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A Dynamic Bayesian Model for Characterizing Cross-Neuronal 
Interactions During Decision-Making

Bo Zhou, David E. Moorman, Sam Behseta, Hernando Ombao, and Babak Shahbaba
Department of Statistics, University of California, Irvine, CA

Babak Shahbaba: babaks@uci.edu

Abstract

The goal of this paper is to develop a novel statistical model for studying cross-neuronal spike 

train interactions during decision making. For an individual to successfully complete the task of 

decision-making, a number of temporally-organized events must occur: stimuli must be detected, 

potential outcomes must be evaluated, behaviors must be executed or inhibited, and outcomes 

(such as reward or no-reward) must be experienced. Due to the complexity of this process, it is 

likely the case that decision-making is encoded by the temporally-precise interactions between 

large populations of neurons. Most existing statistical models, however, are inadequate for 

analyzing such a phenomenon because they provide only an aggregated measure of interactions 

over time. To address this considerable limitation, we propose a dynamic Bayesian model which 

captures the time-varying nature of neuronal activity (such as the time-varying strength of the 

interactions between neurons). The proposed method yielded results that reveal new insight into 

the dynamic nature of population coding in the prefrontal cortex during decision making. In our 

analysis, we note that while some neurons in the prefrontal cortex do not synchronize their firing 

activity until the presence of a reward, a different set of neurons synchronize their activity shortly 

after stimulus onset. These differentially synchronizing sub-populations of neurons suggests a 

continuum of population representation of the reward-seeking task. Secondly, our analyses also 

suggest that the degree of synchronization differs between the rewarded and non-rewarded 

conditions. Moreover, the proposed model is scalable to handle data on many simultaneously-

recorded neurons and is applicable to analyzing other types of multivariate time series data with 

latent structure. Supplementary materials (including computer codes) for our paper are available 

online.

Correspondence to: Babak Shahbaba, babaks@uci.edu.
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Supplementary materials are provided in four separate files contained in a single archive:

Computational details: This file includes the details of our computational methods along with the Markov Chain 
Monte Carlo (MCMC) algorithms we used for Bayesian inference.

Negative correlation: This file includes an additional illustrative example showing that our method can easily detect 
negatively correlated neurons.
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Computer codes: This zipped file includes all the MATLAB codes to implement our method and reproduce our 
results. It also contains the experimental data discussed in our paper.
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1 Introduction

This paper is motivated by neurophysiological studies on cognitive behaviors such as 

decision-making. Decision-making, and related behaviors are complex because they involve 

organized patterns of cognitive and behavioral subcomponents. For an individual to 

successfully complete a decision-making task, a number of temporally-organized events 

must occur: stimuli must be detected, potential outcomes must be evaluated, behaviors must 

be executed and inhibited, and outcomes (such as reward or no-reward) must be experienced. 

Here, we develop a novel statistical model for studying spike-train interactions between 

neurons recorded from a rat in a basic decision-making experiment. The potential clinical 

impact of this study is broad. Disrupted decision-making is recognized to be a common 

feature across many psychiatric disorders including schizophrenia and ADHD. 

Understanding how populations of neurons function in decision-making and related 

behaviors will guide targeting of specific neural systems for development of treatments.

In recent years, there have been a number of studies investigating how the activity of single 

neurons (see Figure 1) are related to decision-making (Gold and Shadlen 2007; Shadlen and 

Kiani 2013). However, it is very likely that decision-making is encoded by the temporally-

precise interactions between populations of neurons (Buzsáki 2004, 2010). With this 

information in mind, we propose a statistical model that can capture the dynamics of the 

cross-neuronal interactions and can be used to test hypotheses on differences in neuronal 

responses between different experimental conditions. More importantly, our goal is to 

develop a model that is flexible and powerful and thus can be used by neuroscientists for 

testing existing theories as well developing new ways of thinking of how populations of 

neurons relate to behavior with high temporal specificity. Our proposed model characterizes 

the activity of many neurons in a population by connecting the joint distribution of multiple 

spike trains to their marginals via a parametric copula process model. In general, models that 

couple the joint distribution of two (or more) variables to their individual marginal 

distributions are called copula models. Using such models, we are able to separate the 

inference on cross-neuronal interactions from the individual marginal firing activity of 

neurons.

To estimate the underlying time-varying firing rates, we use a flexible Gaussian process 

model. In addition to allowing the firing rates to change over time, our proposed model can 

also capture time-varying interactions among neurons. Inference in our method involves a 

computationally efficient sampling scheme, which can be easily applied to a moderate (tens) 

to large (hundreds) number of simultaneously recorded neurons.

Early analysis of behavioral neurophysiological data involving multiple simultaneously-

recorded neurons focused on correlation of activity across pairs of neurons (Narayanan and 

Laubach 2009) using a joint peristimulus time histogram (JPSTH), which shows spike 

intensity over time (Gerstein and Perkel 1969) to identify synchrony between a pair of 
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neurons. However, to capture complex behavior of neural networks, many new statistical 

methods have been recently proposed for analyzing several simultaneously recoded neurons 

in order to extract information contained in their temporal interactions under different 

experimental conditions. For more discussion on analysis of spike trains, refer to Harrison et 

al. (2013); Brillinger (1988); Brown et al. (2004); Kass et al. (2005); West (2007); Reich et 

al. (1998); Barbieri et al. (2001); Kass and Ventura (2001); Grün et al. (2002); Kass et al. 

(2005); Rigat et al. (2006); Patnaik et al. (2008); Pillow et al. (2008); Jacobs et al. (2009); 

Diekman et al. (2009); Sastry and Unnikrishnan (2010); Kottas et al. (2012); Kelly and Kass 

(2012); Shahbaba et al. (2014).

