

NLS derived from the graph model.

3.3 Graph Optimization for Inertial Navigation

This section presents the solution to solve the graph optimization which formed

in Section 3.2 for inertial navigation.

3.3.1 Notation

Herein useful notation is specified for later analysis. Some of the notation is similar

to that used in [41]. Let M⊂ R2 contain all tuples (i, j) ⊂ {0, . . . , K} × {0, . . . , K}

such that there exist measurement(s) depending on x(ti) and x(tj). Herein, for

simplicity of illustration, it is assumed that each measurement only depends on up
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to TWO states in the trajectory. The presented method can be extended to more

complicated cases straightforwardly. Note that (i, i) ∈ M is also valid for standard

measurement(s) received at ti or i = 0 (for the prior). Let mij ∈ Z+ denote the total

number of (scalar) measurements associated to (i, j) ∈M. With xi , x(ti) and xj ,

x(tj), the vector νij(xi,xj) ∈ Rmij concatenates the residuals of all measurements

depending on xi and xj, and Rij ∈ Rmij×mij is the corresponding covariance matrix

for νij(xi,xj) computed from P0, Qk and Rzk .

3.3.2 Solution Overview

The algorithm will involve two steps.

1. Given an estimate of the solution

X̂l =
{
x̂l(t) for t = t0, . . . , tK

}
,

which is treated as a vector in Rn(K+1), an optimization algorithm computes a

δXl ∈ Rn(K+1) such that

X̂l+1 = X̂l + δXl (3.49)

is an improved solution to eqn. (6.3).

2. Evaluation of the factor pωu
(
X+ − φ(X,U)

)
of the MAP cost function and its

linearization requires reintegration relative to X̂l+1. This issue is subtle and will

be clarified in Subsection 3.3.3.
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3.3.3 Solution Detail: Reintegration

In this subsection, to simplify notation, the subscript k is used to represent the

time tk, with tk = t0, . . . , tK . For example, x̂lk = x̂l(tk).

Given X̂l, the kinematic model provides an operator (see eqn. (3.28))

x̄lk+1 = x̂lk +

∫ tk+1

tk

f(x̄l(τ), û(τ))dτ (3.50)

with x̄l(tk) = x̂lk. Note that the quantity

alk+1 = x̄lk+1 − x̂lk+1 (3.51)

is not necessarily zero. The sequence x̂lk results from optimization of eqn. (6.3),

which involves a tradeoff between four factors, only one of which enforces the smooth

trajectory constraint defined in eqn. (3.2). Therefore, even if X̂l satisfies eqn. (3.2),

there is no guarantee, and in fact it is unlikely that X̂l+1 resulting from eqn. (3.49)

will exactly satisfy eqn. (3.2).

Similarly, the actual trajectory is generated according to

xk+1 = xk +

∫ tk+1

tk

f(x(τ),u(τ))dτ. (3.52)
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For optimization, we work with a linearization around {x̂lk}Kk=0. The model for the

time propagation of the error is:

xk+1 − x̄lk+1 =xk +

∫ tk+1

tk

f
(
x(τ),u(τ)

)
dτ

−x̂lk −
∫ tk+1

tk

f
(
x̄l(τ), û(τ)

)
dτ.

x̂lk+1 − x̄lk+1 = Φkδx
l
k +

(
x̂lk+1 − xk+1

)
+ ωk

−alk+1 = Φkδx
l
k − Iδxlk+1 + ωk. (3.53)

As discussed in Section 3.1.4, the integration process that computes eqn. (3.50) also

computes Φk and cov(ωk) = Qk.

3.3.4 Update Computation by Quadratic Approximation

With the notation in Section 3.3.1, the cost function in eqn. (6.4) can be rewritten

as

F(X) = ‖v‖2
W =

∑
(i,j)∈M

‖νij‖2
Rij

=
∑

(i,j)∈M

νᵀ
ijR

−1
ij νij. (3.54)

Linearizing νij around the current estimate, it follows that

νij(x̂i + δxi, x̂j + δxj) = νij(X̂ + δX)

'νij(X̂) + JijδX,

where Jij ,
∂νij
∂X

∣∣
X̂
∈ Rmij×n(K+1) is the Jacobian matrix. If rewrite

F(X) ,
∑

(i,j)∈M

Fij(X),
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then each term Fij(X) can be approximated as

Fij(X̂ + δX) = νᵀ
ij(X̂ + δX)R−1

ij νij(X̂ + δX)

' rij + 2ηᵀ
ijδX + δXᵀΛijδX,

where

rij =νᵀ
ij(X̂)R−1

ij νij(X̂) ∈ R,

ηij = Jᵀ
ijR

−1
ij νij(X̂) ∈ Rn(K+1), (3.55)

Λij = Jᵀ
ijR

−1
ij Jij ∈ Rn(K+1)×n(K+1). (3.56)

Note that Λij is the information matrix of the corresponding measurements. Thus,

it follows that

F(X̂ + δX) =
∑

(i,j)∈M

Fij(X̂ + δX)

'
∑

(i,j)∈M

rij + 2ηᵀ
ijδX + δXᵀΛijδX,

= r + 2ηᵀδX + δXᵀΛδX, (3.57)

where

r =
∑

rij,η =
∑

ηij and Λ =
∑

Λij. (3.58)

To minimize F(X̂ + δX) in eqn. (3.57), the following system of equations needs

to be solved

ΛδX = −η. (3.59)
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Through Cholesky decomposition of the information matrix

Λ = LLᵀ, (3.60)

δX can be derived by solving

first Ly = −η and then LᵀδX = y,

where L is a lower-triangular matrix called the Cholesky factor of Λ.

The computation of δX and the update in eqn. (3.49) will repeat until the con-

vergence or the prespecified maximal iteration number is reached.

3.3.5 Structure of the Linearized System

The Jacobian matrix Jij =
∂νij
∂X

∣∣
X̂

has the structure

Jij =

[
· · · 0 Aij 0 · · · 0 Bij 0 · · ·

]
,

where Aij ∈ Rmij×n is the partial of νij with respect to xi and Bij ∈ Rmij×n is the

partial of νij with respect to xj. Note that for a standard measurement in eqn. (3.39),

there is only one block in the Jacobian matrix Jii as the partial of νii with respect to

xi.
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The corresponding information matrix Λij in eqn. (3.56) has the structure

Λij =



. . .

Aᵀ
ijR

−1
ij Aij · · · Aᵀ

ijR
−1
ij Bij

...
...

Bᵀ
ijR

−1
ij Aij · · · Bᵀ

ijR
−1
ij Bij

. . .


,

and ηij has the structure

ηij =



...

Aᵀ
ijR

−1
ij νij

...

Bᵀ
ijR

−1
ij νij

...


.

Thus, in implementations Λij and ηij are derived by calculating the corresponding

blocks, instead of evaluating the full Jij matrices. Furthermore, Λ and η can be

derived through summations in eqn. (3.58).

3.3.6 Computation Cost Compared with EKF

This subsection compares the computation cost of the MAP smoothing in the

NRT approach with that of the EKF.
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x(t)

Figure 3.4: The factor graph modeling for EKF. Red factor is for the INS prior and
blue factor is the aiding measurement.

The time complexity of each iteration in the optimization (3.47) is O(n3(K+1)3),

since the computation is dominated by the Cholesky factorization5 in (3.60).

The EKF update step can also be revisited from the MAP perspective (see eqn.

(3.36)). Fig. shows the corresponding factor graph modeling for EKF. Furthermore,

a system of equations (similar to eqn. (3.59)) can be derived by following Section

3.1.5 and Section 3.3.5,

Λkfδxk = −ηkf . (3.61)

Since in each KF update eqn. (3.61) only needs be solved once, the time complexity

of each KF update is approximately O(n3) [72].

The computation cost of the MAP smoothing is higher than that for the EKF:

• The dimension of the information matrix Λ is much larger than Λkf , since all the

navigation information over the time window is considered in the optimization.

• The calculation in Section 3.3.4 may be iterated multiple times in one MAP

smoothing NRT window. Multiple iterations are required when the prior error

5The complexity of the Cholesky factorization is n3/3, assuming that the matrix is n-by-n.
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is large relative to the nonlinear effects, to correct wrong linearization points

and converge to the optimal solution.

• In each iteration, all the IMU measurements need to be reintegrated (as dis-

cussed in Section) 3.3.3 to evaluate the INS terms in eqn. (6.4) with updated

estimates.

The benefit of the increased computation is enhanced accuracy and reliability.

Since the graph optimization over a time window accumulates more measurements

than the filtering method, the outlier detection and identification ability of the system

is enhanced. In Chapter 4, robust graph optimization method is studied.

Chapter 5 investigates RTK GPS/INS as an example of the Graph Optimization

based INS.
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Chapter 4

Robust Graph Optimization

Chapter 3 shows that the estimation problem in inertial navigation can be rep-

resented by probabilistic graphical models. Under standard Gaussian noise assump-

tions, Nonlinear Least Squares are derived for the corresponding graph optimization.

This chapter is dedicated to handling outliers (i.e., faulty measurements caused by

the unexpected noisy environment or the sensor failures, etc.) in (nonlinear) least

squares. Several outlier handling techniques from Geodesy [4, 5, 27, 28], Computer

Vision [80] and Robobtics [62] are reviewed. As a conclusion of this chapter, a hybrid

approach is proposed to improve the robustness of the graph optimization associated

to inertial navigation.

The following is an good example representing the problem discussed throughout

this chapter,

y = h(x) + n+ s, n ∼ N (0, I), (4.1)
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where y ∈ Rm is the measurement vector may contains outliers, h : Rn 7→ Rm is

the (nonlinear) measurement model1 of the unknown variable x ∈ Rn, n is the unit

Gaussian noise vector and s is the vector representing the errors which may make

part of the measurements be outliers. In the following sections, several techniques are

reviewed to estimate x when ‖s‖ 6= 0. Furthermore, in Section 4.4 a hybrid approach

is presented to improve the robustness of the graph optimization base inertial system

(see Chapter 3).

Before the outlier handling techniques reviewed in the following sections, some

facts based on the ANalysis Of VAriance (ANOVA) of general Least Square estimation

is presented here, in order to facilitate the later analysis. Suppose ‖s‖ = 0, and

then the problem in eqn. (4.1) becomes the standard Nonlinear Least Square (NLS)

problem. As reviewed in Section 3.2, NLS can be solved efficiently through iterative

methods. In iterative methods, the nonlinear model is usually approximated with

a linear one h(x) = Hx, where [H ]m×n has full column rank. With ‖s‖ = 0 and

h(x) = Hx the measurement model defined in eqn. (4.1) becomes

y = Hx+ n, n ∼ N (0, I). (4.2)

Since the distribution of the noise is know, the Maximum-Likelihood estimation could

be formed to estimate x,

x̂ = arg max
x∈Rn

pn(y −Hx), (4.3)

1It is required m ≥ n such that the problem is well-defined.
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where pn is the PDF of n. Then, by evaluating the negative log-likelihood, optimiza-

tion (4.3) is equivalent to

x̂ = arg min
x∈Rn

‖y −Hx‖2
2, (4.4)

i.e., Ordinary Least Square whose closed form is well-known [37], x̂ = (HᵀH)−1Hᵀy.

By defining the estimation residual r , y − Hx̂, the following proposition and

corollary can be proven,

Proposition 4.1. Letting E[·] to be the statistical expectation operator, it follows that

E[rᵀr] = m− n and E[rrᵀ] = I − PH . (4.5)

where PH ,H(HᵀH)−1Hᵀ.

Proof. With the definition of r, it follows that

r = (I − PH)n.

The matrix PH is the projection matrix onto the range space of H (i.e., C(H)) and

PH is symmetric, idempotent. The rank of PH is n. For more details, check Chapter

8 of [37].

On the other hand, I − PH is the projection matrix onto the left nullspace of H

(i.e., LN (H) or N (Hᵀ) ). So, the rank of I − PH is m − n. It can be proven that

I −PH is also a symmetric idempotent matrix. Thus, the eigenvalues of I −PH are

either 0 or 1. Furthermore, E[rrᵀ] = I − PH is trivial since (I − PH) (I − PH)ᵀ =

I − PH .
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Evaluate the expectation

E[rᵀr] =E[tr{rrᵀ}]

= tr{E[I − PH ]}

= tr{I − PH}

=m− n,

where tr{·} is the trace operator and the last step can be derived through the eigen-

value decomposition of the real symmetric matrix I − PH .

When the assumption about n in eqn. (4.1) replaced with n ∼ N (0,C), the

measurement model can rewritten as,

y = Hx+ n, n ∼ N (0,C). (4.6)

Then, a Weighted Least Square (WLS) problem can be derived other than the OLS.

The closed form solution to the WLS with measurement model (4.6) is

x̂ = (HᵀC−1H)−1HᵀC−1y. (4.7)

Furthermore, the following corollary of Proposition 4.1 can be derived for WLS.

Corollary 4.2. Given the estimated residual r from the Weighted Least Square with

a weighting matrix C−1, it follows that

E[rᵀC−1r] = m− n and E[rrᵀ] = C −H(HᵀC−1H)−1Hᵀ. (4.8)
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Proof. The proof can be derived by defining the Cholesky decomposition of C−1 ,

Σᵀ
cΣc, ȳ , Σcy, H̄ , ΣcH and n̄ , Σcn. In other words, the model y = Hx + n

is weighted by the square root matrix of the inverse covariance C−1 such that n̄ ,

Σcn ∼ N (0, I). Execute the OLS solution with the weighted measurement, then the

estimated residual is

r̄ = (I − PH̄) n̄,

where PH̄ , H̄(H̄ᵀH̄)−1H̄ᵀ. On the other hand, r̄ = Σcr. Thus, with Proposition

4.1, it follows that

E[rᵀC−1r] =E[r̄ᵀr̄] = m− n, (4.9)

E[rrᵀ] = Σ−1
c E[r̄r̄ᵀ](Σᵀ

c)
−1

= Σ−1
c (I − PH̄) (Σᵀ

c)
−1

= (Σᵀ
cΣc)

−1 −H(HᵀC−1H)−1Hᵀ (4.10)

and this concludes the proof.

Note that in eqn. (4.1) and (4.2), the scalar m − n is referred as the degree-of-

freedom or DOF. Later, in Section 4.1, it is discussed that the degree-of-freedom of

Least Square can be used to evaluate the outlier detection ability of the estimation.
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4.1 Receiver Autonomous Integrity Monitoring

Receiver Autonomous Integrity Monitoring (RAIM) techniques are widely dis-

cussed in Geodesy community (see [27, 28] and references). RAIM methods are based

on Baarda’s seminal works of hypothesis test procedures used in Geodesy and Survey-

ing [4]. Conventional RAIM is for GNSS-only [28]. In [27], Extended RAIM (eRAIM)

was proposed for GPS/INS with Kalman Filtering (see Section 3.1.5) which incor-

porates the current GPS measurement and the one step prior. The classical RAIM

method is comprised of the ‘Detection-Identificationi-Adaption (DIA) trilogy’.

To facilitate the later discussion of the eRAIM application on EKF based GPS/INS

(Section 4.4.1), the Weighted Least Square problem (4.6) is used in this section as

an example to show the basic idea of the RAIM. The method can be applied to OLS

straightforwardly by setting the weighting matrix C = I.

Section 4.4 extends the RAIM framework to the graph optimization based INS

detailed in Chapter 3.

4.1.1 Detection

Let r(x̂) be the estimated residuals from the ordinary least square contains outlier

measurements. With the Corollary 4.2, it follows that

E[r(x̂)ᵀC−1r(x̂)] = m− n and E[r(x̂)r(x̂)ᵀ] = C −H(HᵀC−1H)−1Hᵀ.
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Then, the a-posteriori variance factor test [28] is introduced to check validity of the

model in eqn. (4.2) and the capability to detect outliers. The variance factor is

determined as

σ̂2
0 =

rᵀ(x̂)C−1r(x̂)

m− n
. (4.11)

The detection procedure is concluded by testing the variance factor against the

two-tailed limits derived from Chi-squared distribution

χ2
α/2,m−n

m− n
< σ̂2

0 <
χ2

1−α/2,m−n

m− n
, (4.12)

where m− n is the DOF of the Chi-squared distribution and the α is the significant

level of the test. Often times, α is picked as 0.05.

If the test fails, then the model in eqn. (4.2) is considered as invalid. The invalidity

can be caused by many reasons, e.g. modeling error, outliers and poor characterization

of sensors (poor C assumption). Herein, we assume only outliers can cause the test

failure.

4.1.2 Identification

For the case that the i-th measurement has outliers, the model in eqn. (4.2) has

to be extended to the form [24, 28, 38],

y = Hx+ eisi + n, n ∼ N (0,C), (4.13)

where ei = [0, . . . , 0, 1, 0, . . . , 0]ᵀ ∈ Rm (only the i-th element is 1 ) and si is the

outlier.
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The identification of an outlier depends on the statistical testing where the null

hypothesis is that the measurements are outlier free and the alternative hypothesis is

that an outlier exists:

Null Hypothesis : E(ŝi) = 0; (4.14)

Alternative Hypothesis : E(ŝi) = si 6= 0. (4.15)

In identification, the w-test [4, 38, 67] is executed to test each measurement. For the

i-th measurement of y, the test statistics is

wi =
eᵀiC

−1r(x̂)√
eᵀiC

−1QC−1ei
, (4.16)

where Q , E[r(x̂)r(x̂)ᵀ] = C −H(HᵀC−1H)−1Hᵀ is the posteriori covariance of

the estimated residuals r(x̂). Under the null hypothesis, wi has a standard normal

distribution; for a outlier si, wi has the following noncentrality,

δi = si

√
eᵀiC

−1QC−1ei.

Thus, the statistics wi is tested against normality tests with certain confidence level

1− α, e.g.,

N−1(α/2, 0, 1) < wi < N−1(1− α/2, 0, 1), (4.17)

where N−1(x, 0, 1) is the inverse normal distribution function. Note that if C = I

(i.e., the measurements are already normalized), the w-test statistics becomes wi =

ri(x̂)/
√
eᵀiQei, and there is a threshold (a.k.a. critical value in hypothesis test
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terminology) τi > 0 can be found as

τi =
√
eᵀiQei · N−1(1− α/2, 0, 1), (4.18)

such that if |ri(x̂)| > τi, the alternative hypothesis (4.14) is accepted. This w-test is

executed multiple times until no outlier identified.

