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Abstract

Digital Twins as Testbeds for Iterative Simulated Neutronics Feedback Controller
Development

by

Theodore Kay Chen Ong

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Per F. Peterson, Chair

Before a new nuclear reactor design can be constructed and operated, its safety must be
demonstrated using models that are validated with integral effects test (IET) data. However,
because scaled integral effects tests are electrically heated, they do not exhibit nuclear reactor
feedback phenomena. To replicate the nuclear transient response in electrically heated IETs,
we require simulated neutronics feedback (SNF) controllers. Such SNF controllers can then
be used to provide SNF capabilities for IET facilities such as the Compact Integral Effects
Test (CIET) at the University of California, Berkeley (UC Berkeley). However, developing
SNF controllers for IET facilities is non-trivial. To expedite development, we present the
use of Digital Twins as testbeds for iterative SNF controller development. In particular, we
use a Digital Twin of the Heater within CIET as a testbed for SNF Controller Development.
This Digital Twin with SNF Capabilty is run as an OPC-UA server and client written
almost entirely in Rust using Free and Open Source (FOSS) code. We then validate the
Digital Twin with experimental data in literature. We also verify the transfer function
simulation and Proportional, Integral and Derivative (PID) controllers written in Rust using
Scilab. Moreover, we demonstrate use of data driven surrogate models (transfer functions)
to construct SNF controllers in contrast to using the traditional Point Reactor Kinetics
Equations (PRKE) models with the hope that they can account for the effect of spatially
dependent neutron flux on reactor feedback. To construct the first surrogate models in
this work, we use transient data from a representative arbitrary Fluoride Salt Cooled High
Temperature Reactor (FHR) model constructed using OpenMC and GeN-Foam. Using the
Digital Twin as a testbed, two design iterations of the SNF controller were developed using
the data driven surrogate model. Compared to the potential development time taken in using
physical experiments, using the digital twin testbed for SNF controller development resulted
in a significant time saving. We hope that the approaches used in this dissertation can
expedite testing and reduce expenditure for licensing novel Gen IV nuclear reactor designs.
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Part I

Digital Twin Construction
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Chapter 1

Introduction

1.1 A Graphical Abstract

Time is limited. In the context of climate change, there is limited time to reduce carbon
emissions. Whereas in the context of business and research, time is money. Whatever the
context is, we want to use our time efficiently and purposefully. If our mission is to reduce
carbon emissions quickly, nuclear energy needs to be part of the equation. Nevertheless,
the licensing and construction process can hinder nuclear power’s effectiveness in reducing
future carbon emissions. Therefore, we want to discuss methods that may potentially save
time in the context of reactor development. To save some of your reading time as well, I
present Figure 1.1:

Figure 1.1: Graphical Abstract
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Figure 1.1 summarises the key themes and content in this dissertation. We present two
tools used in tandem to save time for nuclear reactor development. This is because we wish
to make nuclear energy a practical solution for climate change. To do so, a nuclear reactor or
power station often has to be run as a business or governmental operation. However, nuclear
reactors tend to have long construction and licensing processes. These have made nuclear
reactors notorious for cost overruns.

To reduce the time and monetary costs for licensing and developing nuclear reactors such
as the fluoride salt cooled high temperature reactor (FHR), the goal of this research was
to develop simulated neutronics feedback capabilities for existing scale models of the FHR,
otherwise known as Integral Effects Tests (IETs). These IETs help us understand how heat
transfer would work in a real nuclear reactor, except that the heat source is non-nuclear. To
make the IET behave more like a nuclear reactor, it must have simulated nuclear reactor
behaviour. We call this simulated neutronics feedback (SNF). This process is reflected in
the left column of Figure 1.1. Nevertheless, the COVID-19 pandemic and lock-down came
and rendered the IETs in my research laboratory inaccessible. Hence, with much guidance
from my supervisors, mentors and peers, I changed my research direction to develop code
suitable for constructing a Digital Twin for the IET for the FHR known as the Compact
Integral Effects Test (CIET). This was done in the hope that the Digital Twin of CIET,
or at least some of its key components, would be useful for developing SNF capability for
CIET. This is reflected in the right column of Figure 1.1. With both these tools, I wanted
to provide means which could potentially increase the development speed of test FHRs and
commercial FHRs and reduce its development costs and time frame. This is reflected in the
central column of Figure 1.1.

1.2 Dissertation Outline

This dissertation provides an example for how using a Digital Twin early in the iterative
design process to create SNF Controllers can save time. The early work and availability of
a SNF Controller can expedite work done in nuclear reactor design and development.

To show how this was done, we cover much of the content in Figure 1.1. Figure 1.1, of
course, is shown in our introduction here in Chapter 1. Figure 1.1 covers much of content
for this dissertation, but the fluid mechanics libraries were developed in my master’s thesis.
Therefore, that work is only referenced and continued upon in this dissertation. Moreover,
we have not yet applied the new SNF capabilities in CIET, so this remains as future work
in Figure 1.1. These are broad topics in themselves which require separate publications.
Nevertheless, the work in this dissertation provides a foundation for future work in SNF
controller and SNF facility development.

We start discussions with Digital Twin construction in the first part of this dissertation.
This is because we cannot test SNF capabilities without an IET facility or its Digital Twin.
Therefore, the construction methodology for Digital Twins forms one of the foundational
elements for this dissertation. We review Digital Twins and previous work in Chapter 2. We
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then discuss how previous work was extended by developing heat transfer libraries in the
Rust Programming Language as shown in Figure 1.1 in Chapter 3. For those unfamiliar with
Rust, the Ferris the Crab is Rust’s unofficial mascot recognised by the Rust programming
community as of 2023.

For this dissertation, we discuss how the electric heater of CIET, or its Digital Twin,
is given SNF capabilities. Therefore, we review existing literature for SNF controllers for
electrically heated IET facilities and how we could construct a SNF controller for CIET in
Chapter 4. The SNF model is not based on Point Reactor Kinetics Equations (PRKE),
but rather on more generic data driven surrogate models developed using higher fidelity
multiphysics models. To demonstrate this method, a representative arbitrary reactor mul-
tiphysics model was constructed using the OpenMC Monte Carlo code and the GeN-Foam
reactor multiphysics code in Chapter 5. Using this multiphysics model of an arbitrary re-
actor, we also discuss how a surrogate model was constructed in Chapter 5. This surrogate
model was then used as a basis for SNF Controller development in Chapter 6.

For this dissertation, we do not complete the SNF IET development process in Fig-
ure 1.1. While this dissertation demonstrates how a SNF controller could be created using a
data-driven surrogate model, further work is needed to apply the same method to more pro-
totypical FHR designs. Nevertheless, the work described in this dissertation forms the basis
for future work in SNF controller development. We discuss some of these future possibilities
in our conclusion in Chapter 7.
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Chapter 2

Literature Review and Principles for
Digital Twin Construction

2.1 Digital Twins for Gen IV Reactor Development

Digital Twins have been an attractive area of research for industrial engineering and appli-
cations in general. They are useful tool in nuclear plant design, construction, operation and
maintenance [Zhao and Guan, 2022]. These help in ensuring that nuclear plants are oper-
ated to better mitigate risks, and can also help nuclear plants be built faster and cheaper
without compromising safety. Building nuclear plants with better economics without com-
promising safety is especially important since the high capital costs of nuclear power plants
[Helmuth, 1988] tend to make them an unattractive investment option. The malady of high
capital expenditure (CapEx) is further exacerbated for Gen IV nuclear power plants, where
research and development (R&D) costs have to be considered in addition to licensing costs,
construction costs and decommissioning costs.

While Gen IV power plants, especially small modular reactors (SMRs), have the potential
to be built with better economics, nuclear power plants still suffer from a poor reputation
of high CapEx. If one wishes to use Gen IV nuclear power plants to decarbonise the power
industry, it is imperative to reduce CapEx as far as possible without compromising safety
to attract investment and initiate construction activity. Therefore, any technology that
can improve economics of a plant would be a welcome addition. This includes digital twin
technology. Therefore, exploring digital twin technology for Gen IV reactor development
and operations would be of interest.

One particular Gen IV reactor of interest is the Fluoride Salt Cooled High Temperature
Reactor (FHR). This is a solid fuelled, molten salt cooled reactor studied in the University
of California, Berkeley [Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson, 2014;
Nicolas Zweibaum, 2015] and, at the time of writing, being developed for commercial power
production by Kairos Power [Blandford et al., 2020]. This interest in the FHR is due to
its passive safety characteristics such as low pressure, as well as the use of TRISO fuel and
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molten salt, [Nicolas Zweibaum, 2015; X. Wang, 2018] all of which help to contain fission
products within the site boundary in the case of an accident. The development efforts of
these reactors can also benefit from Digital Twin technology. Digital Twins, which are used
in various stages of the product life cycle [Kholopov et al., 2019], could be used to test
various configurations of the FHR in a relatively safe environment during the development
stage even before a working FHR is constructed. This would have reduced costs for FHR
development relative to constructing several FHR prototype designs and then testing them
one by one. Of course, such Digital Twins need validation since they are basically simulated
models. To begin validating such models, both separate effects tests (SETs) and integral
effects tests (IETs) are needed. The Compact Integral Effects Test (CIET) is one such
integral effects test that has been used to validate simulation codes used to model the FHR.
It has previously been used to validate RELAP models [Nicolas Zweibaum, 2015] as well as
models built in the System Analysis Module (SAM) [Zou, R. Hu, and Charpentier, 2019].

The need for Digital Twins in Gen IV reactor research became even more apparent
during the COVID-19 pandemic, where work on CIET came to a standstill for an extend
period of time. I intended then to develop simulated neutronics feedback for CIET, and
that was to be the focus of my PhD Dissertation. Unfortunately, this was not to be since
CIET was not usable during the COVID-19 pandemic lockdown. The COVID-19 lockdown
was only one of many disruptions that could occur and slow down experimental work. The
only way to continue research during such extreme circumstances was through the use of
simulations such as digital twins. Even during normal disruptions, having digital twins to
expedite research and development work would be beneficial. This gave me motivation to
start developing a Digital Twin for CIET so that I could have a system with which to test my
simulated neutronics feedback controllers at anytime of the day without fear interruption, or
of damaging components or Therminol-VP1 spills in CIET. Such things would have expedited
my research a lot. I reckoned that developing a Digital Twin for CIET would have been
useful for more purposes than what I had originally intended. Therefore, I began my journey
into Digital Twin development.

The main component I needed to construct in CIET to test my simulated neutronics
feedback controller was the heater. Therefore, in this chapter, we review important literature
for constructing a Digital Twin of CIET, with more emphasis on its heater. Firstly, we
review why CIET was constructed and why it could use Therminol VP-1, also known as
Dowtherm A, as a surrogate fluid for the molten salt used in the FHR, Li2BeF4 (FLiBe).
We then review some previous work in creating an isothermal Digital Twin of CIET from my
master’s thesis. Next, we consider how we may start constructing the heat transfer libraries
suitable for transient heat transfer simulation for CIET. Lastly, we review literature relevant
to solver stability relevant for heat transfer solvers used by the Digital Twin.
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2.2 On the use of Surrogate Fluids for the Compact

Integral Effects Test (CIET)

CIET was constructed for the purpose of understanding thermal hydraulics phenomena
within the FHR [Nicolas Zweibaum, 2015]. Ideally, we would use a molten salt based IET
to study thermal hydraulics of FHR. Unfortunately, running test loops with hot FLiBe is
problematic for a number of reasons, including Beryllium toxicity and a high salt temper-
ature of 550-700 ◦C. These difficulties motivated studies to investigate the use of simulant
fluids such as water or heat transfer oils to study thermal hydraulic phenomena of the FHR
[Bardet and Per F Peterson, 2008]. These simulant fluids were much less problematic to
use than FLiBe. A heat transfer oil, known as Dowtherm A or Therminol VP-1, was then
found to be a suitable candidate for this very purpose. Therminol VP-1 or Dowtherm A at
about 80 to 110 ◦C matches the Prandtl number (Pr) of Li2BeF4 (FLiBe) at about 600 to
700 ◦C [De wet, Per F. Peterson, and Greenwood, 2019; Nicolas Zweibaum, 2015]. Given
this discovery, the next step was to build an IET using Therminol VP-1 as a surrogate fluid
for FLiBe. These efforts eventually led to the construction of CIET.

We can verify that the Prandtl Numbers for both molten FLiBe and Therminol VP-1
match using thermophysical property correlations for both fluids. For Dowtherm A, the
correlations are shown in Equations 2.1 to 2.4 [Nicolas Zweibaum, 2015]:

ρ(kg/m3) = 1078− 0.85(T ◦C) ; T (◦C) = [20, 180] (2.1)

µ(Pa · s) = 0.130/(T ◦C)1.072 ; T (◦C) = [20, 180] (2.2)

cp(J/(kg ·K)) = 1518 + 2.82(T ◦C) ; T (◦C) = [20, 180] (2.3)

k(W/(m ·K)) = 0.142− 0.00016 · (T ◦C) ; T (◦C) = [20, 180] (2.4)

Here, ρ refers to density, µ is dynamic viscosity, cp is specific heat capacity and k is
thermal conductivity. For FLiBe, the same four thermophysical properties are presented in
[Sohal et al., 2010] Equation 2.5 to 2.8:

ρ(kg/m3) = 2415.6− 0.49072(T (K)) ; T (K) = [732.2, 4498.8] (2.5)

µ(Pa · s) = 0.000116 exp

(
3755

T (K)

)
; T (K) = [873, 1073] (2.6)

cp(J/(kg ·K)) = 2415.8 ; T (K) = [600, 1200] (2.7)

k(W/(m ·K)) = 0.629697 + 0.0005 · (T (K)) ; T (K) = [500, 650] (2.8)

The thermal conductivity correlation [Sohal et al., 2010] developed was initially meant
for the temperature range of 500 K to 650 K. This meant that it could not predict viscosities
normal FHR working temperatures of about 600 to 700 ◦C. Nevertheless, we could inves-
tigate if this correlation can be extrapolated to work for this temperature range if we have
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thermal conductivity measurements within 600 to 700 ◦C. In literature, several of these
measurements were reported [Romatoski and L.-W. Hu, 2017] within this temperature range
with a measurement uncertainty of ±10%. I plot the literature data along with Sohal’s
correlation in Figure 2.1:

Figure 2.1: FLiBe Thermal Conductivity Correlation and Measured Data

We can see in Figure 2.1 that the correlation can indeed predict the thermal conductivity
of FLiBe within this 10% measurement error. Thus, extrapolating Sohal’s correlation to
the operating temperature range of the FHR would be acceptable. We can then use this
correlation for calculating the Prandtl number of FLiBe at about 600 to 700 ◦C.

Now, when comparing the Prandtl number of both Therminol VP-1 and FLiBe, we want
to check if they match closely enough. Thus, we should do some uncertainty propagation in
order to ascertain if the Prandtl numbers match within the experimental uncertainty. The
Prandtl number is defined as [Perry and Green, 2015; Bejan, 2013]:

Pr =
ν

α
=
µcp
k

(2.9)

Where ν is momentum diffusivity or kinematic viscosity. It can be expressed as ν = µ
ρ
.

α is thermal diffusivity and this can be written as α = k
ρcp

. Based on Equation 2.9, the

measurement uncertainties of µ, cp and k will contribute to the uncertainty of Pr. As
mentioned previously, cp has an measurement uncertainty of about 20% [Lichtenstein et
al., 2022; Sohal et al., 2010; Romatoski and L.-W. Hu, 2017] and k has a measurement
uncertainty of about 10% [Romatoski and L.-W. Hu, 2017]. For the correlation (Cantor’s
correlation) presented [Sohal et al., 2010], µ has a reported uncertainty of about 15 to 20%.
We can do simple uncertainty propagation as follows [Todreas, Kazimi, and Massoud, 2021;
BIPM et al., 2008]:
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δPr2 =

(
∂Pr

∂µ

)2

δµ2 +

(
∂Pr

∂cp

)2

δc2p +

(
∂Pr

∂k

)2

δk2

=
(cp
k

)2
δµ2 +

(µ
k

)2
δc2p +

(
−µcp
k2

)2
δk2

=

(
Pr

µ

)2

δµ2 +

(
Pr

cp

)2

δc2p +

(
−Pr

k

)2

δk2(
δPr

Pr

)2

=

(
δµ

µ

)2

+

(
δcp
cp

)2

+

(
δk

k

)2

(2.10)

In this context, δPr, δµ, δcp and δk are the associated uncertainties of Pr, µ, cp and k.
If we take the fractional uncertainties of µ, cp and k to be 0.15, 0.20 and 0.10 respectively,
then:

(
δPr

Pr

)2

=

(
δµ

µ

)2

+

(
δcp
cp

)2

+

(
δk

k

)2

= 0.152 + 0.202 + 0.102(
δPr

Pr

)
= 0.2693 ≈ 0.27

(2.11)

For the purposes of error bars, the fractional uncertainty can be rounded down to 0.26.
The 20% uncertainty of cp contributes the most to the fractional uncertainty of Pr. This is
supported in literature as there is a large disparity in cp values for FLiBe. While we have cp
of 2415.8 J/(kg ·K) provided in literature [Sohal et al., 2010], other values in literature for
cp of FLiBe could be as low as 1840 J/(kg · K) [Lichtenstein et al., 2022]. I plotted Pr of
Therminol VP-1 along with Pr for FLiBe using both these cp values in Figure 2.2:
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Figure 2.2: Comparison of FLiBe Prandtl Number with Therminol VP-1 (also known as
Dowtherm A) Prandtl Number [Nicolas Zweibaum, 2015], Low Bound FLiBe Prandtl Num-
ber [Lichtenstein et al., 2022] added for comparison

For the reader’s convenience in obtaining values to plot the Prandtl number comparisons
in Figure 2.2, a correlation describing the Prandtl number of Therminol VP-1 in the range
of 60◦C to 180◦C is shown in Equation 2.12:
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PrTherminol V P−1 =
442

T (◦C)0.757
(2.12)

This was constructed using regression algorithms in LibreOffice Calc to produce a trend-
line of Prandtl numbers produced using Equations 2.1 to 2.4. This correlation agrees with
the said trendline to within 3.2% of the Prandtl number value calculated from the thermo-
physical property data. Similarly, a low bound Prandtl number correlation for FLiBe in the
range 550◦C to 730◦C is shown in Equation 2.13:

PrFLiBe = 2.91× 10−4T (◦C)2 − 4.56× 10−1T (◦C) + 1.88× 102 (2.13)

Equation 2.13 reproduces plotted Prandtl number data in Figure 2.2 to within 4.4%.
Plotting Pr of Therminol VP-1 and FLiBe in Figure 2.2, we can see that these match

within the uncertainty of Pr. This confirms the notion that Pr matches between FLiBe and
Therminol VP-1 (also known as Dowtherm A) in the literature [Bardet and Per F Peterson,
2008; Nicolas Zweibaum, 2015]. In Figure 2.2, I have also added new measurement data for
FLiBe cp post the construction and operation of CIET (about 2015). As mentioned before,
a new cp measurement for FLiBe was reported at 1840 J/(kg ·K)± 5% [Lichtenstein et al.,
2022]. This was deemed to have matched the existing literature values [Lichtenstein et al.,
2022] about 2415.8 (J/(kg ·K)), due to the 20% uncertainties of FLiBe’s cp. On Figure 2.2,
the new cp data [Lichtenstein et al., 2022] was plotted as a low bound Pr for FLiBe. Similar
to Equation 2.13, a low bound Prandtl number correlation for FLiBe in the range 550◦C to
730◦C is shown in Equation 2.14:

PrFLiBe Lichtenstein2022 = 2.21× 10−4T (◦C)2 − 3.46× 10−1T (◦C) + 1.43× 102 (2.14)

Equation 2.14 reproduces plotted Pr data in Figure 2.2 to within 2.3%.
The associated uncertainty is calculated as:

(
δPr

Pr

)2

=

(
δµ

µ

)2

+

(
δcp
cp

)2

+

(
δk

k

)2

= 0.152 + 0.52 + 0.102(
δPr

Pr

)
= 0.187 ≈ 0.19

(2.15)

For the purposes of plotting error bars, I round down the fractional uncertainty of Pr to
0.18.

Thus, we have a high bound and low bound Pr due to different literature values for cp.
Figure 2.2 shows is that shows that the Therminol VP-1 Pr at 60 ◦C to 105◦C lies within the
high and low bound FLiBe Pr envelope which exists due to variability in cp from literature
data. Therefore, it further strengthens the notion that Therminol VP-1 can be used as a
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surrogate fluid for FLiBe at 560 to 680 ◦C. While Pr of Therminol VP-1 may not match Pr
of the low bound data within the uncertainty bounds shown in Figure 2.2, it still shows that
Therminol VP-1 can be used as a surrogate fluid for FLiBe for a FLiBe temperature of up
to about 615 ◦C. We could, of course, tweak the Therminol VP-1 Pr curve to make it match
the FLiBe data by adjusting the scaling of the graphs, but that is outside the scope of this
work. For now, Figure 2.2 shows that the original Pr of FLiBe and Pr of Therminol VP-1
matches within measurement uncertainties, confirming what was already stated in literature
[Bardet and Per F Peterson, 2008; Nicolas Zweibaum, 2015].

The matching Pr for FLiBe and Therminol VP-1, was a strong justification for using
Therminol VP-1 as a surrogate fluid for FLiBe in CIET. However, to obtain thermo-hydraulic
similitude with the FHR, one would also have to match the Reynolds (Re), Froude (Fr) and
Grashof number (Gr) in CIET to that of the prototypical FHR. If we do so, the Nusselt
Number (Nu) for both forced and natural convection would be matched [Bardet and Per F
Peterson, 2008], and there would be similitude between CIET and the prototypical FHR
[Nicolas Zweibaum, 2015]. Hence, CIET was built in such a way to achieve similitude. This
is approximately a height scaling of 50% and heater power scaling of 2% at prototypical
conditions [Nicolas Zweibaum, 2015]. Therefore, CIET was used to study natural circulation
phenomena [Nicolas Zweibaum, 2015] as well as forced circulation transients [De wet, Per
F. Peterson, and Greenwood, 2019] for the FHR. The details of scaling CIET to different
reactor types is beyond the scope of this dissertation. Interested readers can read Johnson’s
dissertation for a more in depth look at scaling specifically for CIET [I. M. B. Johnson, 2022].
In any case, we established use of CIET for FHR thermal hydraulic studies. Due to this,
it was also natural for system level codes meant to simulate the FHR to also be validated
using experimental data from CIET. For example, CIET has been used to validate models
in RELAP [Nicolas Zweibaum, 2015] and the System Analysis Module (SAM) [Zou, R. Hu,
and Charpentier, 2019].

2.3 Review of Digital Twins and Previous Work

Now that we have reviewed why CIET was used as a scaled IET for the FHR, we shall now
review previous work done to developed Digital Twins for CIET. I began my work in Digital
Twins previously in my master’s thesis where I explored means of constructing an isothermal
digital twin of the compact integral effects test (CIET) [Ong, 2023]. As mentioned earlier,
CIET is a scaled surrogate fluid integral effects test (IET) of the Gen IV reactor known as the
fluoride salt cooled high temperature reactor (FHR) [Zweibaum, Guo, et al., 2016]. This was
merely a first step towards constructing a fully fledged Digital Twin of CIET which is free
and open source (FOSS). The work for developing such a fully fledged Digital Twin entails
many details which can span several publications, some of which are beyond the scope of
this Dissertation. In this Dissertation, I only focus on developing a Digital Twin of CIET’s
Heater along with its required libraries. This is because CIET’s Heater is the most relevant
component required for development of a simulated neutronics feedback controller, which
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was my original goal.
While developing the Digital Twin initially, I also focused on making the libraries used

for it and its source code FOSS. FOSS Digital Twins are practically non-existent in the
context of the nuclear industry to the best of my knowledge. However, constructing a
FOSS Digital Twin along with its libraries would be beneficial for students and academic
work as it would make thermal hydraulics research more accessible and repeatable. FOSS is
preferred in contrast to proprietary Digital Twins because barriers such as paywalls can make
Digital Twins inaccessible to some parties [Al-Geddawy, 2020]. Furthermore, any academic
researcher can adapt FOSS code to his or her use case. Therefore, I started writing libraries
for the Digital Twin of CIET with a strong emphasis on FOSS methodology. We shall
first recap some of the highlights of my previous work in the master’s thesis to justify some
methods taken for this work as well as the nomenclature used. After that, we can then review
some literature that addresses some potential challenges faced during the development of the
thermal hydraulics library used to model CIET in real-time.

Classification of Digital Twins

Academic work for Digital Twins had to first start by addressing the definitions of Digital
Twins. This is because there are many differing definitions in literature of what exactly
constitutes a digital twin [Sleiti, Kapat, and Vesely, 2022; Kochunas and Huan, 2021; Van
der Valk et al., 2020]. Sometimes these definitions conflict, thus causing confusion and
frustrating the reader.

Therefore, I decided to classify digital twins into three types. This was to ensure that
all existing definitions of digital twins in literature were included, and also to ensure that
distinctions between the different types of digital twins are maintained. The typing method-
ology is based on a review work by Kochunas et al. [Kochunas and Huan, 2021]. Where
digital representations of a physical system were classed as different digital entities based on
the flow of real-time data between digital entity and physical asset. These digital entities
were called “digital model”, “digital shadow” and “digital twin”. Rather than use three new
terms, I decided to classify these entities into Type I, Type II and Type III Digital Twins
respectively. For the reader’s convenience, I reproduce a table used from my master’s thesis
here to illustrate the main aspects between the types of Digital Twins [Ong, 2023]:
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Digital
Twin Type

Real-Time Flow
of Data

Similar Terms used in
Literature

Applications

Type I None Digital Sibling
[Rasheed, San, and
Kvamsdal, 2020],

Digital Thread
[Boschert and Rosen,
2016]

Digital Model [Kochu-
nas and Huan, 2021],

Digital Twin Pro-
totype [Enders and
Hoßbach, 2019;
Grieves and Vickers,
2017]

Scenario and Risk Assessment
[Rasheed, San, and Kvams-
dal, 2020],

Penetration Testing [Eck-
hart and Ekelhart, 2018]

Type II From Physical
Asset

Digital Shadow
[Kochunas and Huan,
2021]

Digital Angel [Van
der Valk et al., 2020]

Digital Twin Instance
[Enders and Hoßbach,
2019; Grieves and
Vickers, 2017]

Fault Detection [Palak Jain
et al., 2019]

Predictive Maintenance

Type III To and From
Physical Asset

Digital Twin [Kochu-
nas and Huan, 2021]

Digital Twin Instance
[Enders and Hoßbach,
2019; Grieves and
Vickers, 2017]

Model-Based Control [Enders
and Hoßbach, 2019; Semeraro
et al., 2021]

Table 2.1: Digital Twins and their Types

The Digital Twin typing system works by classifying digital twins according to the flow
of real-time information between the digital twin and the physical asset. As seen in table 2.1,
Type I Digital Twins do not necessitate flow of real-time information between physical asset
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and digital twin. For the reader’s convenience, I will again reproduce a figure used in my
master’s thesis to illustrate how real-time data flows between the physical asset, user and
digital twin in real-time [Ong, 2023]. This is Figure 2.3:

Figure 2.3: Real-Time Data Flow Comparison for each Type of Digital Twin [Ong, 2023]

In contrast, Type III digital twins necessarily require two way flow of real-time infor-
mation between physical asset and digital twin. Classification of Digital Twins in such a
manner is meant to help the reader have a more intuitive grasp as to what a digital twin is
when reading literature. At the same time, the Type classification necessarily implies a set
of functions each type of digital twins is best suited for. This is because the flow of real-time
data is what ultimately impacts capabilities of the said type of Digital Twin. At the same
time, the differing requirements for real-time data flows between the types of Digital Twins
and their physical assets will ultimately determine development time and costs. This knowl-
edge is very important for the manager making decisions during the product development
life cycle. Therefore, I chose this naming system. A fuller explanation of the rationale for
this Digital Twin typing system is further explored in my master’s thesis [Ong, 2023], and I
will not repeat it here.

I hoped that this nomenclature would not confuse readers with extra terminology and
instead help the reader make some sense of the inconsistent terminology used in Digital Twin
literature. Hence, this naming convention will continue to be used in this work. In this work,
the Digital Twin I am constructing for CIET is necessarily a Type I Digital Twin. However,
this Type I Digital Twin is meant to be FOSS so that it can be extended with Type II or
Type III capability in future work.
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Isothermal Digital Twin of CIET Design

Constructing a Type I Digital Twin of CIET would be quite difficult if I were to write all the
libraries from scratch. Therefore, I only developed fluid flow libraries in previous work. This
was meant only as a first iteration or first step towards constructing a fully fledged Type I
Digital Twin of CIET.This is because CIET had several components, and even constructing
a Type I Digital Twin of CIET took quite awhile.