In contrast to many of these existing methods, our approach is based on a dynamic copula 

process model. Several stationary copula models have been previously proposed for 

neuroscience problems. Berkes et al. (2009) propose a variety of copula models for 

capturing neural dependencies and develop an efficient maximum likelihood procedure for 

inference. Swihart et al. (2010) proposed a unified approach to model multivariate binary 

data using copulas on partitions. They established a modeling framework which produced 

likelihood-based inference about the effects of the covariates on marginal success 

probabilities while accounting for the correlation among multivariate outputs.

Although they did not refer to their model as a copula, in a recent work, Kass et al. (2011); 

Kelly and Kass (2012) proposed a new method for detecting synchrony by modeling the 

joint firing probability of two neurons, denoted , by a factorization of the 

marginals

where Ht denotes the history of firing up to time t and the quantity |ζ (t) − 1| can be 

interpreted as the deviation of co-firing from what is predicted by independence (i.e., when 

ζ(t) = 1 for all t). This is an important work, mainly because it offers a coherent approach for 

the hypothesis testing problem of the independence among multiple spike trains by utlizing 

generalized linear modeling. Shahbaba et al. (2014) extended this work to multiple neurons 

by a semi-parametric Bayesian Model. The non-parametric Gaussian process model was 

proposed to estimate the time-varying firing probabilities while the parametric copula model 

accounted for the correlation structure among the multiple neurons. The main limitation of 

these methods is that the cross-dependence structure among neurons is assumed to be 

constant in time which is unlikely to be true given the complexity of neuronal processes.

As we will illustrate in this paper, these static (stationary) models that aggregate cross-

neuronal spike-train interactions over time might provide misleading results. Indeed, to 

address this issue, there already exist many dynamic methods for modeling brain functional 

and effective connectivity (Friston et al. 1997; Cribben et al. 2013; Ombao et al. 2005; 

Ombao and Van Bellegem 2008; Motta and Ombao 2012; Park et al. 2014; Lindquist et al. 

2014). However, these approaches are primarily designed for continuous-valued signals such 

as functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) data. 
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Also, some of these methods either assume that the change points are known (Friston et al. 

1997), or that there is a finite number of unknown change points between which the model 

remains approximately static. In contrast, our proposed model in this paper allows for 

smoothly-varying dynamic spike train interactions among neurons by introducing a set of 

time-dependent indicators that can adapt to changes in the strength of interactions. Thus, our 

model not only identifies a subset of functionally connected neurons, but also provides 

temporally precise connectivity among those neurons. Furthermore, our analysis of 

simultaneous recorded neurons gives an in-depth cellular-level understanding of the 

neuronal circuitry while fMRI and EEG studies do not. We propose a semi-parametric 

Bayesian dynamic model to study the joint activity of neurons in a population. The proposed 

model captures cross-dependence among neurons while taking into account the marginal 

time-varying firing probabilities of each neuron. In that sense, our method can be considered 

as a copula process (Wilson and Ghahramani 2012) and a generalization of the copula 

method by Swihart et al. (2010). Further, our approach extends the state-of-the-art methods 

in modeling spike trains by allowing the interaction among neurons to evolve over time. 

That is, our method does not assume a static (stationary) connectivity among neurons.

In this paper, we evaluate the performance of our proposed model via simulation studies and 

apply it to neuronal spike train recordings collected during a basic decision-making 

experiment. The goal of the experiment was to investigate the role of the prefrontal cortex in 

rats with respect to reward-seeking behaviors and inhibition of reward-seeking in the 

absence of a rewarded outcome. The activity of the 6 prefrontal neurons was recorded 

simultaneously. During the experiment, rats chose to either press or withhold presses to the 

presented levers. A sucrose reward was given when rats pressed one designated lever and 

received no reward when pressing the other. See Figure 1 for the spike train data of a neuron 

recorded under various conditions.

The remainder of the paper is organized as follows. In Section 2, we present the proposed 

dynamic Bayesian model. To set the stage, we begin by describing a stationary version of 

our model for multiple spike trains and evaluate its performance using simulation studies 

and then generalize our method to detect time-varying synchronies. In Section 3, we analyze 

the neuronal spike train data described above and discuss our results and their potential 

impact on further studies on decision making and related cognitive functions. We conclude 

the paper with future directions in Section 4.

2 Detecting Time-Varying Synchronies

As discussed above, our goal is to develop a model that captures the time-varying cross-

neuronal spike train interactions and to identify differences in the nature of these interactions 

during the rewarded vs. non-rewarded conditions. To this end, we propose a non-stationary 

Bayesian copula process model. The details of our model are presented in Section 2.2. 

Before we describe our dynamic model, however, we first describe a simpler stationary 

version of our model.
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2.1 Stationary copula model for detecting synchrony

To model the cross-dependence among multiple spike trains, we first discretize the time into 

small bins. Here, we set the intervals to 100 ms. It is possible to use smaller intervals (e.g., 

5ms) for the stationary model discussed in this section; however, our proposed non-

stationary model requires longer intervals to be effective and computationally efficient. The 

spike trains represented by point processes can then be transformed to binary time series 

which consist of 1s and 0s, where 1 indicates presence and 0 indicates absence of spikes in 

each time bin. Let Yi = (Yi1,...,YiT) be the transformed spike train of the ith neuron, where i 
= 1,...,n and observations are over time bins t = 1,...,T. In general, there are R trials for each 

neuron. Given the model parameters, we treat these trials as iid samples. Therefore, in what 

follows, we present our model for a single trial for simplicity.

For a given time bin, t, we model the joint firing probability of multiple spike trains at time t, 
Pr(Y1t = y1t,...,Ynt = ynt), as a function of the marginal probabilities, Pr(Yit = yit). If the 

neurons are independent, then the joint probability is equal to the product of the marginal 

probabilities. Note that the joint probability has the following simplex constraint:

To preserve the above constraint, we use a continuous latent variable uit and a threshold τit 

corresponding to each Yit, and model the observed spike trains as follows:

Here 1/0 indicates the presence/absence of spikes within that time bin.