4.1.3 Adaptation

Once the identification procedure goes over all the measurements, the one with

the largest residual (as a single outlier may cause multiple test failures [29]) will be

eliminated from the estimation. After removing the identified outlier, the ordinary

least square estimation is executed again, and then the detection and identification

procedures repeat. If another outlier is found it is removed from the model and

the measurement that was first regarded as an outlier is reincluded and the model

retested. This procedure repeats until no more outliers can be identified.

4.2 Cost Regularization Approach

Besides the hypothesis test way to identify and remove the outliers in the measure-

ments, regularization methods, e.g. l1 regularization, are more popular in Machine

Learning and Computer Vision research community [26, 73]. Regularization meth-

ods aim to modify the original least square cost (i.e., 2-norm) by different way to
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realize robustness. This section presents the Huber loss function and the Least Soft-

Thresholding Square (LSS) method.

4.2.1 Huber Loss Function

To make the standard Least Square formulation robust to outliers in measure-

ments, robust cost terms can be included to regularize the original one. This idea

is from the observation that the l2-norm ‖ · ‖2
2 used by the standard least square in-

creases sharply when the magnitude of the residual goes up. The purpose of adding

robust terms is to less-weighting the large residuals which is more likely from a outlier

measurements. The l1-norm ‖ · ‖1 can achieve robustness but it is hard to solve a

l1-norm minimization since the absolute value function is undifferentiable. Instead,

Huber’s loss [31, 32] or Tukey’s biweight [30] is often used. The Huber’s loss function

is defined as follows,

Lu(x) =


x2, |x| ≤ λ;

2λ|x| − λ2, |x| > λ.

(4.19)

Fig. 4.1 presents the l1, l2 and Huber cost over the interval [−3, 3].

It can be seen that the Huber loss function weights the large residuals less than

the l2 norm, but more than the l1 norm. Later in Section 4.2.2, it will be shown that

Huber loss function actually combines the l2 norm and the l1 norm. In other words,

Huber loss function regularize the original l2 cost with a l1 norm term. The threshold

λ indicates the strength of the regularization. By replacing the l2 norm in the OLS
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Figure 4.1: l1 norm, l2 norm and Huber cost.
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with the Huber loss, the optimization (4.4) is robustified as

x̂ = arg min
x∈Rn

∑
i

Lu(yi − hix), (4.20)

where yi ∈ R is i-th measurement and hi ∈ R1×n is the i-th row of H . Furthermore,

by considering the identical KKT condition [6], it can be proven that the optimization

in (4.20) is equivalent to

min
(x∈Rn,w∈Rm)

∑
i

(yi − hix)2

wi + 1
+ λ2

∑
i

wi, s.t. , wi ≥ 0, (4.21)

where w is a variable weight vector. Thus, one classical method to solve the Huber-

robust least square in eqn. (4.20) is iteratively reweighted least square (IRLS).

In the graph optimization library g2o [41], Huber loss cost is used for robust least

square.

4.2.2 Least Soft-Thresholding Square (LSS)

In [80], a Least Soft-Thresholding Square (LSS) approach is presented to provide

more efficient way to solve eqn. (4.20).

In LSS framework, the outlier term s in eqn. (4.1) is modeled as an i.i.d Laplacian

noise vector, i.e., si ∈ L(0, σL). Then, when a linear model is considered, a Maximum-

77



Likelihood estimation is formed through maximizing

p(y,x, s)

= p(y|x, s)p(x, s) (4.22)

= pn(y −Hx− s)pL(s)

=Kexp

{
−1

2

(
‖y −Hx− s‖2

2 + λ‖s‖1

)}
,

where K = (
√

2σL)−m(
√

2π)−m and λ = 2
√

2/σL. By taking negative log-likelihood

of eqn. 4.22 and get rid of the constant coefficient, the following cost function can be

get as a Least Soft-threshold Square problem

Ls(x, s) = ‖y −Hx− s‖2 + λ‖s‖1. (4.23)

Note that the λ in Ls(x, s) also indicates the strength of the l1 regularization. In

fact, it can be proven that the cost formed by the Huber loss function in eqn. (4.20)

is equivalent that of LSS in eqn. (4.23), if the λ is identical.

To minimize the LSS in 4.23, the following two useful insights are presented in

[80],

• Given ŝ, the optimal x̂ can be obtained by the OLS solution

x̂ = (HᵀH)−1Hᵀ(y − ŝ).

• Given x̂, the optimal ŝ can be obtained by a soft-thresholding (or shrinkage

[73]) operation

ŝi = Sλ(|yi − hix|),
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where

Sλ(x) = max(|x| − λ, 0)sgn(x)

and sgn(·) is the sign function.

The following is the algorithm to solve LSS.

Algorithm 4.1: Least Soft-Thresholding Square (LSS)

Input : An measurement vector y, matrix H , pre-computed matrix

P = (HᵀH)−1Hᵀ and a constant λ

1 Initialize iteration index l = 0 and s0 = 0;

2 while not converged and not terminated do

3 Obtain xl+1 via xl+1 = P (y − sl) ;

4 Obtain sl+1 via sl+1 = Sλ(|y −Hxl|) ;

5 l← l + 1

6 end

Output: x̂, ŝ

Similar algorithm for WLS problem can also be derived straightforwardly by plug-

ging in the weighting matrix C−1.

An useful insight of the Huber loss function method and the LSS method is on

the different ways they deal with the outliers:

• Huber loss function method aims to put less weight on the outliers.

• LSS method aims to compensate the outliers.
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The advantage of the LSS method over the standard Huber loss function is that

in LSS the matrix P needs evaluating once before the iterations. However, due to

the reweighted mechanism in the optimization with Huber loss function, the matrix

P needs re-evaluation for every iteration as

P = (Hᵀ(W l)
−1
H)−1Hᵀ(W l)

−1
, (4.24)

where Wi is the weighting matrix adjusted by the IRLS in the i-th iteration.

4.3 Hypothesis Test Aided LSS (HT-LSS)

Although the applications of LSS show good performance and efficiency, picking

the right λ is still heuristic in the literature. For example, in [80] the λ is required

as a “small” constant and picked as λ = 0.20 for all the experiments. No theoretical

derivation is given for this choice.

This section explores a way to set λ based on the hypothesis tests used in RAIM

(see Section 4.1). The outlier handling strategies of RAIM and cost regularization

methods (see Section 4.2) can be compared as:

• After the detection of the existence of outliers, RAIM aims to identify the

outlier measurements and remove them from the estimation formulation. The

identification is realized through hypothesis tests (e.g. w-test) of the estimat-

ed residual against some distribution (e.g. normal distribution) with certain

confidence level (e.g. 1− α = 0.95).
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• Cost regularization aims to identify the outliers, and to reduce the outliers’

effect on the estimation result through making them conform with the inliers

(e.g. re-weighting, shrinkage). The identification is realized by checking the

estimated residual with some prespecified threshold λ.

The above comparison indicates that in both RAIM and cost regularization method,

there is a threshold picked to judge whether an estimated residual belongs to an out-

lier measurement or not. The difference is that in RAIM this threshold (i.e., τi) is

picked rigorously from proper hypothesis test with a specified confidence level and

a nominated distribution. So, the threshold λ in LSS can also be set based on the

critical value in the hypothesis tests of RAIM.

Algorithm 3.2 shows the procedure of the proposed Hypothesis-Test based Least

Soft-threshold Square (HT-LSS) which can also outlined as Detection-Identification-

Adaption (DIA). Note that in Algorithm 3.2 the threshold λ is set based on the

hypothesis test discussed in Section 4.1. Furthermore, in Algorithm 3.2, a one-tail

version of the a-posteriori variance factor test (4.27) is applied before starting the

shrinkage operations. This variance factor test aims to detect the existence of the

outliers and may save computation versus the original LSS algorithm if there is no

outliers.
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Algorithm 4.2: Hypothesis Test based Least Soft-Thresholding Square

Input : An measurement vector y, matrix H , pre-computed matrix

P = (HᵀH)−1Hᵀ and Q = I −HP , a confidence level 1− α.

1 for i = 1:m do

2 Set λi ← τi =
√
eᵀiQei · N−1(1− α/2, 0, 1) ;

3 end

4 Initialize l = 0, s0 = 0, x0 = Py, r0 = y −Hx0;

5 while not converged or ‖rl‖2 > χ2
α,m−n do

6 for i = 1:m do

7 Obtain sl+1
i via sl+1

i = Sλi(|yi − hixl+1|) ;

8 end

9 Obtain xl+1 via xl+1 = P (y − sl+1) ;

10 Obtain rl+1 via rl+1 = y −Hxl+1 ;

11 l← l + 1

12 end

Output: x̂, ŝ

The advantage of the proposed HT-LSS approach over the RAIM is that the

tedious remove-and-reinclude book-keeping in the adaption procedure is avoid. Fur-

thermore, since LSS is actually to model the error term s, for GNSS applications

multipath error modeling could be incorporated to improve the outlier handling per-

formance. In RAIM, identified outlier measurements are just abandoned, without
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considering their correlations. The advantage of the proposed HT-LSS approach over

the Huber loss function method is that in HT-LSS the matrix P only needs evaluat-

ing once before the iterations, versus the iterative reweighting procedure for Huber

loss function in eqn. (4.24). The advantage of the proposed HT-LSS approach over

the original LSS with heuristic threshold λ is that λ is set from the critical value of

a proper hypothesis test with certain confidence level. Original LSS with heuristic

threshold λ may identify more or less outliers than expected.

In the rest of this section, a simulation example is given to show the performance

of the proposed method. In the simulation, measurements are made through the

following model,

ỹ = x+ 1 + s+ n, n ∼ N (0, 1),

where s is the injected outliers. To fitting this linear model y = ax + b, totally 122

measurements are made randomly over the interval x ∈ [0, 10]. So, the degree-of-

freedom of this problem is 120. This DOF matches the situation of the smoothing

based dual frequency GPS/INS over a 10-second window with 7 satellites available.

For evaluation purpose, 10% of the measurements are randomly picked and injected

outliers with random magnitude S from -9.7 to 10.3, see Table 4.3:

Table 4.3 concludes the fitting results with different methods discussed above. For

this case, the proposed HT-LSS is the best method.

Fig. 4.2 shows the OLS result with the contaminated data. The right-up plot of

Fig. 4.2 is the histogram of estimated residuals and several large residuals can be
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Table 4.1: Outlier Injected List

Meas. Index Outlier

2 7.122
4 -1.939
14 3.096
17 0.559
21 1.444
27 3.621
47 0.020
68 1.955
88 -1.449
99 0.273
108 3.571
113 7.470

Table 4.2: Line fitting with outlier measurements

Method Result

Truth (1.0000, 1.0000)
OLS (1.2382, 0.9964)

RAIM (1.1604, 1.0018)
LSS(λ = 0.2) (1.1993, 0.9917)

HT-LSS (1.0993, 1.0032)
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observed over 5. In the right-down plot of Fig. 4.2, yellow cross marks the residual

corresponding to the measurement injected outliers. Fig. 4.3 shows the RAIM result.

Note that the number of residuals is smaller than 120 since multiple measurements

are identified as outliers and removed. Fig. 4.4 shows the result of the original

LSS method with λ = 0.2. The right-up plot of Fig. 4.4shows that LSS treats any

measurement (even an inlier) with residual over 0.2 as an outlier and ‘shrinks’ its

effect. Due to this tight shrinkage, there are two peaks at ±0.20 in the right-up plot

of Fig. 4.4, and the two boundaries aligned with ±0.20 in the right-down plot of Fig.

4.4. The original LSS with λ = 0.2 identifies much more measurements as outliers

than the true amount, and this may impair the fitting performance when the DOF

is low. Fig. 4.5 shows the performance of the proposed HT-LSS which provide the

most accurate fitting in this test.

In Section 4.4.2, the proposed HT-LSS approach is applied in the graph optimiza-

tion based INS which is presented in Chapter 3.

4.4 Robust GOINS

This section proposes a novel method of outlier-rejection/robust-optimization in

inertial navigation. First, the Extended RAIM (eRAIM) approach from Geodetic

community is reviewed. Then, a novel approach is proposed by extending the HT-
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Figure 4.2: OLS with outlier measurements. The right-up plot shows the histogram
of the estimated residuals. In the right-down plot, yellow cross marks the residual
corresponding to the measurement injected outliers.

x
0 5 10

-2

0

2

4

6

8

10

12

14

16

18
truth fitting

Residual
-4 -2 0 2 4

P
er

ce
nt

ag
e 

(%
)

0

0.05

0.1

0.15

0.2

Meas. Index
0 50 100

R
es

id
ua

l

-2

-1

0

1

2

Figure 4.3: RAIM result.
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Figure 4.5: Hypothesis Test based LSS.
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LSS proposed in Section 4.4.2 to the graph optimization based INS presented in

Chapter 3.

4.4.1 eRAIM for EKF based GPS/INS

In Section 3.1.5, the EKF for INS is revisited from the Weighted Least Square

(WLS) perspective. Herein the analysis in Section 3.1.5 is extend, and in this case

the posteriori residual is defined as

r(δx+
k ) = δZk −Akδx

+
k

With the Corollary 4.2, it follows that

E[r(δx+
k )ᵀC−1

k r(δx+
k )] = nm and E[r(δx+

k )r(δx+
k )ᵀ] = C−1

k −AkP
+
k Aᵀ

k, (4.25)

where nm is the number of aiding measurements at tk and P+
k =

(
Aᵀ
kC
−1
k Ak

)−1
is

the covariance of δx+
k .

Note that in eqn. (4.25), the degree-of-freedom nm is derived from (ns +nm)−ns,

i.e., the difference between the total number of measurements (INS prior and aiding

ones) and that of unknown variables (the current INS state) to be estimated. The

corresponding variance factor is determined as

σ̂2
k =

r(δx+
k )ᵀC−1

k r(δx+
k )

nm
. (4.26)
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The detection procedure is concluded by testing the variance factor against the

two-tailed limits derived from Chi-squared distribution

χ2
α/2,nm

nm
< σ̂2

k <
χ2

1−α/2,nm

nm
, (4.27)

where nm is the DOF of the Chi-squared distribution and the α is the significant level

of the test. Often times, α is picked as 0.05.

If the test fails, then the model in eqn. (3.33-3.34) is considered as invalid. The

invalidity can be caused by many reasons, e.g. modeling error, outliers and poor

characterization of sensors (poor Ck assumption). Herein, we assume only outliers

can cause the test failure.

For the case that the i-th measurement has outliers, the linearized measurement

model (see Section 3.1.5)

δZk = Akδx+ vk, vk ∼ N (0,Ck) (4.28)

has to be extended to the form [24, 28, 38],

δZk = Akδx+ eisi + vk, vk ∼ N (0,Ck), (4.29)

where ei = [0, . . . , 0, 1, 0, . . . , 0]ᵀ (only the i-th element is 1 ) and si is the outlier.

The identification of an outlier depends on the statistical testing where the null

hypothesis is that the measurements are outlier free and the alternative hypothesis is
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that an outlier exists:

Null Hypothesis : E(ŝi) = 0;

Alternative Hypothesis : E(ŝi) = si 6= 0.

In identification, the w-test [4, 38, 67] is executed to test each measurement. For the

i-th measurement δZk, the test statistics is

wi =
eᵀiC

−1
k r(δx+

k )√
eᵀiC

−1
k QrkC

−1
k ei

. (4.30)

Under the null hypothesis, wi has a standard normal distribution; for a outlier si, wi

has the following noncentrality,

δi = si

√
eᵀiC

−1
k QrkC

−1
k ei.

Thus, the statistics wi is tested against normality tests, e.g. Kolmogorov-Smirnov

test. This w-test is executed multiple times until no outlier identified.

Once the outlier is identified, it will be removed from the measurement set. After

removal the identified outliers, the estimation is done again, and then the detection

and identification procedures repeat until no detection reported.

This eRAIM approach was reported efficient for EKF based GPS/INS [27]. As

stated in RAIM [28], the ability of estimation to detect and handling the outliers

depends on the degree-of-freedom of problem. However, in outlier-prone situations,

the availability of the GPS satellites is also limited, e.g. in urban canyon. As discussed
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in Chapter 3, the graph optimization based approach could enhance the degree-of-

freedom since the smoothing window may accumulate more measurements. Thus, the

graph optimization based INS maintains better robustness to outlier measurements.

Section 4.4.2 proposes a novel method and shows an example for GPS/INS.

4.4.2 Robust GOINS based on HT-LSS

In this section, the HT-LSS method proposed in Section 4.4.2 is extended to the

graph optimization based INS presented in Chapter 3. The GPS/INS application is

focused on and the discussed method can be extended to other INS implementations

straightforwardly.

As discussed in Section 4.1 and its references, the degree-of-freedom of an estima-

tion problem determines the ability to detect outliers and the estimation robustness.

In the graph optimization based INS presented in Chapter 3, a smoothing problem

over a time window is considered for each navigation state estimation. Since more

measurements are included over a window than just the measurements of a single

epoch, the graph optimization based INS over a time window can improve the nav-

igation system’s ability to detect and handling outliers. Considering the problem of

the graph optimization based INS as Nonlinear Least Square, the HT-LSS method

proposed in Section 4.4.2 can be extended as follows:
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1. (Detection) After the convergence of the NLS in eqn. (3.47), do the following

one-tail2 variance factor test,

‖r(X̂)‖2 < χ2
1−α/2,M ,

where M is the total number of aiding measurements and the degree-of-freedom

dof , [ns(K + 1) + M ] − ns(K + 1) = M is the difference between the total

number of unknowns (i.e., X ∈ Rns(K+1)) and the total number of measurements

(including prior distribution ns, INS constraint nsK, GPS measurements M).

The failure of the test implies the existence of the outlier, and the following

outlier handling procedure proceed. Otherwise, the robust optimization is done

and the final navigation estimates can be published.