A figure of CIET used in my master’s thesis is reproduced here for the reader’s conve-
nience [Ong, 2023]:
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Figure 2.4: Nodalised Model of CIET without Bypass Branch or Direct Reactor Auxiliary
Cooling System (DRACS) Loop

Figure 2.4 is a simplified model of CIET because I did not include the bypass branch. This
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is because previous models developed, such as those in SAM, excluded the bypass branch
[Zou, R. Hu, and Charpentier, 2019]. Furthermore, most experimental tests I could use for
code validation excluded the involvement of the bypass branch [De Wet and Per F Peterson,
2020; Nicolas Zweibaum, 2015]. Therefore, I excluded it. Additionally, while the Direct
Reactor Auxiliary Cooling System (DRACS) loop was included in CIET’s facility physically
[Nicolas Zweibaum, 2015], I neglected to include the DRACS loop because it was mostly
not used in isothermal operation. Hence, the both the DRACS loop and bypass branch was
effectively ignored in my isothermal Digital Twin.

The first Digital Twin was meant to mimic the CIET setup as much as possible at least
for isothermal operations. This meant that the mass flowrates for each branch needed to be
calculated in real-time (roughly every 100 ms) because the Labview Client received data from
the Data Acquisition System every 100 ms. Furthermore, since CIET communicated with
the user via a server client interface through a local network and this, too, was meant to be
replicated. The server-client interface was important because signals to and from CIET via
the Data Acquisition System (DAQ) had a few milleseconds of lag. This time delay would
ultimately affect the behaviour of controllers we wish to implement. Furthermore, CIET was
being used for remote operation studies [Poresky et al., 2022], and building a digital twin
with a server-client interface over a network was meant to facilitate such remote operations
research.

These two requirements drove the design of the isothermal digital twin, and will continue
to drive the design as we construct a digital twin with heat transfer capabilities.

Server Client Interface

The server-client interface with remote operation via Open Platform Communications Uni-
fied Architecture (OPC-UA) protocol can be visualised by Figure 2.5 [Ong, 2023]:
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able Frequency
Drives)
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OPC-UA Server Code OPC-UA Client

OPC-UA Client

User Input/Output

Figure 2.5: Approximate Remote Operation Architecture for CIET

We can see that operators are able to control CIET remotely via a web server run-
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ning an OPC-UA server via an OPC-UA client. These servers communicate directly with
ARCO which obtains process data from a National Instruments PXI-express or “PXI-e”
Programmable Logic Controller (PLC). The PLC is able to obtain process data and control
CIET via communication with sensors and control elements.

The Digital Twin was meant to somewhat mimic this architecture, or at least be built
in a way that extension to this architecture would be possible without rewriting the entire
code. Its server-client architecture is shown in Figure 2.6:

Digital Twin OPC-
UA Server (Linux)

Python OPC-UA Server

Maturin PyO3 Interface

Rust Fluid Mechanics
Calculation Subrou-
tines

Router

OPC-UA Client
(Windows or Linux)

Python GUI OPC-UA Client

User Input/Output

Figure 2.6: Architectural Diagram of Isothermal Type I Digital Twin

Designing CIET in this manner ensured that remote operation studies could be performed
in future using this digital twin as a testbed. This server-client interface also allowed for
a variety of OPC-UA clients to interface with the digital twin. This made the digital twin
flexible with regards to its choice of OPC-UA client. I retained this capability and architec-
ture when I constructed a digital twin of CIET’s Heater with heat transfer capabilities or
other such features.
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Rust and Python Libraries

In Figure 2.6, we mentioned the use of the Rust and Python programming languages to
construct this FOSS digital twin of CIET.This was because Rust had sufficiently high speed
to perform calculations within the 100 ms even when the binary was not optimised for speed
even on an everyday consumer laptop (Ideapad) [Ong, 2023]. This gave some assurance that
when more calculation demands were placed on the Digital Twin, the Digital Twin could still
perform in a satisfactory manner even on a single thread. Python was used in conjunction
with Rust code because it contained an OPC-UA server and client package [Oroulet et al.,
2022] which was relatively easy to use (compared to the C# server and client FOSS codes)
and established in literature[Zidek et al., 2020]. As a result, Python and Rust was used
in using Maturin PyO3 as an interface. Further justifications for using Rust are described
below, with a fuller version available in my masters thesis [Ong, 2023]. Due to a successful
programming experience using the Rust programming language, I decided to continue using
the Rust programming language to develop heat transfer libraries for a Type I Digital Twin
of CIET’s Heater.

Unit Safety with Rust Rust features a package which helps the user write code in a
unit safe manner. This means that calculations with the wrong units can be prevented at
compile time. These erroneous calculations include adding a quantity in feet to a quantity
in meters, or adding a quantity of length to a quantity of energy by accident. Such mistakes
have proved costly as shown by the crash of the Mars Polar lander [Oberg, 1999], where
errors due to incorrect units caused US$125 million (in 1999 dollars) to go up in smoke.

While we are not in immediate danger of wasting several million US dollars, we still wish
to have safeguards against as this could allow us to avoid unit based errors which could be
costly in terms of time. The package that provides this safety is called “uom” which is short
for “Units of Measure” [Boutin, 2023]. This package has proved useful and I used it when
developing heat transfer libraries for the digital twin.

Now, unit safety is quite dependent on Rust’s static type system. Static typing is absent
by default in Python, and therefore quantities are most simply represented as floating point
values (floats). These quantities do not have units attached to them, which makes it “unit
unsafe”. Having the OPC-UA server run in Python means that every unit safe quantity
that we wish to transmit over the OPC-UA server-client architecture needs to be converted
into floats. For an isothermal simulation, this was workable. However, for a fully fledged
Digital Twin of CIET with Heat Transfer simulation capabilities, we would need to at least
replicate all the thermocouples found within CIET. Since CIET has on the order of 30 or
more thermocouples, we would have to include all these sensors in our Digital Twin client.
This means we need 30 or so Python float values in our Python client. If we were to use unit
safe calculations in Rust, we would need to translate as many as 30 unit safe quantities from
Rust to Python via the Maturin PyO3 interface. This may not be practical, and hence, we
used a Rust OPC-UA server as opposed to Python for this very reason.
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Data Race Safety with Rust Furthermore, Rust is able to guide the programmer to
build multithreaded applications with significantly less fear of data races. This gives the
assurance that when extra speed is required using parallel computing, the code can be
upgraded using Rust without fear of extremely hard to debug data races [Saligrama, Shen,
and Gjengset, 2019]. Having the compiler perform compile time checks for memory safety
and thread safety is extremely helpful when the codebase gets more complex. I perceive
that as more features are added to the Digital Twin, the codebase would become larger, and
the Digital Twin may require parallelism some time in future to ensure that calculations are
fast enough. Using Rust would ensure Data Race Safety at compile time so that parallelism
would be less painful to implement in future as compared to other languages. Therefore,
Rust will continue to be used in writing Digital Twin libraries and constructing the Digital
Twin.

Parallel Branch Flow Solver with Two Levels of Nested Iteration

One key feature of the Digital Twin constructed for CIET is its solver for flow in parallel
branches. The key issue with solving for flow across parallel branches is nested iterations.
Increasing the level of nested iterations would tend to exponentially increase the time required
to obtain a solution. This can be shown in Figure 2.7 [Ong, 2023]:
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Figure 2.7: Approximate Computation Time for Nested Iteration Loops [Ong, 2023]

These nested iterations arise because for a series of pipes, finding mass flowrate ṁ from
pressure loss or pressure change ∆P normally requires iteration. One could conceivably
pre-calculate the system curve and thus save the iteration time. However, system curves
would change with temperature distribution. Therefore, this pre-calculation approach was
not taken. This is one level of iteration.

For flow through a collection of parallel branches, finding ∆P given a total ṁ across the
branches requires iteration. Given that we must iteratively guess individual ṁ given a ∆P
across each branch, we would then arrive at an additional level of iteration. We would thus
have two levels of nested iterations.

Now, suppose the parallel branches are part of a larger collection of pipes or components
in series, finding ṁ from ∆P across this collection would require a third level of nested
iteration. I found that this took exceedingly long for the solver to find a solution. Figure 2.7
shows that the exponential increase in the number of iterations looked like.

To solve this problem, CIET was modelled as three fluid branches in parallel so that
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only two levels of nested iteration were required. I intend to continue using this approach in
this work. A fuller explanation is available in my masters’s thesis [Ong, 2023] for interested
readers.

Summary of Previous Results

The Digital Twin (Type I) was built with a server-client interface using Rust and Python. It
was modelled as three parallel flow branches so that the solver was able to obtain solutions
within 100ms. Experimental data from previous isothermal flow tests [Jeffrey E Bickel,
Nicholas Zweibaum, and Per F Peterson, 2014; Nicolas Zweibaum, 2015] was used to validate
it. For the CIET Heater within the Heater Branch, forced convection between the heater
and CTAH branches is very relevant. Therefore, the plot is presented here in figure 2.8 [Ong,
2023]:
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Figure 2.8: Digital Twin System Curve Compared to Experimental System Curve from
Manometer M-42 and M-43 Plotted in Absolute Pressure Units (CTAH and Heater Branch)

The dataset used for Figure 2.8 is presented in table 2.2 [Ong, 2023]:
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FM-40 Mass Flowrate
(kg/s)

Digital Twin Loop
Pressure Drop (Pa)

Experimental
Data

Correlation
Pressure Drop

(Pa)

0.177 16000 15920

0.170 15000 14920

0.148 12000 11930

0.132 10000 9930

0.114 8000 7930

0.0938 6000 5940

0.0706 4000 3950

0.0418 2000 1960

0.0236 1000 970

0.0127 500 480

0.00527 200 180

0.00263 100 90

0 0 0

-0.0418 -2000 outside data
range

-0.132 -10000 outside data
range

Table 2.2: Digital Twin System Curve Compared to Experimental System Curve from
Manometer M-42 and M-43 Plotted in Absolute Pressure Units (CTAH and Heater Branch)

We present also the residual plots, we calculate the residuals (δ∆Ploop pressure drop) by:

δ∆Ploop pressure drop = ∆Pdigital twin prediction −∆Pexperimental data correlation (2.16)

These plots are shown in figure 2.9 [Ong, 2023]:
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Figure 2.9: Absolute Residual Plot for CTAH and Heater Branch System Curves with Error
Bars

These error bars constitute a ±2% flowmeter error plus uncertainty with regards to using
graphereader [K. P. Larsen, 2022] to read manometer height data from graphs. The latter
of which constitutes an additional uncertainty of ±50Pa. More details can be seen in my
master’s thesis [Ong, 2023]. The results were deemed satisfactory as the model matched the
experimental data within these error bars.

Since the results were satisfactory in previous work, CIET’s future iterations of Digital
Twins with heat transfer capability will use this isothermal version of the Type I digital
twin as a baseline. For now, however, we focus on developing heat transfer libraries to first
construct a real-time Digital Twin of CIET’s Heater and some of the components surrounding
it before embarking on full loop testing and validation in future work.
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2.4 Review of Heat Transfer Libraries and

Correlations

Now, to give the digital twin heat transfer capability, libraries need to be written to perform
these calculations. In this section, we shall discuss some important equations, correlations
and data to be used for the development of a heat transfer library. Most of the efforts will
focus on developing a model on CIET’s heater. However, to complete the heat transfer
library, we will need to model heat exchangers. This is mostly left for future work since we
only need a digital twin of the heater in order to test if the controller is working as intended.
Lastly, we shall explore some literature important for developing numerically stable solvers.

Mass, Energy and Momentum Balance

Preliminaries

To start modelling CIET’s Heater, we need to first consider the general equations to solve
for heat transfer. These are the mass, energy and momentum balances. For the purposes
of real-time simulations, we need to ensure that the models are simple enough to solve in
real-time. For flow in pipe geometries, it is common to use a 1D nodalised model for fluid
flow through CIET [Zou, R. Hu, and Charpentier, 2019; De Wet and Per F Peterson, 2020;
Nicolas Zweibaum, 2015]. Of course, the pipes surrounding the fluid may be represented by
a 2D mesh, but the fluid mesh for system level codes is a 1D mesh. Therefore, we will only
consider 1D models in this subsection. For this purpose, it is useful to review some of the
1D mass, energy and momentum balances in literature, such as those presented in Modelica
[Casella, Leva, et al., 2003]. This is because Modelica is a well known systems level code for
modelling transients for power plants.

The mass balance equation for a 1D geometry is [Casella, Leva, et al., 2003]:

AXS
∂ρ

∂t
+
∂ṁ

∂x
= 0 (2.17)

Where AXS is the cross sectional area, ρ is the density of the differential volume dV , ṁ
is the mass flow rate, and x is the length coordinate in the direction of flow.

The momentum balance is [Casella, Leva, et al., 2003]:

∂ṁ

∂t
+
ffanningPw

2ρA2
XS

ṁ|ṁ|+ ρgAXS
∂z

∂x
+ AXS

∂P

∂x
= 0 (2.18)

In Equation 2.18, in addition to the terms already defined for Equation 2.17, we have
Fanning friction factor ffanning, wetted perimeter Pw, acceleration due to gravity g, height
for calculating hydrostatic pressure z and pressure P . The absolute mass flow rate ṁ is used
to account for flow reversal in the momentum equation. Additionally the derivative ∂ṁ

∂t
is

often set to zero to avoid fast pressure oscillations [Casella, Leva, et al., 2003]. The timescale
of these oscillations is quite often connected to the speed of sound in that medium.
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The energy balance is [Casella, Leva, et al., 2003]:

ρAXS
∂henthalpy

∂t
+ AXS

∂P

∂t
= −ρAXSu

∂henthalpy
∂x

+ qwall
Awall

L
(2.19)

In Equation 2.19, in addition to the previously defined terms for Equation 2.17 and
2.18, I define henthalpy for specific enthalpy per unit mass for the control volume, average
fluid velocity u and qwall, the heat flux received or lost through lateral surfaces. henthalpy is
denoted as such to prevent confusion with heat transfer coefficient, also commonly denoted
h. Awall

L
is the heated surface area of the wall Awall per unit length, where L is the length of

the 1D geometry. For tubes, Awall

L
= Pw [Casella, Leva, et al., 2003].

Review of Previous Work in Solving Momentum and Mass Balances

Previously in my master’s thesis, I discussed how to solve the mass and momentum equa-
tions in real-time using the Boussinesq approximation [Ong, 2023]. For this, I ignored density
changes in the fluid except when it comes to calculating hydrostatic pressure for the momen-
tum equation [Bejan, 2013]. Using the Boussinesq approximation, the mass balance reduces
to [Ong, 2023]:

ṁi = constant (2.20)

For a circuit of fluid components in series, the mass flowrate through each component (ṁi)
is the same. For momentum balance, I essentially solved a discretised form of equation 2.18
where the pressure oscillations are ignored and each component is represented by a control
volume. When I considered the source terms such as pumps in the system, I arrived at
Equation 2.21 [Ong, 2023]:

∆Pchange −
n∑
i

∆Phydrostatic i −
n∑
i

∆Psource i = −
n∑
i

1

2

ṁi
2

ρA2
XS,i

(fdarcy,i
Li

Di

+Ki) (2.21)

In Equation 2.21, ∆Pchange is the total pressure change across a set of n fluid components
connected in series,

∑n
i ∆Phydrostatic i is the summation of hydrostatic pressures across the

same n fluid components,
∑n

i ∆Psource i is the summation of pressure sources (such as pumps)
across these n components. ṁi is the mass flow rate across component i, AXS,i is the
cross sectional area for component i, fdarcy,i is the Darcy friction factor, Li is the length of
component i, Di is the hydraulic diameter for component i and Ki is the form loss coefficient
for component i. In contrast to Equation 2.18, I solved the mass flow reversal issue in my
solver by using a conditional “if” block rather than the modulus sign. I then used iterative
procedures to solve for ṁ across series of fluid components (branches) and therefore obtained
the mass flow rate of the system [Ong, 2023]. I reproduced a figure from my master’s thesis
in Figure 2.10 with some small edits for the reader’s convenience [Ong, 2023]:
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Start

User gives bounds for ṁ, error
tolerance and sets ∆Pchange user set

Brent-Dekker Algorithm determines ṁ

Guess ∆Pchange guessed given ṁ using Momentum Balance

compute error ε = |∆Pchange user set −∆Pchange guessed|

check ε < tolerance

converged, return ṁ

not converged

yes

no

Figure 2.10: Iterative Solution Procedure for a Series of Fluid Components

Figure 2.10 describes how the momentum and mass balances are iteratively solved over
each branch of fluid components. The momentum balance in Figure 2.10 refers to Equa-
tion 2.21. In the special case that the branch is a complete loop, ∆Pchange = 0 Pa. Much of
the detail, including the Brent-Dekker algorithm, and the methodology to solve flow in par-
allel branches, is already covered in my master’s thesis [Ong, 2023], and briefly in Figure 2.7
for the parallel branch solver. Hence, I will not repeat the discussion here.

As discussed in my master’s thesis, I intended to solve the momentum and mass balances
the same way such that the mass and momentum balances are not tightly coupled to the
heat balance equations at each time step [Ong, 2023]. This procedure is known as operator
splitting [MacNamara and Strang, 2016]. We can visualise the overall process for solving
mass, momentum and energy balances using operator splitting using Figure 2.11:
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Start

Obtain Fluid Properties, ṁ,
from time = t. Set error tol-
erance and ∆Pchange user set

Solve Mass and Momentum
Balances using Fluid Prop-
erties from Last Timestep

Solve Energy Balances
using Mass Flowrates
from Last Timestep

Combine solutions from
Mass, Energy and Mo-
mentum Balances for

solution at time = t + ∆t

Finished

Figure 2.11: Operator Splitting Solution Procedure at Each Timestep

By using operator splitting, I can assign a computation thread to the mass and momen-
tum balance, and then assign several other computing threads to solve the energy balance
equations. Thus, I can parallelise my calculations. Having parallelised computing capability
is important because it helps me achieve real-time simulation capability. Real-time simula-
tion is, in turn, a must for Digital Twin construction. In addition to parallelisation, operator
splitting also allows me to decouple the solution procedure of energy balances and the mass
and momentum balances at each time step. Therefore, for liquid flows such as those in CIET,
I can re-use the mass and momentum balance procedures in my master’s thesis and consider
the solution procedure for energy balances at each timestep separately. For this dissertation,
I focus only on solving the energy balances in Figure 2.11 assuming that the mass flow rates
from the previous timestep are already provided.

Discretisation of Energy Balance Equations

Derivation of Discretised 1D Heat Transport Equations for Fluid To start our
discussion on energy balance, let us revisit Equation 2.18:

ρAXS
∂henthalpy

∂t
− AXS

∂P

∂t
= −ρAXSu

∂henthalpy
∂x

+ qwall
Awall

L
(2.19)
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For liquids, it is common to assume that cv ≈ cp, where cv is constant volume heat
capacity and cp is constant pressure heat capacity [Perry and Green, 2015]. Therefore,
the enthalpy change is approximately equal to the internal energy change. By using this
approximation, we can neglect the pressure term in Equation 2.18.

ρAXS
∂henthalpy

∂t
= −ρAXSu

∂henthalpy
∂x

+ qwall
Awall

L

We can then discretise the equation using an explicit or implicit time marching scheme.
For simplicity, I show the explicit time marching scheme first.

ρAXS

ht+∆t
enthalpy,x − htenthalpy,x

∆t
=− ρAXSu

htenthalpy,x+0.5∆x − htenthalpy,x−0.5∆x

∆x

+ qtwall

Awall

L

Where htenthalpy,x is henthalpy at length coordinate x and time t. ∆t is the user specified
time step, and ∆x is the user specified mesh length. If we consider the length of just one
1D control volume, ∆x = L. We can multiply ∆x to all sides of the equation to obtain
an equation in terms of control volume masses mCV . Where mCV = ρAXS∆x. Moreover, I
take the prevailing mass flow rate ṁ = ρAXSu. Note also that based on the operator split
method, we use ṁ from the last time step. So ṁ is assumed to be known or solved for. With
these in mind, resulting equation becomes:

mcv

ht+∆t
enthalpy,x − htenthalpy,x

∆t
=− ṁ(htenthalpy,x+0.5∆x − htenthalpy,x−0.5∆x)

+ qtwallAwall

Basically, over each control volume, we sum the advection terms of enthalpy entering
the control volumes, and the heat fluxes entering the control volume due to the user set
boundary conditions. For qwall at a solid-fluid interface with a known wall temperature, the
heat flux can be expressed as:

qwall = −hwall(Tx − Twall)

When we include this back in our derivation:

mcv

ht+∆t
enthalpy,x − htenthalpy,x

∆t
=− ṁ(htenthalpy,x+0.5∆x − htenthalpy,x−0.5∆x)

+ htwallAwall,x(T
t
wall − T t

x)

To find T t
x, we shall need a way to relate henthalpy to T. Additionally, we shall need to

find hwall. Now, henthalpy is, in general, a function of T:
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henthalpy(T ) =

∫ T

Tref

cp(T )dT

Where cp is the constant pressure heat capacity of the fluid. For Therminol VP-1, we
can use existing correlations [Zou, R. Hu, and Charpentier, 2019; Nicolas Zweibaum, 2015]
to find:

henthalpy(T ) =

∫ T

Tref

1518 + 2.82(T ◦C)dT

These expressions have already been given in literature [Zou, R. Hu, and Charpentier,
2019]:

henthalpy(T ) = href + 1518(T − Tref ) +
2.82

2
(T 2 − T 2

ref )

For Therminol VP-1, I take href = 0 J/kg at Tref = 20◦C. Hence, I obtain Equation 2.22:

henthalpy(T
◦C)(J/kg) = 1518(T ) +

2.82

2
(T 2)− 30924 (2.22)

Now, when it comes to calculating hwall and the heat flux at the walls of the fluid volume,
I found it convenient to think of the problem in the form of a thermal circuit as was done in
literature [Perry and Green, 2015]. In this regard:

Rthermal =
∆T

Q

Where Q is the heat flow in watts, and ∆T is the respective temperature difference.
Thermal resistance in SI units is in Kelvin

Watts
. We can also define a thermal conductance

Hthermal:

Hthermal =
1

Rthermal

=
Q

∆T

Hthermal in SI units is Watts
Kelvin

. For the convective thermal conductance at the solid-fluid
interface, we can express this as:

Hthermal,convection,x = hwallAwall,x

hwall can be found via Nusselt Number (Nu) correlations depending on its geometry, Re
and Pr. In the explicit time marching scheme, Nu is based on Re, Pr of the last time step.
This is assumed to be known at the time of calculation. We shall discuss the correlations used
when reviewing models of CIET’s Heater specifically. If we were to substitute expressions
for thermal conductance in our equations, we arrive at:
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mcv

ht+∆t
enthalpy,x − htenthalpy,x

∆t
=− ṁ(htenthalpy,x+0.5∆x − htenthalpy,x−0.5∆x)

+H t
thermal,convection,x(T

t
wall − T t

x)

Now, when solving the convection heat transport equations, we present them as a matrix
with i elements representing i control volumes. We can express the heat transfer equations
in this form as well:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= ṁ(−htenthalpy,i + htenthalpy,i−1)

+H t
thermal,convection,i(T

t
wall,i − T t

i )

Where htenthalpy,i is the henthalpy at control volume i and time t, T t
wall,i is the temperature of

the wall at control volume i and time t. T t
i is the temperature of the fluid control volume in

control volume i at time t. For a control volume, we assume it is well mixed. Therefore, the
flows leaving the control volume have the enthalpy of htenthalpy,i. The enthalpy entering the
control volume has the enthalpy of htenthalpy,i−1 assuming flow is in the positive x direction.
If flow is in the negative x direction, such that ṁ <0 kg/s, we should use:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= |ṁ|(−htenthalpy,i + htenthalpy,i+1)

+H t
thermal,convection,i(T

t
wall,i − T t

i )

(2.23)

|ṁ| is the absolute value ṁ. This can be programmed in using a conditional statement
or “if” code block based upon the how ṁ compares to 0 kg/s. Now, we have discussed most
of the terms in the fluid convection equations except for Twall,i. We shall discuss treatment
of Twall,i in the following paragraphs.

Derivation of Discretised 1D Heat Transport Equations for Solid Now, in these
1D control volume equations for heat transport, we assume that these fluids are in contact
with some wall with temperature Twall,i. Twall,i can be set by the user to be a constant
wall temperature boundary condition. Alternatively, as discussed earlier, the user may set
qwall,i, the wall heat flux at control volume i directly, thus setting the boundary condition.
However, this is quite unrealistic. It is more common in literature to model the pipe walls
with some finite thermal inertia and thermal diffusivity α [Zou, R. Hu, and Charpentier,
2019; Nicolas Zweibaum, 2015; De Wet and Per F Peterson, 2020]. Thus, we shall need
to consider conduction heat transport equations as well. For this purpose, we can use the
Equation 2.23, but set the convection terms to zero by setting ṁ = 0 kg/s. Additionally,
the heat flow into the fluid Hthermal,convection,i(T

t
wall,i − T t

i ) is now heat lost from the wall
Hthermal,conduction,i(−T t

i + T t
wall,i). With these considerations, we get:
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mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= H t

thermal,conduction,i(−T t
i + T t

wall,i)

In this form, there are a few things of note. Firstly, the thermal conductance between
the control volume centre and the wall must be calculated. This depends on the geometry
of the system. For pipes, it is often common to use cylindrical geometry. For cylindrical
geometry, the thermal resistance can be expressed as [Perry and Green, 2015]:

Rthermal,cylinder =
ln(r2/r1)

2πkL

Where Rthermal,cylinder measures the thermal resistance between two radii r1 and r2 where
r2 > r1. ln is the natural logarithm, k is the thermal conductivity, and L is the cylinder
length. Based on the thermal resistance model, we note that the magnitude of heat flow at
the wall can be expressed as:

|Qwall,i| =
|Tsolid,i − Tfluid,i|

Rthermal,cylinder,i +Rthermal,convection,i

= H t
thermal,conduction,i(| − T t

i + T t
wall,i|)

|Qwall,i| = H t
thermal,solid↔fluid,i|Tsolid,i − Tfluid,i|

Where:

H t
thermal,solid↔fluid,i =

1

Rt
thermal,cylinder,i +Rt

thermal,convection,i

Thus, we can eliminate the wall temperature Twall, which is an unknown, in both equa-
tions. In the conduction equation, this is expressed as:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
+H t

thermal,solid↔fluid,i(−T t
i + T t

fluid,i)

Next, the conduction term is neglected because we implicitly assumed in Equation 2.19
that the heat advection term dominates the heat transport such that heat diffusion or con-
duction term is relatively negligible. This relative importance of heat advection to diffusion
is quantified by the Peclèt Number (Pe) where Pe = Re Pr. When nondimensionalising
the heat transport equation, it can be shown that the conduction term scales as 1

Pe
[Bejan,

2013; April Novak, 2020]. This derivation is already well known in literature [Bejan, 2013;
April Novak, 2020] and I will not repeat it here. Hence, conduction in the axial direction is
often neglected in literature as it was for Equation 2.18 [Casella, Leva, et al., 2003]. For us,
we shall need to add the conduction term back into the equation. This is because we want
a system of equations which works regardless of Pe. The conduction term is described by
Fourier’s Law [Bejan, 2013; Perry and Green, 2015]. I show Fourier’s law for a 1D geometry:
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Q = −kA∂T
∂x

(2.24)

Where Q is heat flow in watts, k is thermal conductivity, A is the area for which heat is
transported. Fourier’s law can be discretised using an explicit time marching scheme. If we
do so and consider heat flows between control volume i and control volume i− 1, we obtain:

Qt
i = −ktiAt

i

T t
i − T t

i−1

∆x
Now, Qt

i is the heat flow into control volume i at time t, kti is the relevant thermal
conductivity to be used for control volume i at time t, At

i is the relevant heat transfer area
for control volume i and time t. The area can usually be assumed to be constant as the
geometry should not change significantly with time in this case. For convenience, we can
once again use thermal resistance and conductance Hthermal,conduction:

Qt
i = −H t

thermal,conduction,i(T
t
i − T t

i−1)

Now, if kti was constant, our lives would be easier. However, kti is usually temperature
dependent. Therefore, the thermal resistance between two adjacent nodes interfacing through
heat transfer area A can be described as:

Rt
thermal,conduction,i↔(i−1) =

∆x

2ktiA
+

∆x

2kti−1A

Where Rthermal,conduction,i↔(i−1) is the thermal resistance between two adjacent nodes i
and i− 1. Therefore, the conduction heat flow between two adjacent bodies becomes:

Qt
i↔(i−1) = −H t

thermal,conduction,i↔(i−1)(T
t
i − T t

i−1)

Now, for 1D bodies, we can assume that the control volume has two adjacent control
volumes with which to conduct heat to and from. This is true for all control volumes except
those found at the boundaries.

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= Hthermal,solid↔fluid,i(−T t

i + T t
fluid,i)

+H t
thermal,conduction,(i−1)↔i(−T t

i + T t
i−1)

+H t
thermal,conduction,(i+1)↔i(−T t

i + T t
i+1)

For the first control volume:

mcv

ht+∆t
enthalpy,1 − htenthalpy,1

∆t
= H t

thermal,solid↔fluid,1(−T t
1 + T t

fluid,1)

+H t
thermal,conduction,2↔1(−T t

1 + T t
2)

+Qt
axial boundary,start
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Where Qaxial boundary,start is the user specified boundary condition at the start of the
control volume array.