It is worth mentioning that in our model τit represents an aggregate of those external 

conditions that lead to neuronal spiking. As such, τit may vary as a function of time, as it 

will be affected by the biological processes leading to action potential and the external 

stimuli associated with the experiment. Additionally, the underlying latent variable u{i}t = 

(u1t,...,unt) allows for the manifestation of the network at time t. The strength and structure 

of this network can be traced to the components of the covariance matrix Σ for these latent 

variables.

For any time t, we assume that u{i}t follows a multivariate Gaussian distribution with mean 

zero,

We use the notation u{i}t to indicate that unlike τit, which is a neuron-specific parameter 

(i.e., will be estimated for each neuron separately), the latent variables u{i}t are defined 

jointly for all neurons and will be estimated using all spike trains simultaneously.
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For the moment, we assume that Σ does not vary over time so u{i}t is a stationary copula 

process. This will be allowed to evolve with time in the dynamic setting. Moreover, the 

support of the joint distribution of the latent variables is the Cartesian cross of the real lines 

which can be partitioned into 2n quadrants by intersecting thresholds, τit. There are 2n 

combination of outputs from n neurons; hence, there are 2n joint probabilities. Our model 

guarantees the simplex constraint by mapping the probabilities in the 2n quadrants (which 

sum to 1) to the 2n joint probabilities of n neurons.

2.1.1 On the cross-dependence of the spike trains and the latent processes—
In our method, we use the correlation parameter ρij to capture the relationship between 

neurons i and j. To show the validity of this approach, we examine the pairwise correlation 

among multiple spike trains using the observed data,

Here Φ is the cumulative distribution function of standard normal distribution. Nelson 

(2006) showed that given  and , the cumulative distribution, , of 

bivariate normal distribution provides comprehensive concordance ordering with respect to 

ρij,

where −1 ≤ ρ ≤ ρ′ ≤ 1. Hence, corr[Yit,Yjt] is a non-decreasing function with respect to ρij. 

In addition, when ρij = 0, then corr[Yit,Yjt] = 0.

Remark: The above derivation posits that the spike trains preserve the dependence structure 

of the latent variables. In other words, if the latent variables are positively correlated (or 

negatively correlated, or independent) then so are the spike trains. Further, stronger (or 

weaker) correlation between the latent variables corresponds to stronger (or weaker) 

correlation between the spike trains. This allows us to make inference about the cross-

dependence among spike trains in terms of the correlation parameters ρij for the latent 

variables. Finally, it is worth emphasizing that the perceived unidentifiability of the 

threshold parameter does not affect our inference since the standardized threshold,  and 

the correlation parameter (which is used for inference) remain identifiable. Also, note that 
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σii is shared by all the time points; hence, it controls the overall firing rate. In contrast, τit is 

specific to the tth time interval.

2.1.2 Gaussian process prior on the thresholds—Note that the joint probabilities of 

spike trains depend on both the latent variables, u{i}t, and thresholds, τit. While the latent 

variables specify the dependence structure as discussed above, the thresholds determine the 

marginal probabilities of firing for each neuron. Specifically, the marginal firing 

probabilities, Pr(Yit = 1), depends on the thresholds τit as discussed above. The marginal 

probabilities usually follow nonlinear patterns over time. We can accommodate this in our 

model using the thresholds. That is, our model adjusts τit in a smooth way to capture the 

firing probability of neuron i at time t using the observed spike trains. To this end, we 

assume that τit is the tth observation from a function, τi(t) with a Gaussian process prior.

A Gaussian process (GP) on the real line is a random real-valued function x(t), with 

moments determined by its mean function x(s) and kernel κ(s,t) = Cov(x(s),x(t)). More 

precisely, all finite-dimensional distributions (x(t1),...,x(tm)) are multivariate Gaussian with 

mean ( x(t1),..., x(tm)), and with covariance matrix . Since the latter must be 

positive semi-definite for every finite collection of inputs t1,...,tn, only certain kernels κ are 

valid (i.e., define Gaussian processes). Thus when using Gaussian processes, a practitioner 

often chooses from among the few popular classes of kernels, such as the squared 

exponential (SE), Ornstein-Uhlenbeck (OU), Matérn, polynomial, and linear combinations 

of these. For example, we can use the following covariance form, which combines a random 

constant with the SE kernel and iid observation noise (Rasmussen and Williams 2006; Neal 

1998):

(1)

Here, λ, θ, γ and ν are hyperparameters with their own hyperpriors. In general, the choice 

of kernel encodes our qualitative beliefs about the underlying signal. For instance, samples 

from a GP with OU kernel are always non-differentiable functions x(t), and the SE kernel 

generates only infinitely differentiable functions.

Applications of GP models have been explored extensively in spatial modeling (Sampson 

and Guttorp 1992; Schmidt and O’Hagan 2003; Cressie 1993; Stein 1999; Gelfand et al. 

2005; Banerjee et al. 2008b; Duan et al. 2007; Quick et al. 2013). Here, we use GP to 

develop a flexible model for thresholds as a nonlinear function of time. To this end, for each 

neuron i, we assume the following Gaussian process prior:

where Ci has the above SE kernel form (1). Note that a finite-dimensional (τi1,...,τiT) has a 

multivariate normal prior distribution with mean zero and covariance Ci|t,s = Cov(τi(s), τi(t)).
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Alternative kernels for faster computation: In general, as the number of time bins, T, 

increases, computing the likelihood of Gaussian process models becomes time-consuming as 

it involves inversion of large-scale covariance matrices with (T3) complexity. To mitigate 

this issue, one could use the Wiener process (a.k.a. the Brownian motion) prior, where the 

covariance function has a simpler form,

This way, we can reduce the computational complexity of the GP model from  (T3) for the 

SE kernel (1) to  (T). The resulting process, however, is not stationary. Alternatively, one 

could use the Ornstein-Uhlenbeck (OU) process prior instead. The OU process, τi(t), can be 

defined in terms of the following stochastic differential equation:

where Wi(t) is the Wiener process, μi is the long-term mean of the process, γi controls the 

degree of volatility, and θi is the rate by which the process reverts to its long-term mean. 