2. It is assumed that there is no outlier in INS constraints, and only outliers in

prior constraints and aiding measurements are considered. Model the estimated

residuals of these measurements as

r = ΣRJδX + s+ n, n ∼ N (0, I),

where ΣR is the normalizing matrix defined in Section 3.2, J is the Jacobian

matrix of the corresponding measurements, δX is the trajectory update from

the last iteration of NLS solution. Then, the HT-LSS shrinkage is applied on s

s = Sτ (r −ΣRJδX),

2In practice, we usually do not care about the situation where the cost is too small.
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where τ is a vector of the critical values derived from the w-test (4.18) for each

weighted measurement.

3. Solve the NLS again through evaluating the residuals as r′ = r−s. Repeat these

three steps until no failures in the variance factor test or X̂ and s converged.

One advantage of the proposed method for GPS/INS application is that the Jaco-

bian matrix J for GPS measurements does not need re-evaluating multiple times after

Step (1). This is due to the weak nonlinearity and slow time-varying property of GPS

measurement model. These special properties are investigated mathematically and

utilized creatively in Chapter 6. In contrast, if Huber loss function method is applied

here, the weighted Jacobian matrix needs to be re-calculated after the re-weighting

R←WlR.

In the rest of this section, an example of the graph optimization based GPS/INS is

presented to illustrate the proposed HT-LSS based robust navigation. In this experi-

ment, a 10-second IMU plus GPS data is picked. In this data, the L1/L2 pseudorange

measurements are inspected manually with the RTK GPS/INS smoothing result, to

ensure there is no outliers. For performance validation purpose, epochs and satellites

are randomly picked to inject outliers as in Table 4.4.2. Thus, in this experiment we

have three data sets to work on:

1. Original data without any artificial modification.

2. Outlier Injected data which is injected outliers as in Table 4.4.2.
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3. Outlier Cleaned data in which the measurements with injected outliers are re-

moved.

Then, with these three data sets, four results can be obtained:

1. Smoothing (without outlier handling) with Data (1).

2. Smoothing (without outlier handling) with Data (2).

3. Smoothing (with outlier handling) with Data (2).

4. Smoothing (without outlier handling) with Data (3).

An useful insight on the four tests is that once a measurement is contaminated

with an outlier error, no useful information for estimation can be recovered from it

anymore. The best option is to remove it from the formulation. Thus, one the data

is contaminated with outliers, the result of Test (1) can never be recovered. The best

result we can expected is one close to that of Test (4).

Table 4.3: Outlier Injected List

Time Index PRN L1 Outlier (m) L2 Outlier (m) L1 Identified L2 Identified

2 1 4.8697 2.5125
√ √

3 13 -2.5746 1.9839
√ √

3 32 4.4479 -1.8058
√ √

4 23 0.5293 -0.9808
√

6 32 0.7515 -2.4864
√

9 16 2.5903 3.8155
√ √
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Fig. 4.6 compares the trajectories from the four tests on tangent plane. It can

be observed that the results of Test (3) and (4) are close to each other, and both of

them are more close to the Test (1) result which can be considered as ground truth,

than that of Test (2). The result of Test (2) is the most deviated from that of Test

(1). Fig. 4.7 and 4.8 shows the 3D positioning errors between the results of Test

(2-4) and Test (1). Fig. 4.9 shows the positioning errors between the results of Test

(2-3) and Test (4). It can be observed that the result of Test (3) is much closer

to that of Test (4) than Test (2). It implies that the proposed HT-LSS approach

identifies and handles the outliers properly. In the last two columns of Table 4.4.2,

the contaminated measurements are marked if identified by the w-test as an outlier.

There are two contaminated measurements are not identified since the injected errors

are relatively small such that the resulted residuals are not over the critical values.

The histograms of the estimated L1/L2 pseudorange residuals (compensated with s,

i.e. r− s) in Fig. 4.10 - 4.12 for Test (2-4) also illustrate this point. Fig. 4.13 shows

the estimated L1/L2 pseudorange residuals (uncompensated, i.e., r) and s. By this

way, s can be regarded as estimates of the errors in the weighted measurements.
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Figure 4.6: Robust GOINS example: GPS-INS positioning results on tangent plane.
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Figure 4.7: Robust GOINS example: GPS-INS 3D positioning results comparison.
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Figure 4.8: Robust GOINS example: GPS-INS 3D positioning error distributions
compared with the result from the smoothing with the original data.
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Figure 4.9: Robust GOINS example: GPS-INS 3D positioning error distributions
compared with the result from the smoothing with the cleaned data.
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Figure 4.10: Final estimated residuals (weighted) of code measurements in GPS-INS
smoothing with the data with outliers cleaned.
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Figure 4.11: Final estimated residuals (weighted) of code measurements in GPS-INS
smoothing without any outlier handling.
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Figure 4.12: Final estimated residuals (weighted) of code measurements in GPS-INS
smoothing with HT-LSS outlier rejection.
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Figure 4.13: Final estimated residuals (weighted) of code measurements in GPS-INS
smoothing with HT-LSS outlier rejection.
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Chapter 5

Contemplative Real-Time RTK

GPS/INS

With the graph optimization based INS proposed in Chapter 3 and the robust

optimization technique in Chapter 4, a Contemplative Real-Time (CRT framework

for general aided INS and especially for RTK GPS/INS is proposed. Under the CRT

framework, conventional EKF and Bayesian smoothing are combined to enhance the

accuracy and reliability of the navigation system. Factor Graph model is extended

by incorporating integral unknowns to represent the integer ambiguity inherited in

the GPS carrier phase measurements for RTK GPS/INS applications. Robust op-

timization method HT-LSS is applied in the contemplative thread to handling the

outliers.
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5.1 Integer Ambiguity Resolution

This section extends the discussion of Mixed Integer Least Square (MILS) pre-

sented in [11]. In particular, this dissertation proves several propositions giving more

insight into the MILS problem. This section first discusses the RTK GPS/INS imple-

mentations and the corresponding the Mixed Integer Least Square problem, then the

float solution of the integer ambiguity resolution, at last the Integer Least Square is

outlined.

5.1.1 RTK GPS/INS

Real-Time Kinematic (RTK) represents the techniques which resolve the integer

ambiguity in the GNSS carrier phase measurements, and realize centimeter level po-

sitioning accuracy. In this dissertation, RTK in GPS is focused on. Throughout this

dissertation, double-differenced GPS measurements are considered [54]. For notation-

al simplicity, it is assumed that the double difference approach completely removes

all common-mode errors (e.g., ionosphere, troposphere, satellite clock and ephemeris

errors), as well as the receiver clock biases which allows these terms to be dropped

throughout the equations. Nonetheless, the remaining errors in these terms will affect

the experiment results. However, outlier measurements can exist due to multipath

error, heavy foliage, receiver failure, etc.
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The (simplified) double-differenced pseudorange (a.k.a. code) measurements for

the i−th satellite are modeled as

ρi(tk) = hik(x(tk)) + niρ(tk), (5.1)

where hik(x(tk)) = ‖p(tk)−pi(tk)‖2 is the geometric distance at tk between the rover

position p ∈ R3 and the known i−th satellite position pi ∈ R3, and niρ ∼ N (0, σ2
ρ)

represents the (non-common mode) measurement noise with standard deviation σρ =

0.1 ∼ 3m, depending on receiver design, environmental factors and the performance

of multipath mitigation techniques [12]. In practice, the assumed noise level σρ can

vary temporally and spatially for each available satellite. The code measurement in

eqn. (5.1) conforms with the standard measurement model in eqn. (3.39).

The (simplified) double-differenced carrier phase measurements for the i−th satel-

lite are modeled as

ϕi(tk) = hik(x(tk)) + λN i(tk) + niϕ(tk), (5.2)

where λ is the carrier phase wavelength, and N i is the unknown integer ambiguity.

The measurement noise has distribution niϕ ∼ N (0, σ2
ϕ). The noise standard deviation

σϕ is millimeter to centimeter level (< 0.01σρ).

This unknown integer represents the number of whole carrier wave cycles between

the satellite and the receiver at the time that phase lock is achieved. If the phase-

lock-loop (PLL) in the receiver for the i-th satellite maintains lock without cycle

slips on a time interval [t1, tn], then the N i in the carrier phase measurements for
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this satellite is a unknown integer constant over this time interval, i.e. N i(t1) =

· · · = N i(tn) = N i. The receiver reports the lock status to enable detection of such

time intervals. The unknown integer must be estimated exactly to enable use of

the carrier phase measurement for precise position estimation. Note that the carrier

phase measurement model does not match the standard measurement model in eqn.

(3.39), because there is a unknown integer variable N i.

To utilize the carrier phase measurements under conventional EKF framework,

the integer ambiguity N , [N1, . . . , Nm] is resolved by the Real-Time Kinematic

technique and then the carrier phase measurements can be incorporated into the

estimation just like the pseudorange measurements. In particular, the following op-

timization problem at time step t = tk is solved.

min
p(tk)∈R3,N∈Zm

∑
i

[
‖hik
(
p(tk)

)
− ρi(tk)‖2

σ2
ρ

+ ‖hik
(
p(tk)

)
+ λN i − ϕi(tk)‖2

σ2
ϕ

]
. (5.3)

Note that in eqn. (5.3) only L1 measurements are considered, but for dual frequency

cases wide-lane carrier phase measurements can be formed to facilitate the integer

ambiguity resolution from the L1 and L2 carrier phase measurements. In the rest of

this section, methods to solve (5.3) is presented.

5.1.2 Mixed Integer Least Square

In terms of the integer ambiguity resolution problem in GNSS research (e.g.,

Real-Time Kinematic technique), the following Mixed Integer Least Square (MILS)
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formulation is often considered to provide optimal solution

(X∗,N∗) = arg min
X∈Rk,N∈Zn

‖r +AX +BN‖2, (5.4)

where r ∈ Rm is the measurement residual vector, Am×k is the Jacobian matrix

for the real unknown variable vector X and Bm×n is the Jacobian matrix for the

integral unknown variable vector N. Furthermore, it is necessary that the matrix

[A,B]m×(k+n) is full column rank.

Due to the integral nature of N, eqn. (5.35) cannot be resolved by the Ordinary

Least Square (OLS) method [37] which leads to closed solutions. If there is no real

unknowns, the problem in eqn. (5.35) is reduced to Integer Least Square (ILS)

min
N∈Zn

‖r +BN‖2. (5.5)

The ILS problem in eqn. (5.38) can be regarded as the generalization of the special

ILS considered in the classical LAMBDA method stemmed from [33, 66, 69, 70],

min
N∈Zn

‖N− N̂‖2
CN̂
. (5.6)

In the method proposed in [11], by letting

A = [QA, Q̄A]

RA

0

 , (5.7)
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is the QR-decomposition of the matrix A, the cost of MILS in eqn. (5.35) is first

divided into two components,

‖r +AX +BN‖2

=

∥∥∥∥∥∥∥∥
Qᵀ

A

Q̄ᵀ
A

 (r +AX +BN)

∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥
Qᵀ

A

Q̄ᵀ
A

 r +

RA

0

X +

Qᵀ
AB

Q̄ᵀ
AB

N

∥∥∥∥∥∥∥∥
2

(5.8)

= ‖Qᵀ
Ar +RAX +Qᵀ

ABN‖2 + ‖Q̄ᵀ
Ar + Q̄ᵀ

ABN‖2.

For eqn. (5.37), a crucial observation is that when any integer estimate N̂ is given,

there is always a real vector X̂ can be found such that ‖Qᵀ
Ar+RAX̂+Qᵀ

ABN̂‖2 = 0.

Thus, the MILS problem in eqn. (5.35) is equivalent to

N∗ = arg min
N∈Zn

‖Q̄ᵀ
Ar + Q̄ᵀ

ABN‖2, (5.9)

and then X∗ can be derived through the back-substitution solving

RAX = − (Qᵀ
Ar +Qᵀ

ABN) .

By letting r̄ , Qᵀ
Ar and B̄ , Q̄ᵀ

AB, eqn. (5.9) can be rewritten as

N∗ = arg min
N∈Zn

‖r̄ + B̄N‖2 (5.10)

which matches the standard form of ILS in eqn. (5.38). The solution of the ILS is

introduced in Section 5.1.4.
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5.1.3 Float solution

Alternatively to direct solving (5.10) by ILS, the float solution is often derived

as an intermediate step for integer ambiguity resolution,

Ň = arg min
N∈Rn

‖r̄ + B̄N‖2, (5.11)

where the integral nature of N is neglected and treated as a real vector. Thus, the

float solution can be derived by the closed form of Ordinary Least Square (OLS). In

particular, letting

B = [QB̄, Q̄B̄]

RB̄

0

 , (5.12)

then the float solution is

Ň = −
(
B̄ᵀB̄

)−1
B̄ᵀr̄ = −R−1

B̄
Qᵀ
B̄
r̄, (5.13)

and the corresponding covariance is

CŇ =
(
B̄ᵀB̄

)−1
=
(
BᵀQ̄AQ̄

ᵀ
AB
)−1

. (5.14)

This float solution is often used in integer validation, e.g. in the ratio test [68]. Also,

based on the following proposition, the original integer ambiguity resolution in eqn.

(5.35) can be reformed as ILS problem when the float solution is given.

Proposition 5.1. The optimal integer estimate N∗ in eqn. (5.35) can also be resolved

through

N∗ = arg min
N∈Zn

‖N− Ň‖2
CŇ
, (5.15)
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where Ň and CŇ are the float solution and the corresponding covariance matrix de-

rived in eqn. (5.13) and (5.14).

Proof. Based on the analysis in Section 5.1.2, it is sufficient to show that

arg min
N∈Zn

‖N− Ň‖2
CŇ

= arg min
N∈Zn

‖r̄ + B̄N‖2. (5.16)

With eqn. (5.12), (5.13) and (5.14), it follows that

∥∥N− Ň
∥∥2

CŇ

=
(
N− Ň

)ᵀ (
B̄ᵀB̄

) (
N− Ň

)
=
∥∥B̄N− B̄Ň

∥∥2

=
∥∥B̄N + B̄R−1

B̄
Qᵀ
B̄
r̄
∥∥2

=

∥∥∥∥∥∥∥∥B̄N +
[
QB̄, Q̄B̄

] RB̄

0

R−1
B̄
Qᵀ
B̄
r̄

∥∥∥∥∥∥∥∥
2

=
∥∥B̄N +QB̄Q

ᵀ
B̄
r̄
∥∥2

=
(
B̄N +QB̄Q

ᵀ
B̄
r̄
)ᵀ (
B̄N +QB̄Q

ᵀ
B̄
r̄
)

= ‖B̄N‖2 + 2NᵀB̄ᵀQB̄Q
ᵀ
B̄
r̄ + ‖Qᵀ

B̄
r̄‖2

= ‖B̄N‖2 + 2Nᵀ
[
Rᵀ
B̄
,0
] Qᵀ

B̄

Q̄ᵀ
B̄

QB̄Q
ᵀ
B̄
r̄ + ‖Qᵀ

B̄
r̄‖2

= ‖B̄N‖2 + 2NᵀRᵀ
B̄
Qᵀ
B̄
r̄ + ‖Qᵀ

B̄
r̄‖2, (5.17)

where the last equity is from Qᵀ
B̄
QB̄ = I.
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On the other hand, we have that

∥∥r̄ + B̄N
∥∥2

=

∥∥∥∥∥∥∥∥
Qᵀ

B̄

Q̄ᵀ
B̄

(r̄ + B̄N
)∥∥∥∥∥∥∥∥

2

=
∥∥Qᵀ

B̄
r̄ +RB̄N

∥∥2
+
∥∥Q̄ᵀ

B̄
r̄
∥∥2
.

Since
∥∥Q̄ᵀ

B̄
r̄
∥∥2

is a constant, it is equivalent to minimize
∥∥Qᵀ

B̄
r̄ +RB̄N

∥∥2
. Then, it

follows that

∥∥Qᵀ
B̄
r̄ +RB̄N

∥∥2

= NᵀRᵀ
B̄
RB̄N + 2NᵀRᵀ

B̄
Qᵀ
B̄
r̄ +

∥∥Qᵀ
B̄
r̄
∥∥2

= ‖B̄N‖2 + 2NᵀRᵀ
B̄
Qᵀ
B̄
r̄ +

∥∥Qᵀ
B̄
r̄
∥∥2
,

where the last equity is from Rᵀ
B̄
RB̄ = B̄ᵀB̄. Thus, from eqn. (5.17), it follows that

minimizing ‖N − Ň‖2
CŇ

is equivalent to minimizing ‖r̄ + B̄N‖2, and this concludes

the proof.

Besides of eqn. (5.11), another float solution can be resolved from the following

information form method. Later, Proposition 5.4 shows that this float solution

from the information formulation is equivalent to that from The original cost in eqn.
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(5.35) can be expanded as

‖r +AX +BN‖2

= ‖r‖2 + 2rᵀ [A,B]

X
N

+ [Xᵀ,N ᵀ]

AᵀA AᵀB

BᵀA BᵀB


X
N

 . (5.18)

By treating N as an real vector, the optimality condition leads to solving the linear

system AᵀA AᵀB

BᵀA BᵀB


︸ ︷︷ ︸

Λ

X
N

 = −

Aᵀr

Bᵀr

 . (5.19)

Note that in eqn. (5.19), Λ is the corresponding information matrix. Schur com-

plement [23, 25, 41] can be used to solve the above system by marginalizing the real

unknowns X,

(
BᵀB −BᵀA (AᵀA)−1AᵀB

)
N = −Bᵀr +BᵀA (AᵀA)−1Aᵀr. (5.20)

Letting

Qp , (I −A (AᵀA)−1Aᵀ) ∈ Rm×m, (5.21)

then eqn. (5.20) can be rewritten as

BᵀQpBN = −BᵀQpr. (5.22)

Note that Qp is a projection matrix onto the subspace of Rm which is the orthogonal

complement of the range space C(A) of A [37], i.e., the left nullspace of A which

denoted as LN (A) or N (Aᵀ). Furthermore, along with that [A,B] has full column
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rank, it can be proved that BᵀQpB has full rank and then invertible. A useful lemma

can be proved to facilitate the later proof.

Lemma 5.2. With the definition of eqn. (5.21) and (5.7), it follows that

Qp = Q̄AQ̄
ᵀ
A.