For the last control volume:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= H t

thermal,solid↔fluid,i(−T t
i + T t

fluid,i)

+H t
thermal,conduction,(i−1)↔i(−T t

i + T t
i−1)

+Qt
axial boundary,end

Where Qaxial boundary,end is the user specified boundary condition at the end of the control
volume array. One simplifying assumption we can make is for there to be zero heat flux in
direction of the flow. Alternatively, we may choose to neglect axial heat flux in comparison
to the other terms. In either case, Qaxial boundary,start and Qaxial boundary,end are neglected.

Now, for the heater specifically, we can add in a volumetric heat generation term Qt
gen,i.

We can also consider that the solid loses some heat to the air at temperature T t
air. We can

add these two terms in to obtain:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= H t

thermal,solid↔fluid,i(−T t
i + T t

fluid,i)

+H t
thermal,conduction,(i−1)↔i(−T t

i + T t
i−1)

+H t
thermal,conduction,(i+1)↔i(−T t

i + T t
i+1)

+Qt
gen,i +H t

thermal,air↔i(−T t
i + T t

air)

Where Hthermal,air↔i is the thermal conductance between the air and the centre of the
control volume. If we substitute Hthermal,air↔i into Equation 2.23, we obtain:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= |ṁ|(−htenthalpy,i + htenthalpy,i+1)

= H t
thermal,solid↔fluid,i(−T t

i + T t
solid,i)

Discretised 1D Heat Transport Equations for Conjugate Heat Transfer (CHT)
When solving these two 1D heat transport equations, we essentially solve for the following
layout of control volumes:
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Figure 2.12: Control volume arrangement for 1D conjugate heat transfer

In Figure 2.12, I visualise the mesh as a thermal resistance network. In Figure 2.12 the
solid control volumes are axially coupled to adjacent solid control volumes in a 1D mesh.
The 1D mesh of solid control volumes is then laterally coupled to the 1D mesh of fluid
control volumes via thermal resistances. The relevant thermal resistances or conductances are
then calculated based on geometry, thermal conductivity and Nusselt number correlations.
The solid control volumes are also laterally coupled to ambient air boundary conditions of
constant temperature. The relevant thermal resistances are based on the pipe dimensions
and the heat transfer coefficient to air. For the heat transfer coefficient to air, a value of
typically 6 to 20 W/(m2 ·K) has been used [De Wet and Per F Peterson, 2020].

Solution Procedure for a Heat Generating Pipe Figure 2.12 can be used to describe
a Conjugate Heat Transfer problem in a heat generating pipe. This is important to consider
because CIET’s Heater geometry bears some resemblance to a heat generating pipe [Nicolas
Zweibaum, 2015]. In this case, the fluid control volumes are centred at the radial coordinate
r = 0, whereas the solid control volumes are centred at the radial coordinate r = OD+ID

4

where ID is the internal diameter of the pipe, and OD is the outer diameter of the pipe.
If I were to start solving for transient heat transfer in this geometry, I would need to set

mCV first. For simplicity, I will just divide the inner fluid cylinder and the outer solid ring
uniformly over i nodes. In so doing:

mCV,solid =
msolid

i
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mCV,fluid =
mfluid

i

As mentioned in this section, I also assume that the mass flow rate ṁ has already been
obtained because of operator splitting. Next, I set the initial conditions of the control
volumes. For simplicity, I set all the control volumes to some uniform temperature Tinitial.
I also set the temperature of the pipe inlet to some inlet temperature Tinlet so that the
enthalpy entering the pipe from the left is hinlet. The boundary condition at the pipe exit
is adiabatic so that no heat flux flows through the solid at either end of the solid control
volumes. Likewise, I also set the heat flux for the fluid control volumes at both ends of the
pipe to be zero. The only means of transferring heat along the path of fluid flow is advection.

With this setup, I would then take the following steps in each time step to solve for the
temperature profile for the fluid and solid:

Start

User sets ∆t and Qgen,i for
the heat generating pipe

Obtain henthalpy, ṁ,
from previous time step.
Calculate Hthermal,i from
T t
i and pipe geometry

Obtain ht+∆t
enthalpy,i for

both solid and fluid
control volume arrays

Obtain T t+∆t
i from

ht+∆t
enthalpy,i for both solid and
fluid control volume arrays

Finished

Figure 2.13: Conjugate Heat Transfer Solution Procedure for Two Laterally Coupled 1D
Arrays of Control Volumes using Explicit Time Scheme at each Time Step
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When obtaining T t+∆t
i from ht+∆t

enthalpy,i, we may use some solver to obtain the temperature
iteratively as we may not always know how enthalpy varies with temperature. In my master’s
thesis, I used the Brent-Dekker method to solve for ṁ given a user set pressure change over
a series of pipes [Ong, 2023]. For this dissertation, I use the same Brent-Dekker method to
obtain the T t+∆t

i from ht+∆t
enthalpy,i.

Generalising Conjugate Heat Transfer (CHT) Equations to Include more Radial
Nodes and Piping Insulation While we have discussed solving a simple CHT problem
for a heat generating pipe involving two 1D arrays of control volumes, meshes presented in
literature are usually more complex. We may have more than one set of radial nodes in the
solid mesh modelling the pipe [De Wet and Per F Peterson, 2020]. Moreover, we may also
have insulation surrounding the pipe to minimise parasitic heat loss as found in many of the
pipes in CIET [Nicolas Zweibaum, 2015]. In such a case, I can simply couple more 1D arrays
of solid control volumes laterally.

Figure 2.14: Control volume arrangement for 1D conjugate heat transfer with extra stacks
of laterally coupled arrays of solid control volumes

Given these new stacks of control volumes, we will need to add more terms to account for
the extra laterally coupled control volumes added in the radial direction. In Figure 2.14, there
are two arrays of solid control volumes. The array connected to the ambient air boundary
condition is the “outer stack”. The other array is the “inner stack”. The energy balance
over the inner stack can be written as:
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mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
= H t

thermal,solid inner stack↔fluid,i(−T t
i + T t

fluid,i)

+H t
thermal,solid inner stack↔solid outer stack,i(−T t

i + T t
solid outer stack,i)

+H t
thermal,conduction,(i−1)↔i(−T t

i + T t
i−1)

+H t
thermal,conduction,(i+1)↔i(−T t

i + T t
i+1)

We can also change the energy balance for the outer stack based on the thermal resistance
diagram in Figure 2.14. I will skip this for the sake of brevity. Once the equations are set up,
then we repeat the steps in Figure 2.13 except that we include this extra stack of laterally
coupled control volumes.

If we wish to add insulation, we need only add yet another stack of solid control volumes
to represent the pipe insulation. Or, if we’d like, the outer stack shown in Figure 2.14 could
also represent solid insulation added to the pipe. In either case, the form of the equations
to be solved remains the same. Only the thermal conductance and thermal masses need to
differ depending on how many stacks the user wishes to add.

Generalised form of Discretised Energy Balance for 1D Arrays of Control Vol-
umes In general, a 1D array of control volumes can be laterally coupled to any number
of other 1D control volume arrays. We can generalise this by adding a summation term for
this lateral coupling:

mcv

ht+∆t
enthalpy,i − htenthalpy,i

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t

i + T t
j,i)

+H t
thermal,conduction,(i−1)↔i(−T t

i + T t
i−1)

+H t
thermal,conduction,(i+1)↔i(−T t

i + T t
i+1)

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

Where Hthermal,self ↔ j,i represents the thermal conductance from the current control
volume (called “self”) to other control volumes (the other array is labelled j) at array index
i. T t

j,i is the temperature of the other laterally coupled control volume at array index i.
For fluid control volumes, we can add the convection term back. The resulting energy

balance can be expressed as Equation 2.25:
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+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

(2.25)

Where Qboundary conditions,i represents the heat added or removed due to user set boundary
conditions at array index i. Equation 2.25 is the discretised form of the differential energy
balance over any fluid control volume provided fluid flow traverses in the positive x direction.
Of course, we may neglect the conduction terms in direction of the fluid flow if Pe is high
enough. We can also apply Equation 2.25 to arrays of control volumes by setting ṁ = 0
kg/s.

Equation 2.25 needs to be applied to specified geometries in order to be useful. As I
intend to model CIET’s Heater, we shall first explore the geometries and meshes relevant
for CIET’s Heater in the following subsections. Additionally, Equation 2.25 is also uses an
explicit time marching scheme. This can prove problematic for both numerical stability and
accuracy should ∆t get too large. We discuss this more in detail in the next section after we
discuss CIET’s Heater where we review solver instability issues.

CIET Heater

Let us now discuss the development of the heat transfer library with special focus on CIET’s
Heater. CIET’s heater basically consists of an electrically heated pipe with some insert at
the center of the pipe which aids heat transfer but does not generate heat. This heated
section of the pipe was connected to two electrodes with copper cables. To aid the reader in
understanding CIET a photograph of CIET’s heater as of 2023 is provided in Figure 2.15:
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Figure 2.15: CIET Heater v2.0 Photograph with Labels of Heater Top and Bottom Head,
the brown material on the heated section is Kapton tape to allow Infra Red Imaging

A simplified schematic of Figure 2.15 showing the r-z plane cross section is shown in
Figure 2.16:
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Figure 2.16: CIET Heater v2.0 Cross Section Simplified Schematic in the r-z Plane, Dimen-
sions from De Wet’s Dissertation [De Wet and Per F Peterson, 2020], (Not to Scale)

In Figure 2.16 1, r is the radial (horizontal) coordinate, and z is the axial (vertical)
coordinate. In CIET’s Heater, fluid flows from its bottom to its top as shown in Figure 2.15.
To prevent current from the electrically heated section from traversing the rest of the loop,
the heated section is electrically insulated from the rest of CIET. This insulating material
(PolyTetraFluoroEthane or PTFE) is sandwiched between flanges made of SS 304L at the
heater’s top and bottom [De Wet and Per F Peterson, 2020]. In literature, the top and
bottom assemblies with the gaskets, tees and various components shown in Figure 2.15 are
known as the heater top and bottom heads respectively [Nicolas Zweibaum, 2015; De Wet
and Per F Peterson, 2020]. A close up of the heater bottom head is shown in Figure 2.17:

1 For any such drawing or figure in this dissertation, as long as I have produced it and have not taken it
from another person’s work, you may reproduce it with citation, as in copy and paste the figure as a whole.
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Figure 2.17: CIET Heater v2.0 Bottom Head

While I could not find detailed schematics for the CIET’s top and bottom head in lit-
erature, I found some of its engineering drawings done using SOLIDWORKS and some of
the pdf files in the shared archives of the Thermal Hydraulics Laboratory. These drawings
were done mainly by AJ Gubser in 2012. I tried simplifying some of these drawings of the
heater top and bottom assemblies by removing schematics of most of the washers and nuts
present in the drawings to give the reader a rough idea of its geometry. I did this because
these components are not explicitly modelled in numerical simulations of CIET present in
literature [Nicolas Zweibaum, 2015; De Wet and Per F Peterson, 2020; Zou, R. Hu, and
Charpentier, 2019]. I also included the addition of the twisted tape and perforated inner
tube to illustrate that both of these inserts extended into the bottom head and top heads
of the heater as mentioned in literature [De Wet and Per F Peterson, 2020]. The resulting
drawing is shown in Figure 2.18:
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Figure 2.18: CIET Heater v2.0 Heater Top and Bottom Head Simplified Schematic Drawings,
Measurements are in Inches unless otherwise Stated (Not to Scale)

Figure 2.18 was produced using some of the known dimensions from these drawings by
Gubser. Now, Figure 2.18 highlights that some of the entrained fluid resides within the heater
top and bottom heads. This was important for consideration detailed transient modelling
of the heater [De Wet and Per F Peterson, 2020]. In constructing Figure 2.18, I found that
the lengths of the entrained fluids were not explicitly labelled. While the Computer Aided
Design (CAD) models were in the archive, they were SOLIDWORKS files. I was not familiar
with SOLIDWORKS at the time of writing to read and manipulate the SOLIDWORKS files.
To expedite the writing process, I used a ruler to measure out the drawings produced in the
pdf files. I used this approximate approach to construct Figure 2.18 because Figure 2.18
was only meant to help the reader understand how components inside the heater top and
bottom head are roughly arranged. Therefore, I approximated the lengths of some of these
dimensions in Figure 2.18. These lengths are labelled in Figure 2.18 as approximate values.

To verify that these approximate length measurements are reasonably accurate for mod-
elling the heater, I consider that the total length of the twisted tape and perforated tubing
as recorded in literature is 198 cm and that the heated section is 167.6 cm [De Wet and
Per F Peterson, 2020]. Since the twisted tape and perforated tubing extends through the
heated section as well as both heater top and bottom heads, the total length of the twisted
tape and perforated tubing inserts is 30.4 cm. In Figure 2.18, the length of the twisted tape
and perforated tubing in the top or bottom heads is about 6 inches (15.24 cm). If we sum
up the length in both top and bottom heads, we arrive at 30.5 cm. This is within measure-
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ment error of 30.4 cm where the measurement error is ±0.1 cm for a ruler. Therefore, the
approximate lengths are reasonably accurate when considering the length of the perforated
tube and twisted tape.

Based on the design schematics found in the Thermal Hydraulics Lab acrhives, most of
the components in the heater top and bottom head are identical, including the PTFE Flange
Gasket, the McMaster-Carr 4335T56 1-1/2“ pipe size tee, and the McMaster-Carr 44685K55
Flanges. Thus, Figure 2.18 can describe most of the components present in both the heater
top and bottom heads. However, only the heater bottom head contains a valve (V-10) the
bottom of the heater bottom head assembly that one can use for draining and filling CIET.
Valve V-10 and the extra appendages used for draining and filling procedures are not shown
in Figure 2.18. However, if these appendages were likely to be put in Figure 2.18, Valve V-10
and some of its associated piping would be connected to the bottom of the heater bottom
head in Figure 2.18. These specific valves and components are not modelled explicitly in
literature. However, one will often find that when modelling the heater top and bottom
heads numerically, different models with different dimensions are used for the heater top
and bottom heads [Zou, R. Hu, and Charpentier, 2019; De Wet and Per F Peterson, 2020;
Nicolas Zweibaum, 2015]. This is something we shall explore more in detail later in this
subsection.

It is evident from Figure 2.18 that detailed modelling of CIET’s Heater can be quite
complicated if we consider all its constituent components. It is still complicated even if we
do not consider its washers, nuts and individual flanges. Therefore, we may want to use
simplified models to model the CIET Heater as a whole. To model CIET’s Heater using
simplified models, it is important to review literature about previous models of CIET’s
Heater. Now, there are several models of the Heater available based on different design
iterations of the heater. To help the reader make sense of the models in literature, we shall
first review the several versions of CIET’s Heater as seen in literature.

CIET’s Heater has gone through a few design iterations and changes since its initial
construction. The main changes the reader should note are in Figure 2.19:
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Figure 2.19: CIET Heater x-y Cross Section of the Heated Tube without Insulation (Not to
Scale), Dimensions are from De Wet’s Dissertation [De Wet and Per F Peterson, 2020]

Figure 2.19 is an x-y cross section of the heated tube, where the x-y plane has its normal
parallel to the direction of flow in CIET’s Heater. The initial heater was called CIET Heater
v1.0. Its cross section is shown on the left of Figure 2.19. CIET Heater v1.0 was a thermally
insulated electrically heated pipe which contained an inner pipe such that Dowtherm A (also
known as Therminol-VP1) flowed in the annular region between the inner and outer pipe
[Poresky, 2017], whereas no fluid flowed within the inner tube [De Wet and Per F Peterson,
2020]. CIET Heater v1.0 was also covered in 5cm thick fibreglass insulation to lower parasitic
heat loss [Poresky, 2017]. While CIET Heater v1.0 has fibreglass insulation, I present cross
sections of CIET Heater v1.0 without insulation in Figure 2.19 so that the figure is less
cluttered and the main changes can be emphasised. After some time with CIET Heater
v1.0, the inner pipe was replaced with perforated tube and metallic twisted tape to improve
heat transfer characteristics [Lukas, Kendrick, and P. Peterson, 2017]. This change allowed
fluid to flow in the centre of the heated pipe. This version is known as CIET Heater v2.0
shown on the right of Figure 2.19.

After some time, however, the fibreglass insulation on CIET Heater v2.0 was damaged
and subsequently removed [De Wet and Per F Peterson, 2020]. Without the insulation, the
heater was essentially “bare”. Hence, I call this version of the Heater “CIET Heater v2.0
Bare”. This version of CIET’s Heater is the version shown in Figure 2.15. More details
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of its construction are found in literature [Jeffrey E Bickel, Nicholas Zweibaum, and Per F
Peterson, 2014; Lukas, Kendrick, and P. Peterson, 2017] and detailed schematic drawings are
presented in De Wet’s dissertation [De Wet and Per F Peterson, 2020]. These drawings will
not be reproduced here as the emphasis is on heater modelling rather than its design and
construction. Based on these CIET Heater design iterations, CIET’s Heater was modelled
in RELAP [Nicolas Zweibaum, 2015], the System Analysis Module (SAM) [Zou, R. Hu, and
Charpentier, 2019] and Transform [De wet, Per F. Peterson, and Greenwood, 2019]. The
RELAP version used CIET Heater v1.0 as their reference model. Two different SAM models
of CIET’s two heater designs were developed based on the frequency response experiments
by Poresky on both CIET Heater v1.0 and CIET Heater v2.0 [Poresky, 2017]. De Wet’s
model in Transform was mainly based on CIET v2.0 Bare [De Wet and Per F Peterson,
2020].

In this subsection, it is important to study these models in more detail for the sake of
constructing a real-time thermal hydraulics simulation of the CIET Heater. Moreover, it is
also important to review some of the experimental data or experimentally derived correlations
available which is important in model validation. For this purpose, we shall first consider
the information in literature regarding the heated sections in CIET Heater v1.0 and CIET
Heater v2.0 for both the insulated and bare versions. Thereafter, we also consider methods
to model the heater top and bottom heads as shown in Figure 2.15.

CIET Heater v1.0 Heated Section

CIET Heater v1.0 is important to consider because it was used in initial natural circu-
lation and forced circulation experiments [Nicolas Zweibaum, 2015] as well as frequency
response tests [Poresky, 2017]. These datasets was used to validate RELAP5 models [Nico-
las Zweibaum, 2015] and SAM models [Zou, R. Hu, and Charpentier, 2019]. For validating
transient models of the heater, the forced circulation transient dataset [Nicolas Zweibaum,
2015; Zou, R. Hu, and Charpentier, 2019] used for RELAP5 and SAM modelling is most
useful. This particular dataset is in the time domain and shows how the outlet tempera-
ture of CIET Heater v1.0 responds to step changes in heater power. However, this dataset
is published in literature in the form of a graph rather than some easy to use correlation.
This graph has to be read manually. Poresky’s frequency response data was also published
in the form of a graph. While Poresky also provided a theoretical derivation of a transfer
function in his work [Poresky, 2017], it was not presented in a form which allowed me to
easily validate my models with the experimental data provided. In contrast to these, De
Wet’s dissertation presents the transient response data of CIET Heater v2.0 in the form of a
transfer function [De Wet and Per F Peterson, 2020]. To obtain the step response of CIET
Heater v2.0, I can simply subject the Transfer Function to a step input and plot its output.
Therefore, validating CIET Heater v2.0 is somewhat easier since the transfer functions were
available. Nevertheless, The RELAP and SAM models are still useful to study because they
are relatively simple to implement and they can serve as a reference for which I can use to
design my heater model in this dissertation.
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Mesh for CIET Heater v1.0 Heated Section First, we want to study the mesh layout
and boundary conditions for SAM and RELAP models of CIET Heater v1.0. In these models,
the heater is typically modelled in these codes as an array of fluid control volumes or nodes
thermally coupled to the heated outer tube and unheated inner tube. A typical model one
might find in SAM or CIET is found in Figure 2.20:
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Figure 2.20: CIET Heater (Heated Section) Typical Mesh Layout

Figure 2.20 shows a heater mesh setup for i axial nodes specific to the heated section. I
have used a thermal resistor network as this is a convenient way to visualise how the control
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volumes are laterally coupled to each other. However, unlike in Figure 2.14, I do not draw
the thermal resistors for all control volumes due to space constraints. In Figure 2.20, the
Therminol fluid nodes are coupled with a convective thermal resistance to the heated cylin-
drical shell and unheated inner structure. Each of these solid heat structures are modelled
with a set of axial nodes and radial nodes. Likewise, the Therminol VP-1 region, modelled
as an annular fluid cylinder, is represented as an array of axial nodes. The heated outer tube
and unheated inner tube are then individually coupled laterally to their respective boundary
conditions.

In Figure 2.20, a nodalisation scheme with i axial nodes and two radial nodes for the
heated outer cylindrical shell and unheated inner structure is shown as an example. Typically,
the number of radial nodes is usually on the order of two or three, while the number of axial
nodes used is on the order of 10. For example, the RELAP model used three radial nodes
for each heat structure [Nicolas Zweibaum, 2015] and 15 axial nodes [Nicolas Zweibaum,
2015]. Likewise, the SAM model also used 15 axial nodes [Zou, R. Hu, and Charpentier,
2019]. In my best estimates, these 15 nodes were evenly spaced from each other. I also found
it relatively difficult to find exactly how the nodes were radially spaced as these codes are
closed source. Publications for this specific detail pertaining to these specific codes were also
relatively difficult to find. To expedite code development, I just assumed an even radial (r)
spacing. That is if a pipe wall thickness was 2 inches, and I discretised this into two radial
nodes, the inner radial node would be one inch thick and the outer radial node would also
be one inch thick. I can test whether this works well enough when I perform verification and
validation tests later on.

It is also worthwhile noting that in the case of steady state heat transfer, the number of
axial nodes and radial nodes does not heavily impact heat transfer phenomena provided they
stay within certain ranges. In the case of RELAP5 models used for natural circulation, the
steady state mass flowrate varies by less than 1% provided that the number of axial nodes
is in the range of 5 to 55 and the number of radial wall nodes is in the range of 3 to 20 as
the temperature profiles in the axial direction is approximately linear [Nicolas Zweibaum,
2015]. This suggests that for steady state heat transfer, increasing the number of nodes
axially would not change the heater outlet temperature significantly.

Boundary Conditions for CIET Heater v1.0 Heated Section For these heater mod-
els, flow would then go through the fluid nodes or control volumes as shown in Figure 2.20
before traversing to other components. The inner heat structure, an inner tube in the case
of CIET Heater v1.0, would usually be connected to an adiabatic boundary condition, this
is boundary condition 2 in Figure 2.20. In contrast, the outer heated tube is usually con-
nected to a user set constant heat flux wall boundary condition as it was done in SAM
[Zou, R. Hu, and Charpentier, 2019]. The wall heat flux was dynamically calculated and
usually accounted for parasitic heat losses from the heater [Zou, R. Hu, and Charpentier,
2019]. The exact values of the heat flux are set by the user and differ between simulation
runs. Examples of such simulation runs can be found in Zweibaum’s and Zou’s publications
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[Nicolas Zweibaum, 2015; Zou, R. Hu, and Charpentier, 2019].
I assume from these experiments that the wall heat flux is modelled as uniform throughout

the heated tube. This is indeed the simplest approach. However, for CIET Heater v1.0,
the published steady state forced and natural circulation data used to validated SAM and
RELAP models does not include information about heater surface temperature profiles. The
same can be said for the transient heat transfer simulations with step inputs of heater power.
Only the bulk heater outlet and inlet temperatures are recorded as shown in SAM [Zou, R.
Hu, and Charpentier, 2019]. Given the lack of validation data for CIET Heater v1.0, a viable
approach is indeed to use a uniform heat flux.

In reality however, the heat flux across the heater tube may not truly be uniform. The re-
sistive heater outer tube made of 304L stainless steel has a temperature dependent resistivity
ρµΩ−cm given as [Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson, 2014]:

ρµΩ−cm(T ) = 0.0612 · T (◦C) + 73.109

Here, I differentiate the resistivity ρµΩ−cm, from density ρ using the units of resistivity
µΩ− cm to prevent confusion. Given this state of affairs, the we need to consider the effect
of resistivity in the surface bulk temperature profile. Since the heater is electrically heated,
we can consider the differential power produced in a small section of the heated tube:

dPwatts = I2heaterdRohms heater

Where Iheater is heater current and Pwatts is power in watts.

dPwatts = I2heater
ρµΩ−cm(T )dx

AXS

We can find a general expression for the amount of heat generated in a section of length
∆x between lengths x1 and x2 using:

Pwatts ∆x =
I2heater
AXS

∫ x2

x1

ρµΩ−cm(T )dx

If we wish to find the power distribution, we can first integrate this expression over the
whole of the heater length Lheater.

Pwatts total =
I2heater
AXS

∫ Lheater

0

ρµΩ−cm(T )dx

Pwatts ∆x

Pwatts total

=

∫ x2

x1
ρµΩ−cm(T )dx∫ Lheater

0
ρµΩ−cm(T )dx

Evidently, to find the heater power distribution, we shall need to find the heater temper-
ature profile first T (x). For early models of CIET Heater v1.0, models were not validated
against the heater surface temperature profile. We may likewise use the same approach and
assume a roughly uniform heat generation along the axial direction of the heated section for
simplicity.
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Nusselt Number and Thermal Inertia for CIET Heater v1.0 Heated Section
Now, let us review some important heat transfer parameters for CIET Heater v1.0. Again,
while I am not modelling CIET Heater v1.0, it was good to review some of this information
to check if any of it was useful for my heater model.

CIET Heater v1.0 had its heat transfer coefficient modelled with equation 2.26 [Jeffrey E
Bickel, Nicholas Zweibaum, and Per F Peterson, 2014; De Wet and Per F Peterson, 2020]:

Nu =

{
8 for Re > 2300

5.44 + 0.034 ∗ Re0.082 for Re < 2300
(2.26)

For thermal inertia of the heater, as well as the conduction thermal resistances, calcula-
tions can be performed using the following design and performance parameters in table 2.3
[De Wet and Per F Peterson, 2020]:

Name Value

Outer Tube Outer Diameter 4.0 cm

Outer Tube Inner Diameter 3.81 cm

Outer Tube Heated Length 167.6 cm

Outer Tube Heat Transfer Area 2007 cm2

Inner Tube Outer Diameter 3.175 cm

Inner Tube Inner Diameter 2.66 cm

Flow Area 3.48 cm2

Fluid Volume Height 198 cm

Metal Material 304L Stainless Steel

Heat Transfer Fluid Dowtherm-A or Therminol VP-1

Main Fluid Volume 690.2 cm3

Table 2.3: Heater 1.0 Design and Performance Parameters [De Wet and Per F Peterson,
2020]

One should note that in Table 2.3, the heated section length is 167.6 cm. This is based on
De Wet’s Transform models [De Wet and Per F Peterson, 2020]. In contrast, earlier models
of CIET Heater v1.0 show a heated section length of 163.83 cm [Nicolas Zweibaum, 2015],
this is a difference of 1.5 inches. This same heated section length was used for the SAM
model [Zou, R. Hu, and Charpentier, 2019]. To unravel why this discrepancy exits, we can
investigate some engineering drawings in De Wet’s dissertation [De Wet and Per F Peterson,
2020]. One computer aided design (CAD) engineering drawing describes the lengths between
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the electrodes. These electrodes, shown in Figure 2.17, are connected to the heated tube near
the top and bottom heads. The next drawing of interest is a CAD drawing of elevations in
the electric heater line, including the top and bottom heads. This CAD drawing was meant
to emphasise the relative hydrostatic heights z relative to the pump centreline [De Wet and
Per F Peterson, 2020]. Figure 2.21 overlays information from these CAD drawings:

Figure 2.21: Heated Length CAD Diagram Comparison Drawings [De Wet and Per F Pe-
terson, 2020] (Not to Scale)

On Figure 2.21, I also overlay estimates for the length of the twisted tape within the top
and bottom head shown in Figure 2.18, which is itself based on Gubser’s CAD engineering
drawings of the heater top and bottom head. This allows me to make sense of the several
length scales presented for the CIET v1.0 Heater.

Figure 2.21 shows length measurements from the which shows a centre to centre distance
of 160 cm (62.992 inches [De Wet and Per F Peterson, 2020]) between the two electrodes
connected to the heated tube. The distance from the electrodes to the their respective top
and bottom heads is 1.6 cm (0.63 inches [De Wet and Per F Peterson, 2020]). If we add the
length between the electrodes and the two lengths from the electrodes to their respective top
and bottom head, we obtain a length of 163.2 cm. This is relatively close to 163.83 cm used
in the RELAP model. Of course, the widths of the electrodes themselves is difficult to find
in literature. For the widths, I looked into some of AJ Gubser’s other drawings in 2012 for
the heater electrodes and found that they are 0.875 inches or 2.22 cm, which means that the
centre to edge distance of the electrode is 1.11 cm. Based on these numbers, however, I could
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only reason that the RELAP5 163.2 cm length measurement, plus an estimated addition of
the electrode lengths. I myself was puzzled as to why this was the case, as the lengths do
not add up to 163.83 cm. Hence I ommitted this data from Figure 2.21. Nevertheless, this
model worked well for RELAP5 and it was validated against experimental data. I saw no
reason to continue worrying about a discrepancy of a few centimetres.