Similar to the Wiener process, the computational complexity of OU increases linearly with 

T, but unlike the Wiener process, the OU process is stationary: given , we 

have  for all t.

2.1.3 Summary on the stationary model—The left panel of Figure 2 shows the 

schematic representation of our proposed stationary model, which uses a set of latent 

variables and thresholds to model the joint probability of multiple spike trains. (See Section 

S.1.1 in Supplementary Materials for more details.) The latent variables are modeled by a 

stationary copula process, and the thresholds are modeled using a Gaussian process model 

with the SE kernel (alternatively, OU could be used for faster computation). The copula 

process model connects the marginal time-varying firing probabilities to the joint 

probabilities of multiple spike trains. The thresholds control the time-varying marginal firing 

probabilities, while the latent variables determine the cross-dependence among neurons. 

Overall, our model involves four types of parameters: 1) thresholds, τit, 2) latent variables, 

u{i}t, 3) copula parameters, Σ, and 4) hyperparameters of the Gaussian process model (i.e., 

the parameters that define C).

In our numerical experiments, we used weakly informative priors for all hyperparameters 

and used Markov Chain Monte Carlo (MCMC) to simulate samples from posterior 

distributions. More details are provided in Section S.1.1 in Supplementary Materials.

2.1.4 An Illustration of the stationary model—To illustrate the stationary model, we 

use a simple numerical experiment. First, we generate the spike trains of four neurons, 

where the first pair of neurons are positively correlated, the second pair of neurons are 

negatively correlated, and that the two pairs are independent of each other. To this end, we 

generate the time-varying marginal firing probabilities for each neuron and then calculate 

the joint probabilities of the two neurons by multiplying the product of marginal firing 
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probabilities by an extra term, ζ, so that ζ = 1 indicates independence while ζ < 1 and ζ > 1 

indicate negative correlation and positive correlation between the two neurons respectively. 

Note that we are using a data generating mechanism that is different from our model in order 

to test for the robustness of our approach.

In this simulation study, we set ζ = 1.3 for the first pair of neurons and ζ = 0.7 for the 

second pair of neurons. Table 1 shows the posterior estimates of the correlation parameters 

ρij’s with their corresponding 95% posterior intervals. Figure 3 shows the peri-stimulus time 

histogram (PSTH) of these neurons with their estimated number of spikes according to our 

model. The results presented in Table 1 show that our model correctly detects the 

dependence among the two pairs of neurons.

2.2 Non-stationary copula model for detecting synchrony

As discussed above, our main objective is to develop a flexible non-stationary method that 

allows for interactions among neuronal spike trains to vary over time. To this end, we use a 

time-varying covariance matrix for the latent variables. The time-dependent covariance 

matrix implies a dynamic dependence structure among spike trains. Without imposing a 

structure, however, the covariance matrix would become too complex, especially when n is 

large. We impose such a structure by introducing a series of time-dependent binary 

indicators in the stationary copula process model discussed in the previous section,

2.2.1 On the indicator —Here,  indicates that the i-th neuron is not correlated with 

any other neurons at time t. These time-dependent indicators identify neurons that are 

involved in the network and impose a structure on the covariance matrix. We assume 

. To ensure 0 < pi(t) < 1, we use the probit link function such that pi(t) = 

Φ(qi(t)). A Brownian motion prior is assumed for qi(t),

Note that over a finite set of time points, (qi1,...,,qiT) has a multivariate normal prior 

distribution with mean η and covariance Ki|s,t = Cov(qi(s),qi(t)) = θi min(s,t). In this model, 

the mean of the Brownian motion is not zero. In general, we could treat the mean, η, as a 

hyperparameter. For simplicity, however, we fix it to small number (here, η = −1) in order to 

encourage sparsity in the network.

By introducing time-dependent binary indicators in to the copula process, our model is 

capable of identifying time-varying interactions among multiple neurons. Note that in this 

setting, the correlation between two neurons becomes . The two neurons are 
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correlated if both  and  are non-zero; ρij determines the overall strength of the 

correlation.

Remark: The time-varying correlation matrix  is positive definite as long as Σ is 

positive definite.

2.2.2 Biological justification—Many neurons might be involved in a complex process 

such as decision-making over time. The scientific community has begun to regard the 

involvement of neurons in the underlying network of complex processes as a dynamic 

phenomenon, changing with time (Buzsáki 2010). Cortical neurons, particularly neurons in 

prefrontal cortex, have been characterized as exhibiting mixed selectivity, encoding multiple, 

high-dimensional representations, i.e., exhibiting changes in firing rate that scale with 

multiple parameters in experimental tasks (Rigotti et al. 2013). The optimal, and likely way 

by which mixed-selectivity neurons encode task variables at the level of the ensemble is for 

them to dynamically participate in different ensembles depending on the context and specific 

behaviors being performed, with single neurons potentially participating in multiple 

ensembles depending on the objectives of the experimental task (Barak et al. 2013; 

Durstewitz et al. 2010; Hyman et al. 2012; Lapish et al. 2008; Sakurai et al. 2013). In our 

model, Σ captures the overall network: a collection of neurons involved in a dynamic 

process. The indicator variables on the other hand capture the dynamic membership of these 

neurons in the network.