Proof. With the definition (5.21) and (5.7),it follows that

Qp = I − [QA, Q̄A]

RA

0


[Rᵀ

A,0
ᵀ]

Qᵀ
A

Q̄ᵀ
A

 [QA, Q̄A]

RA

0



−1

[Rᵀ
A,0

ᵀ]

Qᵀ
A

Q̄ᵀ
A


= I −QARA (Rᵀ

ARA)−1Rᵀ
AQ

ᵀ
A

= I −QARAR
−1
A (Rᵀ

A)−1Rᵀ
AQ

ᵀ
A

= [QA, Q̄A]

Qᵀ
A

Q̄ᵀ
A

−QAQ
ᵀ
A

= Q̄AQ̄
ᵀ
A.

Remark 5.3. Intuitively, I−A (AᵀA)−1Aᵀ is a projection onto the left nullspace of

A, i.e., N (Aᵀ), while the columns of Q̄A span the left nullspace of A. Thus, Q̄AQ̄
ᵀ
A

is also a projection onto N (Aᵀ). 4

Then, we have the following proposition to conclude the discussion in this subsec-

tion.
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Proposition 5.4. The integer estimates derived from the following optimizations are

equal to each other,

1. MILS in eqn. (5.35)

min
X∈Rk,N∈Zn

‖r +AX +BN‖2,

2. ILS in eqn. (5.38)

min
N∈Zn

‖r̄ + B̄N‖2,

3. ILS with the float solution in eqn. (5.15)

min
N∈Zn

‖N− Ň‖2
CŇ
,

4. ILS from the information form (5.22)

min
N∈Zn

‖BᵀQpBN +BᵀQpr‖2.

Proof. The equivalence of item 1,2,3 is well discussed in Proposition 5.1, so it is

sufficient to prove item 3 and item 4 are equivalent. With eqn. (5.22) and that

BᵀQpB is invertible, another float solution can be derived from the information

form

N̆ = − (BᵀQpB)−1BᵀQpr̄, (5.23)

with the corresponding covariance matrix

CN̆ = − (BᵀQpB)−1 . (5.24)
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Then, along with Lemma 5.2, it follows that the two float solutions are equal

arg min
N∈Zn

‖N− Ň‖2
CŇ

= arg min
N∈Zn

‖N− N̆‖2
CN̆
.

Similar to eqn. (5.16), it can be proven that

arg min
N∈Zn

‖N− N̆‖2
CN̆

= arg min
N∈Zn

‖BᵀQpBN +BᵀQpr‖2,

and this concludes this proof.

5.1.4 Integer Least Square

Integer Least Square (ILS) considers a problem in the following form,

min
z∈Zn
‖y −Bz‖2, (5.25)

where y ∈ Rm. The state-of-the-art Integer Least Square (ILS) solution can be

divided into two steps: reduction and search. The reduction step is also referred as

decorrelation, whose aim is to facilitate the later search step. Since this dissertation

does not make contribution to ILS, the basic idea of reduction and search is briefly

reviewed in this section. More details can be found from reference [2, 9, 11, 66, 69, 70].

The reduction process which transform B matrix into a upper-triangular one can

be done through LLL reduction [42, 83]. Furthermore, the LLL reduction can be

referred as a QRZ factorization:

QBZ =

R
0

 , or B = Q

R
0

Z−1, (5.26)
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where Q = [ Q1︸︷︷︸
n

, Q2︸︷︷︸
m−n

] ∈ Rm×m is orthogonal, Z is unimodual1, and R ∈ Rn×n is

nonsingular upper-triangular and satisfies the following two LLL reduction criteria

[42]:

|rij| ≤
1

2
|rii|, r2

ii ≤ r2
i,i+1 + r2

i+1,i+1

for i = 1, . . . , n− 1, j = i+ 1, . . . , n. With the QRZ factorization in eqn. (5.26), the

original ILS can be decomposed as

‖y −Bz‖2 = ‖Qᵀ
1y −RZ−1z‖2 + ‖Qᵀ

2y‖2.

Then, by defining ȳ , Qᵀ
1y and z̄ = Z−1z, the original ILS (5.25) is transformed

into a new one,

min
z̄∈Zn
‖ȳ −Rz̄‖2.

After the above reduction, search process can use the Schnorr-Euchner enumera-

tion strategy based algorithm from Lattice Theory research [2] to enumerate possible

z̄ ∈ Zn. Let us assume that we want to find the best p optimal solutions to ((5.25)).

Then, the search algorithm first find p integer points {z̄(i)}pi=1 with increasing costs.

Furthermore, the largest cost is defined as

β , ‖ȳ −Rz̄(p)‖2.

Then, the algorithm searches the ellipsoid

‖ȳ −Rz̄‖2 < β

1Z is an integer matrix and |det(Z)| = 1 thus Z−1 is also an integer matrix.
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to find a new integer point. When a new integer point is found, z̄(p) is removed and

the new point is inserted into the sequence {z̄(i)}p−1
i=1 , maintaining the increasing order

of the corresponding costs. Then, the ellipsoid is shrunk with the new z̄(p) and the

search algorithm searches a new integer point within the new ellipsoid. This process

repeats until no new integer point can be found.

5.2 Contemplative Real-Time Approach for GP-

S/INS

This work develops a Contemplative Real-Time (CRT) approach proposed in [14–

16, 81, 82] for the GPS/INS application. The CRT approach has both real-time and

contemplative aspects. The real-time state estimate is required for control and plan-

ning purposes, without latency. The contemplative aspects are intended to enhance

accuracy through implementing the robust graph optimization approach for INS pre-

sented in Chapter 3 and Chapter 4.

The real-time aspect of the proposed CRT framework can be standard EKF which

is often implemented for most GPS/INS applications. For more details of EKF based

GPS/INS, see Section 3.1.5. In this chapter only the contemplative aspect of the

CRT framework is discussed in details.

The CRT framework considers a trajectory estimation problem over a time interval

[t1, tK ], where tK is the most recent GPS measurement time. The interval [t1, tK ] is
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Figure 5.1: Measurement timeline for one CRT cycle.

referred as the CRT window. This window contains K GPS measurement epochs,

where K can be designer specified, time varying, or data dependent. A typical, but

simplified, measurement scenario for [t1, tK ] is depicted in Fig. 5.1. The dots on

the time-line indicate IMU measurement times τn. Typically the number of IMU

measurements between GPS measurements is very high (i.e. ti+1 − ti � τj+1 −

τj), for two reasons. First, the IMU sample frequency (e.g. 200Hz) is at least

twice of the IMU bandwidth, which is higher than the vehicle motion bandwidth.

Second, GPS sample rate (≤ 10Hz) is usually much lower than that of IMU. The

state transition between these times is constrained by the kinematic model of eqn.

(3.2) and the IMU data. Additional constraints are imposed by the initial estimate

(x1,P1) depicted above the initial state, and GPS measurements depicted below

the time-line. Each of these constraints is quantified by a probability density that

enables a Bayesian estimation formulation for the CRT estimation problem. While
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Fig. 5.1 depicts all GPS measurements occurring at the IMU measurement time,

unaligned measurements can be addressed by interpolation, and unknown latencies

can be calibrated by the methods in [45].

The contemplative process starts when t = tK when the K-th epoch GPS mea-

surements YK are received. At tK , all IMU, GPS are available for the time interval

[t1, tK ]. A prior for the initial state x(t1) ∼ N (x1,P1) is also available. Starting from

the real-time estimates, the CRT algorithm will contemplate the available informa-

tion to reliably and accurately compute the state trajectory over the CRT window

using the robust graph optimization method for INS shown in Chapter 3 and Chapter

4. This contemplative process ends at a time t∗ > tK , ideally providing an optimal

trajectory estimate x̂(t) for t ∈ [t1, tK ] from which the effects of outlier measurements

have been removed. For the computation time interval t ∈ [tK , t
∗], the real-time es-

timate of the realtime state estimate x̂(t) is maintained by the INS using the IMU

data and starting from the prior estimate of x(tK). At t = t∗, x̂(tK) is corrected to

the result of the CRT contemplative process and propagated through time using the

IMU data and eqn. (3.2) to provide an improved estimate of x(t) at the present time.

At some time t ≥ t∗, the CRT window can be redefined and the process can repeat

indefinitely.

The proposed CRT framework do not only apply to general aided INS implemen-

tations (e.g. DGPS/INS), but also applies to RTK GPS/INS. However, for a RTK

GPS/INS navigation system, the smoothing estimation problem is a bit different from
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the general one defined in Chapter 3, due to existence of the integer ambiguity. In

Section 5.3, the classical factor graph modeling is extended by incorporate integral

unknowns, and an efficient solution to corresponding Nonlinear Mixed Integer Least

Square problem is proposed.

5.3 Probabilistic Graphical Modeling for RTK G-

PS/INS

In this work, the estimation problem of RTK GPS/INS is formalized under the

Robust Graph Optimization INS (GOINS) framework presented in Chapter 3 and

Chapter 4. For the simplicity of discussion in this paper, the following assumption is

made.

Assumption 5.5. For t ∈ [t1, tK ], the receiver provides valid carrier phase measure-

ments for m satellites, without loss of lock. Then, the unknown integers in the carrier

phase measurements from these m satellites are constants over [t1, tK ]. 4

Remark 5.6. Assumption 6.1 is made for the convenience of presenting the main

ideas in this article. The proposed framework can be easily extended to more complicat-

ed application scenarios. In fact, it is straightforward to either ensure the assumption

is true, by decreasing m or K. Decreasing either parameter affects both the achievable

accuracy and reliability. Also, GPS measurements occur at 1 Hz, which is higher than
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necessary to maintain the desired decimeter accuracy, so it is also straightforward to

simply not perform the algorithm on those intervals when the assumption is not valid

for a sufficiently large m. 4

Under Assumption 6.1, the RTK GPS/INS estimation problem considered in this

chapter can be stated as follows.

For a system described by eqn. (3.1), we have

• an initial distribution for the state x(t1) ∼ N (x1,P1),

• IMU measurements U = {Uk}K−1
k=1 , where

Uk = {ũ(τn), tk ≤ τn ≤ tk+1},

• DGPS code and carrier phase measurements Y = {Yk}Kk=1, where

Yk = {ρi(tk)}mki=1

⋃
{φi(tk)}mi=1.

Note that: t1, tk ∈ (τ1, τκ]; the set {τn} contains the high frequency IMU measurement

time instants; and mk are the total number of valid pseudorange measurements at

time tk.

Then, the objective is:

Objective 5.7. Estimate the optimal state trajectory X = [xᵀ(t1), . . . ,xᵀ(tK)]ᵀ ∈

Rns(K+1) and integers N = [N1, . . . , Nm]ᵀ ∈ Zm with the given sensor measurements

U, Y and the prior state density px(x(t0)). 4
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p{x(t2)|x(t1), u(t1)}

p{ρi(t1)|x(t1)}

p{ϕi(t1)|x(t1), Ni}

Figure 5.2: The RTK GPS/INS navigation estimation problem over a 3-epoch time
window represented by a Bayes Newtwork. For clear illustration, only the GPS mea-
surements from the i-th satellite are shown in the figure.

Fig. 5.2 represents the estimation problem summarized above by a Bayes Net-

work (BN). For simplified illustration purpose, the GPS measurements from only the

i-th satellite are shown in Fig. 5.2. This Bayes Network is a directed acyclic graph

representing the joint distribution p(X,N,Y,U). Each node in the BN represents

a variable and its associated conditional density. For example, in Fig. 5.2 the node

labeled x(t1) represents the conditional probability of the unknown state x(t2) given

x(t1) and U1. So, p(X,N,Y,U) can be regarded as ‘factorized’ over the BN by

following Bayes rule. This representation motivates another type of graphical mod-

el, named Factor Graph shown in Fig. 5.3. In a factor graph, only the unknown

variables are explicitly labeled as nodes, while the edges (with black dots) represents
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the ‘factors’ which encode the probabilistic information (constraints) between the

unknown variables. In particular, in Fig. 5.3 the factor above the node x(t1) is for

the initial state prior. The factors between two consecutive purple nodes are the

probabilistic constraints derived from the IMU data and kinematic constraints. The

factors above the nodes {x(tk)}3
k=1 are for the DGPS pseudorange measurements.

The factors between the purple-green pairs are for the carrier phase measurements.

x(t1) x(t2) x(t3)

N1 Nm…

………

Figure 5.3: The RTK GPS/INS navigation estimation problem over a 3-second time
window represented by a Factor Graph. The labeled nodes are for the unknown
variables, and the black dotted edges are the factors encoding the probabilistic infor-
mation between the unknown variables.
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Let X+ = {x(t) for t = t2, . . . , tK}, then the joint probability p(X,N,Y,U) can

be factored as

p(X,N,Y,U)

= p(X,U,N)p(Y|X,U,N)

= p(X+,x(t1),U)p(Y|X,N)

= p(x(t1),U)p(X+|x(t1),U)p(Y|X,N)

= p(x(t1))p(X+|x(t1),U)p(Y|X,N) (5.27)

Thus, a Maximum-a-Posteriori problem can be formed to estimate X and N by

maximizing the right hand side of eqn. (6.2),

max
X∈RnsK ,N∈Zm

p(x(t1))p(X+|x(t1),U)p(Y|X,N). (5.28)

With the Gaussian noise assumption, the negative log-likelihood of the right hand

side of eqn. (6.2) is

‖v(X,N)‖2
W = ‖x(t1)− x1‖2

P1

+
∑
k

‖φ
(
x(tk),Uk

)
− x(tk+1)‖2

Qk

+
∑
k

∑
i

‖hik
(
x(tk)

)
− ρi(tk)‖2

σ2
ρ

(5.29)

+
∑
k

∑
i

‖hik
(
x(tk)

)
+ λN i − ϕi(tk)‖2

σ2
ϕ

where ‖v‖2
W = v>W−1v is the squared Mahalanobis distance with the matrix W. All

terms on the right-hand side also use this notation. The vector v is the concatenation
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of each of the vectors summed in the right-hand side of eqn. (6.4). In eqn. (6.4), the

operator φ and the covariance matrix Qk are defined in Appendix II. The matrix W is

the positive definite block diagonal matrix formed by the positive definite submatrices

Qk, P1, σ2
ρ and σ2

ϕ. Using MATLAB syntax, W could be represented as

W = blkdiag
(
P1,Q0, . . . ,QK−1,

σ2
ρ, . . . , σ

2
ρ, σ

2
ϕ, . . . , σ

2
ϕ

)
.

Recall that N i is the integer for satellite i, which is assumed constant over the time

interval, and ρi(tk) and ϕi(tk) are the code and phase measurements from satellite i

at epoch tk. Due to Assumption 6.1, the notation N i does not require a time index.

The IMU data set Uk contains all IMU measurements in the interval [tk, tk+1].

Let ΣW
ᵀΣW = W−1, then

r , ΣWv (5.30)

is the weighted residual and ‖v‖2
W = ‖r‖2. For notation simplicity, herein we denote

the tuple (X,N) = [Xᵀ,Nᵀ]ᵀ ∈ RnsK × Zm. So, the MAP estimation is transformed

into a Nonlinear Mixed Integer Least Square (NMILS) problem,

(X∗,N∗) = arg min
X∈RnsK ,N∈Zm

‖r(X,N)‖2, (5.31)
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where r is a vector representing the factors in the graph model:

r(X,N) =



ΣP1 (x(t1)− x1)

ΣQ1

(
φ
(
x(t1),U1

)
− x(t2)

)
...

ΣQK−1

(
φ
(
x(tK−1),UK−1

)
− x(tK)

)
σ−1
ρ

(
h1

1

(
x(t1)

)
− ρ1(t1)

)
...

σ−1
ρ

(
hmK
(
x(tK)

)
− ρm(tK)

)
σ−1
ϕ

(
h1

1

(
x(t1)

)
+ λN1 − ϕ1(tK)

)
...

σ−1
ϕ

(
hmK
(
x(tK)

)
+ λNm − ϕm(tK)

)



. (5.32)

5.4 Graph Optimization for RTK GPS/INS

The original CRT integer ambiguity resolution and trajectory estimation approach

is proposed in [13], which can be outlined as the following three steps:

1. Obtain the float solution by neglecting the integeral nature of the ambiguity N

(X̌, Ň) = arg min
(X,N)∈RnsK+m

‖r(X,N)‖2; (5.33)

In this step, outlier rejection procedures presented in Chapter 4 can be executed;

2. Based on (X̌, Ň), solve Nonlinear Mixed Integer Least Square in eqn. (6.6) to

get the optimal solution (X∗,N∗);
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3. Check the validity of integer estimates with integer validation techniques [77].

The above Step (1) can be solved by the robust optimization method proposed in

Section 4.4.2. The aim of Step (2) is to deal with outlier measurements (if detected)

and provide good initialization points for the NMILS in Step (2). In the following,

the second step above of solving Nonlinear Mixed Integer Least Square (NMILS) is

focused on.

Proposition 5.4 implies several ways to solve the NMILS. Herein, the iterative

MILS method is presented as an example. To solve the optimization in eqn. (6.6) in

an iterative manner, the residual r(X,N) is linearized around the current estimates

(X̂, N̂) as

r(X,N) ≈ r(X̂, N̂) + J(X̂, N̂)(δX, δN), (5.34)

where J(X̂, N̂) is the Jacobian matrix of r(X,N) evaluated at (X̂, N̂), and (δX, δN) =

(X,N) − (X̂, N̂) is the estimation error. Furthermore, J(X̂, N̂) can be decomposed

as

J(X̂, N̂) = [A,B],

where A contains the columns of J(X̂, N̂) that are the partial with respect to X and

B contains the partial with respect to N. Thus, eqn. (5.34) can be rewritten as

r(X,N) ≈ r(X̂, N̂) +AδX +BδN.
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Then, the next step is to solve the following Mixed Integer Least Square (MILES)

[11]

min
δX∈RnsK ,δN∈Zm

‖r(X̂, N̂) +AδX +BδN‖2. (5.35)

By dropping the notation (X̂, N̂) in r(X̂, N̂) and defining the QR-decomposition

A = [QA, Q̄A]

RA

0

 , (5.36)

the cost function in eqn. (5.35) can be factorized as

‖r +AδX +BδN‖2

=

∥∥∥∥∥∥∥∥
Qᵀ

A

Q̄ᵀ
A

 r +

RA

0

 δX +

Qᵀ
AB

Q̄ᵀ
AB

 δN
∥∥∥∥∥∥∥∥

2

(5.37)

= ‖Qᵀ
Ar +RAδX +Qᵀ

ABδN‖
2 + ‖Q̄ᵀ

Ar + Q̄ᵀ
ABδN‖

2.