For De Wet’s model, the length scale of 167.6 cm was likely based on CAD drawings
of the heater’s elevations on the left of Figure 2.21. From the CAD drawing, the length of
the heated section plus top and bottom heads was shown directly as 198 cm. The top and
bottom head lengths exclude some appendages shown in Figure 2.18. As I based Figure 2.18
on Gubser’s same drawings of the heater top and bottom head, I concluded that the length
from the bottom of the tee to the heated section was approximately 6 inches or 15.24 cm.
One can sum up these lengths and verify that:

167.6cm+ 15.2cm+ 15.2cm = 198cm

Therefore, DeWet likely arrived at his measurement of the heater length not by measuring
the length of the heater tube directly, but by subtracting the lengths of the heater top
and bottom head from the combined length of 198 cm. This is called the fluid height in
Table 2.3. De Wet’s work was focused more on CIET Heater v2.0 rather than CIET Heater
v1.0. His models in Transform were also based on CIET Heater v2.0 data [De Wet and Per F
Peterson, 2020]. In those models, he used a heated length of 167.6 cm and also validated
those against experimental data [De wet, Per F. Peterson, and Greenwood, 2019; De Wet
and Per F Peterson, 2020]. Since heater models for v1.0 and v2.0 have been validated against
experimental data in CIET using both heated lengths 163.83 cm and 167.6 cm, both of them
worked well for their respective purposes.

For this dissertation, I could choose a build a CIET Heater v2.0 based on the heated
section length of 163.83 cm and validate this model against CIET Heater v2.0 data. If the
model matches experimental data, it would be valid as well. Given the choice of RELAP5
heater dimensions and Transform heater dimensions, I chose the RELAP5 version where the
heater length was 163.83 cm [Nicolas Zweibaum, 2015] as a starting point due to its simplicity
relative to the Transform model. This is because the Transform model also accounts for
additional thermal inertia in the top and bottom heads as well as structural supports in
CIET [De wet, Per F. Peterson, and Greenwood, 2019; De Wet and Per F Peterson, 2020]. I
left this more accurate modelling of thermal inertia to future work. For now, all I needed was
a validated model of CIET Heater v2.0 which could reproduce the experimentally determined
Heater v2.0 bulk outlet temperature. Secondly, I also needed the model to reasonably match
the transient response. The validation process will be discussed later. For now, let us
continue reviewing important properties of CIET Heater v1.0.

If we wish to model CIET Heater v1.0, we can use heater length dimensions in the
RELAP model [Nicolas Zweibaum, 2015] and SAM model [Zou, R. Hu, and Charpentier,
2019] which are simpler in comparison to the Transform model. The heater dimensions,
along with the thermophysical property data for stainless steel can be used to model the
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heater. These thermophysical properties were provided in tabulated form for the RELAP5
and SAM models [Nicolas Zweibaum, 2015; Zou, R. Hu, and Charpentier, 2019]. These
values are shown in Table 2.4:

Temperature (K) k (W m−1 K−1) cp (J kg−1 K−1)

250 14.31 443.3375

300 14.94 457.0361

350 15.58 469.4894

400 16.21 480.6974

450 16.85 490.66

500 17.48 500.6227

700 20.02 526.7746

1000 23.83 551.6812

Table 2.4: Thermophysical Properties of Steel [Zou, R. Hu, and Charpentier, 2019; Nicolas
Zweibaum, 2015]

The density ρ used was 8030 kg m−3 [Zou, R. Hu, and Charpentier, 2019; Nicolas
Zweibaum, 2015]. These properties are also relevant to CIET Heater v2.0 since the heated
tube is that same as that in CIET Heater v1.0.

Now, during the course of test driven development, I also found it convenient and useful to
have the thermophysical properties of steel in the form of correlations rather than tabulated
data. With tabulated data, I would need to program an interpolation scheme or construct
some form of spline to obtain the thermophyiscal properties at the desired temperatures.
For correlations, there is no need to do this. For 304L stainless steel, these correlations can
be used to determine thermal conductivity and heat capacity [Graves et al., 1991]:

k

(
W

m ·K

)
= 7.9318 + 0.023051 T (K)− 6.4166 ∗ 10−6 T (K)2 (2.27)

cp

(
J

g ·K

)
= 0.4267 + 1.700 ∗ 10−4 T (K) + 5.200 ∗ 10−8 T (K)2 (2.28)

For steady state tests, the thermal inertia of CIET Heater v1.0 was not considered. How-
ever, for transient tests, thermal inertia becomes important. However, while experimental
data for thermal inertia exists [Zou, R. Hu, and Charpentier, 2019], the experimental data
was presented in the form of a graph rather than a convenient to use transfer function.
Therefore, I decided not to use CIET Heater v1.0 experimental data in the initial testing
and development phase for this dissertation. Instead, I focused more on CIET Heater v2.0
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and CIET Heater v2.0 Bare. CIET Heater v1.0 can be considered in future work. Never-
theless, several of the thermophysical property data for steel and Therminol VP-1, as well
as the dimensions of the heated tube remain the same between CIET Heater v1.0 and CIET
Heater v2.0. These can be used in the CIET Heater v2.0 model.

CIET Heater v2.0 Heated Section

CIET Heater v2.0 was bare shown in earlier parts of this section in Figure 2.15 as well as
Figure 2.16.

Again, my goal is to develop an approximate model of CIET’s Heater v2.0 to test my
simulated neutronics feedback controller. I consider endeavour successful if I can match the
simulation data to experimentally derived correlations and data. We shall first review the
validation data available, with more emphasis on the steady state and transient data for
the heater outlet temperatures. Next, we shall consider how to model CIET Heater v2.0 by
exploring how previous models were constructed, as well as the thermophysical data used in
modelling CIET Heater v2.0.

CIET Heater v2.0 Validation Data

Empirical Transfer Function I chose to model CIET Heater v2.0 because its tran-
sient data was used to construct an empirical transfer function. This transfer function can
then be used to reconstruct the transient experimental data obtained during those tests.
The transfer function for the heater power to heater outlet temperature for CIET Heater
v2.0 Bare is provided by De Wet [De Wet and Per F Peterson, 2020]:

G(s) = e−4s 3.217 ∗ 10−5s3 + 6.675 ∗ 10−7s2 + 1.139 ∗ 10−8s+ 2.423 ∗ 10−11

s5 + 0.2251s4 + 0.01688s3 + 0.0003548s2 + 3.057 ∗ 10−6s+ 1.632 ∗ 10−9
(2.29)

Equation 2.29 was obtained using a pseudorandom binary sequence (PRBS) frequency
response test with 500 watts of heater amplitude and 10 seconds per bit [De Wet and Per F
Peterson, 2020] in the PRBS. The test procedure was such that the mass flow rate was con-
stant at 0.18 kg/s, the heater steady state power was 8 kW, and that the outlet temperature
of the CTAH, essentially the cooling fan shown in Figure 2.4, was 80 ◦C. At these condi-
tions, the steady state inlet temperature of CIET Heaver v2.0 bare was 79.12 ◦C [De Wet
and Per F Peterson, 2020]. The heater was then perturbed with a PRBS sequence where the
power oscillated between 7.5 kW and 8.5 kW according to a set 63 bit PRBS sequence at 10
seconds per bit while keeping pump and fan speeds constant [De Wet and Per F Peterson,
2020].

Due to the way the frequency response test was conducted, Equation 2.29 captures the
transient response of the whole of CIET. This means that thermal pulses travelling from the
heater to the CTAH would travel from the CTAH back to the heater again. The path of
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the fluid in CIET is best understood with reference to Figure 2.4. I produce Figure 2.4 here
again for the reader’s convenience:

Flow exits the heater into the heater top head (1a) in Figure 2.4. It moves upwards
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to component 5b, enters the Coiled Tube Air Heater (CTAH) before exiting and moving
down into the pump. The fluid then exits the pump and traverses to component 17a before
entering component 18 and re-entering the heater. For forced circulation experiments used
to obtain Equation 2.29, the DHX branch, which is component 17b to component 5a in
Figure 2.4, as well as the natural circulation loop, component 30a to 39, are both valved off.
They do not participate in heat transfer and there is no flow going through them. They are
to be ignored in the context of Equation 2.29.

Let us consider how a thermal pulse forms in this context. Suppose the heater was
operating at a steady state of 8 kW. Fluid enters the heater from the bottom head, component
1b, in Figure 2.4 at 79.12 ◦C. It gets heated by the heater at operating at 8 kW and
normally exits at 102.2◦C. This reading is taken by the thermocouple “BT-12”. The BT
likely stands for bulk temperature. Thermocouple BT-12 is placed between component 2
and 3 in Figure 2.4. This is because the static mixer MX-10 is meant to thoroughly mix
the fluid so that BT-12 can get an accurate reading of the bulk average temperature. From
components 1a to 2 in Figure 2.4, the heat loss can be assumed to be small due to the
fibreglass insulation. In reality, the temperature directly at the heater exit prior to entering
the heater top head, 1b, may be higher than BT-12. However, we cannot know for sure as
there were no thermocouples measuring bulk temperature in that region. Regardless, let us
continue the discussion on thermal pulses. Now, Therminol VP-1 traverses the to reach the
CTAH as explained earlier. It loses heat to approximately 80◦C and re-enters the heater
after losing more heat in the rest of the loop before re-entering the heater at 79.12 ◦C.

Suppose now that we introduce a step input to increase power of the heater from 8
kW to 8.5 kW. After some time, the same Therminol VP-1 now exits the heater hotter than
102.2◦C. Let’s say for the sake of explaining, somewhere in the region of 105 ◦C for example.
This fluid now enters the CTAH and leaves somewhat hotter than 80 ◦C because the fan
speeds are constant. Let’s say 82 ◦C for example. After traversing the loop, this hotter
fluid now enters the heater such that the heater inlet temperature is hotter than 79.12 ◦C.
We now say that this thermal pulse has traversed the loop and re-entered the heater. This
happens because the CTAH’s fan speed was kept constant in De Wet’s frequency response
experiments which were used to derive the transfer function [De Wet and Per F Peterson,
2020].

From previous frequency response experiments, the time the time it takes for a thermal
pulse to traverse the loop is at least 58 seconds [De Wet and Per F Peterson, 2020]. Therefore,
should I subject Equation 2.29 to a step change, this thermal pulse should not appear until
after about 1 minute. After 1 minute, I should expect the thermal pulse behaviour to start
impacting heater outlet temperatures.

In other transient experiments, the CTAH fan speed is varied such that the CTAH outlet
temperature is kept constant such as those earlier experiments used to validate models in
RELAP5 [Nicolas Zweibaum, 2015] and SAM [Zou, R. Hu, and Charpentier, 2019]. These
would have eliminated any chance of the thermal pulses traversing the loop and entering
back into the heater. In those experiments, transient response data is available for CIET
Heater v1.0’s outlet temperature. While transient response data for CIET Heater v1.0 was



61

available, it was published in a graphical form and had to be read off a graph manually. It
was more convenient to use a transfer function, and therefore I used Equation 2.29. Given
this behaviour, we would expect a short term transient response and a longer term response
especially when the thermal pulses arrive back from the CTAH to the heater. The thermal
pulses could then go through the loop several times before the loop arrives at some new
steady state. Replicating the transient response Equation 2.29 with a full forced circulation
loop model of CIET is outside the scope of this dissertation. Nevertheless, the short term
response of Equation 2.29 is still quite useful for validating the transient response of the
heater model. This is because the time scales of the conjugate heat transfer (CHT) of the
heater are much shorter than the time scales for thermal pulses traversing the loop.

To validate my model using the empirical transfer function, I can subject my heater
model to the same boundary conditions and initial conditions. The boundary conditions are
79.12 ◦C inlet temperature, a heat transfer coefficient from steel heater surface to air of 20
W/(m ·K) where ambient air temperature is 21.76 ◦C [De Wet and Per F Peterson, 2020].
The thermal resistance diagram from fluid to air can be visualised using Figure 2.22:
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Figure 2.22: Heater v2.0 Bare Simplified Thermal Resistance Diagram

I consider all other surfaces to be adiabatic as I neglect axial heat flux in comparison
to convection and radial heat flux. This was mentioned when discussing Pe. My initial
conditions for the heater are at 79.12◦C. However, I am to bring the heater power to 8 kW
and wait for the system to reach to steady state before starting the transient as done in
De Wet’s experiments [De Wet and Per F Peterson, 2020]. Therefore, the initial conditions
matter less as compared to bringing the heater to this steady state.

Next, I subject my both my heater and the transfer function to the same step input.
While I could use frequency response methods, a step input test is shorter and more intuitive.
Hence, I chose this method. For step input tests, I need to consider the amplitude of the
step input. To do so, we need to consider the conditions from which the transfer functions
were obtained. De Wet has performed these frequency response tests with step inputs of
500 watts, at 10 seconds per bit using a 63 bits [De Wet and Per F Peterson, 2020]. This
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PRBS signal can be thought of as a series of step inputs causing the heater power to oscillate
between 7.5 kW to 8.5 kW. Thus, a step input of ± 500 watts can be used. That means
that the heater, at a steady state of 8 kW, was brought up to 8.5 kW at the transient start
time for one test. For the other test, it will be brought from 8 kW to 7.5 kW. I chose ±
500 watts specifically because the empirical transfer function was tested based on heater
powers ranging between 7.5 kW to 8.5 kW. In doing so, I validate my model using the full
range for which the empirical transfer function applies. Taking inspiration from the original
PRBS tests, I can then subject my heater model to a step input of ± 500 watts, subject
the transfer function to the same step input, and compare the bulk outlet temperatures to
confirm if they match within thermocouple measurement uncertainty. If they do, I consider
the model sufficiently validated for the purposes of this dissertation.

Of course, we could use step inputs of other magnitudes, let’s say of 1 kW, for transient
step response validation purposes. However, in De Wet’s work with CIET, he mentioned
that using larger amplitudes for perturbations tended to cause the Heater to show non-linear
behaviour [De Wet and Per F Peterson, 2020]. In using larger step inputs for heater power,
the transient response of CIET Heater v2.0 may have to be described by a different transfer
function due to the non-linearities. To avoid this issue, I stuck to using a 500 watt step input
to perform the step response tests.

The caveat to this step response method is that I can only use the short term transient
data from the transfer function. This is because my heater model is not meant to replicate
the thermal pulse that traverse the loop. Therefore, I cannot rely on data from the empirical
transfer function past roughly one minute from the start time of the transient. Nevertheless,
I still need a way of validating the heater behaviour after a long time. After the transient
progresses for a long time, the heater outlet temperature will reach some new steady state.
While we cannot fully validate the time scales for which the heater reaches the new steady
state, we can at least verify if the heater reaches the correct steady state. For this purpose, we
can validate the CIET Heater v2.0 bare model against steady state data. For the purposes of
this dissertation, and for showcasing the design process of the simulated neutronics feedback
controller, this will suffice. Further model improvements and validation efforts the heater
and CIET are left to future work.

Steady State Data As mentioned, I also wanted to validate my Heater v2.0 model
against steady state data. This data is presented in Table 2.5:
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Heater Power
(Watts)

Heater Inlet
Temperature
(◦C) BT-11

Heater Outlet
Temperature
(◦C) BT-12

3000 78.75 86.93

4000 79 90.25

6000 79.4 96.5

8000 79.12 102.2

10000 78.9 107.75

Table 2.5: Heater v2.0 Bare Steady State Data [De Wet and Per F Peterson, 2020], Prevailing
mass flow rate ṁ = 0.18 kg/s

Table 2.5 contains heater inlet and outlet temperatures at steady state with measurement
uncertainty of ± 0.5 K. The ± 0.5 K Type T thermocouple uncertainty is used here because
Type T thermocouples were used within CIET [Zweibaum, Guo, et al., 2016]. The heater
inlet temperature and heater outlet temperature are measured using the thermocouples in
CIET BT-11 and BT-12. (BT should stand for bulk temperatures.) With reference to
Figure 2.4, BT-11 lies in between component 18 and component 1b, whereas BT-12 lies
between component 2 and component 3. Where component 1a is the heater bottom head
and component 1b is the heater top head. BT-12, the thermocouple measuring the heater
outlet temperature, is placed after a static mixer MX-10 because MX-10 ensures that the
fluid is mixed thoroughly. This static mixer is represented by component 2 and component
2a on Figure 2.4. Placing the thermocouple after MX-10 ensures that the fluid temperature
is more or less uniform and the local temperature measured by BT-12 is representative of
the bulk fluid temperature.

At steady state, the temperature at BT-12 should be essentially the same as the bulk
temperature of the fluid exiting the heater if we neglect parasitic heat loss through the heater
top head and MX-10. However, when it comes to transient calculations, the fluid residence
time of the fluid flowing through the top and bottom head, as well as the MX-10 need to
be accounted for. So we will need to model them as well in order to compare the model to
experimental data.

To consider the validation successful, the simulated bulk heater outlet temperature should
match that of the experimental data in Table 2.5 to within thermocouple measurement error.

De Wet’s experiments also yielded steady heater surface temperature profiles given the
conditions in Table 2.5. However, if I wanted to reproduce these temperature profiles, I
would likely have to model the power distribution within the resistance heater, and take into
account the resistivity of steel mentioned when discussing CIET Heater v1.0:

ρµΩ−cm(T ) = 0.0612 · T (◦C) + 73.109



65

Pwatts ∆x

Pwatts total

=

∫ x2

x1
ρµΩ−cm(T )dx∫ Lheater

0
ρµΩ−cm(T )dx

For the purposes of designing a simulated neutronics feedback controller, I am more
concerned with the heater outlet temperature, the temperature BT-12, rather than the heater
surface temperature profile. Therefore, I will not attempt to reproduce the heater surface
temperature profile. Reproducing the heater surface temperature profile can be relegated to
future work.

With validation details now discussed, let us move on to reviewing important parameters
for model construction.

Heater v2.0 Heated Section Nodalisation First, we consider nodalisation. For CIET
Heater v2.0 Bare nodalisation, there are several schemes available. In Transform, the heater
was split into a heated section, and unheated inlet section and unheated outlet section
[De Wet and Per F Peterson, 2020]. The heated steel cylindrical shell in Figure 2.22 was
split into 8, presumably even, axial nodes along the heated section and two radial nodes
[De Wet and Per F Peterson, 2020]. This is much coarser than SAM’s heater nodalisation
which split heated section into 15 axial nodes [Zou, R. Hu, and Charpentier, 2019], while
the heater top and bottom heads are represented using two nodes each. Nevertheless, from
sensitivity analysis in Zweibaum’s work, 8 nodes performed as well as 15 nodes for steady
state natural circulation [Nicolas Zweibaum, 2015]. Refining the mesh up to 55 nodes also
provided little benefit [Nicolas Zweibaum, 2015]. Therefore, using 8 nodes instead of 15
nodes should not incur much of an accuracy penalty at least for steady state heat transfer
for reproducing outlet temperatures BT-12. Moreover, the 8 node model was also validated
with experimental data [De Wet and Per F Peterson, 2020]. Therefore, using 8 nodes should
also be acceptable. For heater nodalisation, especially for the heated section, I aim to choose
the simplest nodalisation schemes possible out of all the models because they take are easier
to program and test, and also because they take less computational power.

For CIET Heater v2.0 model construction in this dissertation, I will utilise 8 evenly
spaced nodes in the axial direction for the fluid nodes and solid nodes. That means that for
a heated length Lheated, the length of each control volume will be Lheated

8
. For steel shell nodes

the radial direction, I would ideally use two nodes as well, evenly spaced in the r direction.
For n radial nodes, each radial node will have a uniform thickness of OD−ID

2n
where OD is the

heated shell outer diameter, and ID is the heated shell inner diameter. This was used due to
ease of implementation. However, as we shall explore in the following chapter, the real-time
computation requirements constrained me to using one radial node for the SS 304L heated
pipe. We shall revisit nodalisation when we discuss this matter. For the unheated inner
structures shown in Figure 2.22, I will also use 8 axial nodes. However, the heat transfer
characteristics of inner unheated metallic structures are not well documented. The Nusselt
number for the convective thermal resistance from the Therminol VP-1 to the inner metallic
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structures is unavailable in literature to my best knowledge. Therefore, for the unheated SS
304L internal structures in the radial direction, I will just use one node.

Boundary Conditions for Heater v2.0 Tests For the Transform model of the heated
section, suitable boundary conditions can be taken from Table 2.5. For example, at 8 kW,
the boundary conditions are 79.12 ◦C inlet temperature. For parasitic heat losses to the
environment, a heat transfer coefficient from steel heater surface to air of 20 W/(m2 · K)
where ambient air temperature is 21.76 ◦C [De Wet and Per F Peterson, 2020]. These
are the same for the heater operating at any power. As mentioned before, the thermal
resistance diagram from fluid to air can be visualised using Figure 2.22. Every other surface
is considered adiabatic with regards to conduction heat transfer. However, fluid will enter
the inlet at ṁ of 0.18 kg/s and will exit the heater outlet at the same mass flow rate. Fluid
shall exit the outlet at the same temperature as the last fluid control volume. For eight
nodes, control volume 8 shall be at the exit. The fluid shall leave the system from control
volume 8 at the temperature of control volume 8 and carry away the enthalpy based on the
temperature of control volume 8. For the digital twin of CIET’s Heater constructed in this
dissertation, the boundary conditions and initial conditions will be revisited and discussed
in the next chapter with the use of diagrams.

To construct the thermal resistances and to determine the thermal inertia of these control
volumes, let us now consider some important heat transfer properties relevant to modelling
CIET Heater v2.0 Bare.

Nusselt Number and Thermal Inertia for CIET Heater v2.0 Now, Heater v2.0 can
have its solid-fluid heat transfer modelled with the empirical equation 2.30 [De wet, Per F.
Peterson, and Greenwood, 2019; Lukas, Kendrick, and P. Peterson, 2017]:

Nu = 0.0391 Re0.812D−heatedPr
0.408

(
µbulk

µwall

)0.14

(2.30)

In Equation 2.30, the last coefficient
(

µbulk

µwall

)0.14
represents a viscosity correction fac-

tor meant to account for temperature differences between wall and fluid. This practice of
adding this viscosity correlation factor is used in other Nusselt number correlations such as
Hausen’s correlation [Gnielinski, 2013]. Sometimes, however, the correction factor would be(

Pr
Prsurf

)0.11
as it is based on Petuhov’s correlation [Gnielinski, 2013] rather than the using(

µbulk

µwall

)0.14
. Now, in later publications of regarding the Transform model, there was no doc-

umented use of the wall viscosity or wall Pr correction factor for the heater Nusselt number
[De Wet and Per F Peterson, 2020]. Thus, there is some discrepancy in literature as to
whether the correction factor was used in the Transform model. One can verify that based
on Therminol VP-1 properties, Pr is about 16 at the low bound fluid bulk temperature of
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80◦C and about 9 at a typical heater surface temperature of 180◦C [De Wet and Per F Pe-

terson, 2020].
(

Pr
Prsurf

)0.11
is about 1.07 while

(
µbulk

µwall

)0.14
is about 1.13 at these temperatures.

Thus, these correction factors account for about an additional 10% of Nu.
While the Nu correction factors are important to consider, the experimentally determined

heater surface temperature was about 185◦C at 10 kW and 0.18 kg/s [De Wet and Per
F Peterson, 2020]. This is already outside the temperature range of applicability for the
Therminol VP-1 correlations (20-180 ◦C) [Nicolas Zweibaum, 2015]. At lower mass flow
rates, and at 10 kW heater power, the heater surface temperatures are bound to be even
higher. Thus, I would have had to find separate correlations in order to predict µ and Pr at
these higher wall temperatures. For the sake of expediency, I did not do so for my current
iterations of the heater model presented in this work. I found out later that excluding this
correction factor did not appreciably cause the simulated bulk heater outlet temperatures to
deviate from experimental data. Therefore, I decided to ignore the wall correction factors
for the time being and relegate its implementation to future work. Again, we can ascertain
if these simplifications made significantly impact the accuracy of the model in the model
validation section in the next chapter.

Now, let’s go back to Equation 2.30. The Nusselt Number in Equation 2.30 was correlated
using averaged temperatures rather than a temperature profile. The original definition was
written as [Lukas, Kendrick, and P. Peterson, 2017]:

NuD−heated =
ṁcp(Tout − Tin)

Aheater

(
T̃w − Tout−Tin

2

)Dheated

k
(2.31)

For Equation 2.31, ṁ is mass flow rate in units similar to kg/s, Tout and Tin are the
measured bulk outlet and inlet temperatures respectively, cp is the fluid specific heat capacity
in units similar to J/(kg ·K). Dheated is heated diameter and k is thermal conductivity in
units similar to W/(m ·K). T̃W is mean wall temperature measured at half the length of the
heater [Lukas, Kendrick, and P. Peterson, 2017]. Equation 2.30 was developed using heated
diameter of 0.0381 m as the basis for the Reynold’s number ReD−heated [Lukas, Kendrick,
and P. Peterson, 2017]. In case there is any confusion, one may refer to Figure 2.19 to make
sense of the relevant dimensions. This heated diameter is the inner diameter of the outer
tube, which is heated electrically. However, in subsequent models of CIET, Equation 2.30
was converted to use the hydraulic diameter (Dhydraulic) instead, using Dhydraulic = 0.01467m
as it was considered best practice to use hydraulic diameter for annular geometries [De wet,
Per F. Peterson, and Greenwood, 2019]. There was little published justification as to why
the heated diameter was originally used instead of hydraulic diameter. Nevertheless, the
correlation still proved useful as an empirical correlation to predict friction factor using Nu.
The hydraulic diameter is 4AXS/Pw where AXS is the cross sectional area, and Pw is the
wetted perimeter. Therefore, correlations based on hydraulic diameter were used in later
models of CIET Heater v2.0 such as those built in Transform [De wet, Per F. Peterson, and
Greenwood, 2019]:
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NuD−hydraulic = 0.04179 Re0.836D−hydraulicPr
1/3

(
µbulk

µwall

)0.14

(2.32)

For modelling CIET’s Heater, we shall stick to this practice and use a hydraulic diameter
of 0.01467 m [De wet, Per F. Peterson, and Greenwood, 2019] to calculate ReDhydraulic

and
substitute this into Equation 2.32. To make sense of these two diameters, one can first observe
that hydraulic diameter is smaller than the heated diameter of 3.81 cm. Figure 2.19 shows
that this 3.81 cm is also the hydraulic diameter of the heater if the heater was completely
filled with fluid as in a pipe. Since we fill the this cylindrical pipe with unheated structures,
AXS of the fluid decreases while Pw increases. Therefore, 4AXS/Pw decreases relative to 3.81
cm and Dhydraulic < 3.81 cm.

For most of these correlations, fluid properties are calculated at the mean fluid temper-
ature [Lukas, Kendrick, and P. Peterson, 2017]. However, the exact definition of mean fluid
temperature was not explicitly stated in the original conference paper [Lukas, Kendrick, and
P. Peterson, 2017]. This could mean the average bulk fluid temperature, which is Tout−Tin

2
,

or the mean film temperature, which is the average of the bulk temperature and surface
temperature. While it is common practice to evaluate fluid properties at film temperature
[Bejan, 2013], the exact definitions of mean temperature for this Nusselt correlation were
difficult to find.

When applying this to control volumes, I noted that the fluid temperature within each
control volume is uniform. Knowing this, I then used the temperature of the fluid control
volume to calculate a local Nu and convective thermal resistance. When using eight control
volumes to represent the heated tube, I would then have eight values of Nu with which to
calculate a localised convective thermal resistance. This was the simplest approach, and the
simulations of heater outlet temperature using this Nu were then validated with existing
experimental data. We shall revisit this in the next chapter.

Now, Equation 2.30 and Equation 2.32 applies for mass flow rates through the CIET
Heater v2.0 from 0.1 kg/s to 0.24 kg/s at heater power values of 0 to 6 kW [Lukas, Kendrick,
and P. Peterson, 2017]. This corresponded to 350 < ReD−heated < 3978 [Lukas, Kendrick,
and P. Peterson, 2017]. However, we want to use ReD−hydraulic rather than ReD−heated. For
this, let us now perform conversion between ReD−heated and ReD−hydraulic:

ReD−heated = kReD−hydraulic

Where k is some constant to be determined using the dimensions of CIET Heater v2.0
Now, for both Re:

ReD−heated =
ρuDheated

µ
=
ṁDheated

AXSµ

ReD−hydraulic =
ρuDhydraulic

µ
=
ṁDhydraulic

AXSµ
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Where Lukas defined Dheated as 3.81 cm, and u is the average velocity based on the mass
flow rate ṁ and flow area AXS [Lukas, Kendrick, and P. Peterson, 2017]. Some of these
relevant dimensions are provided in Table 2.6 [De Wet and Per F Peterson, 2020]:

Name Value

Outer Tube Outer Diameter 4.0 cm

Outer Tube Inner Diameter 3.81 cm

Outer Tube Heated Length 167.6 cm

Outer Tube Heat Transfer Area 2007 cm2

Inner Tube Outer Diameter 3.175 cm

Inner Tube Inner Diameter 2.66 cm

Inner Tube with Tape Heat Transfer
Area

4639 cm2

Flow Area 10.52 cm2

Fluid Volume Height 198 cm

Metal Material 304L Stainless Steel

Heat Transfer Fluid Dowtherm-A or Therminol VP-1

Twisted Tape Diameter 2.54 cm

Twisted Tape Thickness 0.122 cm

Twisted Tape Height in Fluid 198 cm

Assembly Mass 3.12 kg

Main Fluid Volume 2083.5 cm3

Hydrualic Diameter 1.467 cm

Table 2.6: Heater 2.0 Design and Performance Parameters [De Wet and Per F Peterson,
2020]

From Table 2.6, Dheated is also the inner diameter of the outer pipe, which is what heats
the fluid. AXS can also be found in Table 2.6 as 10.52 cm2. We can now substitute the
expressions for Re based on mass flow rate for both Reynold’s numbers to obtain:

ṁDheated

AXSµ
= k

ṁDhydraulic

AXSµ

Since ṁ, AXS and µ are the same for the same pipe:
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Dheated = kDhydraulic

Using the hydraulic diameter from Table 2.6, we get us to k = 2.5971 (5 significant figures
are used for intermediate calculation).