2.2.3 Markov network vs. covariance graph—As discussed by Bien and Tibshirani 

(2011), covariance estimation is one of the most fundamental problems in statistics. In 

general, this is a difficult problem since the number of parameters grows quadratically as the 

number of variables (here, neurons) increases. To solve this problem, many researchers have 

followed Dempster (1972) and developed methods to reduce the effective number of 

parameters by imposing sparsity on the inverse covariance matrix (see for example, 

Meinshausen and Bühlmann 2006; Yuan and Lin 2007; Banerjee et al. 2008a; Friedman et 

al. 2008). By setting an element of inverse covariance to zero, we create conditional 
independence between its corresponding variables. The resulting model, known as Markov 
netowrk, can be presented as a graph with variables as nodes. An edge between two nodes 

represent conditional dependency between the corresponding variables.

Noticeably, many authors have proposed methods based on sparsity in the covariance matrix 

itself. In this case, zeros in the covariance matrix correspond to marginal independence 

between variables, and the resulting model is called covariance graph (Bien and Tibshirani 

2011; Drton and Richardson 2008; Rothman et al. 2009). While, a Morkov network is a 

suitable model to infer graphical structure, a covariance graph is typically used for model 
selection (Bien and Tibshirani 2011). The latter is a more appropriate modeling choice in 

our case since we intend to identify neurons that are involved in the decision-making 

process. That is, we intend to identify how neurons cluster together (a cluster consists of 

neurons that are directly or indirectly dependent) during a decision-making process. More 

specifically, because the imposed sparsity can change over time, our method can be regarded 

as a dynamic model selection approach.
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2.2.4 Connection to other methods—As mentioned in the introduction, our approach 

is related to a number of existing methods such as the GLM-based method of Kass et al. 

(2011) and Kelly and Kass (2012), the semi-parametric model of Shahbaba et al. (2014), and 

copula-based models of Wilson and Ghahramani (2012) and Swihart et al. (2010). Our 

method is also related to the model proposed by Cunningham et al. (2007), who assume that 

the underlying non-negative firing rate for spike train is a draw from a Gaussian process. 

However, unlike the method proposed in this paper, they assume that the observed spike 

train is a conditionally inhomogeneous gamma-interval process given the underlying firing 

rate.

Since Cox (1981) several state-space models for binary time series data have been developed 

which are closely related to our proposed model. See, for example, Fahrmeir (1992); Carlin 

and Polson (1992); Song (2000); Czado and Song (2008). A binary state-space model is 

characterized as follows. Let {Yt} be a binary time series with corresponding sequence of 

probabilities {μt} that is defined via the state variable Xt as follows:

where h−1 is a link function as specified for generalized linear models (GLM, see 

McCullagh and Nelder (1989)); Mt is a vector that contains time-varying covariates; Qt is 

the transition matrix; and εt is a random variable (or vector) with zero mean.

The state-space model above contains both deterministic and random components which has 

been developed for modeling longitudinal count data in Zeger (1988); Chan and Ledolter 

(1995); Fahrmeir and Lang (2001a,b). Our proposed model currently does not include a 

deterministic component in the probability sequence, but its framework is general and can 

broadly include a deterministic component. The key distinction between our proposed model 

and the general state-space models is that our latent equation does not follow the AR(1) 

structure of a state equation. Our state-equation is broadly defined as a Gaussian process 

(GP) on the thresholds. In our current implementation, we particularly use a GP model.

Finally, we also point the connection between our model and the so-called threshold model 

in Albert and Chib (1993), where Yt = 1 ⇔ Zt < 0. In our model, the threshold is allowed to 

vary with time (rather than a fixed 0) and that the threshold process follows a GP process 

rather than the usual AR(1).

2.2.5 Illustrative example—In this section, we use an example to illustrate our non-

stationary copula process method. Here, we generalize ζt from the previous example so the 

dependencies can change over time. As before, we use weakly informative priors for all 

hyperparameters and used Markov Chain Monte Carlo (MCMC) to simulate samples from 

posterior distributions. More details are provided in Section S.1.1 in Supplementary 

Materials.

Our example is designed to highlight the problems with stationary models (and thus 

emphasize the need for non-stationary approaches such as the one being proposed). More 

specifically, we demonstrate that our model can identify time-varying dependencies while 
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methods based on static models such as the methods of Kass et al. (2011) and Shahbaba et 

al. (2014) provide an incomplete picture of neuronal activity and, moreover, could give 

misleading results. To compare our proposed approach to those in Kass et al. (2011) and 

Shahbaba et al. (2014), we first generate spike trains for a pair of neurons for which ζt 

follows the pattern shown in the left panel of Figure 4. Due to the assumption that the 

correlation structure is stationary, the method of Kass et al. (2011) reports a p-value of 0.555 

for the test of H0 : ζ = 1 (independence) vs. Ha : ζ ≠ 1. The method of Shahbaba et al. 

(2014) reports a 95% credible interval of [0.875,1.144] for ζ which covers 1. Both methods 

incorrectly conclude that the neuronal spike trains to be independent. Neither method is 

capable of detecting the synchrony between the two neurons when this synchrony is brief 

relative to the period of non-synchrony. We also applied the static version of our proposed 

model (described in Section 2.1) to the simulated data. The 95% credible interval for the 

correlation parameter is [−0.039,0.066] which covers 0 and thus leading to no significant 

evidence for dependence between the two neurons. In contrast to these stationary 

approaches, the proposed dynamic model captures the time-varying pattern of synchrony 

between the two neurons as shown in Figure 4 (Right). This illustration serves as a reminder 

that when the true process follows a dependence structure that is time-varying (which is the 

more likely scenario compared to the simplistic assumption of stationarity), then it would be 

appropriate to fit a non-stationary model. In Section S.2.1 (Supplementary Materials), we 

provide another illustrative example to show that our method can easily detect negatively 

correlated neurons.