Note that for any fixed δN, the first term on the right hand side of the above equation

can be made equal to zero by appropriate choice of δX. Thus, to solve the following

Integer Least Square (ILS) will lead to the optimum of eqn. (5.35),

min
δN∈Zm

‖Q̄ᵀ
Ar + Q̄ᵀ

ABδN‖
2. (5.38)

The standard ILS method is reviewed in Section 5.1.4.

5.5 Implementation Results

This section presents implementation results of the graph optimization based RTK

GPS/INS.To evaluate performance the graph optimization based RTK GPS/INS,
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the proposed approach is implemented to post-process several GPS/INS data sets

collected from an automotive vehicle. The vehicle was equipped with a 200Hz MEMS

IMU and a NovAtel OEMV3 receiver. The differential corrections are from the UC

Riverside Ntrip caster (ntrip.engr.ucr.edu:2101) which broadcasts raw dual frequency

GPS measurements publicly over the internet in 1Hz. The baseline from rover to base

is within 10km. This presentation will consider two data sets: 1008-second stationary

data set and a 340-second moving data set. Besides of L1 measurements, wide-lane

phase measurements are formed to facilitate the integer ambiguity resolution. For

test purpose, all m-second CRT windows sequentially picked from the data set are

tested independently, without any prior knowledge from previous estimation steps.

In practical implementations, sliding window [20, 82] or incremental scheme [35, 58]

can be applied to utilize the prior knowledge got from previous estimation steps.

Furthermore, the integer ambiguity resolution may not need executing for every CRT

window. If the integer estimates are validated and no cycle slip happens, the integer

estimates can be fixed for later use.

Stationary Data

In this implementation with 1008-seconds of stationary data set, a 3-second CRT

window is used for integer ambiguity resolution. The algorithm itself has no knowl-

edge that the system is stationary. In particular, for each 3-second CRT windows,

X = [x(t0)ᵀ,x(t1)ᵀ,x(t2)ᵀ,x(t3)ᵀ]ᵀ is estimated. The ground truth of the parking
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Figure 5.4: Implementation results with 1008 seconds of stationary data. The number
of available satellites is 7-9. Window length is 3 seconds. Trials are independent with
zero initials. All 3-second windows in this 1008-second data set are tested with the
proposed CRT approach.
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position is surveyed with millimeter accuracy. To compute the error, the position es-

timation result is down-sampled to 10Hz and compared with the ground truth. Fig.

5.4 shows the statistics of the average horizontal positioning errors (in millimeters)

of each trial. The number of available satellites (i.e., m in Assumption 1) throughout

this data set is 7-9. Fig. 5.4 shows the positioning errors of 1005 trials are most-

ly below 1 centimeter which matches the RTK accuracy expectation. Thus, it can

be claimed that the successful rate of integer ambiguity resolution of the proposed

method with this 1008 second stationary data set is 100% with 3-second CRT window.

The totally 22890 estimated L1 residuals of carrier phase measurements fit a normal

distribution with µ = −0.000941 and σ = 0.0058 in meters, showing the performance

of the estimator.

Moving Data

In this implementation with a 340-second moving data set collected from a urban

area with 72km/h speed limit, a 5-second CRT window is used for integer ambiguity

resolution. Fig. 5.5 shows the trajectory on Google Map where the yellow mark is the

starting point and the blue mark is the ending point. To ensure good constellation

geometry to solve integers, only the time intervals with 7 or more satellites are used

for algorithm tests. To reduce outliers, a 5◦ elevation mask was applied while only

the highest 8 satellites (at most) are used for estimation. In the tests, only the

results of validated integer estimation were recorded. As a result, totally 290 trials
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Figure 5.5: Trajectory of the 340s moving data on Google Map.

are available to solve and validate integer successfully by picking different intervals

from the data set. For performance evaluation, the 340-second was processed by the

full-batch approach presented in [78] to provide ground truth. The upper plot of

Fig. 5.6 shows that most of the average horizontal errors are below 5 centimeters.

The lower plot of Fig. 5.6 shows that the estimated residuals are at the centimeter

level. Notice that the tails length of the residuals distribution shown in Fig. 5.6 is

determined by the significant level α or other thresholds picked by the designer to do

outlier rejections through hypothesis tests.
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Figure 5.6: Implementation results with 340 seconds of moving data. Only the inter-
vals with the number of available satellites between 7-8 are used for trials. Window
length is 5 seconds. Totally 290 trials solved and validated integer with the proposed
CRT method.
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Chapter 6

Computationally Efficient Integer

Ambiguity Resolution: a

Common-Position-Shift method

In Chapter 5, although increasing the length of the CRT window would improve

the estimation accuracy, the corresponding high computation leads to challenges of

implementing the CRT integer ambiguity resolution in real-time, especially on re-

source limited platforms. Since the time complexity of standard QR-decomposition

is 2mn2 (flops) assuming A is a m × n matrix, the eqn. (5.36) takes a large portion

of total computation in integer ambiguity resolution. On the other hand, the compu-

tation of the ILS in eqn. (5.38) will not vary significantly, since the dimension of δN

132



is upper-bounded by 15 (for each carrier frequency) in practice.1 Also, to evaluate

the INS residuals (see Appendix I), the integration process with high frequency IMU

measurements also take a considerable portion of the total computation.

The main contribution of this dissertation is to propose an alternative method to

solve the NMILS represented in eqn. (6.6) with lower computational requirements.

This improvement is realized through reasonable approximations which are valid for

engineering purpose (i.e., the error introduced is at least a factor of ten smaller

than the measurement noise). The proposed method is inspired by the observation

in practice that the optimal solution trajectory X∗ (with integers resolved) is only

different from the float solution X̌ in terms of a common 3D position error of each

state in the trajectory (e.g., see Fig. 6.1). Mathematical analysis in Section 6.3

verifies this observation.

Mathematical analysis shows that an estimation of the common 3D position shift

can replace the above Step (2) and achieves equivalent accuracy. The dimension

of the problem is reduced significantly and the heavy INS reintegration for iterative

relinearization is avoided. The procedures and analysis of this Common Position Shift

(CPS) approach are described in the following sections.

1The upper bound 15 for each carrier frequency is derived from the practical availability of GPS
satellites during a feasible time interval.
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Figure 6.1: An example of horizontal positioning results comparison. The dot-dashed
(blue) curve is for the RTK GPS/INS (MILS GPS/INS) solution in Chapter 5 which
has centimeter level global positioning accuracy. The dashed (red) curve is for the
float solution in eqn. (5.33). The asterisks (yellow) denotes the DGPS positioning
without integrated with INS.

6.1 Problem Statement

This chapter also considers the smoothing problem of RTK GPS/INS over a time

window. Most of notation used in this chapter can be found in Chapter 5. Herein,

several extra definitions and assumptions are made to facilitate the presentation of

the proposed approach in this chapter. For the convenience of later discussion, denote

s(t) = [vᵀ(t), qᵀ(t), bᵀa(t), b
ᵀ
g(t)]

ᵀ ∈ Rns−3 (6.1)

as the vector of system states except 3D position, and then we have x(t) = [pᵀ(t), sᵀ(t)]ᵀ.

Similarly, x1 = [pᵀ1, s
ᵀ
1]ᵀ is for the prior. Similar notations also apply to those of state

estimates x̂(t) = [p̂ᵀ(t), ŝᵀ(t)]ᵀ.

For the simplicity of discussion in this paper, the following assumptions are made.
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Assumption 6.1. For t ∈ [t1, tK ], the receiver provides valid carrier phase measure-

ments for m satellites, without loss of lock. 4

Assumption 6.2. There is only prior distribution (s1,Ps1) for s(t1). The position

estimate p̂(t1) can be initialized with the GPS measurements at t1. 4

Assumption 6.3. The frequency of GPS measurements is 1Hz. 4

With Assumption 6.1, the unknown integers in the carrier phase measurements

from these m satellites are constants over [t1, tK ]. Assumption 2 indicates the practice

that the rover starts around an unknown location and the position estimate in the

navigation system is initialized with the first GPS positioning result. Other state

estimates ŝ(t1) (velocity, attitude, biases) can be initialized with the prior (s1,Ps1)

from other sources. Since in later analysis, the sampling rate of GPS measurements

is used, so herein Assumption 3 is made for the simplicity of presenting the main

idea of this paper. The proposed method can be generalized with other measurement

frequency straightforwardly.

Under Assumption 6.1-3, the CRT estimation problem considered in this paper

can be stated as follows.

For a system described by eqn. (3.1), we have

• an initial distribution for the state s(t1) ∼ N (s1,Ps1),
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• IMU measurements U = {Uk}K−1
k=1 , where

Uk = {ũ(τn), tk ≤ τn ≤ tk+1},

• DGPS code and carrier phase measurements Y = {Yk}Kk=1, where

Yk = {ρi(tk)}mki=1

⋃
{ϕi(tk)}mi=1.

Note that: t1, tk ∈ (τ1, τκ]; the set {τn} contains the high frequency IMU measurement

time instants; andmk are the total number of valid pseudorange measurements at time

tk. For simplicity of discussion in this paper, it is assumed that mk ≡ m. The method

presented in this paper can be extended to more complicated cases straightforwardly.

Then, the objective is:

Objective 6.4. Estimate the optimal state trajectory X , [xᵀ(t1), . . . ,xᵀ(tK)]ᵀ ∈

RKns and integers N , [N1, . . . , Nm]ᵀ ∈ Zm with the given sensor measurements U,

Y and the prior state density ps(s(t1)). 4

In Chapter 5, the above objective is achieved by formulating and solving the

corresponding Maximum-a-Posteriori (MAP) estimation problem. The accuracy and

reliability of the solution is achieved by the proposed Nonlinear Mixed Integer Least

Square method and faulty data removal scheme. Since the considered problem in this

chapter is a bit different from that of Chapter 5, the derivation of the MAP problem

is rerun as follows for completeness.
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Let X+ = {x(t) for t = t2, . . . , tK}, then the joint probability p(X,N,Y,U) can

be factored as

p(X,N,Y,U)

= p(X,U,N)p(Y|X,U,N)

∝ p(X+,x(t1),U)p(Y|X,N)

= p(x(t1),U)p(X+|x(t1),U)p(Y|X,N)

= p(x(t1))p(X+|x(t1),U)p(Y|X,N)

∝ p(s(t1))p(X+|x(t1),U)p(Y|X,N) (6.2)

Thus, a Maximum-a-Posteriori problem can be formed to estimate X and N by

maximizing the right hand side of eqn. (6.2),

max
X∈RnsK ,N∈Zm

p(s(t1))p(X+|x(t1),U)p(Y|X,N). (6.3)

With the Gaussian noise assumption, the negative log-likelihood of the right hand

side of eqn. (6.2) is

‖v(X,N)‖2
W = ‖s(t1)− s1‖2

Ps1

+
∑
k

‖φ
(
x(tk),Uk

)
− x(tk+1)‖2

Qk

+
∑
k

∑
i

‖hik
(
x(tk)

)
− ρi(tk)‖2

σ2
ρ

(6.4)

+
∑
k

∑
i

‖hik
(
x(tk)

)
+ λN i − ϕi(tk)‖2

σ2
ϕ

where ‖v‖2
W = v>W−1v is the squared Mahalanobis distance with the matrix W. All

terms on the right-hand side also use this notation. The vector v is the concatenation
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of each of the vectors summed in the right-hand side of eqn. (6.4). In eqn. (6.4), the

operator φ and the covariance matrix Qk are defined in Appendix II. The matrix W is

the positive definite block diagonal matrix formed by the positive definite submatrices

Qk, Ps1 , σ2
ρ and σ2

ϕ. Using MATLAB syntax, W could be represented as

W = blkdiag
(
Ps1 ,Q0, . . . ,QK−1,

σ2
ρ, . . . , σ

2
ρ, σ

2
ϕ, . . . , σ

2
ϕ

)
.

Recall that N i is the integer for satellite i, which is assumed constant over the time

interval, and ρi(tk) and ϕi(tk) are the code and phase measurements from satellite i

at epoch tk. Due to Assumption 6.1, the notation N i does not require a time index.

The IMU data set Uk contains all IMU measurements in the interval [tk, tk+1].

Let ΣW
ᵀΣW = W−1, then

r , ΣWv (6.5)

is the weighted residual and ‖v‖2
W = ‖r‖2. For notation simplicity, herein we denote

the tuple (X,N) = [Xᵀ,Nᵀ]ᵀ ∈ RnsK × Zm. So, the MAP estimation is transformed

into a Nonlinear Mixed Integer Least Square (NMILS) problem,

(X∗,N∗) = arg min
X∈RnsK ,N∈Zm

‖r(X,N)‖2, (6.6)
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where r is a vector representing the factors in the graph model:

r(X,N) =



ΣPs1
(s(t1)− s1)

ΣQ1

(
φ
(
x(t1),U1

)
− x(t2)

)
...

ΣQK−1

(
φ
(
x(tK−1),UK−1

)
− x(tK)

)
σ−1
ρ

(
h1

1

(
x(t1)

)
− ρ1(t1)

)
...

σ−1
ρ

(
hmK
(
x(tK)

)
− ρm(tK)

)
σ−1
ϕ

(
h1

1

(
x(t1)

)
+ λN1 − ϕ1(tK)

)
...

σ−1
ϕ

(
hmK
(
x(tK)

)
+ λNm − ϕm(tK)

)



. (6.7)

6.2 Common Position Shift Estimation

This section presents the proposed Common Position Shift (CPS) method which

is an computationally efficient alternative to the original CRT method proposed in

Section 5.4. The key point is to construct a smaller optimization to replace that in

Step (2) of Section 5.4. First, the notation for the CPS method is defined.
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Figure 6.2: An example of 3D position shift: the blue curve is the original trajectory,
the green dashed arrow represents the 3D position shift vector and the red curve is
the shifted trajectory.

6.2.1 Notation of Common-Position-Shift

Given an estimated trajectory X = [xᵀ(t1), . . . ,xᵀ(tK)]ᵀ and a common-position-

shift vector ∆p ∈ R3, define the Common Position Shift operator ⊕ as

X′ = X⊕∆p , [xᵀ(t1)⊕∆p, . . . ,xᵀ(tK)⊕∆p]ᵀ

which denotes adding the constant vector ∆p to the position estimate portion, p(tk),

of each state estimate x(tk) in X. The resulting trajectory X′ is referred as the

shifted trajectory with respect to the original X. Fig. 6.2 gives an example of the 3D

common-position-shift.
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6.2.2 Outline of the CPS method

This section gives an outline of the proposed CPS method. First, some notation

related to the cost functions is introduced.

We will show that cost function ‖r(X,N)‖2 of the NMILS problem (6.6) can be

rewritten as a sum of cost functions:

‖r(X,N)‖2 = ‖r1(X)‖2 + ‖r2(X)‖2 + ‖r3(X,N)‖2. (6.8)

We will also show two important related properties. First, the term ‖r1(X,N)‖2

determines the shape and general location of the trajectory, but is insensitive to a

common position shift ∆p and to the integer vector N. Second, that ‖r2(X)‖2 +

‖r3(X,N)‖2 can be minimized solely by the choice of (∆p,N). Therefore, if the

linearization errors are ignored, Proposition 6.10 will show that the cost function can

be rewritten as

‖r(X,N)‖2 = ‖r1(X̌)‖2 + ‖r2(X̌⊕∆p)‖2 + ‖r3(X̌⊕∆p,N)‖2

where X = X̌⊕∆p.

These facts allow us to redesign the algorithm of [13] that is summarized in Section

5.4 to the following:

1. Find either the float solution X̌ defined in eqn. (5.33) or the integer free solution

X~ defined in eqn. (6.15), which are shown to be identical in Proposition 6.5.
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2. Find (∆p?,N?) that is the optimal solution of

min
∆p∈R3,N∈Zm

‖r2(X̌⊕∆p)‖2 + ‖r3(X̌⊕∆p,N)‖2, (6.9)

where X̌ is fixed when evaluating ‖r2‖2+‖r3‖2.

3. Check the validity of the integer estimates.

This cost function ‖r2‖2 + ‖r3‖2 is derived through processing the double difference

GPS pseudorange and carrier phase measurements. The details of the mathematical

analysis are described in the remainder of the article.

The Common Position Shift (CPS) estimation in eqn. (6.9) is designed to replace

the original full NMILS Step (2) in Section 5.4, Note that X̌ is the float solution which

is considered constant when evaluating the cost ‖r2‖2. The optimization in eqn. (6.9)

is also solved by the NMILS method outlined in Section 5.4. The integer estimates

are initialized by rounding the float estimates Ň provided by either solution approach

of Proposition 6.5. Compared with solving the full NMILS in eqn. (6.6) directly, the

computational cost in eqn. (6.9) is significantly reduced due to the much smaller

dimension of the real unknown variable ∆p ∈ R3 versus X ∈ RnsK . In particular,

this dimension reduction facilitates the QR-decomposition in eqn. (5.36). Thus, for

our 6D RTK GPS/INS integer ambiguity resolution problem summarized in Section

??, the dimension of corresponding A matrices in full MILS and CPS MILS are

M×Ns versus 2m×3, where M = nsK+2mK−3 is the total measurement number,

Ns = nsK is the total state dimension and 2m is the total GPS measurement number
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(code and carrier phase). Furthermore, in the CPS NMILS (6.9), INS reintegrations,

which bring heavy computations, are not required any more.