ReD−heated = 2.5971ReD−hydraulic

Let us consider changing the Re range from heated to hydraulic diameter:

350 < ReD−heated < 3978

Divide throughout by 2.5971:

350

2.5971
<

ReD−heated

2.5971
<

3978

2.5971

135 < ReD−hydraulic < 1531

While ReD−hydraulic < 2300, this should not necessarily imply a laminar regime as the
unheated twisted tapes and perforated tubes are meant to improve mixing and heat transfer.
In contrast, laminar flow occurs when there are layers of fluid sliding past each other with
little or no mixing between the layers. Another piece of information which may suggest a
non-laminar flow is the form of the empirical friction factor correlation developed for CIET
Heater v2.0. We can compare this friction factor to the laminar friction factor in pipe flows
[Perry and Green, 2015]:

fdarcy =
64

ReD−hydraulic

In contrast, the friction factor originally developed for heater v2.0 is [De Wet and Per F
Peterson, 2020; Lukas, Kendrick, and P. Peterson, 2017]:

f = 17.9 ∗ Re−0.34
D−heated (2.33)

Again, Equation 2.33 uses a heated perimeter of 0.0381 m rather than the hydraulic
diameter of 0.01467 m in its original formulation [Lukas, Kendrick, and P. Peterson, 2017]
when published in a conference paper. Similar to before, let us convert Equation 2.33 So
that it uses hydraulic diameter. When we do so, we obtain Equation 2.34:

f = 17.9 ∗ Re−0.34
D−heated ∗D0.34

hydraulicD
−0.34
hydraulic

= 17.9 ∗ Re−0.34
D−hydraulic ∗D0.34

hydraulicD
−0.34
heated

= 17.9 ∗ Re−0.34
D−hydraulic ∗ (0.01467)0.34 ∗ 0.0381−0.34

= 12.94 ∗ Re−0.34
D−hydraulic

(2.34)



71

Regardless of the type of diameter used for Re, we note that that f scales as Re−0.34

rather than Re−1 in laminar pipe flow friction factors which suggests where pressure drop
scales linearly with Re [Perry and Green, 2015]. Even in complex geometries such as packed
beds, Ergun’s equation [Ergun and Orning, 1949] suggests that in the laminar regime (or
creeping flow regime), the friction factor scales as Re−1 as it does for Darcy’s law for porous
media [Perry and Green, 2015]. We can infer from these observations that flow in the heated
tube is quite unlikely to be laminar in these given Re values.

For lower mass flow rates and Re, I was unable to find any other correlation. Thus,
the applicability of this correlation in those flow regimes is questionable. Nevertheless, in
this work, the digital twin of the Heater is meant for development of a simulated neutronics
feedback controller operating in CIET at a single fixed flow rate of 0.18 kg/s. Developing a
simulated neutronics feedback controller at other flow rates requires more work with reactor
physics that is beyond the scope of this dissertation. Therefore, I simply did not solve
for pressure drop across the heated section. Implementation and validation of more fully
featured thermal hydraulics model of CIET Heater v2.0 Bare is left to future work.

For thermal inertia of the heater, calculations can be performed using the following design
and performance parameters also in table 2.6. The heater outer tube mass for the heated
section can be calculated as:

mtube = ρsteelVheater = ρsteel
πL

4

(
OD2 − ID2

)
If we use table 2.6, Lheated is 167.6 cm in ID is the 3.81 cm, OD is 4.0 cm. However,

for this dissertation, I opted to use Lheated of 163.83 cm as mentioned earlier in the chapter.
Now, ρsteel and cp,steel, the density and heat capacity for steel, can be interpolated using
tabulated data for steel [Zou, R. Hu, and Charpentier, 2019] or using correlations previously
discussed [Graves et al., 1991].

Besides the heated tube, CIET Heater v2.0 Bare also contains unheated heat structures
as mentioned before. These are the twisted tape and perforated tube. Unfortunately, there
is insufficient information about the these heat structures available in published literature.
In fact, the perforated tube was not modelled in using codes such as SAM [Zou, R. Hu, and
Charpentier, 2019]. To simplify and expedite the model development process, I also ignore
the thermal inertia of the perforated tube. Improvements to the heater model fidelity by
modelling this tube is relegated to future work.

However, the twisted tape is modelled in the SAM model [Zou, R. Hu, and Charpentier,
2019]. I wish to model the twisted tape as well, but again, the heat transfer information for
the twisted tape is limited. Hence, both its thermal inertia and the thermal conductance
between it and the fluid have to be guessed.

From Table 2.6, the twisted tape width within the inner tube is 2.54 cm (1 inch), 0.122
cm (0.048 inch) thickness and length equal to the length of the heated section. To model
the thermal inertia, I estimated the volume of the twisted tape assuming the twisted tape
was a straight, rectangular strip with the same dimensions:
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Vtwisted tape = wtwisted tape × ttwisted tape × Lheated tube

Where wtwisted tape is the twisted tape width and ttwisted tape is the twisted tape thickness.
As for the heat transfer correlation between the twisted tape and the fluid, I did not have any
prior model with which to refer to. Of the correlations I could have used, Wakao correlation
[Wakao, Kaguei, and Funazkri, 1979] meant for porous media, seemed to be quite suitable
since one could model the twisted tape and perforated tube as porous media for the fluid to
flow through:

Nudp = 2 + 1.1 Pr1/3Re0.6dp

Where dp is the particle diameter. Wakao’s correlation uses Re and Nu based on particle
diameter. Hence, I would have had to calculate fluid and solid fractions and find an equivalent
particle diameter for the Wakao correlation. I left this endeavour for future work. For I just
used what was most convenient: the Gnielinski correlation [Gnielinski, 2013]. We shall
revisit Gnielinski’s correlation later in this chapter when we discuss models used for CIET’s
piping. This was because I had the hydraulic diameter on hand with which to calculate
Re. Moreover, I could not find the heat transfer area of the twisted tape separate from the
perforated tubing. One approach could be to calculate the twisted tape area assuming it
was a rectangular strip as before. However, I decided against putting in effort to model the
twisted tape for this current iteration. I just used the inner tube twisted tape plus inner
tube heat transfer area in Table 2.6 as a placeholder value for the time being. The heat
transfer area I used for the heated section was:

Atwisted tape =
Lheated tube

198cm
∗ 4639 cm2

Needless to say, this expression will overestimate the thermal conductance between the
Therminol VP-1 and the twisted tape. Nevertheless, for the purposes of this dissertation, I
only needed an approximate model of the CIET Heater v2.0 with which to test my simulated
neutronics feedback controller. As long as the model can be validated in the ways mentioned
earlier, the model will suffice.

Heater Top and Bottom Heads

As for the heater top and bottom heads, the solid structures are usually modelled using two
axial nodes and three radial nodes [Zou, R. Hu, and Charpentier, 2019; Nicolas Zweibaum,
2015]. These are presumably spaced evenly. Using this assumption, I likewise spaced the
nodes evenly as discussed for the heated sections of CIET Heater v2.0 Bare. Likewise, two
axial nodes and one radial node is used for the Therminol VP-1 within these structures. For
CIET Heater v2.0, the perforated tubing is ignored [Zou, R. Hu, and Charpentier, 2019] in
these top and bottom heads.

For the twisted tape specifically, I merely scale the volume of the twisted tape by its
length in the heater top and bottom heads.
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Vtwisted tape = wtwisted tape × ttwisted tape × Lheater bottom or top head

Where wtwisted tape is the twisted tape width and ttwisted tape is the twisted tape thickness.
Again, from Table 2.6, the inner tube with tape width is 2.54 cm (1 inch), 0.122 cm (0.048
inch) thickness and length equal to the length. The length of the heater top or bottom head
Lheater bottom or top head will be used to calculate the volumes in each. The tapes are made of
SS 304L. Hence, those properties will be used to calculate its mass and thermal inertia. For
thermal conductance, an approach similar to the heater was used where:

Atwisted tape =
Lheater bottom or top head

198cm
∗ 4639 cm2

And the heat transfer coefficient for the twisted tape was based again on Gnielinski’s
correlation [Gnielinski, 2013] as a placeholder since no explicit validation data was available.
We shall explore Gnielinski’s correlations more when reviewing literature for modelling piping
within CIET later in this chapter.

As for the dimensions of the heater top and bottom heads, there is disparity even within
models in literature. This is because work was done in later iterations of the heater top
and bottom head models order to improve the modelling of thermal inertia within these
components [De Wet and Per F Peterson, 2020]. In the earlier RELAP models [Nicolas
Zweibaum, 2015; Zou, R. Hu, and Charpentier, 2019] the relevant parameters for the heater
top and bottom head are presented in Table 2.7:

Property Heated Section Heater Bottom
Head (Inlet)

Heater Top
Head (Outlet)

Length 1.6383 m 0.19685 m 0.0889 m

Hydraulic
Diameter

6.60 ∗ 10−3m 6.60 ∗ 10−3m 6.60 ∗ 10−3m

Flow Area 3.64 ∗ 10−4m2 3.64 ∗ 10−4m2 3.64 ∗ 10−4m2

Wall Thickness 0.001905 m 0.001905 m 0.001905 m

Table 2.7: Heater v2.0 Design and Performance Parameters used in the RELAP Model
[Nicolas Zweibaum, 2015]

In contrast, the later models in Transform model improves upon the RELAP model by
modelling the heater top head (outlet) and bottom head (inlet) with additional fluid and
steel masses [De Wet and Per F Peterson, 2020]. This was meant to help the CIET Transform
model better match the experimental frequency response data. The heater top head, bottom
head, and heated section parameters used in Transform for all version of the heater can be
found in Table 2.8:
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Property Heated Section Unheated Inlet Unheated
Outlet

Length 1.676 m 0.46783 m 0.35458 m

Hydraulic
Diameter

0.01467 m 0.01467 m 0.01467 m

Flow Area 0.00105 m2 0.00105 m2 0.00105 m2

Wall Thickness 0.001905 m 0.0083058 m 0.0083058 m

Table 2.8: Heater v2.0 Design and Performance Parameters used in the Transform Model
[De Wet and Per F Peterson, 2020]

Table 2.8 utilised information from De Wet’s work on Transform [De Wet and Per F
Peterson, 2020] for the heated length, hydraulic diameter, flow area and wall thickness.
These were modelled as “fluid volumes”, which I had to assume were cylindrical pipes due
to the lack of published information. This included the lack of a published nodalisation
table similar to the ones found for SAM and RELAP. Therefore, I was uncertain if the
“Inlet” and “Outlet” referred to in De Wet’s data referred to the heater bottom and top
head respectively, or if the outlet included MX-10 as well. I could of course run several tests
to check if the “Inlet” and “Outlet” meant the top and bottom head. For the time being,
I will assume that the “Inlet” and “Outlet” refer to the top and bottom heads respectively,
each with their own coupled thermal masses. Additionally, the Nusselt correlation was not
explicitly stated for the top and bottom heads. The notes for the Nusselt correlation meant
that it used a two region, single phase Nusselt correlation from Transform [De Wet and Per F
Peterson, 2020]. However, I had no access to Transform, and had to guess what this was.
I also could not use correlations in the RELAP5 model because the inner geometries were
different. For the SAM model, I also found it difficult to find the exact Nusselt correlation
used for this.

Based on this, I could simply use either the Gnielinski correlation for pipes [Gnielinski,
2013] or the CIET heater Nusselt number correlation to estimate the Nusselt number in
the heater top and bottom heads. For the purpose of deciding an appropriate correlation
to use, I also considered the thermal resistance diagram in Figure 2.22. This diagram also
happens to apply for the heater top and bottom heads as well. Based on Figure 2.22, Nu
in the top and bottom heads is important in determining parasitic heat losses to the air.
Another observation from Figure 2.22, is that this convective thermal resistance is in series
with the thermal resistance from the heated steel tube to air. Since the heater design was
meant to maximise Nu, it is reasonable to assume that the convective thermal resistance
for steel to air is much greater than the convective thermal resistance for the steel tube to
Therminol-VP1. Based on this assumption, the sensitivity of parasitic heat loss to deviations
in Nu from Therminol VP-1 to the steel tube in the heater top and bottom heads may not
be significant. Therefore, whether I use the Nu correlations for generic pipes or the heater
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Nu correlation, it may not matter significantly. I eventually decided to use the Gnielinski
correlation [Gnielinski, 2013] due to its simplicity. Of course, we shall need to check if the
resulting model can reproduce the heater outlet temperature. We shall revisit this in the
next chapter.

While I need more data to replicate the Transform model, the information provided in
Table 2.8 based on De Wet’s dissertation [De Wet and Per F Peterson, 2020] is still valuable
and useful if one wanted to model the thermal inertia of the heater top and bottom heads.
While the geometry is not explicitly provided, it may be reasonable to assume that these are
shaped as cylinders where its dimensions are given in Table 2.8 and that the Inlet and Outlet
refer to the bottom and top heads respectively. Under these assumptions, we can compare
the relative geometries of the RELAP5 model to the Transform model. In Table 2.7, the wall
thickness is modelled as 0.001905 m, whereas in Table 2.8, the wall thickness is modelled
at 0.0083058 m. In other words, the Transform model had a wall thickness for the heater
top and bottom head or about four times more than in the RELAP model. Moreover, the
Transform model had the heater Inlet and Outlet modelled as longer pipes in comparison
to the RELAP5 model. Thus, the Transform model would have accounted for more thermal
inertia in the heater top and bottom heads as compared to the RELAP5 model. This is best
visualised in Figure 2.23:

Figure 2.23: Comparison of the Modelling Approach used in RELAP5 [Nicolas Zweibaum,
2015] and Transform [De Wet and Per F Peterson, 2020]

It would be important to test the implications of this thermal inertia on the transient
response of the heater. However, for the purposes of this work, I just need a reasonably
working model of the heater with which to test my simulated neutronics feedback controller.
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As mentioned before, I only need validate this using the transfer function and steady state
data for the purposes of this dissertation. Therefore, I only validated the heater model
constructed using the RELAP nodalisation for the purposes of this dissertation. As we will
discuss in the next chapter, modelling of these extra couple thermal masses was not required
to get the transient responses of the simulation and empirical transfer function to match
within thermocouple measurement error. Modelling of the extra thermal masses is left to
future work.

Proposed CIET Heater Model

For a first iteration of Heater v2.0, I would want to keep my heater model as simple as
possible. Hence, I do not want to model the entrained fluid in the inlet and outlet portions.
For now, I would adopt the RELAP method of modelling the heater top and bottom head
without modelling fluid and steel masses at the inlet and outlet of the heater. This is done in
this dissertation because it is a simpler to develop. The final CIET Heater v2.0 Bare model
which I eventually validated with experimental data is shown in Figure 2.24:

Figure 2.24: CIET Heater v2.0 Bare Proposed Model (Not to Scale)

Figure 2.24 shows the length dimensions for the CIET Heater v2.0 Bare. The internals
are based of the dimensions of the twisted tape discussed earlier. The lengths will be the
same as that of the heated section, the top and bottom heads respectively. The tape width
is 2.54 cm (1 inch) and its thickness is 0.122 cm (0.048 inch). For the purposes of calculating
its thermal resistance to the Therminol VP-1 control volumes, the placeholder value I use for
the heat transfer area is a total of 4639 cm2 spread over the heated section, top and bottom
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heads scaled by the lengths relative to each other. The Nusselt number correlation is based
on the generic Gnielinski correlation [Gnielinski, 2013] which we will review in the following
subsection.

For the fluid volumes, the total fluid height is governed by the total lengths of the heated
sections, as well as the top and bottom heads. The flow area is 10.52 cm2, and the total
volume of the fluids is the flow area multiplied by the height. For the heated outer steel tube
for the heated section, the length is 163.83 cm. The inner diameter (ID) is 3.81 cm while
the outer diameter (OD) is 4.0 cm. For the purposes of calculating thermal resistance, the
heat transfer area to the Therminol VP-1 control volumes is calculated based on ID, and the
Nusselt number correlation is based on:

NuD−hydraulic = 0.04179 Re0.836Dhydraulic
Pr1/3

For simplicity, no wall Pr or µ correction factor was used for the time being. Moreover,
the axial thermal conductances between the heated section and the heater top and heater
bottom head are set to zero for the purposes of model validation tests. The second component
of thermal resistance from tube centre to Therminol VP-1 is based on the half thickness of
the tube. Likewise, the thermal resistance from tube centre to air is governed by the half
thickness of the tube, OD, and a h of 20 W/(m2 · K) as used in the validated Transform
model [De Wet and Per F Peterson, 2020].

Figure 2.24 shows the final nodalisation scheme I eventually used for the CIET Heater
Bare v2.0. While the Transform model utilised two radial nodes for the heated steel shell,
I eventually decided to use one radial node. This was to ensure calculations for the CIET
Heater could keep up with real-time requirements. We will discuss the nodalisation scheme
with the use of diagrams in the next chapter.

The coarser nodalisation scheme, simplified modelling of the twisted tape and heater
internals, as well as the neglect of a significant portion of thermal inertia within the top and
bottom heads may adversely impact accuracy of the model. Therefore, this model needs
to be validated using experimental data. As mentioned previously, I decided to test this
first iteration using De Wet’s heater power to heater outlet temperature transfer function
to ascertain how well the heater reasonably matches the transient response of the outlet
temperature and if these simplifications caused significant deviation from the experimental
correlation. This is discussed in the next chapter in the validation section of CIET Heater
v2.0 Bare simulation. We could include more detailed models of the heater inlet and outlet,
but this is reserved for future work.

CIET Piping

While we are not modelling the whole of CIET, we still need to implement models for CIET’s
piping. As discussed before, Thermocouple BT-12 is placed between component 2 and 3 in
Figure 2.4. This is because the static mixer MX-10 is meant to thoroughly mix the fluid
so that BT-12 can get an accurate reading of the bulk average temperature. Component
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2 and 2a represent static mixer MX-10. Therefore, the outlet temperature measured in De
Wet’s experimental data is not the bulk temperature of the fluid exiting the heater top head
[De Wet and Per F Peterson, 2020], but rather the fluid temperature after MX-10. In the
RELAP5 model, static mixer MX-10 was modelled as an insulated pipe. Therefore, we need
to review some literature relevant to pipe flow used for modelling MX-10 within CIET.

When modelling pipe flow, we restrict our discussion mostly to heat transfer and Nusselt
number correlations. In my master’s thesis [Ong, 2023], I already mentioned that I used the
Churchill correlation [Perry and Green, 2015] to predict fdarcy in the laminar and turbulent
regimes, and I did not explicitly model hydrodynamic entrance effects in the pipes. This
model was already validated using experimental data as mentioned when I summarised my
master’s thesis. Hence, I will not repeat its full discussion here.

CIET Piping Models in Transform

For pipe modelling in CIET, a simple Nusselt number correlation were previously used to
calculate heat transfer. In the laminar regime, the Transform model uses [De Wet and Per F
Peterson, 2020] Equation 2.35:

NuD−hydrualic = 4.36 (2.35)

Equation 2.35 is applicable for ReD−hydraulic < 2100, and is also the same as the laminar
Nusselt number derived for fully developed flow with a uniform heat flux boundary condition
[Bejan, 2013]. In turbulent flow, the Transform model uses [De Wet and Per F Peterson,
2020] Equation 2.36:

NuD−hydraulic = 0.023Re0.8D−hydraulicPr
0.4 (2.36)

Equation 2.36 is essentially the Dittus Boelter correlation [Bejan, 2013] for fully developed
flow where the pipe length to hydraulic diameter ratio L

Dhydraulic
≥ 60 [Bejan, 2013]. The

transform model applied a smoothing scheme for interpolation between the fully developed
laminar and turbulent flow described in De Wet’s dissertation [De Wet and Per F Peterson,
2020]. However, I am unclear as to what this smoothing scheme is like The smoothing scheme
is:

Nu = Nuturbulentα +Nulaminar(1− α)

Where α = (tan tan(x/δx) + 1). x is the input variable, and δx is half with of the
transition region. Presumably, x is Re in this case as the correlations developed were generic
to the Transform program. [De Wet and Per F Peterson, 2020]. The lack of brackets around
the tangent term makes its meaning ambiguous, and I am not sure if it is an editorial
error within the dissertation appendices. Nevertheless, I gather from this that the Nusselt
number for turbulent and laminar schemes assume fully developed flow, perhaps due to
its simplicity. Secondly, I also gather that that the Nusselt number in the transition regime
between turbulent and laminar flow can be interpolated. Since Transform used models which
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interpolate between laminar and turbulent flow regimes, I sought a similar Nusselt number
correlation within literature that also interpolates between the two flow regimes.

Gnielinski’s Correlations

For pipes, a suitable Nusselt number correlation is Gnielinski’s correlation [Gnielinski, 2013]
which provides correlations for each flow regime:

Nu =


Nulam(Re) for Re < 2300

Nuturb(Re) for Re > 4000

(1− γ)Nulam(Re = 2300) + γNuturb(Re = 4000) for 2300 < Re < 4000

(2.37)

Where:

γ =
Re− 2300

4000− 2300
for 2300 < Re < 4000 (2.38)

These equations are usable for flow in laminar, transition and turbulent regimes. Addi-
tionally, they also account for developing and fully developed flow. To ascertain this, we can
look at the provided forms of laminar and turbulent Nusselt Number (Nu). The expressions
for laminar Nu, including the entrance region effects for uniform heat flux, are [Gnielinski,
2013]:

Nulam =

4.3543 + 0.63 +

(
1.953

3

√
Re Pr

d

L
− 0.6

)3

+ 0.9243Pr

(
Re

d

L

)1.5


1/3

(2.39)

Equation 2.39 accounts for the entrance length using a d/L term, where d is the repre-
sentative diameter, usually Dhydraulic and L is the pipe length. As the flow develops, L→ ∞
and d/L→ 0 and these equations reduce to a form suitable for fully developed flow. Should
the flow fully develop for Equation 2.39, we get:

Nu =
(
4.3543 + 0.63

)1/3
= 4.3577 ≈ 4.36

This approaches the Nusselt number for uniform heat flux of about 4.36 [Bejan, 2013].
Now, for laminar flow, we note that there is a difference between uniform temperature and
uniform heat flux boundary conditions for the Nusselt number. For constant wall tempera-
ture, the laminar Nusselt for fully developed flow is 3.66. Gnielinski also provides a similar
correlation where Nu approaches 3.66 [Gnielinski, 2013] as the flow fully develops. Though
in reality, heat transfer hardly occurs at mathematically convenient boundary conditions.
A more realistic boundary condition is perhaps where there is some uniform temperature
on the outside of the pipe, some thermal resistance and thermal inertia within the pipe,
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and perhaps a changing temperature difference axially along the pipe. Given this state of
affairs, is difficult to define the Therminol VP-1 to steel boundary clearly as either uniform
temperature or uniform heat flux. A simple approach for this work is to take the uniform
heat flux Nu similar to previous CIET system simulations in Transform. Therefore, I just
used the constant heat flux approach for my model.

Now, to evaluate Nu, we traditionally evaluate fluid properties at film temperature Tfilm
[Bejan, 2013]:

Tfilm =
Tbulk + Tsurf

2
(2.40)

Tbulk is the bulk fluid temperature and Tsurf is the temperature of the surface. Now,
while it is best to use film temperature when evaluating fluid properties, it is sometimes
more convenient in code to just use Tbulk as an approximation of Tfilm. Hence, for first
iterations of code, I used Tbulk rather than Tfilm. For subsequent iterations of code, I would
incorporate the use of Tfilm into the code.

Now that we have dealt with the laminar portions, we move on to the turbulent Nusselt
number. This is presented in Equation 2.41 [Gnielinski, 2013] :

Nuturb =
(fdarcy/8)(Re− 1000) Pr

1 + 12.7
√
(fdarcy/8)(Pr

2/3 − 1)

[
1 +

(
d

L

)2/3
](

Pr

Prsurf

)0.11

(2.41)

fdarcy is the Darcy friction factor which can be calculated using Filonenko’s equation
or Konakov’s equation[Gnielinski, 2013]. However, other correlations such as Churchill’s
correlation could potentially be used as well since they pertain to friction factors in tubes
[Perry and Green, 2015; Churchill, 1977]. As I intend the library to be flexible, I do not
wish to tightly couple the calculation of Nu and fdarcy. I instead allow the user to choose
how he or she likes to calculate fdarcy. Equations 2.41 and 2.39 account for the entrance
length using a d/L term in their respective equations [Gnielinski, 2013], where d is the
representative diameter, usually DH and L is the pipe length. As the flow develops, L→ ∞
and d/L → 0 and these equations reduce to a form suitable for fully developed flow shown
in Equation 2.42:

Nuturb =
(fdarcy/8)(Re− 1000) Pr

1 + 12.7
√
(fdarcy/8)(Pr

2/3 − 1)

(
Pr

Prsurf

)0.11

(2.42)

Except for the Prwall term the form resembles the Gnielinski correlation in Bejan’s text-
book [Bejan, 2013]. Readers should note that the Fanning friction factor is used as opposed
to Darcy friction factor in some pieces of literature such as Bejan’s work [Bejan, 2013] and
in Perry’s Chemical Engineering handbook [Perry and Green, 2015]:

fdarcy = 4ffanning

Aside from this small detail, we have shown how Gnielinski’s correlation accounts for
flow in turbulent, transitional and laminar flow, as well as developing and fully developed
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flow. This makes the equations suitable for general flow in straight pipes such as those in
CIET.

On the Presence and Significance of Developing Flow in CIET

For the sake of determining a suitable entrance length, we must consider the flow paths of
the fluid prior to entering a fluid component. If the flow traverses in one direction, this can
be hard coded. However, if the flow is expected to traverse in both forward and reverse
direction, implementing this in code can get much more complex. Given this, we want to
ascertain if we can ignore entrance effects within CIET. This has implications on how we
determine d/L for the fluid for the purposes of determining Nu. To see if we can ignore
entrance length effects, we first need to check if these effects are present in CIET. Secondly,
if these effects are present, we want to check if we can ignore them.

Presence of Entrance Length Effects We can investigate the presence of entrance
effects first by finding a suitable length scale over which flow becomes fully developed. To
do so, we can consider developing flows in circular ducts for both laminar and turbulent
flow since many of the components in CIET are simply cylindrical pipes. We can gauge the
lengths of these pipes prior to bends and see how these compare to the lengths required for
fully developed flow.

For CIET, the longest pipe lengths are on the order of 2 m, while most pipes and com-
ponents are on the order of 0.1 m. In between these piping components, there are bends,
flow meters, static mixers, heat exchangers and even the heater as they contain objects such
as spheres and twisted tapes [De Wet and Per F Peterson, 2020] intended to enhance heat
transfer [Lukas, Kendrick, and P. Peterson, 2017] or ensure a well mixed flow. If we refer
once more to Figure 2.4, we can see that there are several of these objects lie within the flow
path of the fluid. Moreover, the pipes themselves may have thermocouples inserted in the
flow to measure bulk fluid temperature, as well as valves. These objects may disrupt a fully
developed boundary layer and may prevent the flow from ever developing fully.

A table of CIET’s components is listed in previous literature [Ong, 2023; Nicolas Zweibaum,
2015; Zou, R. Hu, and Charpentier, 2019], including my master’s thesis. I reproduce the
piping schematics for the isothermal digital twin model from my master’s thesis in Table 2.9:
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Table 2.9: Hydrodynamic Parameters used for the Rust Model [Ong, 2023]

*** For CTAH correlation, see Equation 2.43

** For Flowmeter correlation, see Equation 2.44

* For Static Mixer correlation, see Equation 2.45

For the Coiled Tube Air Heater (CTAH), the following correlation is used [Zweibaum,
J E Bickel, et al., 2015]:

(fdarcy
L

Dhydrualic

+K) = 18 +
93, 000

Re1.35Dhydrualic

(2.43)

Here in Equation 2.43, K represents form loss. For all Coriolis Flowmeters, the following
correlation is used [Zweibaum, J E Bickel, et al., 2015]:
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(fdarcy
L

Dhydrualic

+K) = 400 +
52, 000

ReDhydrualic

(2.44)

For all static mixers, the following correlation is used [Zweibaum, J E Bickel, et al., 2015]:

(fdarcy
L

Dhydraulic

+K) = 21 +
4000

ReDhydrualic

(2.45)

Table 2.9 was produced using information from the RELAP model of CIET [Nicolas
Zweibaum, 2015]. The component numbers are meant to mostly correlate to Figure 2.4
except for the branches 5 and 17, which are split into 5a and 5b, as well as 17a and 17b on
Figure 2.4. The exact details are not discussed here for brevity. Some pipes such as pipe 4
are as short as 0.24 m, while some pipes such as pipe 10 are as long as 2.4 m. Fluid flowing
in these pipes would often encounter bends. For example, a bend exists between pipe 3
and pipe 4, thus disrupting any fully developed flow if it is present. If we wish to ignore
entrance effects, the entrance lengths must be short with respect to these pipe lengths. Let
us consider some entrance length scales for this purpose.