2.2.6 Simulation studies—To further illustrate the advantage of our method, we 

conducted two simulation studies to compare our dynamic model with the method in Kass et 

al. (2011) which is the state-of-the-art approach for studying cross-neuronal interactions. For 

the first simulation study, we compared the two methods in terms of their ability to correctly 

detect the correlation between two neurons. To this end, we simulated data according to the 

approach we discussed above. Namely, the two neurons are independent for the first 80% of 

time (ζt = 1 for t ≤ 0.8) and dependent for the last 20% of time (ζt ≥ 1 for t > 0.8). We 

conducted simulations for 5 scenarios where we set the extra term ζt for the last 20% of time 

to 1.0, 1.2, 1.4, 1.6, and 1.8 respectively. Corresponding to each pair (which we call “Pair1”) 

under each of the scenarios, we also simulates an independent pair (which we call “Pair2”) 

where ζt = 1 over the entire time. We then apply both models to each pair of neurons and 

make inference about their dependence. For scenarios 2–4, the models are expected to 

identify Pair1 as dependent, while identifying Pair2 as independent. The first scenario was 

used as the control where the models should have identified both pairs as independent. We 

repeated each scenario 100 times and use ROC curves to assess each model’s performance. 

Note that for the first scenario, we expected the ROC curve to be diagonal. For the 

remaining scenarios, the higher the area under ROC curve, the better the model. Figure 5 

shows the ROC curves, which illustrate the performance of the two models (our proposed in 

color red; Kass et al. (2011) in green) in detecting dependence between neurons in Pair1. 

The results show that as the strength of correlation increases (ζt increases from 1.0 to 1.8), 

both methods exhibit an increase in power. Moreover, the results demonstrate that our 

proposed dynamic model always outperforms the method of Kass et al. (2011).
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For the second simulation study, we compare the predictive power of the models. We 

simulate the datasets according to the five scenarios discussed above. This time, however, we 

randomly select two-thirds of the data to train both models (i.e., estimate parameters), and 

then test the models on the remaining one-third of the data by using the firing status of one 

neuron to estimate the firing probability for the second neuron. We derive the estimated 

firing probability, p̂2k for the kth observation in the test set for the second neuron using 

parameters estimated using the training data. Models are evaluated based on their log 

predictive probability (LPP) using the estimated firing probability, p2̂k, as follows:

The model with a larger LPP value is considered to have greater predictive power. As before, 

we repeat each scenario 100 times. Figure 6 shows the 95% intervals of LPP for each 

scenario using our proposed model (shown as red bars) and the method of Kass et al. (2011) 

(shown as green bars). Again, the results show that both models display an increasing 

predictive power as the strength of correlation between two neurons increases. Moreover, 

consistent with the previous results, our proposed dynamic model outperforms the method in 

Kass et al. (2011) in general.

3 Analysis of the spike-train data

The ultimate goal of this research is the application to neurophysiological data collected 

during performance of cognitive behaviors such as decision-making. Disrupted decision-

making is a common feature across many psychiatric disorders including, but not limited to, 

ADHD, bipolar, and compulsive behavior disorders, mood and anxiety disorders, and 

schizophrenia (Sharp et al. 2012). Decision-making, therefore is a potent behavioral 

endophenotype that can be used to study disruptions in the neural framework underlying 

mental disorders (Insel and Cuthbert 2009). To study decision making in animal models we 

conducted an experiment which we describe below. We then give an overview of the 

statistical approaches for analyzing neuronal spike train.

3.1 Description of the experiment

In this experiment, we recorded the activity of multiple neurons in the prefrontal cortex of 

rats while they were presented with stimuli that either predicted or did not predict the 

availability of a reward. During the recording/test sessions, two different stimuli were 

presented: tone 1 (10 KHz) or tone 2 (5 KHz) individually and in pseudorandom order. At 

the same time, one of two levers was presented an active-lever, paired with tone 1 

(Rewarded-Stimulus - RS) and an inactive-lever paired with tone 2 (Non-rewarded Stimulus 

- NS). Pressing the active lever resulted in the offset of tone 1, retraction of the lever, and 

illumination of the reward receptacle. If the rat then went to the reward receptacle, 0.1 ml of 

15% sucrose solution was delivered as a reward. Pressing the inactive lever produced no 

effect. Tones were played for a maximum of 3 sec, and levers remained extended for a 

maximum of 10 sec. See Moorman and Aston-Jones (2015) for more details.
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We recorded the activity of multiple single neurons simultaneously by sampling from 

multiple channels of an implanted 16-wire electrode array. We recorded both action 

potentials (i.e., spikes–the firing activity of single neurons) and local field potentials 

(averaged population activity). In this report we focus on action potential data. Here, we 

focused our analysis on a recording session from one rat. We identified six neurons that 

exhibited consistent firing across the recording session (note that other neurons recorded in 

this session exhibited low or inconsistent firing across the session). More details about the 

experiment are provided in Section S.3.1(Supplementary Materials).

3.2 Results and Interpretation

Throughout this section, we discretize time using 100 ms intervals. As a preliminary step, 

we first applied the static model to the spike train data of two neurons. The results show that 

under the rewarded stimulus the 95% credible interval for the correlation parameter was 

[0.035,0.147] compared to [−0.039,0.049] under the non-rewarded stimulus. This suggests 

that there was some sort of aggregated synchrony between the two neurons under rewarded 

stimulus but no evidence of aggregated synchrony under the non-rewarded stimulus. The 

proposed model suggests an interesting result: that the temporal relationship activity 

between the two neurons differed based on whether the stimulus predicted a rewarded or 

non-rewarded outcome.