6.2.3 Decomposition of GPS cost terms

This subsection shows how the decomposition in eqn. (6.8) applies to the GPS

code and phase measurements. Define ϕi = [ϕi(t1), . . . , ϕi(tK)]ᵀ ∈ RK to be the vec-

tor stacking the carrier phase measurements of the i-th satellite. The last summation

term in eqn. (6.4) can be rewritten as

∑
k

∑
i

‖hik
(
x(tk)

)
+ λN i − ϕi(tk)‖2

σ2
ϕ

=
∑
i

[∑
k

‖hik
(
x(tk)

)
+ λN i − ϕi(tk)‖2

σ2
ϕ

]
=
∑
i

‖hi
(
X
)

+ λ1N i −ϕi‖2
σ2
ϕI, (6.10)

where hi = [hi1
(
x(t1)

)
, . . . , hiK

(
x(tK)

)
]ᵀ ∈ RK , 1 = [1, . . . , 1]ᵀ ∈ RK , and I is the

K ×K identity matrix. In particular, 1 is rank 1 and can be QR-decomposed as

[Q1, Q̄1]

R1

0

 = 1,

where [Qᵀ
1]1×K and [Q̄ᵀ

1](K−1)×K are mappings to the column space and the left null

space of 1. Note that we use Q1 and Q1 as two different notations: the former

represents the column spans the column space of 1 while the latter represent the

covariance matrix of the first INS cost term in eqn. (6.4). Denote Q = [Q1, Q̄1],
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which is a unitary mapping. This QR-decomposition can be computed offline for

different K.

The i-th summand in (6.10) can be decomposed into two parts through projecting

it on the column space and the left null space of 1,

‖hi
(
X
)

+ λ1N i −ϕi‖2
σ2
ϕI

=
∥∥Qᵀ

(
hi
(
X
)

+ λ1N i −ϕi
)∥∥2

Qᵀσ2
ϕQ

=

∥∥∥∥∥∥∥∥
Qᵀ

1

Q̄ᵀ
1


hi(X)+ λQ

R1

0

N i −ϕi


∥∥∥∥∥∥∥∥

2

σ2
ϕI

=

∥∥∥∥∥∥∥∥
Qᵀ

1h
i
(
X
)

+ λR1N
i −Qᵀ

1ϕ
i

Q̄ᵀ
1

(
hi
(
X
)
−ϕi

)

∥∥∥∥∥∥∥∥

2

σ2
ϕI

=
∥∥Q̄ᵀ

1

(
hi
(
X
)
−ϕi

)∥∥2

σ2
ϕI−

+
∥∥Qᵀ

1h
i
(
X
)

+ λR1N
i −Qᵀ

1ϕ
i
∥∥2

σ2
ϕ
, (6.11)

where I− = Q̄ᵀ
1Q̄1 is the (K − 1)× (K − 1) identity matrix. Note that the first term

in eqn. (6.11) is independent of the integer ambiguity N i.

Applying the same QR-factorization to the pseudorange summation term in eqn.

(6.4) and reorganizing yields:

‖r(X,N)‖2 = ‖s(t1)− s1‖2
Ps1

+
∑
k

‖φ
(
x(tk),Uk

)
− x(tk+1)‖2

Qk

+
∑
i

∥∥Q̄ᵀ
1

(
hi
(
X
)
− ρi

)∥∥2

σ2
ρI

− +
∑
i

∥∥Q̄ᵀ
1

(
hi
(
X
)
−ϕi

)∥∥2

σ2
ϕI−

+
∑
i

∥∥Qᵀ
1h

i
(
X
)
−Qᵀ

1ρ
i
∥∥2

σ2
ρ

+
∑
i

∥∥Qᵀ
1h

i
(
X
)

+ λR1N
i −Qᵀ

1ϕ
i
∥∥2

σ2
ϕ
.
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Based on the above expression, for the presentation of the approach and its analysis, it

will be convenient to define the following three cost functions. The first cost function:

‖r1(X)‖2 , ‖s(t1)− s1‖2
Ps1

+
∑
k

∥∥φ(x(tk),Uk

)
− x(tk+1)

∥∥2

Qk

+
∑
i

∥∥Q̄ᵀ
1

(
hi
(
X
)
− ρi

)∥∥2

σ2
ρ

+
∑
i

∥∥Q̄ᵀ
1

(
hi
(
X
)
−ϕi

)∥∥2

σ2
ϕI−

neglects the last two terms in ‖r(X,N)‖2. The second cost function

‖r2(X)‖2 ,
∑
i

∥∥Qᵀ
1h

i
(
X)−Qᵀ

1ρ
i
∥∥2

σ2
ρ

(6.12)

and The third cost function

‖r3(X,N)‖2 ,
∑
i

∥∥Qᵀ
1h

i
(
X
)

+ λR1N
i −Qᵀ

1ϕ
i
∥∥2

σ2
ϕ

(6.13)

will define the common position shift and is analyzed in Section 6.2.2; therefore

‖r(X,N)‖2 = ‖r1(X)‖2 + ‖r2(X)‖2 + ‖r3(X,N)‖2. (6.14)

To simplify expressions in the following discussion, let

‖ra(X)‖2 , ‖r1(X)‖2 + ‖r2(X)‖2

‖rb(X)‖2 , ‖r2(X)‖2 + ‖r3(X,N)‖2.

6.2.4 Integer-Free Solution

Define the integer-free solution as

X~ = arg min
X∈RnsK

‖r1(X)‖2. (6.15)
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Proposition 6.5. If the variable N is treated as a real vector, then for X̌ and Ň as

defined in eqn. (5.33)

‖r1(X~)‖2 = ‖r(X̌, Ň)‖2

and X~ = X̌ where r(X,N) is defined in eqn. (5.33). 4

Proof. From eqn. (6.14),

‖r(X,N)‖2 = ‖r1(X)‖2 +
∑
i

∥∥Qᵀ
1h

i
(
X
)

+ λR1N
i −Qᵀ

1ϕ
i
∥∥2

σ2
ϕ
.

Each term in the summation is a scalar:

Qᵀ
1h

i
(
X
)

+ λR1N
i −Qᵀ

1ϕ
i. (6.16)

When N i is treated as a real variable, then for any X the value

Ň i =
Qᵀ

1

(
ϕi − hi

(
X
))

λR1

(6.17)

makes the i-th term zero. Therefore,

‖r(X, Ň)‖ = ‖r1(X)‖2.

Proposition 6.5 indicates that the integer-free solution is equivalent to the float

solution of eqn. (5.33). This equivalence will be utilized in Section 6.3.
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6.3 Common Position Shift Method Analysis

This section presents mathematical analysis of the proposed CPS method. With

the aid of several propositions proved in this section, the major proposition of the

CPS method is shown in Proposition 6.12.

6.3.1 Useful Constants related to GPS

In the analysis to follow, certain GPS related facts will be used [3, 36, 54]. They are

summarized in this paragraph. The standard deviation of the differential pseudorange

measurement is σρ = 0.1 ∼ 3 meters. The standard deviation of the differential phase

measurement is σϕ ≈ 0.01σρ. The minimum distance from a receiver on the earth

surface to a GPS satellites satisfies

hik
(
pk
)

= ‖p(tk)− pi(tk)‖ ≥ D , 20000km.

The orbital speed of GPS satellite with respect to the ECEF origin satisfies ‖V i‖ ≤

V̄ , 4.0km/s. With a base station in the range of a few tens of kilometers, DGPS

accuracy is in the order of 1 meter (i.e., 1 σ), growing at the rate of 1 meter per

150km of separation [36]. Herein, it is assumed that there are always proprietary

or public base stations (e.g. from CORS [60]) available to the rover within 20km.

Therefore, with the aid of the carrier phase measurements, for the float solution X̌,

‖p̌(tk)− p(tk)‖ < ∆f = 3m.
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6.3.2 Propositions for the CPS method

Two propositions are presented to facilitate later discussion of our CPS approach.

Proposition 6.6. Neglecting the time variation and the high-order-terms in the lin-

earization of the GPS measurement model, for any trajectory estimate X̂ ∈ RnsK it

is valid that

‖r1(X̂⊕∆p)‖2 = ‖r1(X̂)‖2. (6.18)

Accounting for the time variation and the high-order-terms in the linearization of

the GPS measurement model, for any trajectory estimate X̂ ∈ RnsK with ‖∆p‖ <

10km it is valid that

Q̄ᵀ
1

(
hi
(
X̂⊕∆p

)
−ϕi

)
= Q̄ᵀ

1

(
hi
(
X̂
)
−ϕi + δ1

)
, (6.19)

Q̄ᵀ
1

(
hi
(
X̂⊕∆p

)
− ρi

)
= Q̄ᵀ

1

(
hi
(
X̂
)
− ρi + δ1

)
, (6.20)

where δ1 ∈ RK is a vector of perturbations caused by the common position shift.

Furthermore, the magnitude of δ1 is bounded by

‖δ1‖∞ ≤ B1(‖∆p‖, v̄), (6.21)

where the real function B1 : R2
+ 7→ R+ is defined as

B1(‖∆p‖, v̄) , K(C1 + C2v̄)‖∆p‖+ ‖∆p‖2/2D (6.22)

and K is the CRT window length, C1 , V̄
D

= 2.0 × 10−4, C2 , 1
D

= 5.0 × 10−8s/m,

v̄ is the upper bound of the rover speed over the window, and ‖∆p‖ is the magnitude

of common position shift. 4
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Proof. First, a common-position-shift ∆p will not cause any variation in the prior

cost and the INS cost terms, i.e.,

∑
k

∥∥φ(x(tk⊕∆p),Uk

)
− x(tk+1⊕∆p)

∥∥2

Qk
=
∑
k

∥∥φ(x(tk),Uk

)
− x(tk+1)

∥∥2

Qk
.

So, to prove eqn. (6.18), the GPS measurements are focused on in the following.

Eqn. (6.19) and (6.20) are first derived by considering the time variation and the

high-order-terms in the linearization of the GPS measurement model, and then by

neglecting the perturbation δ1, eqn. (6.18) can be obtained.

With the assumption ‖∆p‖ < 10km, the numerical analysis in Section 8.8.1.3 of

[22] show that

hik
(
pk + ∆p

)
− hik

(
pk
)
≈ H i

k∆p+
‖∆p‖2

2hik
(
pk
) + h.o.t.,

where hik
(
pk
)

= ‖p(tk)− pi(tk)‖ and H i
k ∈ R1×3 is the Jacobian matrix of hik:

H i
k , H i(tk) =

∂hik
∂p(tk)

=

[
p(tk)− pi(tk)
‖p(tk)− pi(tk)‖

]
.

Given that hik (pk) ≥ D and εik , ‖∆p‖2/
(
2hik
(
pk
))

, it follows that

hik
(
pk + ∆p

)
− hik

(
pk
)

= H i
k∆p+ εik, (6.23)

with |εik| < ‖∆p‖2/2D.

Considered as a function of time H i(t) : R 7→ R3, let

t̄ , (tK + t1)/2 and H̄ i , H i(t̄), (6.24)
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then by Taylor series, it follows that

H i(t) = H̄ i +
dH i(t)

dt
(t− t̄) + h.o.t. (6.25)

By defining

Ȟ i
k , H i

k − H̄ i,

and using eqn. (6.25), Ȟ i
k can be written as

Ȟ i
k =

dH i(tk)

dt
(tk − t̄) + h.o.t.

The derivative dH i(t)/dt is evaluated as

dH i(tk)

dt
=

v(t)− vi(t)
‖p(t)− pi(t)‖

− (p(t)− pi(t)) (p(t)− pi(t))ᵀ (v(t)− vi(t))
‖p(t)− pi(t)‖3

; (6.26)

therefore, the variation of the Jacobian matrix is bounded by

‖Ȟ i
k‖ ≤

2
(
v̄ + V̄

)
D

(tk − t̄),

since ‖v(t)‖ ≤ v̄ and ‖vi(t)‖ ≤ V̄ . Furthermore, with Assumption 3, (tK − t1) < K

then ∥∥Ȟ i
k

∥∥ ≤ V̄ + v̄

D
(tK − t1) = K(C1 + C2v̄). (6.27)
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We are now in a position to consider the effect of a shift ∆p on the value of

Q̄ᵀ
1h

i
(
X̂⊕∆p

)
:

Q̄ᵀ
1h

i
(
X̂⊕∆p

)

= Q̄ᵀ
1


hi1
(
p̂1 + ∆p

)
...

hiK
(
p̂K + ∆p

)



= Q̄ᵀ
1


hi1
(
p̂1

)
+H i

1∆p+ εi1

...

hiK
(
p̂K
)

+H i
K∆p+ εiK



= Q̄ᵀ
1


hi1
(
p̂1

)
...

hiK
(
p̂K
)

+ Q̄ᵀ
1


H i

1

...

H i
K

∆p+ Q̄ᵀ
1ε

i,

where for εik in eqn. (6.23)

εi , [εi1, . . . , ε
i
K ]ᵀ ∈ RK . (6.28)
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With the notation of H̄ i and Ȟ i
k, it follows that

Q̄ᵀ
1h

i
(
X̂⊕∆p

)

= Q̄ᵀ
1h

i
(
X̂
)

+ Q̄ᵀ
1


Ȟ i

1

...

Ȟ i
K

∆p+ Q̄ᵀ
1


H̄ i∆p

...

H̄ i∆p

+ Q̄ᵀ
1ε

i

= Q̄ᵀ
1

h
i
(
X̂
)

+


Ȟ i

1

...

Ȟ i
K

∆p+ εi

+ 0,

where the 0 term follows from the fact that the columns of Q̄1 span the left null space

of 1. Thus, it follows that

Q̄ᵀ
1h

i
(
X̂⊕∆p

)
= Q̄ᵀ

1

[
hi
(
X̂
)

+ δ1

]
(6.29)

with the perturbation

δ1 ,
[
Ȟ i

1∆p+ εi1, . . . , Ȟ
i
K∆p+ εiK

]ᵀ
. (6.30)

Then, from eqn. (6.27) it follows that

‖δ1‖∞= max{|Ȟ i
k∆p+ εi1|}

≤K(C1 + C2v̄)‖∆p‖+ ‖∆p‖2/2D,

where C1 = 2.0× 10−4 and C2 = 5.0× 10−8s/m.

With eqn. (6.29), eqn. (6.19) and (6.20) can be derived, and then by neglecting

the perturbation δ1, eqn. (6.18) is valid.

152



Remark 6.7. The proof of Proposition 6.6 implies that the linear transformation

introduced by Q̄ᵀ will remove the mean from a vector, leaving the variations. In

practice, the curvature of the GPS satellite orbit is relative small compared with the

distance from the satellite vehicle to the earth surface. Thus, hik and H i have weak

nonlinearity and vary slowly with respect to time, and then can be considered as

‘locally’ time-invariant and linear. Thus, the perturbation δ1 caused by the common

position shift is very small. For example, when K ≤ 10, ‖∆p‖ ≤ 1.5m, v̄ ≤ 50m/s

the upper bound for the perturbation ‖Ȟ i
k∆p‖ caused by the common position shift

is upper-bounded by 0.0031 meter. In this case, the perturbation magnitude is even

smaller than the centimeter noise level of the carrier phase measurement. 4

The following proposition is with respect to cost functions ‖r2(X)‖2 and ‖r3(X,N)‖2

defined in eqn. (6.13).

Proposition 6.8. Neglecting the time variation and the high-order-terms in the lin-

earization of the GPS measurement model, for any two trajectory-integer estimates

(X̂1, N̂1) and (X̂2, N̂2) if we have

‖r2(X̂1)‖2 + ‖r3(X̂1, N̂1)‖2 > ‖r2(X̂2)‖2 + ‖r3(X̂2, N̂2)‖2,

then there must exist a correction (∆p, δN) ∈ R3
⋃
Zm such that

‖r2(X̂1⊕∆p)‖2 + ‖r3(X̂1⊕∆p, N̂1 + δN)‖2 = ‖r2(X̂2)‖2 + ‖r3(X̂2, N̂2)‖2. (6.31)

Define the position errors between these two trajectory estimates as δpk , p2
k −

p1
k, k = 1, . . . , K. Accounting for the time variation and the high-order-terms in the
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linearization of the GPS measurement model, for any (X̂1, N̂1) and (X̂2, N̂2) with

‖δpk‖ < 10km, there exists a correction (∆p, δN) ∈ R3
⋃
Zm such that

Qᵀ
1h

i
(
X̂1⊕∆p

)
+ λR1(N̂ i

1 + δN i)−Qᵀ
1ϕ

i

= Qᵀ
1h

i
(
X̂2

)
+ λR1N̂

i
2 −Q

ᵀ
1ϕ

i +Qᵀ
1δ2, (6.32)

Qᵀ
1h

i
(
X̂1⊕∆p

)
−Qᵀ

1ρ
i = Qᵀ

1h
i
(
X2

)
−Qᵀ

1ρ
i +Qᵀ

1δ2, (6.33)

where the magnitude of δ2 is bounded by

‖δ2‖∞ ≤ B1(‖∆p‖, v̄), (6.34)

B1 is defined in eqn. (6.22), v̄ is the upper bound of the rover speed over the window,

and ‖∆p‖ is the magnitude of common position shift. 4

Proof. For for the sake of saving space, the linearization error term εi is not included

in this proof, but can be added by following the idea in the proof of Proposition 6.6.

To show the existence of (∆p,N) for eqn. (6.31), we can first show the existence

of (∆p,N) for eqn. (6.32) and (6.33), then neglect δ2.

Based on our construction in Section 6.2, Q1 is a column matrix and its column

is a normal vector spans the range space of 1 = [1, . . . , 1]ᵀ ∈ RK , i.e.

Qᵀ
1 = [1/

√
K, . . . , 1/

√
K] ∈ RK .
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Based on the definition of Q1, we have that

Qᵀ
1


H̄ i

...

H̄ i

 =
√
KH̄ i (6.35)

for H̄ i is defined in eqn. (6.24). This experession will be used in the following.

Starting from eqn. (6.32) our goal is to show that

Qᵀ
1h

i
(
X̂1⊕∆p

)
+ λR1(N̂ i

1 + δN i) = Qᵀ
1h

i
(
X̂2

)
+ λR1N

i
2 +Qᵀ

1δ2. (6.36)
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Let δX , X̂2 − X̂1 and p̂k ∈ R3 be the position estimates in X̂1, then

Qᵀ
1h

i
(
X̂2

)
(6.37)

=Qᵀ
1h

i
(
X̂1 + δX

)
(6.38)

=Qᵀ
1


hi1
(
p̂1 + ∆p1

)
...

hiK
(
p̂K + ∆pK

)

 (6.39)

=Qᵀ
1


hi1
(
p̂1

)
...

hiK
(
p̂K
)

+Qᵀ
1


H i

1∆p1

...