For entrance lengths, we need to consider at least two bounding cases for pipes based
on both laminar and turbulent flow regimes. We shall first consider laminar regimes before
moving on to turbulent regimes. The hydrodynamic entrance X length for laminar flows can
be estimated as [Bejan, 2013]:

X

Dhydrualic

≈ 0.04ReD−hydrualic (2.46)

For circular ducts, such as some pipes within CIET, literature recommends [Perry and
Green, 2015]:

X

Dhydrualic

≈ 0.05ReD−hydrualic (2.47)

For laminar duct flow, the thermal entrance length (XT ) for fluids with Pr >> 1 scales
linearly with Pr [Bejan, 2013; Perry and Green, 2015]:

XT

X
∼ Pr (2.48)

For fully developed hydrodynamic and thermal boundary layer flow in cylindrical ducts,
we can use [Perry and Green, 2015]:

max(X,XT )

Dhydrualic

≈ 0.05ReD−hydrualicPr (2.49)

For laminar flow of Therminol VP-1, we need Pr to calculate the ratio of the X to XT .
Pr is about 11.1 to 14. Therefore, the thermal entrance length is at least 10 times more than
the hydrodynamic entrance length. We encounter this situation in laminar flow regimes,
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usually when CIET operates in natural circulation mode. Here, the flow rates are on the
order of 0.04 kg/s [Nicolas Zweibaum, 2015]. To estimate the relevant X in this regime, we
can first calculate ReDhydraulic

for a typical pipe in CIET. We use Dhydraulic of 2.79× 10−2m
[Nicolas Zweibaum, 2015], a flow area of 6.11 × 10−4 [Nicolas Zweibaum, 2015] and a mass
flow rate of 0.04 kg/s. µ is taken at an average temperature of about 60◦C, which is a typical
temperature occuring during natural circulation.

ReD−hydrualic =
ρuDhydraulic

µ
=
ṁDhydraulic

AXSµ

=
0.04(kg/s)× 2.79× 10−2m

6.11× 10−4m20.0008425(Pa · s) ≈ 1132

(2.50)

Based on Equation 2.50 and 2.47, the ratio X/Dhydrualic is about 56. For a hydraulic
diameter of 2.79 cm, we obtain an entrance length scale of approximately 158 cm or 1.58
m. If we consider lengths required for thermally fully developed flows, the entrance length
is about 16 m. Given that CIET’s longest pipe is on the order of 2 to 3 m, we can conclude
that in laminar regimes, the flow is almost never fully developed.

Next, let us consider turbulent flow regimes. CIET experiences some turbulent flow
during forced circulation within its pipes. We can verify this by calculating ReDhydraulic

. To
do so, we can use the same pipe diameters and cross sectional areas as before, but the mass
flow rate ṁ is about 0.25 kg/s. This is one of the higher flow rates recorded in literature
[Lukas, Kendrick, and P. Peterson, 2017]. For µ, we consider that a typical fluid temperature
of CIET within forced circulation is approximately 110 ◦C [De Wet and Per F Peterson, 2020].
At this temperature, µ is about 0.000843 Pa · s. We can substitute these values in to find a
typical value of ReDhydraulic

in Equation 2.51:

ReD−hydrualic =
ρuDhydraulic

µ
=
ṁDhydraulic

AXSµ

=
0.25(kg/s)× 2.79× 10−2m

6.11× 10−4m20.0008425(Pa · s) ≈ 13, 550

(2.51)

Equation 2.51 shows that turbulent flow in the pipes would exist during forced circulation
for CIET as Re > 4000. Therefore, we need to consider turbulent duct flow. Hydrodynami-
cally fully developed flow in tubes occurs when [Bejan, 2013; Perry and Green, 2015]:

X ≥ 10Dhydraulic (2.52)

XT ≥ 10Dhydraulic (2.53)

(2.54)

Equation 2.52 is applicable for fluids with Pr ∼ 1 [Bejan, 2013] as well as fluids with Pr
of about 7 to 200 [Hartnett, 1955] with high Re. Therefore, it is applicable to the Therminol
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VP-1 Pr range found within CIET. We should be careful though when using Equation 2.52.
Based on Hartnett’s experimental data with Freezene oil with Pr ∼ 100 [Hartnett, 1955], one
should note that for lower Re turbulent flows such as Re ∼ 5500, XT/Dhydrualic increases to
a value of 20 or 30. At Re of about 10,100, XT/Dhydrualic is about 12. Therefore, one should
be more judicious with using Equation 2.52 especially for lower Re turbulent flows. This
can plausibly occur for lower mass flow rates at lower temperatures with higher viscosities.
For example, a flow of Therminol VP-1 at 80◦C at 0.18 kg/s in the same pipes has Re ≈
7000. This is typical of flow exiting the CTAH and entering the heater [De Wet and Per F
Peterson, 2020]. In this flow regime, the XT/Dhydrualic is more than 10.

Now, let us consider the scale of these entrance lengths. For the purposes of determining
a lower bound estimate of entrance length effects for turbulent flow, we can simply use
XT/Dhydrualic ≥ 10 as a lower bound estimate for XT . In this case, XT is about 27.9 cm
or 0.279 m, based on a hydraulic diameter of 2.79 cm. Given that a significant number of
pipes shown in Table 2.9 are less than 1m, we can conclude that entrance effects may be
important for many of these pipe. If we consider lower Re flows, the entrance lengths may
be twice as long, or roughly 55 cm. In such regimes, we should consider entrance lengths
and developing flow.

Significance of Entrance Length Effects Now that we have verified that entrance
length effects are present in CIET regardless of flow regime, we need to consider the sig-
nificance of entrance length effects as well. For flow in CIET’s insulated pipes, entrance
lengths impact the calculation of Nu. In turn, Nu is important for calculating parasitic
heat loss. Parasitic heat loss is in turn important to account for in modelling CIET. In
previous models of CIET such as those in RELAP5, the parasitic heat loss was often un-
derestimated based by up to 75% [Nicolas Zweibaum, 2015]. This was attributed to losses
through metallic components protruding from CIET’s insulated pipes. Even when the metal-
lic components were insulated based in infra-red camera data, the discrepancies persisted
[Nicolas Zweibaum, 2015]. Hence, the approach taken then was to scale the heat transfer
coefficients by a multiplication factor [Nicolas Zweibaum, 2015] in order to ensure that the
model matched experimental data. This process was known as “model calibration”.

Model calibration was also done with the Transform model [De Wet and Per F Peterson,
2020]. However, the Transform model accomplishes this by modelling metallic structural
supports within CIET as heat structures within Transform. The structural supports were
modelled according to measurements of structural supports within CIET. The supports were
then connected to a thin wall with convective thermal resistance to ambient air boundary
conditions [De Wet and Per F Peterson, 2020]. This was stated to have accounted for most of
the parasitic heat loss. No mention was made about accounting for entrance length effects.
Since the Transform did not account for entrance effects from the start, one could then infer
that entrance lengths effects did not account for the bulk of parasitic heat losses within CIET.
These were not important to account for as compared to the metallic support structures.

While I initially wanted to replicate the heat structure model, I was unable to due to
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a lack of published data and dimensions for CIET’s support structures. I also considered
measuring these structural supports by hand. However, this was too far outside the scope
of this dissertation as I only needed an approximate model of CIET’s Heater. I decided to
leave the study and modelling of parasitic heat losses within CIET to future work. As long
as the model reproduced experimental data for CIET’s Heater, this would suffice for this
dissertation.

Given this state of affairs, it seemed that entrance effects may not be matter significantly
in this context. Nevertheless, entrance length effects are already contained within Gnielinski’s
model [Gnielinski, 2013]. This is relatively convenient to put into my code. The capability to
account for entrance lengths within the heat transfer library may have been useful to future
users of the library. Hence, I included the capability to model entrance lengths in case they
were needed in future.

To calculate d/L, I just chose the simplest method possible. I used the length of the fluid
component to calculate d/L and the resulting Nu. This simplified model would be used in
MX-10. The overall heater and MX-10 model would be validated against experimental data.
We shall cover this in the next chapter.

Thermal Inertia and Thermal Resistance for Pipes

For thermal inertia and thermal resistance, we may refer to some piping design and perfor-
mance parameters for CIET in Table 2.10 [De Wet and Per F Peterson, 2020]:

Name Value

Heat Transfer Fluid Dowtherm-A or Therminol VP-1

Wall Thickness 0.277 cm

Wall Inner Diameter 2.79 cm

Wall Roughness 1.5 ∗ 10−5m

Insulation Material Fiberglass

Insulation Outer Diameter 5-inch

Insulation Inner Diameter 1-inch (approx)

Insulation Thickness 2-inch

Ambient Temperautre 21.67◦C

Ambient Heat Transfer Coefficient 20 W/(m ·K)

Table 2.10: CIET Piping Design and Performance Parameters [De Wet and Per F Peterson,
2020]
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I can use the same thermophysical properties for the piping since it is made of a similar
steel to the heater. However, I also need to consider its fiberglass insulation. For fiberglass,
the basis of the thermal conductivity data used in RELAP models is [Nicolas Zweibaum,
2015]:

k

(
W

m ·K

)
= 7.702 ∗ 10−4T (◦C) + 0.206 (2.55)

However, in both RELAP the SAM model, this correlation was used to obtain thermal
conductivity values and put into a table. I used this table for computation. Fibreglass
density is 20 kg/m3 and fiberglass heat capacity (cp) is 844 J/(kg ·K). The values of cp and
k are provided Table 2.11:

Temperature (K) k (W m−1 K−1) cp (J kg−1 K−1)

250 0.028616 844

293.15 0.03306 844

350 0.038916 844

400 0.044066 844

500 0.054366 844

600 0.064666 844

Table 2.11: Thermophysical Properties of Fiberglass [Zou, R. Hu, and Charpentier, 2019;
Nicolas Zweibaum, 2015]

Modelling Details for Static Mixer MX-10

Since we are interested in modelling MX-10, we also want to investigate the modelling
details for MX-10. In the RELAP5 model, MX-10 was modelled using a static mixer pipe
(component 2 and 2a) of of length 0.149425 m and a static mixer of length 0.33 m as seen
in Table 2.9.

Let us discuss the thermal resistance, thermal inertia and nodalisation details for MX-10.

Thermal Resistance and Thermal Inertia for MX-10 For the purposes of heat trans-
fer modelling, MX-10 is modelled as the components 2 and 2a in Table 2.9 and in Figure 2.4.
These are modelled as cylinders of the same length and hydraulic diameter as seen in Ta-
ble 2.9. For simplified modelling, the SS 304L wall thickness is assumed to be 0.277 cm,
same as for any other pipe in Table 2.11. The fibreglass insulation is 2 inch thick. This
fibreglass would supply the bulk of the thermal resistance to outside air. The fibreglass to
air thermal resistance is based on the outer diameter of the fibreglass, 5 inches, and a heat
transfer coefficient of 20 W/(m2 ·K) to keep this consistent with h of the heated tube to air.
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For MX-10, we also use the Gnielinski correlation for calculating the Nu. Pr and Re are
evaluated at the control volume temperature. The friction factor is based on Table 2.9, which
specifies an experimentally determined correlation for MX-10 based on isothermal pressure
drop experiments [Nicolas Zweibaum, 2015]. This friction factor is then substituted into
the Gnielinski correlation to estimate Nu. The entrance length value used for Nu for both
component 2 and 2a are their respective component lengths. This is 0.149425 m and 0.33 m
for component 2a and component 2 respectively.

For axial connections between component 2a and its adjacent components as seen in
Figure 2.4, thermal conductance is zero, which means there is an adiabatic boundary. Only
fluid advection is allowed to transfer heat between fluid control volumes. The adiabatic
boundary also exists for adjacent solid control volumes. Likewise, for component 2, there is
a similar adiabatic boundary.

For thermal resistance and thermal inertia, the fluid control volumes are modelled as
cylinders with diameters of 2.79 × 10−2m. The SS 304L wall surrounding the Therminol
VP-1 has a thickness is assumed to be 0.277 cm. Finally, the same 2 inch thick insulation is
used to calculate thermal inertia of the fibreglass node.

Nodalisation for MX-10 For MX-10 nodalisation, I took reference from the SAM model
seeing that each of these components contains two axial nodes [Zou, R. Hu, and Charpentier,
2019]. Hence, in the simulations I validated in the next chapter, two control volumes are used
for component 2 and 2a each in the axial direction. This is a total of four control volumes
modelling MX-10. As before, these control volumes are equally sized for both solid and fluid
control volumes. Radially, it is composed of an inner Therminol VP-1 fluid node, coupled
to a SS 304L steel node. This steel node is coupled to an additional fibreglass insulation
node via a cylindrical conductive thermal resistance. The centre of the fibreglass node is
then connected via conductive thermal resistance and convective thermal resistance to the
outside air. This is can be seen in Figure 2.25:
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Figure 2.25: MX-10 Nodalisation Diagram (Not to Scale)

The number of radial nodes was not specified in the SAM model. However, I used one
radial node only because I needed to reduce the computational burden to ensure calculations
are run in real-time. Furthermore, I was not interested in the temperature profile of MX-
10’s steel shell or fibreglass insulation. Moreover, the main impact that the modelled MX-10
component has on the exit temperature is that of residence time, and a negligible heat
loss. Based on early simulations, this was on the order of 0.01 K at steady state, or an
order of magnitude less than the Type T thermocouple measurement uncertainty of ± 0.5 K
[Zweibaum, Guo, et al., 2016]. Again, these measurement uncertainties are typical of Type
T thermocouples used within CIET [Zweibaum, Guo, et al., 2016]. I found it extremely
implausible that increasing the number of nodes would have any appreciable impact on
parasitic heat loss. Therefore, I left the number of radial nodes for the steel and fibreglass
at one each.

Heat Exchangers, Fans and Coolers

Now, heat exchangers are an integral part of CIET. They are mainly meant to remove heat
from the primary loop to the DRACS loop, or to the surrounding air. From Figure 2.4,
there are three main heat exchangers of interest that exchange heat between fluids. In the
CTAH branch, we have the Coiled Tube Air Heater (CTAH), which removes heat from the
primary loop during forced circulation. It models the Intermediate Heat Exchanger (IHX)
which transfers heat into a working fluid for power production. In natural circulation mode
, the DRACS Heat Exchanger (DHX) removes heat from the primary loop and moves it into
the DRACS loop. The heat is removed from the DRACS loops via a Thermosiphon Cooled
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Heat Exchanger (TCHX) [Nicolas Zweibaum, 2015]. This TCHX is also called the Natural
Air Draft DRACS salt to air Heat Exchanger (NDHX) [Raluca Olga Scarlat, 2012].

For the purposes of this dissertation, we are more concerned with constructing a Digital
Twin of the Heater rather than the whole loop. Therefore, work on heat exchangers is left for
future work. However, a brief dossier containing important information for CTAH modelling
is given in the Appendix. This is because we will eventually have to model the CTAH when
we simulate forced circulation transients, such as ULOHS, within CIET.

Support Structures

The support structures responsible holding CIET in its place also happen to be responsible
for parasitic heat losses in CIET [De Wet and Per F Peterson, 2020]. A figure in De Wet’s
Dissertation outlines where these support structures reside 2. It is to be noted that the
figure containing information on these support structures does not correspond directly to
the nodalised models used in SAM or RELAP similar to Figure 2.4. We can only estimate
where these support structures may reside. With reference to Figure 2.4, it seems that
support structures are present on pipe 12, 13 and 14 in the pipe manifold area, as well as
pipe 16 and 17a at the junction between the heater and CTAH branch. For the heater branch,
pipe 3 and 4 seem to be modelled with connection to support structures. For the remainder
of the CTAH branch, pipe 5b and pipe 10 seem to be connected to support structures as
well.

For this dissertation, detailed investigation and calibration of support structures is not
done yet for simplicity. However, the code responsible for conduction along the supports is
implemented so that the computational burden of simulating such supports can be estimated.
I do this so that I have assurance that the Digital Twin in future can run in real-time even
with the added computational burden of simulating the structural supports.

For this, I added some dummy support structures to the heater top and bottom head.
The support structures are crudely modelled as 1 ft long and 0.5 inch diameter SS 304L
cylinders. These length scales are based on crude measurements I made with some support
structures in CIET. A fellow thermal hydraulics laboratory member who has since graduated,
Omar Ashraf Alzaabi, has taken these measurements in much more detail than I have. He
has graciously allowed me to use some of his photographs detailing the measurements for
this dissertation. Figure 2.26 shows one of his photographs, which I compressed, of how a
typical support structure in CIET looks like:

2The appendix in De Wet’s dissertation on approximately page 135 Appendix D provides a figure on
where the support structures are [De Wet and Per F Peterson, 2020]. The copy I have, however, is a draft.
But I think the information is still somewhat reliable.
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Figure 2.26: Photograph of DHX Support Structure, Credit Omar Ashraf Alzaabi

The support structures in Figure 2.26 are shown in blue. These support structures are
typically L shaped as shown in Figure 2.27:
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Figure 2.27: Photograph Emphasising L Shape of Support Structure near Value V81 in
CIET, Credit Omar Ashraf Alzaabi

Most of these support structures have similar breadth and width of about 2.3 cm as
shown in Figure 2.28:
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Figure 2.28: Photograph of showing Support Structure Width of about 2.3 to 2.4 cm in
CIET near DHX Branch, Credit Omar Ashraf Alzaabi

The length of the blue L shaped structure is about 23 cm long as shown in Figure 2.29:
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Figure 2.29: Photograph of showing Support Structure Length of about 23 cm in CIET near
DHX Branch, Credit Omar Ashraf Alzaabi

However, the blue L shaped support itself is connected to another grey square like struc-
ture (I presume to be a bracket) holding the pipe as shown in Figure 2.26. The length of its
side is shown in Figure 2.30:
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Figure 2.30: Photograph of showing Square like Support Structure (Presumably a Bracket)
with Side Length of about 5.5 cm in CIET near DHX Branch, Credit Omar Ashraf Alzaabi

For now, detailed modelling of these support structures is left to future work. Neverthe-
less, I estimated a length scale of these support structures to be about 30 cm long or about
1 foot based on adding 5.5 cm to 23 cm. I also simplified the modelling of the L shaped
support of about one inch long at the sides as a half inch diameter cylinder. This is how I
arrived at the dimensions of a 1 foot long, half inch diameter cylinder to crudely model the
support structures.

I then added coupled one of these dummy cylinders to the heater top head and one to the
bottom head with their respective thermal resistance based on the length of the structure.
I also added one more dummy cylinder support structure to the Static Mixer MX-10 mixer
pipe, labelled 2a on Figure 2.4. This was for the purposes of simulating the computational
burden incurred by these structures. With these additions, the final simulation still ran
within an acceptable time frame. We will discuss this more in the next chapter.

2.5 Review of Solver Stability Issues for Heat

Transfer Solvers

Now, in the course of performing numerical analysis for transients, stability is an important
issue. This is especially the case if the solver has any degree of explicit coupling as mentioned
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earlier in the chapter. To ensure that the simulation is stable, the methodology of choosing
of the appropriate time step becomes very important. This is because we want to maximise
accuracy and stability of the solver while minimising computational cost [Rossi et al., 2014].

This is a complex problem because different transients entail different time scales. For
CIET, a frequency response test would entail at least three time scales. These would pertain
to frequency, fluid residence time and conjugate heat transfer time scales [Zou, R. Hu, and
Charpentier, 2019]. However, where conduction is concerned, we would then consider the
mesh Fourier number [Salem, M. Errera, and Marty, 2019]. In conjugate heat transfer
(CHT), we may run into multiple of such time scales. However, for stability, a smaller
timestep usually implies better stability. Hence, the timestep should be determined by
considering the smallest of these time scales. Since the timestep is directly dependent on
the time scales for transients and heat transfer, it is important to review what some of these
time scales are so that we may apply them to the thermal hydraulics library.

Discussion on Explicit and Implicit Coupling

Of course, in the context of system codes such as RELAP5, the Courant number limitations
have been circumvented via the use of semi implicit or implicit coupling schemes [Aumiller,
Tomlinson, and Bauer, 2001]. Implicit or semi implicit coupling schemes have generally
worked well and are used in Computational Fluid Dynamics (CFD) codes and multiphysics
codes such as OpenFOAM and GeN-Foam [Fiorina, I. Clifford, et al., 2015]. Implicit Cou-

pling usually entails placing all components into a matrix where we need to solve Ax⃗ = b⃗.
However, should the matrix size grow too large, computational costs will add up. This is
because computational costs for matrix multiplication scale as O(n2.37188) [Duan, H. Wu, and

Zhou, 2022] where A is an n×n matrix and b⃗ has n elements. Hence, we generally would not
want the matrix to grow too large, otherwise the benefits gained from allowing a larger time
step would be offset by additional computational costs due to having a large matrix. These
large matrices usually arise from coupling the entire system tightly using an implicit scheme.
If we were to insist on writing a solver using fully implicit coupling schemes from scratch,
would not only take more time to test and develop compared to an explicit (loose) coupling,
it would also make the software architecture tightly coupled or monolithic [Fernández, 2011].
From a software engineering perspective, tightly coupled software architecture is undesirable
in comparison to loose coupling [Pautasso and Wilde, 2009]. This is because tight coupling
makes the program more difficult to modify and maintain in comparison to a loosely coupled
codebase as it is less modular [Fernández, 2011]. In general, we want to avoid a fully implicit
coupling scheme if the matrices necessitated by implicit coupling grow too large.

One other consideration when using a fully implicit time stepping approach is that we
still have an upper limit for the time step we use. While we are not restricted by stability, we
are still restricted by the time scales of the phenomena we need to simulate. For example,
in frequency response transient simulation, we are limited by the time scales set by the
perturbation frequencies, fluid residence time, and conjugate heat transfer (CHT) time scales
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[Zou, R. Hu, and Charpentier, 2019]. Thus, we cannot increase the time step indefinitely
even if we were to use the implicit time stepping schemes.

Non-linearities and Semi Implicit Coupling Example using 1D Conduction

Also, with tight (fully implicit) coupling, there is a good chance we will run into nonlinear
equations in the solution procedure [Fernández, 2011]. One very simple example is an en-
thalpy change calculation. The enthalpy change of a control volume depends on the specific
heat capacity of a volume (cp). For this simple example, let us discuss what the control
volume calculations over a typical control volume in a 1D array for solid conduction. The
energy balance over a control volume in such an array is:

∂[mcp(T )T ]

∂t
=

∂

∂x

(
k(T )AXS

∂T

∂x

)
∂[ρV cp(T )T ]

∂t
=

∂

∂x

(
k(T )AXS

∂T

∂x

)
(2.56)

In Equation 2.56, k(T ) is thermal conductivity, T is temperature, x is length, m = ρV
is the mass of the differential volume dV , where ρ is density and V is volume. cp(T ) is the
temperature dependent heat capacity, and AXS is the cross sectional area of the 1D array
of control volumes. Now, cp and k(T ) are both functions of temperature, and during the
discretisation process, we would have non linear terms to deal with. To show this, let us
discretise equation 2.56 using an implicit time scheme, but we assume k(T ) and ρ are either
averaged or invariant with T for a simpler illustration:
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In these derivations, T t
x is the temperature at position x and time t. The mesh is uniform

with spacing ∆x and the time step is ∆t.
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cp is in turn dependent on temperature and is often a polynomial function. If we assume
that in the simplest case, cp varies linearly with T :

cp(T ) = a1 + a2T

Then:
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Now, Equation 2.57 has a nonlinear (T t+∆t
x )2 term which makes the resulting matrix

more difficult to solve as using a linear scheme. Regardless, this nonlinear problem would
be challenging to solve in real-time. If we wish to linearise this problem, we could either
assume cp is constant with t, or else use the values of cp at the last time step. This is because
we need not worry about (T t

x)
2 since the values at the time t are fixed. If we use the latter

approach, we obtain Equation 2.58:
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t
x)

2]

∆t
= T t+∆t

x+∆x − 2T t+∆t
x + T t+∆t

x−∆x (2.58)

Equation 2.58 allows us to solve a linear equation to obtain the temperature profile at the
next step. It is also semi implicit because the cp at the previous time step was used. While
Equation 2.58 allows us to solve a linearised heat transport equation in a semi-implicit
manner, we must be careful if the mesh grows too large such that we cannot solve the
equations in real-time. This can happen if we tightly couple too many components such that
we obtain a large matrix to solve.

Semi Implicit Coupling for 1D Fluid and Solid Control Volumes

Now for fluid control volumes, we need to simulate more than heat conduction. Suppose
we add in the mass, energy and momentum balance equations. If we were to couple them
explicitly, then we will have a multivariable nonlinear system of equations to solve. As I
found out in my previous work, solving a nonlinear system of equations would not only slow
down calculations, the solver itself may not even converge on a solution [Ong, 2023]. These
were the main motivating factors for me to use an operator split method mentioned earlier
in the chapter. In operator splitting, the mass, energy and momentum are coupled explicitly
as shown earlier. This allows me to linearise some of the resulting equations. The resulting
time marching scheme is semi-implicit. Therefore, some level of explicit solutions should be
expected.

Now suppose that in the energy balance, we want to consider the discretisation of the
energy equations. We already derived an explicitly discretised form of the energy equation
in earlier Equation 2.25:
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Except for the mass flow rate, and equivalent energy balance discretised using an implicit
time marching scheme would take the form:
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(2.59)

As mentioned before, we may not want to solve the (almost) fully implicit Equation 2.59
because the thermal conductances, enthalpies and even local heat generation terms (for
resistive heating) are generally functions of T . To linearise this nonlinear problem, we can
take evaluate the thermal conductances based on temperatures of the last time step. Thus,
this becomes a semi-implicit form of the discretised equation. The boundary conditions
themselves may be based on thermal conductances especially if the boundary condition is
a user set constant temperature, if this is so, then the thermal conductances can also be
evaluated at the last time step. We may also simplify the equation further by specifying
that volumetric heat generation terms are evaluated at the previous time step as well in case
these are nonlinear with temperature.
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Next, we also need to evaluate enthalpies as the system of equations is now a function
of ht+∆t

enthalpy and T . In general, we cannot always assume ht+∆t
enthalpy,i to be a linear function of

temperature. For this, there are two methods of linearising this function. Firstly, we only
consider enthalpies at the previous timestep for the sake of calculating the advection term.
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htenthalpy,i can then be calculated using any non-linear thermophysical property corre-
lation. This would then account for the T dependence of cp. For the enthalpy change
with temperature, we can assume those changes to be small over each time step such that
ctp ≈ ct+∆t

p . The enthalpy change term can then take the form:

ht+∆t
enthalpy,i − htenthalpy,i = cp(T

t)[T t+∆t − T t]

Thus, we have a semi-implicit, linearised form of the energy equation:

mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t+∆t
j,i )

+ ṁt(−htenthalpy,i + htenthalpy,i−1)

+H t
thermal,conduction,(i−1)↔i(−T t+∆t

i + T t+∆t
j,i )

+H t
thermal,conduction,(i+1)↔i(−T t+∆t

i + T t+∆t
j,i )

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

The second approach is similar to the first approach, except that for the sake of the
advection term, we assume a roughly constant cp over the timestep as well as the temperature
range of the problem. In that case:

−htenthalpy,i + htenthalpy,i−1 = −cp(T t
i )[T

t
i − Tref ] + cp(T

t
i−1)[T

t
i−1 − Tref ]

Where Tref is some reference temperature. If we assume the temperatures between
adjacent control volumes are similar enough such that cp(T

t
i−1) ≈ cp(T

t
i ), then the reference

enthalpies cancel out.
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−htenthalpy,i + htenthalpy,i−1 = −cp(T t
i )T

t
i + cp(T

t
i−1)T

t
i−1

With this, we arrive at another form of the semi-implicit equations:

mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t+∆t
j,i )

+ ṁt(−cp(T t
i )T

t
i + cp(T

t
i−1)T

t
i−1)

+H t
thermal,conduction,(i−1)↔i(−T t+∆t

i + T t+∆t
j,i )

+H t
thermal,conduction,(i+1)↔i(−T t+∆t

i + T t+∆t
j,i )

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

Of these two options, I chose to evaluate the enthalpies at the last time step as this
seemed to account for the temperature dependence of cp better of these two schemes.

mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t+∆t
j,i )

+ ṁt(−htenthalpy,i + htenthalpy,i−1)

+H t
thermal,conduction,(i−1)↔i(−T t+∆t

i + T t+∆t
j,i )

+H t
thermal,conduction,(i+1)↔i(−T t+∆t

i + T t+∆t
j,i )

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

Now, axial conduction, or the conduction term in the direction of the flow can be neglected
for high Pe flows. To program this out in the thermal hydraulics library, I would need to
calculate a localised Pe based on the geometry of the piping system since Pe = Re Pr. If Pe
is below some threshold amount, then I would include axial conduction, and then I would
have to write code for the axial conduction case. This means I would need to have two
versions of the energy balance in my library and write code to check for Pe. This means
more code to write and more code to debug, and an overall longer development time. Hence,
I went to check if the computational burden for axial conduction was significant. I found
out that in early tests simulating control volumes for CIET, the additional computational
cost of calculating axial conduction was insignificant if the axial conduction calculation was
carried out efficiently. This means calculating an average axial conduction only once for the
whole time step for the whole 1D array of fluid nodes. This was carried out successfully.
Therefore, I decided to include it without checking for Pe. Of course, for flows in CIET, Pe
was still high enough such that including axial conduction did not visibly or significantly
change any temperature simulation results. Due to this, I removed the code checking for Pe,
and just calculated axial conduction in all cases when using the semi-implicit solver.
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The average axial conduction over the whole set of control volumes was calculated based
on the node length, the average temperature of the 1D array of fluid control volumes at the
previous time step T t

avg where:

T t
avg =

∑
i

Vi
Vtotal

T t
i

Where Vi is the volume of the control volume index i and,

Vtotal =
∑
i

Vi

This would enable the solver to obtain a rough estimate of axial conduction for fluids at
rest. For 1D arrays of solid control volumes, we can set the fluid flow rate to zero and the same
equation would apply. For solid control volumes describing the heated steel pipes and piping,
we may be able to neglect axial conduction under certain conditions [Vera and Quintero,
2018] where axial heat flows are small in comparison to radial heat flows. However, rather
than develop code for whether to neglect axial conduction based on these conditions, I found
it more convenient to re-use the same axial conduction approach and same code for the 1D
fluid array for the 1D solid array. While using an averaged axial conductance for generalised
1D solid arrays in this case may not be ideal for accuracy, it turns out that this is crucial for
getting the calculations to run in real-time as calculating individual conductances for each
node can get computationally expensive and prevent the ability for these computations to
run in real-time. Hence, I used this approximation.