As noted, the static analysis above has limitations because it does not portray a complete 

picture of the time-varying cross-dependence between neurons. As a next step, we applied 

the dynamic model to the same pair of neurons. Figure 7 shows the estimated correlation 

parameters based on our proposed dynamic model. The results suggest that under the 

rewarded stimulus, the two neurons started to co-fire after 4 seconds. In contrast, for the 

unrewarded stimulus, the two neurons remained uncorrelated throughout the experiment. As 

noted above, the strong cross-dependence between these two neurons was seen during the 

reward-receipt epoch in rewarded trials. This comparison allowed us to reliably say that the 

onset of correlation in rewarded trials was not simply a by-product of stimulus presentation 

(as stimuli are presented in both contexts) but has some relationship between the outcomes 

or behaviors. Thus, these two neurons (Figure 7) are likely members of a population 

encoding reward or a behavior related to reward-seeking.

There are a number of reasons that explain why neuronal populations may exhibit 

synchrony. In the periphery, sensory stimuli can simultaneously activate neurons, producing 

sensory-evoked synchrony. In some cases, synchrony arises from correlated input via, for 

example, neurons or neural populations that innervate multiple target populations, driving 

these multiple targets at the same time. For example, in the prefrontal cortex, where neurons 

studied here were recorded, synchrony is thought to result from strong, correlated, patterned 

input from the hippocampus and possibly other brain areas (Benchenane et al. 2010). In 

other cases, notably in cortex, interactions between inhibitory GABA interneurons and 

pyramidal neurons are responsible for generating synchrony across populations (Fujisawa et 

al. 2008). Correlated activity can also be seen among populations of neurons when activity 

increases and is maintained, as has been seen, for example, in synchronous activity in the 
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prefrontal cortex underlying working memory (Sakurai et al. 2013). Results for model 

checking and diagnostics are provided in Section S.3.2 (Supplementary Materials).

Next, we examined the cross-dependence between all of the 6 neurons in the data. Section S.

3.3 (Supplementary Materials) provides the plots for the time-varying correlation parameters 

among these neurons under different scenarios. For simplicity, in Figures 8 and 9, we 

divided the time series into two time intervals: Period 1 covers the first 5 seconds following 

the stimulation onset (i.e., [0,5] seconds) while Period 2 covers the last 5 seconds after 

stimulation onset (i.e., (5,10] seconds). Within Period 1 of the rewarded scenario, neurons 2, 

5, and 6 seemed to be weakly correlated, while others were not at all implicated in the 

network. During Period 2, neurons 1, 2, 3, and 4 became strongly correlated (Figure 8). 

Under the non-rewarded stimulus, neuron 1, 3, and 4 are correlated throughout both epochs. 

Towards the end of Period 2 (approximately 7–10 seconds), neurons 5 and 6 join the 

network with moderate correlations (Figure 9). The results suggest that neurons 1, 3, and 4 

are involved in the network under both scenarios; whereas, neuron 2 plays a differential role 

under the two scenarios: it is always involved in the correlation network under rewarded 

stimulus, while it remains isolated from the network under non-rewarded stimulus. In 

addition, neurons 5 and 6 vary under different stimuli: they are strongly involved in the 

network at the beginning following presentation of the rewarded stimulus and weakly 

involved in the network at the end of session after presentation of the non-rewarded 

stimulus.

The results described here reveal new information about network encoding of different 

aspects of the behavioral task, in particular providing us two powerful and intersecting 

insights into population coding of behavior. First, our model reliably measures correlation 

among groups of neurons over prolonged periods of time. This is an important advance in 

understanding how events and behaviors can influence synchronous activity in neural 

populations. Intriguingly, neurons 2 and 5 exhibit synchronous activity in what appears to be 

the time between lever-press and reward acquisition. Thus by differentially synchronizing 

different populations of neurons over time, we see a continuum of population representation 

of the reward-seeking task. Importantly, the degree of synchronization is different in the 

non-rewarded condition. In this case, neurons 1, 3, and 4 exhibit synchronous activity 

rapidly after the onset of the non-reward-predicting tone. This synchronization may serve as 

a response-inhibition signal that allows the animal to withhold responding to the non-

rewarded lever.

Brain regions such as the ventral medial prefrontal cortex have frequently been characterized 

as playing a role in response inhibition: inactivation of these areas increases behavior and 

stimulation of them suppresses it (Peters et al. 2009). The neural signaling underlying this 

type of executive control has remained elusive however, although some neurons have been 

shown to be activated during behavioral suppression (Milad and Quirk 2002). However, it is 

unlikely that the small numbers of neurons showing increased activation in these 

circumstances represents the mechanism by which populations of neurons encode behavior. 

Rather, population signaling, reflected in correlated firing, is likely to underscore neural 

coding of these relatively sophisticated behaviors.
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4 Conclusions and future directions

We have developed a Bayesian dynamic model for analyzing cross-dependence between 

neurons in a population. The proposed model has a number of advantages: (1.) It captures 

the time-varying dependencies between neurons and thus is applicable for analyzing spike 

train data recorded while a subject is performing a complex cognitive task; (2.) The 

proposed model is useful for testing differences in cross-neuronal correlations in activity 

between different experimental conditions; (3.) It can be applied to a moderate to large 

number of neurons, and the computational complexity increases with the number of 

interacting neurons only; (4.) The proposed model can be applied to different data from a 

broad spectrum including continuous-valued time series that have some latent structure; (5.) 

Finally, using the proposed model, our analysis yielded results that revealed new insight into 

the dynamic nature of population coding in the prefrontal cortex during decision making.