H i
K∆pK

 (6.40)

=Qᵀ
1


hi1
(
p̂1

)
...

hiK
(
p̂K
)

+Qᵀ
1


H̄ i∆p1

...

H̄ i∆pK

+Qᵀ
1


Ȟ i

1∆p1

...

Ȟ i
K∆pK

 (6.41)

=Qᵀ
1


hi1
(
p̂1

)
...

hiK
(
p̂K
)

+
H̄ i

√
K

∑
k

∆pk +Qᵀ
1


Ȟ i

1(∆p+ ∆p̌1)

...

Ȟ i
K(∆p+ ∆p̌K)


where H̄ i is the average of Jacobian matrix H i

k,

∆p =
1

K

K∑
i=1

∆pk ∈ R3 (6.42)
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is the average of the position adjustments in δX, and ∆p̌k is the variation of the 3D

position adjustments. Continuing, using eqn. (6.35):

Qᵀ
1h

i
(
X̂2

)
(6.43)

=Qᵀ
1


hi1
(
p̂1

)
...

hiK
(
p̂K
)

+
√
KH̄ i∆p+Qᵀ

1


Ȟ i

1(∆p+ ∆p̌1)

...

Ȟ i
K(∆p+ ∆p̌K)



=Qᵀ
1


hi1
(
p̂1

)
...

hiK
(
p̂K
)

+Qᵀ
1


(H̄ i + Ȟ i

1)∆p

...

(H̄ i + Ȟ i
K)∆p

+Qᵀ
1


Ȟ i

1∆p̌1

...

Ȟ i
K∆p̌K



=Qᵀ
1


hi1
(
p̂1

)
+H i

1∆p

...

hiK
(
p̂K
)

+H i
K∆p

+Qᵀ
1


Ȟ i

1∆p̌1

...

Ȟ i
K∆p̌K

 (6.44)

=Qᵀ
1


hi1
(
p̂1 + ∆p

)
...

hiK
(
p̂K + ∆p

)

+Qᵀ
1


Ȟ i

1∆p̌1

...

Ȟ i
K∆p̌K

 (6.45)

=Qᵀ
1h

i
(
X̂1⊕∆p

)
+Qᵀ

1


Ȟ i

1∆p̌1

...

Ȟ i
K∆p̌K

 . (6.46)

Thus, with N̂ i
1 + δN i = N̂ i

2, it follows that

Qᵀ
1h

i
(
X̂1⊕∆p

)
+ λR1(N̂ i

1 + δN i) = Qᵀ
1h

i
(
X̂2

)
+ λR1N̂

i
2 +Qᵀ

1δ2,
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where δ2 , [Ȟ i
1∆p̌1, . . . , Ȟ

i
K∆p̌K ]ᵀ. With the eqn. (6.27), ‖∆p̌k‖ < ∆p and |εik| <

‖∆p‖2/2D, the bound in eqn. (6.34) can be derived. This conclusion can also apply

to code measurements such that eqn. (6.33) is also valid.

By neglecting the perturbation δ2 in eqn. (6.32-6.33), eqn. (6.31) can be obtained

and this concludes the proof.

Remark 6.9. Proposition 6.8 shows when K and ∆p are bounded (e.g. K ≤ 10,

∆p ≤ 3), we can minimize ‖r3(X,N)‖2 within a bound, just through a common

position shift and adjusting the integer estimates. Furthermore, the magnitude of the

error δ2 is even smaller than the noise level of carrier phase measurements if K and

∆p is small enough (e.g. when K ≤ 10, ∆p ≤ 1.5m and v̄ ≤ 50, it follows that

‖δ2‖∞ ≤ 0.0031). 4

6.3.3 Optimality of the CPS method

The major proposition about the optimality of the CPS method is presented as

follows.

Proposition 6.10. If δ1 = 0 and δ2 = 0, then the following identity is valid,

‖r(X̌⊕∆p?,N?)‖2 = ‖r(X∗,N∗)‖2, (6.47)

where X̌ is the float solution from eqn. (5.33), (∆p?,N?) is the CPS solution from

eqn. (6.9) and (X∗,N∗) is the full NMILS estimate from eqn. (6.6). 4
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The proof of Proposition 6.10. will use the following symbols:

X∗1 = arg min
X∈RnsK

‖r1(X)‖2, X∗2 = arg min
X∈RnsK

‖r2(X)‖2,

(X?,N?) , arg min
X∈RnsK ,N∈Zm

‖rb(X,N)‖2,

and

∆p∗12 = arg min
∆p∈R3

‖r2(X∗1⊕∆p)‖2.

Note that X∗1, X∗2 and X? are sets of trajectories. At each time t, with the

definition in eqn. (6.1), one trajectory X can be rewritten as X = [Pᵀ,Sᵀ]ᵀ, where

P = [pᵀ(t1), . . . ,pᵀ(tK)]ᵀ ∈ R3K and S = [sᵀ(t1), . . . , sᵀ(tK)]ᵀ ∈ RK(ns−3). Because

by definition ‖r2‖2 (or ‖rb‖2) is independent of S, the set X∗2 (or X?) contains all

trajectories with the same sequence of positions P∗2, but distinct values of S. Each

trajectory in X∗2 (or X?) has the same value for ‖r2‖2 (or ‖rb‖2), but will be penalized

differently by ‖r1‖2. Similarly, X∗1 is a trajectory set, each having the same shape S∗1,

but with P shifted by a common vector ∆p by Proposition 6.6. Each trajectory in

X∗1 has the same value for ‖r1‖2 but different penalty for ‖rb‖2.

Proof. By the definition of (X?,N?), it follows that for the float solution X̌ defined

in eqn. (5.33), ∀(∆p,N) ∈ R3 ∪ Zm,

‖rb(X?,N?)‖2 ≤ ‖rb(X̌⊕∆p,N)‖2. (6.48)

Given (X̂, N̂) and (X?,N?), the unique (∆p?,N?) such that

‖rb(X̌⊕∆p?,N?)‖2 = ‖rb(X?,N?)‖2, (6.49)
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is provided in Appendix III in the proof of Proposition 6.8 and can be found by the

CPS estimation in eqn. (6.9). From Proposition 6.6 (with δ1 = 0), it follows that

‖r1(X̌⊕∆p?)‖2 = ‖r1(X̌)‖2. (6.50)

Similarly, by Proposition 6.6 (with δ1 = 0), it can also be proven that

‖r1(X∗1⊕∆p∗12)‖2 = ‖r1(X∗1)‖2. (6.51)

By Proposition 3 (with δ2 = 0) and considering the identical optimality achieved by

p∗12 and X∗2, it follows

‖r2(X∗1⊕∆p∗12)‖2 = ‖r2(X∗2)‖2. (6.52)

Since X̌ is the float solution such that

‖ra(X̌)‖2 ≤ ‖ra(X)‖2, ∀X ∈ RnsK ,

we have

‖r1(X̌)‖2 + ‖r2(X̌)‖2 ≤ ‖r1(X∗1⊕∆p∗12)‖2 + ‖r2(X∗1⊕∆p∗12)‖2. (6.53)

Substituting eqn. (6.51-6.52) into (6.53), it follows that

‖r1(X̌)‖2 + ‖r2(X̌)‖2 ≤ ‖r1(X∗1)‖2 + ‖r2(X∗2)‖2.

By the definition of X∗1 and X∗2,

‖r1(X∗1)‖2 ≤ ‖r1(X)‖2, ∀X ∈ RnsK ,
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‖r2(X∗2)‖2 ≤ ‖r2(X)‖2, ∀X ∈ RnsK .

Combining these three inequalities yields

‖r1(X̌)‖2 = ‖r1(X∗1)‖2. (6.54)

Since ‖r‖2 = ‖r1‖2 + ‖rb‖2, by the definition of X∗1 and (X?,N?) we have

‖r1(X∗1)‖2 + ‖rb(X?,N?)‖2 ≤ ‖r(X,N)‖2, ∀(X,N).

Then, it follows that

‖r1(X∗1)‖2 + ‖rb(X?,N?)‖2 ≤ ‖r(X∗,N∗)‖2. (6.55)

From eqn. (6.49), (6.50) and (6.54), we have

‖r1(X̌⊕∆p?)‖2 + ‖rb(X̌⊕∆p?,N?)‖2 ≤ ‖r(X∗,N∗)‖2, (6.56)

i.e.,

‖r(X̌⊕∆p?,N?)‖2 ≤ ‖r(X∗,N∗)‖2. (6.57)

On the other hand, from eqn. (6.6) we have

‖r(X∗,N∗)‖2 ≤ ‖r(X,N)‖2, ∀X ∈ RnsK ,N ∈ Zm.

Thus, only equality can stand

‖r(X̌⊕∆p?,N?)‖2 = ‖r(X∗,N∗)‖2,

and this concludes the proof.
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Remark 6.11. This paper and proof introduce different trajectories X̌, X∗, X~ and

trajectory sets X∗1, X∗2 and X?. The proof shows that certain components of the cost

function have the same value when evaluated for different trajectories of trajectory sets

Taking advantage of this allows definition of the CPS algorithm described in Section

6.9 that vastly reduces the computational load as summarized in Table I. 4

Proposition 6.10 considers the case where the linearization errors do not exist.

Proposition 6.12 analyzes the effect of the linearization errors.

Proposition 6.12. Accounting for the time variation and the high-order-terms in

the linearization of the GPS measurement model, the following inequality is valid

E{‖r(X̌⊕∆p?,N?)‖2} ≤ (1 + C3)E{‖r(X∗,N∗)‖2},

where X̌ is the float solution from eqn. (5.33), (∆p?,N?) is the CPS solution from

eqn. (6.9) with ‖∆p?‖ ≤ ∆f , and

C3 =
Km

(
4σ−2

ρ + 3σ−2
ϕ

)
[B1(∆f , v̄)]2

(2K − 1)m− 3
,

(X∗,N∗) is the full NMILS estimate from eqn. (6.6) and E{·} is the expectation

operator. 4

This appendix proves Proposition 6.12 using similar techniques as were used for

proving Proposition 6.10. In this proof, X̌ and ∆p∗ are known and fixed.
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Proof. Proposition 6.5 shows that the float solution X̌ is equal to the integer-free

solution, which optimizes the cost ‖ra(X)‖2 such that

‖ra(X̌)‖2 ≤ ‖ra(X)‖2, ∀X ∈ RnsK .

Taking the norm of eqn. (6.19) after replacing δ1 with (6.30), it follows that

‖Q̄ᵀ
1

(
hi
(
X̌⊕∆p?

)
−ϕi

)
‖2
σ2
ϕI−

= ‖Q̄ᵀ
1

(
hi
(
X̌
)
−ϕi

)
‖2
σ2
ϕI−

+ 2


Ȟ i

1∆p? + εi1

...

Ȟ i
K∆p? + εiK



ᵀ

Q̄1(σ2
ϕI
−)−1Q̄ᵀ

1

(
hi
(
X̌
)
−ϕi

)
+

∥∥∥∥∥∥∥∥∥∥∥∥
Q̄ᵀ

1


Ȟ i

1∆p? + εi1

...

Ȟ i
K∆p? + εiK



∥∥∥∥∥∥∥∥∥∥∥∥

2

σ2
ϕI−

.(6.58)

Note that E{Q̄ᵀ
1

(
hi
(
X̌
)
−ϕi

)
} = 0 since X̌ is the float solution. Thus, we have

E
{
‖Q̄ᵀ

1

(
hi
(
X̌⊕∆p?

)
−ϕi

)
‖2
σ2
ϕI−

}
≤

E
{
‖Q̄ᵀ

1

(
hi
(
X̌
)
−ϕi

)
‖2
σ2
ϕI−

}
+ σ−2

ϕ K[B1(‖∆p?‖, v̄)]2, (6.59)

since ∥∥∥∥∥∥∥∥∥∥∥∥
Q̄ᵀ

1


Ȟ i

1∆p? + εi1

...

Ȟ i
K∆p? + εiK



∥∥∥∥∥∥∥∥∥∥∥∥

2

σ2
ϕI−

≤

∥∥∥∥∥∥∥∥∥∥∥∥
Qᵀ


Ȟ i

1∆p? + εi1

...

Ȟ i
K∆p? + εiK



∥∥∥∥∥∥∥∥∥∥∥∥

2

σ2
ϕI
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and |Ȟk∆p
? + εik| ≤ B1(∆p?, v̄), for any k = 1, . . . , K. Note that an inequality

analogous to ineq. (6.59) also applies to pseudorange measurements, i.e.,

E
{
‖Q̄ᵀ

1

(
hi
(
X̌⊕∆p?

)
− ρi

)
‖2
σ2
ρI

−

}
≤

E
{
‖Q̄ᵀ

1

(
hi
(
X̌
)
− ρi

)
‖2
σ2
ρI

−

}
+ σ−2

ρ K[B1(‖∆p?‖, v̄)]2. (6.60)

Since a common-position-shift ∆p will not cause any variation in the prior cost and

the INS cost terms, it follows that

E
{
‖r1(X̌⊕∆p?)‖2 − ‖r1(X̌)‖2

}
≤ m

(
σ−2
ρ + σ−2

ϕ

)
K[B1(‖∆p?‖, v̄)]2, (6.61)

where m is the number of available satellites.

Similarly, with Proposition 6.8 and its proof, it can be derived that

E
{
‖rb(X̌⊕∆p?,N?)‖2 − ‖rb(X?,N?)‖2

}
≤ m

(
σ−2
ρ + σ−2

ϕ

)
K[B1(‖∆p?‖, v̄)]2.

(6.62)

Similarly by Proposition 6.6, it can also be proven that

E
{
‖r1(X∗1⊕∆p∗12)‖2 − ‖r1(X∗1)‖2

}
≤ m

(
σ−2
ρ + σ−2

ϕ

)
K[B1(‖∆p∗12‖, v̄)]2. (6.63)

By Proposition 6.8,

E
{
‖r2(X∗1⊕∆p∗12)‖2 − ‖r2(X∗2)‖2

}
≤ mσ−2

ρ K[B1(‖∆p∗12‖, v̄)]2. (6.64)

Since X̌ is the float solution such that

‖ra(X̌)‖2 ≤ ‖ra(X)‖2, ∀X ∈ RnsK ,
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we have

‖r1(X̌)‖2 + ‖r2(X̌)‖2 ≤ ‖r1(X∗1⊕∆p∗12)‖2 + ‖r2(X∗1⊕∆p∗12)‖2. (6.65)

With ineq. (6.51-6.52) and (6.65), it follows that

E
{
‖r1(X̌)‖2 + ‖r2(X̌)‖2 − ‖r1(X∗1)‖2 − ‖r2(X∗2)‖2

}
≤ m

(
2σ−2

ρ + σ−2
ϕ

)
K[B1(‖∆p∗12‖, v̄)]2.

and then

E
{
‖r1(X̌)‖2 − ‖r1(X∗1)‖2

}
≤ m

(
2σ−2

ρ + σ−2
ϕ

)
K[B1(‖∆p∗12‖, v̄)]2, (6.66)

since ‖r2(X̌)‖2 − ‖r2(X∗2)‖2 ≥ 0 is always true. From ineq. (6.61) and (6.66), it

follows that

E
{
‖r1(X̌⊕∆p?)‖2 − ‖r1(X∗1)‖2

}
≤ m

(
3σ−2

ρ + 2σ−2
ϕ

)
K[B1(∆, v̄)]2,

where ∆ , max(‖∆p?‖, ‖∆p∗12‖). Along with the ineq. (6.62) and the inequality

‖r1(X∗1)‖2 + ‖rb(X?,N?)‖2 ≤ ‖r(X∗,N∗)‖2,

it follows that

E{‖r(X̌⊕∆p?,N?)‖2}

=E
{
‖r1(X̌⊕∆p?)‖2 + ‖rb(X̌⊕∆p?,N?)‖2

}
≤E

{
‖r1(X∗1)‖2 + ‖rb(X?,N?)‖2

}
+m

(
4σ−2

ρ + 3σ−2
ϕ

)
K[B1(∆, v̄)]2. (6.67)
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Following the steps from eqn. (6.55-6.57), it yields that

E{‖r(X̌⊕∆p?,N?)‖2}

≤E{‖r(X∗,N∗)‖2}+m
(
4σ−2

ρ + 3σ−2
ϕ

)
K[B1(∆, v̄)]2.

=E{‖r(X∗,N∗)‖2} (1 + C3) , (6.68)

where

C3 =
m
(
4σ−2

ρ + 3σ−2
ϕ

)
K[B1(∆, v̄)]2

E{‖r(X∗,N∗)‖2}

The optimum ‖r(X∗,N∗)‖2 is referred as the a-posteriori variance factor in clas-

sical least square literature [52]. It can be shown that

E{‖r(X∗,N∗)‖2} = (2K − 1)m− 3,

where (2K − 1)m− 3 = (nsK + 2Km− 3)− (nsK +m) is the difference between the

total number of measurements and the total dimension of unknown variables, which

is also referred as the degree-of-freedom. Thus, it follows that

C3 =
m
(
4σ−2

ρ + 3σ−2
ϕ

)
K[B1(∆, v̄)]2

(2K − 1)m− 3

Herein, both ‖∆p?‖ and ‖∆p∗12‖ are upper bounded by ∆f , so ∆ ≤ ∆f and this

concludes the proof.

Remark 6.13. When K = 10, ∆f = 1.5, m = 7, σρ = 1.0 meters and σϕ = 0.020

meters, C3 = 0.04. Thus, Proposition 6.12 shows that the Common Position Shift
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is a valid approximation to the original full NMILS approach. The error between the

expected final costs of two optimizations is bounded within 4% of the expected optimum

from the full NMILS approach. Implementation results presented in Section 6.4 shows

that the differences between two estimation results are unsubstantial. If the small

perturbations δ are omitted in Proposition 6.6 and 6.8 for practical implementations,

it can be assumed that ‖r1(X̌⊕∆p?)‖2 + ‖r3(X̌⊕∆p?,N?)‖2 ≈ ‖r(X∗,N∗)‖2, by

following similar procedures in the proof of Proposition 6.12. This shows the intuition

behind the proposed Common-Position-Shift approach. 4

6.3.4 Computation Analysis of the CPS method

Table I compares the computation costs of the Direct MILS (see Section 5.4) and

CPS MILS (see Section 6.2.1). In Table I, I1 represents the number of (linearized)

nonlinear least squares iterations are required to find in the float solution is Step

1. Similarly, I2 represents the number of linearized iterations required for integer

ambiguity resolution in the ILS problem of Step 2. The IMU sampling rate (e.g.