Thus, we arrive at:

mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t+∆t
j,i )

+ ṁt(−htenthalpy,i + htenthalpy,i−1)

+H t
avg,axial(T

t+∆t
j,i − 2T t+∆t

i + T t+∆t
j,i )

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

Now, we have a general energy balance equation for our solid and fluid control volumes.
Of course, the direction of flow can be accounted for by changing the advection term accord-
ingly, and energy balance for solids can again be obtained by setting the advection term to
zero. Since we have a suitable discretised energy balance to solve, we must consider how to
construct the matrices in a practical manner.

Partitioned Solution Schemes

As mentioned earlier, the 1D fluid arrays and solid arrays are meant to be laterally coupled in
order to account for the number of nodes in the radial direction. If we were to couple their
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temperatures implicitly, we would have to construct several different matrices depending
how many radial nodes we have for the insulation and steel piping. If we have a 1D array
of fluid control volumes with a solid steel tube represented by three radial nodes, we would
then have to program code to construct a matrix for the 1D array of fluid control volumes
coupled to three 1D arrays of solid control volumes to form an essentially 2D mesh for
conjugate heat transfer. Suppose for now that I want to add insulation with two nodes. I
would have to rewrite code in order to add the control volumes representing the insulation.
Let’s also suppose that I want to add internal unheated steel structures such as the twisted
tape for CIET Heater v2.0. I would again have to re-write code for this configuration.
From a programming standpoint, having to write code for different conjugate heat transfer
configurations is quite cumbersome. This is one problem I needed to consider.

Next, we also have to deal with axial coupling, this is usually done for components
adjacent to each other. Again, If I couple the heated section control volumes to several
components, I would have to write code to construct matrices to solve for the temperature
profile. If the configuration somehow changes such I need to add heat exchangers in future,
structural supports, then I would have to write custom code for each of those configurations,
or at least write code to build those matrices using several nested for loops. This is also quite
cumbersome. Moreover, it makes the code so tightly coupled that it is difficult to modify for
other configurations. This limits the applicability of this developed heat transfer library to
more general cases. Hence, I want to consider developing code in a more modular fashion.

One solution that helped me develop a more modular heat transfer library is the use of
partitioned solution methods. Partitioned solution methods are another kind of semi-implicit
method [Fernández, 2011]. This is where a strongly coupled implicit solution procedure is
broken up into two or more parts. Each part is then implicitly solved on its own before
coupling them together. Let us again use a simple 1D conduction problem in order to
illustrate this point.

∂T

∂t
= α

∂2T

∂x2
(2.60)

In Equation 2.60, α is the thermal diffusivity where α = k
ρcp

. We can now discretise

Equation 2.60 using an implicit time scheme with a mesh length of ∆x. Suppose that this
mesh has N nodes and we consider node i:

T t+∆t
i − T t

i

∆t
= α

T t+∆t
i+1 − 2T t+∆t

i + T t+∆t
i−1

∆x2

Suppose this mesh was to be partitioned at node i. This process is shown in Figure 2.31:
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Figure 2.31: Mesh Partitioning for 1D Conduction Problem at node i

In Figure 2.31, we implicitly couple the two partitioned 1D array of control volumes.
However, we explicitly couple these two smaller arrays. The main changes apply to control
volume i and control volume i+ 1. At control volume i, the equation describing it is now:

T t+∆t
i − T t

i

∆t
= α

T t
i+1 − 2T t+∆t

i + T t+∆t
i−1

∆x2

For node i+ 1, the equation before the partitioning process is:

T t+∆t
i+1 − T t

i+1

∆t
= α

T t+∆t
i+2 − 2T t+∆t

i+1 + T t+∆t
i

∆x2

After the partitioning process, we obtain:

T t+∆t
i+1 − T t

i+1

∆t
= α

T t+∆t
i+2 − 2T t+∆t

i+1 + T t
i

∆x2

Let us now apply this to our 1D heat transfer equations for the fluid control volumes:
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mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t+∆t
j,i )

+ ṁt(−htenthalpy,i + htenthalpy,i−1)

+H t
avg,axial(T

t+∆t
i+1,i − 2T t+∆t

i + T t+∆t
i−1,i )

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

For lateral thermal conductances, the
∑N

j H
t
thermal,self ↔ j,i(−T t+∆t

i +T t+∆t
j,i ) term, I used

partitioned solution methods to explicitly couple radially coupled control volumes. Hence,
for the temperatures of some other laterally coupled control volume j, I use its temperature
at the previous time step to calculate heat flux. I show this in Equation 2.61:

mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t
j,i)

+ ṁt(−htenthalpy,i + htenthalpy,i−1)

+H t
avg,axial(T

t+∆t
i+1,i − 2T t+∆t

i + T t+∆t
i−1,i )

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

(2.61)

Again, we can eliminate the advection term to apply Equation 2.61 to solid control
volumes. If the control volume happens to be at the tail end, it can be coupled to any other
control volume based on a constant temperature boundary condition at that time step with
conductance H t

avg,axial partitioned and temperature T t
i+1,i:

mcvcp(T
t)
T t+∆t − T t

∆t
=

N∑
j

H t
thermal,self ↔ j,i(−T t+∆t

i + T t
j,i)

+ ṁt(−htenthalpy,i + htenthalpy,i−1)

+H t
avg,axial(−T t+∆t

i + T t+∆t
i−1,i )

+H t
avg,axial partitioned(−T t+∆t

i + T t
i+1,i)

+
∑

Qt
gen,i +

∑
Qt

boundary conditions,i

(2.62)

A partitioned so allows me the flexibility to connect control volumes to each other in a
modular fashion so that I do not need to write new code to construct matrices for different
heater configurations and piping configurations. Additionally, the computational cost of
solving for the matrices is smaller because each partitioned matrix is small. While there will
still be some cost associated with solving matrices, partitioned schemes help mitigate the cost
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of computation by keeping the matrix size small. With fully implicit timestepping schemes,
the allowable timestep for stability increases due to the removal of the Courant (or other)
stability restraints. However, the computational costs also increase within that timestep
[Duan, H. Wu, and Zhou, 2022]. This may jeopardise our ability to run the simulation in
real-time. To ensure that the simulation runs in real-time, the computational time required
for a simulated timestep must be faster than that said timestep. That means if the simulated
timestep is 0.1 s, the actual computational time required must be less than 0.1 s in order for
the simulation to be real-time. Thus, while allowable timesteps for stability do increase in
an implicit scheme, the increase in computational time could more than offset any benefit
afforded by the timestep increase, thus making it more difficult for the simulation to run
in real-time. This is not desirable. However, when one breaks a problem into smaller
explicitly coupled subdomains, we mitigate the computational costs of a growing matrix
by keeping that matrix small. In fact, if we explicitly couple arrays of control volumes
which are internally implicitly coupled, we can also parallelise the problem more readily
when a problem is loosely coupled computationally. Thus, more options for speeding up
the simulation open up when semi-implicit coupling is allowed. As shown in the discussions
leading up to Equation 2.61, we can achieve this by coupling the control volumes within 1D
solid mesh and 1D fluid mesh of a pipe component in a semi-implicit manner, and we could
then couple the 1D solid and fluid meshes together explicitly. We could also explicitly couple
interactions between pipes using an explicit scheme. Overall, the coupling scheme is semi-
implicit. This would keep the matrices small and simple, and relatively easy to solve. While
the explicit coupling of the separate partitions necessitate the consideration of a suitable
timestep for stability, the advantages for explicitly coupling partitioned 1D meshes more
than offset this problems caused by this issue.

It may be also advantageous from a code development standpoint to use semi-implicit
solvers to some degree because it is common for existing open source codes to be written
using an implicit or semi-implicit time marching scheme. I could then adapt existing code
into my thermal hydraulics codebase using the solver so that testing and development time
is shorter. One example in literature is the GeN-Foam thermal conductance model used to
model heat transfer in pebbles [Robert et al., 2023] released under the open source GNU
GPL v3 license. Thus, a partitioned solution scheme or semi-implicit coupling scheme would
help speed up development time.

Given these considerations, I decided to use the semi-implicit coupling methodology where
1D control volumes arrays are internally coupled semi-implicitly, but when coupling with
other 1D control volume arrays, they are explicitly coupled. To solve the resulting matrices,
I used optimised Basic Linear Algebra Subprograms (BLAS) libraries such as OpenBLAS
[Xianyi, Qian, and Yunquan, 2012] to perform matrix multiplications and solve the matrix
quickly enough to ensure that the library can support real-time simulations using consumer
gaming Laptops. These 1D control volume solvers were then validated using analytical
solutions. More details will be presented in the following chapter. Before that, we still need
to be mindful of certain timescales because the 1D control volume arrays are still explicitly
coupled with each other.
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Courant Number

Since we likely have to use at least some form of explicit coupling, we will have to consider how
to choose the right timestep for stability. In convection heat transfer, one key stability criteria
is determined using the Courant Friedrichs Lewy (CFL) number (also known the Courant
Number for short [Y. Liu, 2020]). This pertains specifically to advection. In advection, the
time step needs to be adjusted such that the Courant number (Co) is not above unity. For
a simple control volume (CV) with one stream of fluid flowing in and out of the CV, the Co
number is expressed as:

Comax =
∆tmaxu

∆x
(2.63)

Where u is the prevailing bulk fluid velocity. We can simply rearrange this equation to
obtain the timestep:

∆tmax =
∆x

u
Comax (2.64)

In the case of control volumes, we cannot always assume that there is only one stream
of fluid entering and exiting the CV. Therefore, another technique for calculating Co is
required. Fortunately, such generalised expressions for Co already exist in literature. For
OpenFOAM, based on the documentation, the timestep based on the generalised Co is
[OpenFOAM, 2023]:

∆tmax =
Comax

2Vcell

N∑
i=1

|ui • Ai| (2.65)

Where Vcell is the volume of the CV (also known as “cell”) in OpenFOAM, N is the
number of faces for a particular control volume, ui is the velocity vector at face i, Ai is the
area of face i and the • represents a dot product. Interested readers can explore methodology
for obtaining the generalised expressions for Courant Number in literature [Rauter et al.,
2021].

Fourier Number

For convection heat transfer, at lower flow rates and where conduction heat transfer be-
comes dominant, then the Fourier number (Fo) becomes important for determining time
step [Hensen and Nakhi, 1994; Thomas, Samarasekera, and Brimacombe, 1984]. Now, this
is not just any kind of Fo, but it is one associated with mesh lengthscales. This Fo is impor-
tant in conjugate heat transfer as well, where conduction heat transfer becomes important.
Since Fo is important for the thermal hydraulics library, let us consider how Fo determines
the maximum allowable timestep.

For illustration, we consider the example of heat conduction using explicit time step
schemes. In this case, the following criterion must be satisfied [Hensen and Nakhi, 1994]:
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α∆t

∆x2
≤ 0.25 (2.66)

The quantity in Equation 2.66 is the Fourier number (Fo). In this discussion about
time stepping and stability, ∆x refers to grid length and ∆t refers to time step. Also, to
distinguish this Fo from other Fo, I shall call this Fodiscretisation because this Fourier number
deals with mesh discretisation and time step discretisation. In literature, Fodiscretisation is
also known as the “mesh Fourier Number” [Salem, M. Errera, and Marty, 2019]:

Fodiscretisation ≡ α∆t

∆x2
(2.67)

As the time stepping scheme becomes more implicit, a larger Fodiscretisation becomes
permissible. The numerical scheme is stable when [Hensen and Nakhi, 1994]:

Fodiscretisation ≤ 1

4(1− γ)
(2.68)

γ is a weighting parameter to calculate temperature gradients and can be set by the user
to determine the extent to which the time stepping scheme is explicit or implicit. We select
γ such that 0 < γ < 1. γ = 0 implies a fully explicit time stepping scheme, γ = 0.5 implies a
Crank-Nicolson scheme and γ = 1 means a fully implicit scheme [Hensen and Nakhi, 1994].

To understand the significance of γ we may consider the appropriate the heat conduction
equation [Hensen and Nakhi, 1994]:

∂T (x, t)

∂t
= α

∂2T (x, t)

∂x2
(2.69)

Again, T (x, t) is temperature of the system at position x and time t. This can be
discretised using a time step ∆t and a mesh length ∆x into [Hensen and Nakhi, 1994]:

T t+∆t
x − T t

x

Fodiscretisation
= γ

(
T t+∆t
x+∆x − 2T t+∆t

x + T t+∆t
x−∆x

)
+ (1− γ)

(
T t
x+∆x − 2T t

x + T t
x−∆x

)
(2.70)

Where T t
x is T (x, t) but written in subscripts and superscripts for ease of reading.

While the phenomena determining the time scales in conduction is different from advec-
tion, the mesh Fo is quite similar in function and concept to the Courant number criterion.
Interested readers may want to explore literature based on Von Neumann Stability Analysis
[Wesseling, 1996] or Fourier Stability Analysis. One would find that such stability analysis
methods often deals with how various system frequencies or modes respond to a typical
error perturbation introduced into the system [Tadmor, 1987]. One could even draw analo-
gies between this method and frequency response since system stability can be determined
from a system’s frequency response. Except that now, instead of actual system noise, the
source of the disturbance to the system is numerical error. Interested readers may wish to
refer to “Numerical integration of the barotropic vorticity equation” [Charney, Fjörtoft, and
Neumann, 1950] for more information.
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Application of Stability Criteria to Solid-Fluid Interactions

Now, Co and the mesh Fo deal with advection and conduction individually. However,
at solid-fluid boundaries, a different time scale for stability is required. This time scale
may be different from the conjugate heat transfer time scale tCHT since tCHT deals with
the phenomena of a physical time scale while we wish to discuss a time scale suitable for
numerical stability. In simplified analysis, assuming a constant surrounding temperature
(T∞), tCHT can be expressed as [Zou, R. Hu, and Charpentier, 2019]:

tCHT =
δρcp
h

(2.71)

In Equation 2.71, δ refers to the characteristic length scale. In the case of the heater wall
exchanging heat with some fluid, δ refers to the wall thickness [Zou, R. Hu, and Charpentier,
2019]. In this context, ρ and cp represents the heater wall density, and specific heat capacity.
h represents the heat transfer coefficient between wall and fluid. The timescale was derived
by letting the product Bi Fo = 1, where Bi is the Biot number and Fo is the Fourier number
[Zou, R. Hu, and Charpentier, 2019]. One possible timescale is letting δ be the mesh length
scale ∆x. While this analysis is not nearly as rigourous as deriving such a timescale using
Von Neumann analysis, it can still give us a clue as to how the timescale should scale with
important system parameters. In effect, tCHT ∆x should scale as ∆xρcp

h
.

We can first look to literature, where several methods for determining such a time step
exist. We can use a “mesh Biot number” [Salem, M. Errera, and Marty, 2019] and modified
mesh Fourier number [M.-P. Errera and Chemin, 2013]. In most of these finite volume
calculations at the mesh boundary, the effect of advection is often ignored at the first cell
adjacent to the solid boundary [Salem, M. Errera, and Marty, 2019]. This is because at the
first cell next to the wall, the fluid velocity is zero if we use a no slip condition. This makes
it in essence a classic conduction case where we do not have to make any modification to the
mesh Fourier number in order to calculate a suitable timestep. For a coarse mesh nodalised
approach, we do not impose no slip conditions on the fluid. Therefore, we cannot directly
apply the exact same methods used for high fidelity computational fluid dynamics (CHT).
We may have to develop something different. We might use some other kind of analysis to
obtain a suitable time step. For this, we could perhaps adapt the mesh Fourier number for
the solid-fluid boundary. Traditionally, we use Fo to quantify a suitable time step between
two solid control volumes. Using explicit time stepping, we can calculate the maximum time
step:

Fomax discretisation =
α∆tmax

∆x2
(2.72)

∆tmax = 0.25
∆x2

α
(2.73)

∆x represents the distance between the two centres of the control volumes. In other
words, it is the typical mesh timescale. α is the thermal diffusivity usually in units similar
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to m2/s.

αfluid =
kfluid

ρfluidcp,fluid
(2.74)

Within α, ρfluidcp,fluid represents the volumetric heat capacity of the material within
the cell. This does not change whether the material in the control volume is solid or fluid.
However, k governs the heat flux within the system for conduction heat transfer. In fact,
the thermal conductance over each mesh unit is governed by kA

∆x
where A is some basis for

heat transfer area.
For conjugate heat transfer (CHT) at solid-fluid boundaries, the heat transfer coefficient

h becomes important for calculating thermal conductance and heat flux. The thermal con-
ductance is simply hA. Now, suppose we try to obtain an equivalent thermal conductivity
for the solid-fluid convection heat transfer kfluid convection based on equating the conductances
or heat fluxes. The basis areas A cancel out, and so we obtain:

h(Ts − Tfluid) = kfluid convection
∂T

∂x
(2.75)

h(Ts − Tfluid) = kfluid convection
Ts − Tfluid

∆x
(2.76)

It is apparent that:

h∆x = kfluid convection (2.77)

And the ratio between kfluid and kfluid convection is essentially a local Nusselt Number:

Nu∆x =
h∆x

kfluid
(2.78)

Now, to substitute these expressions into the Fourier number, we can obtain an equivalent
thermal diffusivity based on convection heat transfer αfluid convection:

αfluid convection =
kfluid convection

ρfluidcp,fluid
=

h∆x

ρfluidcp,fluid
= αfluidNu∆x (2.79)

Now, we defined ∆x in the context of fluid cell length scales or control volume length
scales. Therefore, ∆x should be based upon cell geometry. For a cartesian like geometry, ∆x
could be based on cell length. However, for the thermal hydraulics library, we find ourselves
dealing more with pipe like geometries. Therefore, a suitable length scale would be based
on the radius of the pipe rpipe. This is because rpipe, would be the distance between the pipe
centre and the surface of the wall. This is important to consider since most geometries in
CIET would contain heat transfer from fluid in the pipe to the wall, or vice versa. Now, to
obtain Nu∆x, we still need some sort of correlation to obtain it. In the context of pipes, NuD,
the Nusselt number based on pipe diameter D, is often used for heat transfer correlations.
We can be use NuD to determine Nu∆x. Alternatively, for convenience, we may wish to do
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away with using Nu∆x altogether and just use NuD. To do this, we may rewrite Equation 2.79
as:

αfluid convection = αfluidNuD ∗ ∆x

D
= αfluidNuD ∗ rpipe

D
= 0.5αfluidNuD (2.80)

We could then use Equation 2.80 to calculate the Fourier Number for the convection near
the pipe boundary as:

∆tmax = 0.25
∆x2

0.5αNuD

= 0.5
∆x2

αNuD

(2.81)

It should be noted that Figure 2.81 is an approximation which depends on how ∆x is
selected for various geometries. However, it has the effect that if α or NuD increases, the
∆tmax should decrease. Increasing either α or NuD should have the effect of increasing the
apparent thermal conductivity of the system. This makes sense. Moreover, if we deal with
solid control volumes, NuD would become Bi and we would arrive at a timescale consistent
in form with tCHT in Equation 2.71. Thus, it confirms that the analysis can scale time
step scales with mesh size, α, k and h in a manner consistent with the scaling analysis in
literature [Zou, R. Hu, and Charpentier, 2019]. This would become a starting point for us
to perform design iterations of adaptive time stepping.

Error Considerations in Timestep Adjustment

Besides simulation stability, accuracy should also be maintained when solving transient heat
transfer simulations numerically. If stability is not an issue, then time step adaptation
strategies can focus more on controlling the time step truncation error [Maffulli et al., 2018].
One example this comes into play is in the calculation of heat transfer rates across each time
step. For conduction and convection k and h are usually temperature dependent. However,
we linearise the expression by assuming these quantities are constant during the time step
advancement. If we were to compare heat transfer rates depending on whether or not we
assume k and h are constant over the time step, we would obtain one form of the truncation
error. It is important to keep such truncation methods small. Therefore, there have been
many methods have been discussed in literature on how to control the time step truncation
error.

One method that this is done is step doubling [Maffulli et al., 2018]. Suppose we can
obtain a temperature solution using a time step ∆t. This solution can be compared to a
solution where two time steps of ∆t/2 are used. The difference we see is known as the
truncation error.

A second method we can use is where we use a lower order method with which to measure
truncation error [Maffulli et al., 2018]. Suppose we are using a typical 4th order Runge-Kutta
method typically used for numerical solution of initial value problems [Perry and Green,
2015], we may obtain a decent solution based on this time step. We can then compare this
solution to a lower order Euler method to then estimate the truncation error. Should this
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truncation error be small compared to a user set tolerance, then the ∆t would increase.
If it is larger than some user set tolerance, ∆t would decrease. Such methods are used to
accelerate the solution procedure so that, if the solution is already stable, we need not become
excessively conservative by adjusting time step based on Co or Fodiscretisation [Maffulli et al.,
2018].

Most time stepping adaptation methods in literature are discussed in the context of finite
volume methods (FVM), finite difference methods and finite element methods (FEM) [Mohan
and Tamma, 1994]. While we are using a lower fidelity model for the thermal hydraulics
library, it is still useful to borrow some concepts from FVM methods and see if these could
be adapted for the Digital Twin constructed here.

For this purpose, let us consider a simplified version of the adaptive time stepping strat-
egy adopted by Mohan [Mohan and Tamma, 1994]. Suppose that there for a time step
advancement calculation, we wish to determine the temperature profile. This temperature
profile has an exact solution T(t) and the numerically calculated solution at the current time
step Tn. The error ε is defined using the l∞ norm or simply the maximum error between
the exact and approximate solution:

ε = max ||T(t)−Tn|| (2.82)

Theoretically speaking, we want to adjust ∆t such that this ε is small or below some
user set tolerance ∆Ttol. In practice, we cannot obtain T(t) realistically, hence, we need an
estimate for T(t). A decently conservative estimate perhaps for this ε is that the all changes
in temperature between subsequent time steps are due to errors. This would most certainly
be the case if the temperature profiles are meant to be constant with time. Hence, we might
use temperatures calculated at the previous time step in order to estimate this error [Mohan
and Tamma, 1994]:

max ||Tn −Tn−1|| ≤ ∆Ttol (2.83)

This of course assumes that we have a history of temperature with which to look up.
However, when designing real time simulations, I would desire to free memory as far as
possible to keep computational costs low. I could then keep more objects in the very limited
cache memory and thus speed up calculations [Alsharef et al., 2021] such that it is useful for
digital twin applications. As an alternative, we might use the temperature profile calculated
at the next time step in order to estimate the potential error:

max ||Tn+1 estimated −Tn|| ≤ ∆Ttol (2.84)

In turn, ∆Ttol can be set such that [Mohan and Tamma, 1994]:

∆Ttol = a|Tmax −Tmin| (2.85)

Where 0 < a < 1 based on user defined settings. a should be selected so that it is not
too large such that instabilities occur, nor too small such that there is no marginal benefit
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in having reduced the time step [Mohan and Tamma, 1994]. While the nodalised model as a
whole may not be discretised into matrix equations as for the FVM, the principle of defining
time steps based on temperature changes of an existing body can be taken from this. For a
two body system, this condition can be written as:

∆Ttol = a|Thot − Tcold| (2.86)

Hence, we can scale time step tolerance to be some percentage of the temperature differ-
ence between the two bodies, or between the characteristic temperature scale of the system.
The net effect is that higher temperature gradients would result in shorter time steps. In
essence, we want to limit the change in temperature change during time step advancement
to some threshold value.

2.6 Literature Review Summary

From the literature review, we have covered some of the important principles and information
for programming the heat transfer libraries for CIET’s Digital Twin, or at least the Digital
Twin of CIET’s Heater. This includes learnings and best practices for writing the Digital
Twin, information and correlations for the heater and the piping as well as solver stability
considerations. With these in mind, we are now ready to program and construct our heat
transfer libraries.
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Chapter 3

Thermal Hydraulics Library
Construction

In this chapter, we discuss some principles on how to construct a thermal hydraulics library in
the Rust prgramming language. Specifically, we focus on how to program the heat transfer
aspects of the thermal hydraulics library. Since we have already elaborated on some of
the heat transfer equations in the previous chapter, we shall emphasise the programming
principles more in this chapter than the heat transfer aspects. We then validate the library
against simple test cases and experimental data to check if the library functions correctly and
produces the intended results. This is covered when we discuss Test Driven Development
of the Thermal Hydraulics Library. Lastly, we also need to ensure that the library is able
to execute calculations fast enough and accurate enough so that a real time digital twin of
CIET can be constructed. This means that the calculation times for both the fluid mechanics
simulation and the heat transfer simulation will need to be faster than real time. Moreover,
we need to ensure that our Digital Twin of CIET Heater v2.0 Bare is validated. These will
be covered in the last part of this chapter.

3.1 Principles

Development Strategy

For library development, we aim to use the “rapid iteration” or “rapid prototyping” approach
used by Kairos Power LLC [Blandford et al., 2020]. This entails the use of several test
design cycles in order to arrive at the final product expeditiously. In other words, we wish
to develop small, imperfect, modular segments of code and test them rather than plan to
develop a finished product from the outset. As such, the library as presented in this paper
will cover only early iterations or merely the “alpha” testing of the Rust Thermal Hydraulics
library used for the digital twin. This means that the Application Program Interface (API)
presented here will cover only early iterations of the “thermal hydraulics rs” library.
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A second principle is to follow Donald E. Knuth’s advice that “premature optimization
is the root of all evil” [Knuth, 1974], meaning to say that programs should not be optimised
for speed gains too early on lest it makes debugging and maintenance excessively difficult
for little gain [Knuth, 1974]. Therefore, using more complex Rust language features such as
traits objects, lifetimes and dynamic dispatch should generally be avoided unless absolutely
needed.

Simplifications

Given these principles, I would not develop thermal hydraulics capabilities for use cases
outside CIET for the purposes of this dissertation. This means that I will limit the capability
development of the thermal hydraulics library to single phase incompressible fluid flow as
well as heat conduction. For now, we do not deal with multiphase phenomena as this is of
less importance than the single phase heat transfer and fluid mechanics phenomena. Given
that this is the case, I will often use the Boussinesq approximation. This means that density
changes are negligible except in the case of buoyancy and natural convection. Consequently,
for control volumes used to represent CIET, mass accumulation within the control volume
is assumed to be zero.

User API

Early iterations of development showed that programming interactions between differing
control volumes and boundary conditions in a concise and easy to read manner would prove
challenging. Therefore, the library should be written with some kind of structure or interface
which makes manipulating control volumes and boundary conditions intuitive as possible.
Furthermore, advancing time step (∆t) should be done with a simple function call rather
than with several procedural steps, which can be quite cumbersome if they were written in
an “inline” fashion.

From a user’s perspective, it would be more intuitive to conceive of control volumes
as objects in object oriented programming (OOP). The user could then use a function to
“connect” two control volumes in order to have them interact with each other or with some
boundary condition. The underlying library should then take care of the rest. As discussed
in the previous chapter, we solve for 1D arrays of control volumes using a semi-implicit time
marching scheme. Between the 1D arrays, an explicit time coupling scheme is used. In the
limit where the arrays contain only one control volume, then we shall only have explicit
coupling between the control volumes. I programmed capability in the library to allow the
user to decide if he or she wants to couple 1D arrays control volumes or single control volumes
together. The desired user API workflow for this process is shown in Figure 3.1:
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Figure 3.1: User API Progression Overview

This three step approach shown in Figure 3.1 should allow end users enough room for
flexibility in how they may want to construct their simulation. At the same time, it reduces
cognitive load sufficiently by abstracting away details on how interactions are calculated
between control volumes and how the timestep is advanced so to speak. This framework will
then guide the construction of the heat transfer portion of the thermal hydraulics library.