Our model of course can be generalized in several ways. Although it is already a step 

forward towards dynamic modeling of neural networks, our current model assumes that if 

two neurons are related, the relationship is either positive or negative so that the sign 

remains constant but may vary in strength over time. However, this model can be extended 

for situations where the direction of the relationship changes (from positive to negative or 

vice-versa) over time. For example, the model can be generalized by allowing the indicator 

variables to be between −1 and 1. This was not necessary in the current situation because we 

did not observe any evidence of such behavior in our data.

The model produced results that led us to pose new hypotheses related to the prefrontal 

control of executive function (response execution/inhibition). The large hypothesis resulting 

from these data is that complex behaviors such as decision-making come about by ensemble 

coding of discrete behavioral components (stimulus representation, response execution, 

reward consumption, etc.). These behaviors are encoded by temporally discrete 

synchronization of specific populations of neurons, although these populations share 

members. There are a number of key experiments that must be performed to verify this 

hypothesis and to refine our understanding of encoding along these lines. It is critical to 

isolate specific subcomponents of behavior that may be encoded. So, for example, studying 

neural encoding specifically during response execution or specifically during response 

inhibition (as opposed to in more complex tasks) will allow a precise association between 

synchronous populations and behavior. In addition, we need to test whether these ensembles 

reliably form–with the same member neurons–each time a behavior is performed or whether 

they exhibit subtle differences on a trial-to-trial basis.

The conclusions from this analysis are primary and will need to be studied from further 

experiments on decision-making in our laboratory and different contexts. Nevertheless, the 

results of the analysis of even this limited data set are already highly intriguing and already 

begin to reveal new insight into the dynamic nature of population coding in the prefrontal 

cortex during basic cognitive tasks. In particular, using these models to characterize how 

populations of neurons synchronize at precise times across behavior will let investigators 

focus precisely on the relationship between population coding and discrete components of 

behavior. For example, it is overly-general (i.e., lacking in temporal precision) to state that 
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neural populations exhibit synchronous activity during reward-seeking. Instead, we can 

specify that particular neural populations are correlated during specific subcomponents of 

these behaviors (stimulus presentation, lever approach, reward-well entry, reward 

consumption, etc.). As demonstrated in our analysis, by narrowing down our window of 

focus with respect to population encoding, we can achieve a previously unconsidered 

combination of spatial breadth and temporal precision. Typically the focus on neural coding 

of discrete behavioral intervals is limited to analysis of single-neuron activity.

Our proposed method in this paper can be utilized for current behavioral neuroscience 

studies, which typically involve 10s of simultaneously recorded neurons. (See the review by 

Buzsáki et al. (2015) on the current state of simultaneous ensemble recording.) For such 

studies, investigators need adequate analytical tools for understanding the temporal 

relationship among a relatively large number of neurons. Our method provides a pragmatic 

approach for responding to that need. However, driven by advances in technology, the 

number of neurons capable of being recorded simultaneously is increasing. As a result, the 

computational demand of neuroscience studies is going to increase in future. To address the 

computational challenges of such studies and to maintain our method as a practical 

approach, we need to continue working on the scalability and computational efficiency of 

our proposed model – as truly large-scale recordings (e.g., thousands of neurons) will soon 

become commonplace in neuroscience.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Peri-stimulus time histogram (PSTH) of one neuron under two conditions. The upper 

plot is the continuous representation (point process) of the spike train data. Each line 

represents a trial and points on the line represent the firing time of the neuron. The lower 

plot is a summary of the spike train data by averaging activity across trials.
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Figure 2. 
A schematic representation of our stationary model (a) and dynamic model (b). Here, r = 

1,...,R is the index for trials; t = 1,...,T is the index for time; and i = 1,...,n is the index for 

neurons. Note that τit is a neuron-specific parameter; whereas u{i}t is defined jointly for all 

neurons.
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Figure 3. 
The Peri-Stimulus Time Histogram (PSTH) of 4 neurons with their estimated number of 

spikes. The red solid line is the estimated number of spikes, which is calculated by 

multiplying the estimated marginal firing probabilities by number of trials.
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Figure 4. 
Left: Time-varying correlation. For the first 80% of time, the two neurons are independent 

(ζt = 1 for t ≤ 0.8). For the remaining 20% of time, the two neurons become correlated (ζt > 

1 for t > 0.8). Right: The posterior estimates of correlation parameters, , with 

95% credible intervals. The solid lines are the posterior estimates and the gray areas are the 

95% credible intervals. Note that in our model ρ = 0 corresponds to ζ = 1.
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Figure 5. 
Evaluating our method’s performance based on ROC curves for detecting dependence 

between a pair of neurons with time-varying ζt. Our proposed dynamic model is shown as 

solid red lines; the method of Kass et al. (2011) is shown as dashed green lines.
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Figure 6. 
95% intervals of the log predictive probability (LPP) on the test sets using our dynamic 

model (in red) and the method of Kass et al. (2011) (in green) for different values of ζt over 

the last 20% of time interval. Results are based on 100 simulated datasets.
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Figure 7. 
The estimated correlation parameters among the two neurons. The solid line is the posterior 

estimate and the gray area is the corresponding 95% credible interval.
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Figure 8. 
Graphical representation of correlation network under rewarded stimulus. The nodes are the 

neurons and the edges indicate the connection between neurons. The grayscale indicates the 

strength of connection.
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Figure 9. 
Graphical representation of correlation network under non-rewarded stimulus. The nodes are 

the neurons and the edges indicate the connection between neurons. The grayscale indicates 

the strength of connection.
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Table 1

The posterior estimates of correlation parameters for simulated data with their 95% posterior intervals.

Parameter Posterior Estimate

ρ12 0.75 (0.66,0.84)

ρ13 0.02 (−0.12,0.15)

ρ14 0.12 (−0.01,0.25)

ρ23 −0.05 (−0.19,0.12)

ρ24 0.03 (−0.13,0.17)

ρ34 −0.46 (−0.61, −0.32)
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