200Hz) is f .

Compared with solving the full NMILS in eqn. (6.6) directly, the computational

cost in eqn. (6.9) is significantly reduced due to the much smaller dimension of the

real unknown variable ∆p ∈ R3 versus X ∈ RnsK . In particular, this dimension

reduction facilitates the QR-decomposition in eqn. (5.36), see Row (2b) in Table I.
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Table 6.1: Computation Comparison

Step Process Direct MILS CPS MILS

1) Float solution O((nsK)3)× I1 O((nsK)3)× I1

2a) Integrate INS fKns × I2 0

2b) QR of A 2M(Ns)
2 × I2 2(2m)(3)2 × I2

2c) QRZ of Q̄ᵀ
AB 2(2Km)m2 × I2 2(2m)m2 × I2

2d) Integer Search (∗)× I2 (∗)× I2

3) Integer Valid. Km Km

The dimensions of the corresponding A matrices in the full MILS and CPS MILS are

M ×Ns versus 2m× 3, where M , nsK + 2mK − 3 is the dimension of the residual

vector, Ns , nsK is the total state dimension of X, and 2m is the total number of

GPS measurements at a single epoch (code and carrier phase). Furthermore, while

each NMILS iteration of the direct approach requires the expensive INS reintegration,

the CPS NMILS of (6.9) does not, see Row (2a) in Table I. In the ILS, the reduction

step is cast as a QRZ-decomposition which is actually a QR factorization with column

pivoting (or column reordering) [10]. In CPS MILS, the computation cost on QRZ-

decomposition is lower due to the smaller dimension of Q̄ᵀ
AB, see Row (2c) in Table

I. On the other hand, the computation of the integer search represented with (∗) in

Row (2d) of Table I will not vary significantly, since the dimension of δN is the same

in both approaches. The computation on the float solution and the integer validation

is the same in both the Direct MILS and CPS MILS methods.
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6.3.5 Factor Graph Representation of the CPS approach

x(t1) x(t2) x(t3)

N1 Nm…

………

x(t1) x(t2) x(t3)

…N1 Nm
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Δp
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… … …

(a) (b)

(c)(d)

…
…

Figure 6.3: The Factor Graph representation of the CPS approach.

Fig. 6.3 shows the Factor Graph representation of the CPS approach discussed

in this chapter. Fig. 6.3(a) is the factor graph shown in Section 5.3 for the o-

riginal NMILS problem solved in Section 5.4. Fig. 6.3(b) indicates the process of

formalizing the Integer-Free optimization. In Fig. 6.3(b), the integer ambiguity

N = [N1, . . . , Nm]ᵀ is ‘marginalized out’ from the graph in the shaded circle, through

the left-nullspace projection, see eqn. (6.11). The factors below the shaded circle
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are for the processed phase measurement costs ‖r3(X,N)‖2. By doing graph opti-

mization of the graph inside the shaded circle which represents the cost ‖ra(X)‖2,

the integer-free solution (equivalent to the float solution, see Proposition 6.5) can be

found. Fig. 6.3(c) indicates the process of formalizing the CPS estimation. The fac-

tors above the shaded circle are for the processed code measurement costs ‖r2(X)‖2.

Fig. 6.3(d) represents the factor graph for the CPS estimation, where the only un-

known variables are the CPS ∆p and the integer ambiguity N. The smaller circle in

6.3(d) replaces the factor graph in the shaded circle in Fig. 6.3(d), since the latter

one is independent of (∆p,N).

6.4 Implementations

This section discusses the practical implementations of the proposed CPS method.

Implementation results show that the computation cost is reduced significantly by the

CPS method while the state estimates are close to the original approach.

6.4.1 Discussion of CPS Implementations

In practice, besides the integer validation techniques, a threshold ∆f for the com-

mon position shift is also used as a way for sanity check. This threshold can be picked

by the designer based on the expected positioning accuracy of the float solution. Af-

ter the CPS estimation in eqn. (6.9), if ‖∆p?‖ < ∆f , and N? can be validated with
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standard integer validation techniques [77], then the estimate of (X,N) that resulted

from this common position shift approach is finalized as (X̌⊕∆p?,N?). Otherwise,

the estimate (∆p?,N?) is invalidated, and then the original full NMILS in eqn. (6.6)

may be executed to get (X∗,N∗). Alternatively, to satisfy the real-time requirement,

the float solution X̌ is used to update the real-time state estimates and the current

CRT window could be adapted by different strategies for the next trial of integer

resolution. For example, the designer can choose to slide the current window to the

next epoch(s), or extend the length of the current window to accumulate more data.

Or, the scheme could just skip the current window and wait for a new window with

larger m, which should yield a higher success rate.

6.4.2 Experiments Description

For performance evaluation, the proposed approach is implemented in C++ and

applied to post-process several RTK GPS/INS data sets collected from an automo-

tive vehicle. The on-vehicle GPS/INS suite consists of a NovAtel OEMV3 receiver

which outputs GPS pseudorange and carrier phase measurements at 1Hz, and a

200Hz NV-IMU1000 Microelectromechanical system (MEMS) IMU from NAV Tech-

nology Co., Ltd. which outputs the specific forces and angular rate measurements

along the three orthogonal axes. The IMU’s specification sheet can be found in

http://www.nav.cn/en/. The differential GPS information are from the UC River-

side Ntrip caster (ntrip.engr.ucr.edu:2101) which broadcasts raw dual frequency GPS
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measurements (Message 1004 in RTCM3.1 standard) and the base position (Message

1006 in RTCM3.1 standard) publicly over the internet at 1Hz and 0.1Hz, respective-

ly. For more detials about RTCM and Ntrip protocols, see Section 2.2.2.

Two data sets logged on vehicle are post-processed by a C++ program imple-

menting the proposed Common Position Shift approach:

1. a 12 hours (43200 seconds) stationary data collected on UC Riverside (UCR)

campus, on March 29, 2014;

2. a 640 seconds moving data collected on the roads around UCR Center for En-

vironmental Research and Technology (CE-CERT), on January 23, 2014;

All the post-processing was executed on a desktop computer with Intel Core2 Q9400

four-core CPU at 2.66GHz, 8GB DDR3 1333MHz memory, 240GB SSD disk drive.

The post-processing C++ program runs on ubuntu 12.04 64-bit OS which installed

within a VMware virtual machine for Windows 7. The total memory used by the

virtual machine is up to 4 GB. Under this implementation environment and picking

the CRT window length 10 seconds, the average computing time cost on one iteration

of CPS is around 0.250 ms, versus that of the original full MILS method around 150

ms. This indicates the significant performance improvement of the CPS method on

computation.

For the stationary data, the 3D position ground truth is pre-surveyed so posi-

tioning errors are presented herein to show the integer ambiguity resolution ability of
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the CPS method. For the moving data sets, the ground truth is unavailable but the

trajectory estimates and integer estimates from the CPS and the original full MILS

method [13] are compared, to show that the CPS is an efficient alternative of the

full MILS method. For both implementations, dual frequency carrier phase measure-

ments are utilized to form wide-lane phase measurements [22]. For both stationary

and moving data, the estimated residuals of L1 carrier phase measurements from each

estimation are shown to illustrate the performance of the CRT estimator. The CRT

Window lengths in all experiments are 10 seconds. For each available GPS satellite,

a 10 deg elevation mask is applied to avoid outliers. Only the CRT windows with

more than 5 satellites were tried to solve integers. To evaluate the proposed CPS

method, every 10-second window is tried to do the trajectory and integer estimation,

independently. In other words, for each trail of estimation with 10-second data, no

estimate knowledge from other trials is used. After each estimation, a residual check

is used to validate the integer estimates and avoid measurement outliers that if the

magnitude of any residual of the carrier phase measurements with fixed integer es-

timates is larger than 0.060 meter, the integer estimates are rejected. Other integer

validation techniques, e.g. ratio test, can be applied [77, 78]. Only validated results

are recorded.
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6.4.3 Stationary data

In the implementation with stationary data, the positioning results at each G-

PS measurement time are compared with the ground truth. The survey accura-

cy of the ground truth is millimeter. The algorithm itself has no knowledge that

the system is stationary. In particular, for each 10-second CRT windows, X =

[x(t1)ᵀ,x(t2)ᵀ, . . . ,x(t10)ᵀ]ᵀ is estimated. For the 43200-sec stationary data, 38167

trials are validated, i.e. with enough satellite numbers and passed the residual check.

The positioning results are presented through comparison with the ground truth,

i.e., p(tk) − p0 where p0 is the ground truth. To evaluate the performance of the

positioning, the maximal horizontal positioning errors over each CRT window were

logged. The histogram of the maximal horizontal positioning errors over the win-

dow are shown in the up-left subplot of Fig. 6.4. The up-left subplot of Fig. 6.4

shows that most of the maximal positioning errors are below 2 centimeters, which

matches the expected performance of RTK GPS positioning. The down-left subplot

of Fig. 6.4 shows that most of the L1 phase measurement estimated residuals lie in

[−0.020, 0.020].

6.4.4 Moving Data

The route and satellite availability while logging this dataset is shown in Fig. 6.5.

The average vehicle speed is about 35km/h.
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Figure 6.4: Common Position Shift method horizontal positioning errors and esti-
mated L1 phase measurements residuals.
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Figure 6.5: The route and the satellite availability of the 640s moving data experi-
ment. The x and y axis are the longitude and latitude in degrees. The colors along
the route indicate the number of satellites visible to the receiver at that location and
time.

Since the ground truth is not available for this dataset, the implementation results

of the CPS method are compared with those from the original full MILS method [13].

Implementation results show that all the validated integers from CPS are identical to

those from the full MILS method. Furthermore, the upper-right subplot of Fig. 6.4

shows that the maximum norm, during each CRT window, of the horizontal position

error between CPS and full MILS are bounded by 0.04 meters and typically less than

0.02 meters. This demonstrates that the CPS method is a good approximation of

the full MILS method in terms of integer ambiguity resolution and positioning. The

lower-right subplot of Fig. 6.4 shows that most of the L1 phase measurement residuals

lie in [−0.02, 0.02] meters.
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Fig. 6.6-6.9 shows the maximal differences between the CPS estimates and the

full MILS estimates of attitude, velocity, bias. Fig. 6.6 shows that the roll and pitch

estimate errors are smaller than 0.1 degree and for yaw angle most of the errors are

smaller than 0.5 degree. Fig. 6.7 shows that the velocity estimate errors between two

methods are smaller than 0.02 m/s.
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Figure 6.6: Max attitude estimation errors between CPS and full MILS results of the
640s moving data

Herein, Proposition 6.6 is validated with the experimental result. For the i-th

satellite in each time window, defined

∆ri , Q̄ᵀ
1

(
hi
(
X̌⊕∆p?

)
−ϕi

)
− Q̄ᵀ

1

(
hi
(
X̌
)
−ϕi

)
as the variation of the integer-free measurement (see Proposition 6.15 or [81]) resid-

uals caused by the estimated common-position-shift ∆p?. Furthermore, ∆ri can be
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Figure 6.9: Max gyroscope bias estimation errors between CPS and full MILS results
of the 640s moving data

rewritten as

∆ri = Q̄ᵀ
1

(
hi
(
X̌⊕∆p?

)
− hi

(
X̌
))
.

In this experiment with the moving data, the maximal magnitude of ∆ri over each

window, i.e.

δmax = max
i

{
‖∆ri‖∞

}
is recorded along with the magnitude of common-position-shift ‖∆p?‖.

Proposition 6.6 implies that a common-position-shift will only cause small varia-

tions ∆ri and is upper-bounded by B1(‖∆p?‖, v̄). Fig. 6.10 validates this claim by

comparing δmax, ‖∆p?‖ and the bound B1 calculated in eqn. (6.22). Fig. 6 also shows

that in this data set, all the common-position-shift estimates are with 1.2 meter.
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Chapter 7

Conclusion and Future Works

This chapter concludes this dissertation and points out potential future works.

7.1 Conclusions

the major contribution of this dissertation is the proposition of a novel Common-

Position-Shift (CPS) approach for solve integer ambiguity over a time window reliably

and efficiently. This dissertation also has the following other contributions to improve

the accuracy, reliability and robustness of INS, especially for land vehicle applications

with GPS aiding:

• Instead of the traditional filtering frame which only considers one epoch aiding

measurements, Bayesian smoothing with all navigation information over a time

window is applied for INS. Then, for RTK GPS/INS case, the integer ambiguity
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resolution is executed with a window of IMU and GPS measurements which

provide more constraints and improve the accuracy and reliability.

• Probabilistic graphical modeling is introduced to represent the more compli-

cated estimation problem in the smoothing for aided INS. Furthermore, Factor

Graph modeling which is widely applied in robotics community, is extended

for the RTK GPS/INS application by incorporating the integral unknowns to

resolve integer ambiguity.

• To overcome the linearization issue inherited from EKF, iterative nonlinear opti-

mization is applied to solve the Maximum-a-Posteriori estimation derived from

the graphical model. Thus, previous wrong linearization points can corrected

when more measurements included in the optimization of the later windows.

For RTK GPS/INS case, the method of solving the Nonlinear Mixed Integer

Least Square (NMILS) for smoothing is proposed.

• A novel robust optimization approach is proposed by introducing hypothesis

tests to improve the existing methods. This method can be applied in graph

optimization base INS, and also fit general least square problems.

• A Contemplative Real-Time (CRT) framework, which combines traditional fil-

tering and the robust graph optimization based smoothing, is proposed for

general INS and implemented especially for RTK GPS/INS.
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• A novel base correction computation approach is proposed for real-time appli-

cation with enhanced robustness.

7.1.1 Publication list

[1] Y. Chen, S. Zhao, and J. A. Farrell, “Computationally Efficient Carri-

er Integer Ambiguity Resolution in GPS/INS: a Common-Position-Shift approach,”

IEEE Transactions on Control Systems Technology (submitted).

[2] S. Zhao, Y. Chen, and J. Farrell, “High Precision Vehicle Navigation

in Urban Environments using a MEM’s IMU and Single-frequency GPS Receiver”,

IEEE Transactions on Intelligent Transportation Systems (submitted)

[3] Y. Chen, S. Zhao, D. Zheng, and J. A. Farrell, “High Reliability

Integer Ambiguity Resolution of 6DOF RTK GPS/INS,” 53th IEEE Conference on

Decision and Control, 2014, Los Angeles.

[4] S. Zhao, Y. Chen, and J. A. Farrell, “High Precision Vehicle Navigation
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International Conference on Intelligent Robots and Systems (IROS)/Workshop on

Planning, Perception and Navigation for Intelligent Vehicles (PPNIV), 2014, Chica-
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[5] S. Zhao, Y. Chen, H. Zhang, and J. A. Farrell, “Differential GPS aid-

ed Inertial Navigation: a Contemplative Real-Time Approach,” 19th World Congress

of the International Federation of Automatic Control (IFAC), 2014, Cape Town.

[6] Y. Chen, D. Zheng, P. A. Miller and J. A. Farrell, “Underwater In-

ertial Navigation with Long Base Line Transceivers: A Near-Real-Time Approach,”

IEEE Transactions on Control Systems Technology (minor revision).
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ertial Navigation with Long Base Line Transceivers: A Near-Real-Time Approach,”

52th IEEE Conference on Decision and Control, Florence, 2013.

[8] Y. Chen, D. Zheng, P. A. Miller and J. A. Farrell, “Underwater

Vehicle Near Real Time State Estimation,” IEEE Multi-Conference on Systems and

Control, Hyderabad, 2013.

[9] W. Dong, Y. Zhao, Y. Chen and J. A. Farrell, “Tracking Control for
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Tracking Control for Unknown Nonlinear Systems,” 50th IEEE Conference on Deci-

sion and Control and European Control Conference, 2011.

[11] Y. Chen, W. Dong and J. A. Farrell, “Locally Linearized Optimal
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and Control 2011, Denver.
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7.2 Future Works

The following three directions may be interesting for further investigations:

• Vision aided GPS/INS in urban canyon environment. In most of highway en-

vironment, the proposed RTK GPS/INS can realize reliable lane-level position-

ing. However, in urban canyon environment where the availability of satellites
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are limited, other aiding measurements are highly needed. Vision sensors like

camera, LIDAR are expected to help. In particular, Vision-Inertial-Odometry

techniques [43–49] seems very promising to improve the GPS/INS performance

in urban canyon environment.

• Expand the current model. Additional variables can be added into the current

RTK GPS/INS model to improve the performance, due to the improved degree-

of-freedom of the estimation. For example,

– Receiver clock bias can also be added into the state. Currently, double

difference is used to remove receiver clock bias in the estimation. Double

difference processing brings correlation between the GPS measurements at

the same epoch. To ensure optimality, this correlation has to be considered

and would impair the original sparsity of the problem.

– The base correction presented in Chapter 2 can also be incorporated into

the Bayesian smoothing framework. Currently, the base correction com-

putation is relatively separated routine in the framework. In future works,

base measurements can also be tightly-coupled into the system, by adding

the variables, which we need to estimated for base correction computation,

into the state vector.

– Multipath error modeling can also be incorporated. In this work, outliers in

the GPS measurements are treated as independent blunders, without con-
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sidering the correlation between them. Proper models for multipath errors

could help improve the performance of the outlier handling in mutltipath

prone environment.

• Extend the RTK GPS/INS to PPP GPS/INS, where PPP stands for Precise-

Point-Positioning [71] which is a popular research topic in GNSS and Geodesy

community. The PPP technique aims to get rid of the nearby base station but

still reach centimeter level accuracy. The approaches and frameworks proposed

in this work are promising to be extended to PPP GPS/INS applications and

improve the state-of-the-art PPP performance.
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