Overview for Control Volume and Boundary Condition
Interactions

To develop a library which is able to to perform heat transfer calculations, we must first
develop program structures that represent control volumes. Moreover, we must also program
how control volumes interact with each other and with a variety of boundary conditions.
These could be a user specified ambient temperature boundary condition, user specified
heat flux, or user specified heat addition.

These control volumes and boundary conditions should be relatively intuitive to use.
Moreover, these control volumes should be able to represent heat transfer components.
However, representing heat transfer components with control volumes can prove to be quite
cumbersome. For example, if one were to consider a pipe with fluid flowing through it, we
may want to discretise it into a set number of nodes. For CIET’s heater, this number may
be as many as 8 to 15 [De Wet and Per F Peterson, 2020; Zou, R. Hu, and Charpentier,
2019]. If we were to consider one set of nodes representing the fluid, another set of nodes
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representing the metallic pipe, and yet another set representing the insulation, then we may
end up with as many as 24 to 45 nodes which the user needs to construct. Now, an IET
such as CIET may contain as many as to 30 of these components. This means we may need
to have as many as 500 or more control volumes. Programming these by hand will be quite
impractical, especially when the user may want to change the level of discretisation for the
simulation. To address this issue, I needed to introduce a second type of programming entity
(otherwise known as a “class” or in Rust, “struct”) besides singular control volumes. These
are programming classes or structs that represent control volumes instantiated in arrays.
Of course, control volumes can also be instantiated in more than just a one dimensional
array. This, however, is more in the scope of higher fidelity Computational Fluid Dynamics
(CFD) simulations which cannot be run in real time. Such capabilities are therefore outside
the scope for this library. Therefore we will only consider singular control volumes and one
dimensional control volume arrays.

Overall, we have several types of control volumes and several kinds of boundary conditions
that should interact with each other so that heat is exchanged as seen in Figure 3.1. To
implement this in code, we need to first discuss the working principles behind all these
possible interactions.

Heat Transfer Interactions and Entities

In the context of heat transfer, two control volumes interact with each other when they
transfer heat. For conduction and solid-fluid interactions, we can model heat transfer between
two control volumes by using thermal resistor or thermal conductor between them. The heat
flow will then be determined by the temperature difference and the thermal resistance or
conductance H:

Q1→2 = −H12(T2 − T1) (3.1)

In this case, the heat flow from control volume 1 (CV1) to control volume 2 (CV2),
Q1→2 is determined by the temperature of CV1 (T1) and the temperature of CV2 (T2) as
well as the thermal conductance between CV1 and CV2 (H12). To calculate Q1→2, we shall
need to know T1 and T2 beforehand and specify H12. H12 would then be determined via
the geometry between the control volumes, Nusselt Number correlations or thermophysical
properties such as thermal conductivity. This simplifies the programming process since
conduction, convection (between solid and fluid) and radiation can all be represented using
a thermal resistance mode.

However, one should note that control volumes do not only interact with each other via
a thermal conductance or thermal resistance, but also through advection. In the case of
advection:

Q1→2 = ṁ1→2hfluid enthalpy(T1) (3.2)
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In advection, theQ1→2 is determined only by T1 and the specific enthalpy hfluid in (J/kg)1.
This is, of course, in the case that the mass flowrate from CV1 to CV2 ṁ1→2 is positive. In
the case that ṁ1→2 is negative:

Q1→2 = ṁ1→2hfluid enthalpy(T2) (3.3)

The amount of heat transferred from CV1 to CV2 Q1→2 is negative, which means CV1
gains heat from CV2. This should make physical sense.

Overall, the control volumes interact with each other mainly through thermal conduc-
tance and advection. To keep things organised, I then generalise the way that control volumes
interact with each other under a class or object in the library known as a “HeatTransferIn-
teraction”.

Of course, control volumes should be able to interact with boundary conditions as well.
For example, a heater can be modelled as a constant heat addition boundary condition. From
the end user perspective, connecting a boundary condition to a control volume should have
a similar feel as connecting two control volumes. Therefore, I would group both boundary
conditions and control volumes together in one generic class or object. Hence, both control
volumes and boundary conditions are called “HeatTransferEntity” objects.

Timestep Advancement

Now, after the heat flows between “HeatTransferEntity” objects are computed, the tem-
peratures of the heat transfer entities at the next timestep T t+∆t need to be calculated.
Moreover, once we move on to the next timestep, the calculated temperatures of the next
time step should then become the temperature of the current time step. These two processes
are critical for transient simulations, and I will call this the “timestep advancement” step
of the program. The end user should be able to just connect “HeatTransferEntity” objects
via “HeatTransferInteraction” objects, and then call a function to execute code for timestep
advancement.

For each control volume:

mcvcp,cv(T
t+∆t − T t) = Qtotal∆t (3.4)

Underneath the hood, an appropriate time step ∆t should be determined such that the
simulation is accurate such that the thermal hydraulics phenomena of different timescales
are captured. Additionally, should control volumes or control volume arrays be explicitly
coupled to other control volumes or control volume arrays, then we will have to consider
stability when determining the appropriate timestep. Since I chose a semi-implicit method
where there are some explicit coupling schemes involved, the maximum allowable system time
step would be determined by the parts which are explicitly coupled. While partitioning the
system into different systems where separate timesteps are used in each system is possible,
I will develop this capability for this dissertation. Such endeavours are left for future work.

1Do note that h can be used for both specific enthalpy and heat transfer coefficient, depending on context
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In addition to an appropriate timestep, the relevant specific heat capacities and masses of
each control volume (cp,cv and mcv) should be obtained so that we can perform timestep
advancement. The total heat rate added to the control volume Qtotal should also be known
for this calculation.

Therefore, each control volume should be able to map cp,cv to its temperature and vice
versa. Furthermore, it should also have a list or vector of heat added or subtracted from it
that is calculated from the various heat transfer interactions. Lastly, ∆t should be optionally
calculated by the user or calculated algorithmically based on Von Neumann analysis (Mesh
Fourier Number or Courant number analysis) or some maximum temperature change.

Of course, cp,cv is not a constant with temperature. While cp,cv can be estimated at
each timestep, the temperature at the next time step would then suffer from approximation
error or truncation error. One way around this problem is to perform transient calculation
in terms of material enthalpy rather than material temperature. This was done frequently
in OpenFOAM solvers such as “chtMultiRegionFoam”. A similar approach can be applied
here:

mcv(h
t+∆t
enthalpy − htenthalpy) = Qtotal∆t (3.5)

The temperature of the control volume can be calculated by mapping material specific
enthalpy to temperature and vice versa as needed using a thermophysical properties library.

Program Flow

Based on these requirements, one could calculate QA→B during a typical heat transfer inter-
action. Both control volumes A and B would have a vector containing the heat transferred
in each interaction. For this interaction, QA→B would be added to the heat transfer vector
in B and subtracted from the heat transfer vector in A. This process is illustrated in the
heat transfer entity connection stage of Figure 3.2:
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Figure 3.2: Program Flow for Thermal Hydraulics Library

The end user would be able to connect heat transfer entities whether they would be
boundary conditions (BCs) or control volumes (CVs). This would happen at during every
timestep calculation. These heat transfer calculations would, of course, require temperature
and mass flowrate data. Temperature data should be supplied by mapping the control
volume’s current specific enthalpy h at the present timestep.

Once all heat transfer interactions are completed, the user can specify a time step or have
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it be dynamically calculated according to the stability time scales described in the previous
chapter, and then he or she would call the advance timestep function in the second part
of Figure 3.2. Timestep advancement would simply entail calculating the enthalpy at the
new timestep and updating the “HeatTransferEntity” objects to ensure that their respective
specific enthalpies correspond to that of the next time step. It would also mean emptying
the vector of power supplied to each control volume before starting the next timestep.

3.2 Implementation Methods for Program Flow

Now that we have outlined a rough way the program should work, we now outline the tools
to be used to accomplish this mission.

Again, I iterate that this library is meant for building a digital twin of CIET.Therefore,
it should be able to perform calculations for CIET in real-time or faster than real-time.
Therefore, both accuracy and speed are of the essence. Furthermore, user experience is an
important design consideration factor so that it will be somewhat intuitive to use the library.

In this section, we shall discuss how polymorphism and unit safe code is used to improve
user experience, and how parallelism and other methods help the code achieve the required
speed. I also discuss using linear algebra libraries and n-dimensional arrays to improve both
the user experience and calculation speed of the program.

Using Polymorphism for Improved User Experience when Dealing
with Control Volumes and Boundary Conditions

For user experience, it is important that the programmer setting up the simulation not need
to deal with the total complexity of each of these calculation steps. Therefore, there should
be a certain level of abstraction so that the tedious calculation details are mostly hidden
from the user. However, the program should be flexible enough to cover all sorts of heat
transfer interactions in CIET.

To do this, the thermal resistance method was used to model heat transfer in the dig-
ital twin library used for CIET as far as possible. This is because the thermal resistance
method is an intuitive way to visualise heat transfer between several components. Having
an intuitive user interface is important because we wish to model CIET, which has several
interconnected components that can easily overload the user with information. Hence, mod-
elling CIET as a network of control volumes connected with thermal resistors at least for
conduction and solid-fluid interfaces would be most suitable. However, not all heat transfer
entities transfer heat in the same way. For solid-fluid heat transfer, we mostly use empir-
ical Nusselt number correlations and surface area for calculating thermal conductance, but
for solid-solid interactions, the material’s thermal conductivity and dimensions are used to
determine the thermal conductance. We can see that each type of heat transfer interaction
behaves differently depending on the underlying physics and geometry. The programming
concept best suited to accommodate these different modes of heat transfer is polymorphism.
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For the end user, this means that a “HeatTransferEntity” object could at times behave as a
control volume or a boundary condition based on user preference. Likewise a “HeatTrans-
ferInteraction” could be based on thermal conductance, advection, or simply facilitate heat
flow from a constant power heat source. In computer lingo, this means that the function
should be able to accept different types of objects as function inputs [Cardelli and Wegner,
1985]. This implies that the function accepting inputs must be able to deal with the user
giving it boundary conditions of various types and control volumes of various types. It must
also be able to handle the various types of interaction between these entities to compute a
suitable thermal resistance, thermal conductance or heat flow.

There are several ways to introduce polymorphism in Rust. However, I will discuss only
two main ways. Here, we shall focus on the use of traits and enums for polymorphism in
Rust.

Trait Polymorphism in Rust

For those familiar with object oriented language such as C++, C# and Java, traits are
quite similar in concept to “interfaces” and “abstract classes”. I have tried this approach
for developing the fluid mechanics library in Rust in my master’s thesis [Ong, 2023]. In
earlier iterations of the fluid mechanics library, which has since been integrated into the
“thermal hydraulics rs” library, I had wanted to create vectors or lists of fluid components.
These components could be pipes, which utilise the churchill friction factor to calculate
frictional losses, or custom components which have empirically derived form loss correlations.
Regardless of the underlying mechanics, the user need only supply a mass flowrate and the
fluid component would return a pressure loss. This can be enforced in the library by making
both the pipe and the custom component implement a “FluidComponent” trait. Therefore,
a “FluidComponent” object can behave at times as a pipe, or at times as a static mixer or
some other component based on user preferences. This was one way of doing polymorphism.
However, experience showed that using dynamic dispatch with trait objects in Rust could
prove cumbersome when these trait objects nested within other object because there is a need
to explicitly specify lifetimes for the Rust compiler. This became cumbersome specifically
when “FluidComponent” objects are nested within other structs or objects. Here, one needs
to trait object lifetimes for any object containing a “FluidComponent” trait object. Hence,
I wanted to move away from using too many nested trait objects for polymorphism.

Enum Polymorphism in Rust

A second approach where one could avoid dealing with explicitly specifying lifetimes is the
use of Rust enums for polymorphism. This makes code development fairly easier and more
expeditious. Enums are a data type or data structure where a user can make a selection
from a list of selectable items otherwise known as “variants”. For instance, a boundary
condition can be structured as an enum which allows the user to select from a hard coded
list of boundary conditions. Using enums is advantageous in Rust because the Rust compiler
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forces you to account for how to handle various variants at compile time. This reduces the
number of runtime errors one would have to debug.

The disadvantage of using enums is the tendency to introduce boilerplate code. However,
while boilerplate code can make the codebase much bigger, it can also make the code more
readable because the reader does not have to jump between 20 source files in order to find
out how a function works. Moreover, changing behaviour for one enum would not affect
the behaviour of other enums as compared to using traits or interfaces. This loose coupling
gives enum based polymorphism potentially more flexibility than trait based polymorphism.
Hence, I chose to code the heat transfer libraries using enum based polymorphism.

Using Unit Safety for User Experience

Besides polymorphism, calculating quantities using unit safe code such as using the “uom”
crate (a Rust package or module) in Rust has proven advantageous for the user experience.
If the user wanted to use the thermal hydraulics library, the user would be almost guaranteed
to eliminate bugs based on wrong units at compile time if the unit safe code were used. This
proved useful when developing and using the fluid mechanics library previously because a
whole category of bugs based on wrong units was eliminated due to using this crate. Using
the unit safe crate is also useful because it forces the end user to specify units for every
quantity at compile time. This made debugging runtime errors easier as the user would not
have to consider unit errors. Of course, one would have to get used to performing calculations
using this crate rather than floating point numbers. While using unit safe calculations is
quite verbose, it proved useful in guaranteeing unit safety. Therefore, I continued using this
crate for the heat transfer library to improve user and developer experience.

Using N-Dimensional Arrays and Linear Algebra Libraries for
Improved User Experience and Speed

Another feature that helps improve the user experience is the use of n-dimensional arrays
and linear algebra libraries. As briefly mentioned before, it would be quite impractical for
the user to manually instantiate arrays of single control volumes to represent a discretised
heat transfer component. After the user instantiates the control volumes, he or she must
then manually code the timestep advancement step for each control volume. This can prove
quite cumbersome to code. To get around this problem, we can learn some practices from
computational fluid dynamics (CFD) code.

In CFD software such as OpenFOAM, discretisation and creation of the arrays of control
volumes is usually automated with the use of meshing software. The creation of matrices
to represent the control volumes is automated as well. Once the meshing and discretisation
process is complete, finite volume codes such as OpenFOAM and GeN-Foam would then
solve the underlying system of matrices using optimised linear algebra solvers. This process
makes it practical for the user to simulate complex geometry without getting too involved
in instantiating the control volumes one by one.
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I take inspiration from the CFD approach in that I would use n-dimensional arrays to
represent the heat transfer of control volumes within each component. For this case, n = 1
because we are not likely able solve higher order arrays in real-time. For the end user, he
or she would only need to specify the number of nodes for a heat transfer component, and
the library would take care of the discretisation of the component into several 1D arrays.
By doing so, I hide the complexity behind an abstraction. The user can simply construct
an array of control volumes or “array cv” once and never need to look at the underlying
matrix construction. Of course, I could have represented CIET as a matrix problem and
used linear algebra libraries to solve them. However, experience from reading SpiceSharp
libraries written in C# showed that it was quite difficult to read, understand and modify the
source code for my own since it was structured as such. Hence, I choose to use matrices and
arrays to solve for temperature profiles only within each component rather than the system
as a whole. Therefore, an additional form of “HeatTransferEntity” known as array control
volumes or ArrayCV objects. ArrayCV objects can be added to represent all such nodalised
control volumes which use matrices to represent the energy balance equations. Moreover,
the end user may find this easier to use rather than constructing one control volume for each
node in each control volume.

ArrayCV objects contain control volumes which are coupled in a semi-implicit manner
amongst themselves. However, ArrayCV objects are also meant to be explicitly coupled to
other ArrayCV objects and SingelCV objects as I wanted to implement the mesh partitioning
scheme as described in the last chapter. To facilitate the explicit coupling, I programmed the
ArrayCV such that it contained two SingleCVs, one at each tail end of the array of control
volumes. Since I had already developed code for SingleCVs to couple explicitly with each
other, I could reuse this code to allow ArrayCV objects to couple explicitly amongst each
other and with SingleCV objects. This is shown in Figure 3.3:



125

Figure 3.3: Semi Implicit Coupling within ArrayCVs and Explicit Coupling Between Array-
CVs using Embedded SingleCV objects within ArrayCVs

As shown in Figure 3.3, the ArrayCVs themselves contain two SingleCV objects within
their each array at both tail ends of the 1D array. These can be coupled axially to other
ArrayCVs or other SingleCVs using an explicit coupling scheme. Within each ArrayCV,
the control volumes contained within it are coupled in a semi-implicit manner. To solve the
array control volume matrices within the ArrayCV, a linear algebra library must be used that
hides the complexity of solving the matrices representing the control volume. This allows
the user to focus more on constructing the simulation rather than thinking about matrix
construction. Additionally, using these linear algebra libraries is also extremely beneficial
for real-time simulation because these libraries are optimised for speed. A suitable library
for this purpose is the “ndarray-linalg” library written in Rust was used. It uses a linear
algebra package (LAPACK) library to perform operations to solve Ax⃗ = b⃗. The LAPACK
library I used was “intel-mkl” or Intel’s Math Kernel Library originally written in C++ and
Fortran. I used this particular library because it was cross platform and could work on both
Intel (tested on GNU/Linux Operating Systems (OS)) and AMD CPUs (tested on Windows
OS). On Linux systems, I chose to program the library in such a way that the OpenBLAS
LAPACK library was used instead of “intel-mkl”. This is because it is licensed under the
MIT license and Apache 2.0 license rather than the Intel Simplified Software License (ISSL).
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Parallelism and Other Methods for Speed Increases

A critical mission of the Digital Twin is real-time calculation or faster than real-time calcula-
tion. However, initial test results showed that the program operating in serial mode was not
going to be fast enough. For the first few trial runs of CIET’s heater, test results showed that
the average auto calculated time step needed for stability using an explicit coupling scheme
was about 0.0023 s or 2.3 ms. This was done using eight fluid nodes axially, one fluid node
radially, and two steel nodes radially. The 2.3 ms timestep requirement was mainly due to
the steel nodes having very little thermal inertia compared to the thermal diffusivity, and
due to the explicit coupling scheme axially and radially in initial runs. Of these two di-
rections, the conduction in the radial direction necessitated the smallest timescales. Hence,
time steps for these initial runs with explicit schemes needed to be kept small to ensure that
the Fourier number was less than 0.25. For calculation at this interval, the heater needed
roughly 600 ms of calculation time in debug compilation mode. This was about 260 times
slower than real time calculations. This showed the need to speed up calculations so that
they can happen faster than the required time step. Code optimisation was done in an
iterative process. Usually, it was done only after an unoptimised version of the code is able
to reasonably replicate experimental results.

To optimise the code, the most obvious way was to compile the library in “release” mode
rather than “debug” mode. In this manner, the compiler performs optimisations on the
eventual binary file so that the CPU can execute the instructions faster as compared to
debug mode. The only drawback is that “release” mode compilation usually takes longer
than “debug” mode. In this scenario, however, the tradeoffs were acceptable. A good rule
of thumb is that Rust code compiled in “release” mode performs about 10 times faster that
code compiled in “debug” mode.

The second method to speed up code was to understand which sections of the code
were likely to be the bottlenecks. To do so, I used libraries, including Rust’s SystemTime
functions, to check the time taken and percentage of time required for four sections of code.
Additionally, I have had friends recommend me code profiling tools such as “Callgrind” and
“KCacheGrind”. Such tools have been used in literature for sequential code performance
analysis [Weidendorfer, 2008]. For this project, flamegraphs were used to help profile and
optimise the code. Use of such tools was already established in literature [Lunnikivi, Jylkkä,
and Hämäläinen, 2020]. This supports my decision in using these tools.

3.3 Test Driven Library Development

Now that we have outlined some principles and methods of how to construct the thermal
hydraulics library, the next step would be to develop the library and validate it using simple
validation cases especially for the SingleCV object. Only when the simple cases are done,
then we move on to a more complex test case.

In this section, we use the lumped capacitance and semi infinite medium conduction test
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cases to verify if the SingleCVs were developed for conduction cases and simple conjugate
heat transfer cases. This is because the analytical solutions are relatively well known. We
can therefore compare the analytical solution to the simulated values. We then explore a
simplified one node model of the heater similar to CIET’s heater and use its transfer function
as a basis of comparison. This would help verify that the advection mode of heat transfer
works correctly. Lastly, we attempt to iteratively construct a model based on ArrayCVs to
model CIET’s heater as described in the previous chapter.

Lumped Capacitance Model

In early stages of code development, I needed a simple test to verify if the API works
correctly. This first test I used was the most simple for transient conduction: lumped heat
capacitance. For lumped heat capactiance, we simulate a steel sphere cooling in air.

Geometry, Boundary Conditions and Initial Conditions

For this test case, the sphere is 2.0 cm in diameter, and made of 304L stainless steel. The
steel starts at an initial temperature of 150 ◦C and is cooled with ambient air at 25 ◦C.
The heat transfer coefficient is 20 W/(m K). We can compute an analytical solution given
some approximations and compare that to the simulated values in the thermal hydraulics rs
library.

Analytical Solution

Let’s first state the lumped capacitance energy balance:

ρV cp
∂Tball
∂t

= −hAs(Tball − Tambient) (3.6)

Where ρV is the mass of the steel ball (density ρ times volume V ), Tball is the temper-
ature of the steel ball, t is time, h is the heat transfer coefficient, Tambient is the ambient
temperature of air. For the sake of simplicity, we use a representative average specific cp for
this calculation. With this simplification, we can easily reduce the partial derivative to a
total derivative.

d(Tball − Tambient)

dt
= − hAs

ρV cp
(Tball − Tambient) (3.7)

This is a simple initial value problem. It is customary to nondimensionalise the coefficients
using the Biot number Bi and Fourier Number Fo. Bi is defined in literature as [Xu, P.-W.
Li, and C. L. Chan, 2012]:

Bi =
hLc

ksolid
(3.8)



128

Here ksolid is solid thermal conductivity usually inW/(mK) and Lc is some characteristic
system length. A suitable candidate here for Lc is:

Lc =
V

As

(3.9)

Fo is defined and used in literature as [Hensen and Nakhi, 1994]:

Fo =
αt

L2
c

(3.10)

Where α is thermal diffusivity usually in m2s−1:

α =
k

ρcp
(3.11)

We can nondimensionalise equation 3.7 as:

d(Tball − Tambient)

dt
= −Bi α

L2
c

(Tball − Tambient) (3.12)

After integration, we can obtain an expression:

Tball(t)− Tambient

Tball(t = 0)− Tambient

= exp(−BiFo) (3.13)

It is customary to represent nondimensional temperature as θ(t):

θ(t) =
Tball(t)− Tambient

Tball(t = 0)− Tambient

(3.14)

So that:

θ(t) = exp(−BiFo) (3.15)

Let us calculate Lc for Bi:

Lc =
4πr3

3 ∗ 4πr2 =
r

3
=
D

6
(3.16)

Where r is ball radius and D is ball diameter. For 2 cm ball diameter, Lc = 0.3333cm.
Now, we need thermal conductivity and diffusivity is to be able to calculate Bi and Fo.

For this, I’m going to take a rough representative average value of thermal conductivity and
diffusivity at around 355 K or 82◦C. At 82◦C, the measured value of α is 0.0390 cm2s−1±2%
at 355.2K measured using laser flash apparatus from Springfields [Graves et al., 1991] and k
is 15.27 W/(m K) ± 1.5% measured at 354.9K using high temperature longitudinal (HTL)
apparatus Oak Ridge National Laboratory (ORNL) [Graves et al., 1991].

At these values, Bi can be calculated as:
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Bi =
20W/(m2 K) ∗ 0.3333cm

15.27W/(m K) ∗ 100 cm/m = 0.004366± 1.5% (3.17)

As Bi < 0.1 we can use lumped heat capacitance [Hensen and Nakhi, 1994].
Hence, the analytical solution can be described as:

θ(t) = exp(−0.004366 Fo) (3.18)

Uncertainty Quantification

To determine if the simulated values are close enough to the analytical solution, we can
add error bars for θ(t). Uncertainties independent of each other can be calculated as [V. R.
Meyer, 2007; Todreas, Kazimi, and Massoud, 2021; BIPM et al., 2008]:

u2c(M) =
∑
i

(
∂M

∂xi

)2

σ2(xi) (3.19)

This equation assumes the uncertainties are uncorrelated. Now, since two different mea-
surement instruments from two different laboratories were used, I can assume the uncertainty
in these instruments would be uncorrelated. Of course, I could have obtained ksolid measure-
ments from α but then we would have to take into account uncertainties in cp and ρ. For
simplicity, we shall just assume these are uncorrelated, that Bi has an uncertainty of ±1.5%
and that Fo has an uncertainty of ±2.0% which comes from uncertainty in α. Also, while
we could consider uncertainty that may come from a Nusselt correlation in obtaining h and
measurement for Lc, these will be ignored. Lc measurement uncertainty is at most ±0.1mm
if we consider using Vernier Callipers [Çelebioğlu, 2005]. For our case, this only represents
a ±0.5% error.

u2c(θ(t)) =

(
∂ exp(−Bi Fo)

∂Fo

)2

σ2(Fo) +

(
∂ exp(−Bi Fo)

∂Bi

)2

σ2(Bi) (3.20)

u2c(θ(t)) = (−Bi)2 exp(−2 Bi Fo)σ2(Fo) + (−Fo)2 exp(−2 Bi Fo)σ2(Bi) (3.21)

Let’s substitute the Fo uncertainty of ±2% and Bi uncertainty of ±1.5%:

u2c(θ(t)) = 0.0202Fo2(−Bi)2 exp(−2 Bi Fo) + 0.0152(Bi)2(−Fo)2 exp(−2 Bi Fo) (3.22)

uc(θ(t)) = 0.025 Bi Fo exp(−Bi Fo) (3.23)

uc(θ(t)) = 0.025 Bi Fo θ(t) (3.24)
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In terms of fractional or percentage error:

uc(θ(t))

θ(t)
= 0.025Bi Fo (3.25)

Hence, the error bars shall be quantified using 0.025Bi Fo θ(t).

Results

Now that we have settled the analytical solution with its associated uncertainty, we now
discuss the simulation. This was done with timestep of 20s. The simulation was carried out
until I could be sure that the temperature of the steel ball was more or less in equilibrium
with the air around it. The results were then nondimensionalised and plotted alongside the
analytical solution in Figure 3.4:
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Figure 3.4: Comparison of Dimensionless Temperature vs Dimensionless Time for a Steel
Sphere Cooling in Ambient Air

Now, Figure 3.4 shows that the simulation and analytical solution results were quite well
matched. To see if they were indeed well matched, however, we need to introduce error bars.
These error bars were based on Equation 3.25. The resultant plot is presented in Figure 3.5:
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Figure 3.5: Comparison of Dimensionless Temperature vs Dimensionless Time for a Steel
Sphere Cooling in Ambient Air with Measurement Uncertainty Error Bars

Of course Figure 3.5 has error bars which are not easy to see given how small the error
is relative to the crosses in the figure. Hence, we shall look at residual plots to see how the
residuals θ(t)rust library − θ(t)analytical compare to the measurement uncertainty error bars in
Figure 3.6:
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Figure 3.6: Residual Plot for θ(t) Lumped Capacitance Solution obtained using ther-
mal hydraulics rs Library compared to Analytical Solution

Figure 3.6 shows that at some values of Fo, the residuals exceed the measurement error
of α and ksolid. This is likely because the analytical solution fails to take into account the
variability of the material ksolid and α. α for example at 355K (82 ◦C) is about 0.0390cm2s−1.
But at 423.2K (150◦C), α is about 0.0416cm2s−1 [Graves et al., 1991]. This is an extra 6.7%
variation in α we need to account for. Likewise ksolid for steel is 15.27W/(m K) at 354.9K
and 16.63W/(m K) at 423.1 K. This is an additional variability of about 8.9% in thermal
conductivity between these two temperatures. To account for this, I opt to simply consider
this variation as if it were another random error and use equation 3.19 since we know that
variation in thermal properties happens independently of typical measurement errors. Of
course, this is a rather simple way, and the more rigourous method is redoing the analytical
solution to account for the temperature dependent thermophysical properties. However, I did
not see this as strictly necessary because the largest absolute errors are on the order of 2◦C.
It is enough to show that the library is working. I want to show that a likely cause of this
error is the variability in thermophysical properties of steel. For this, such rigourous analysis
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is not strictly required. With this in mind, let us go back to our uncertainty propragation
equations:

u2c(α) =
∑
i

(
∂α

∂xi

)2

σ2(xi) (3.26)

We consider two terms here, the temperature variation and measurement error:

u2c(α) =

(
∂α

∂T

)2

σ2(T ) +

(
∂α

∂α

)2

σ2(α) (3.27)

u2c(α) = 0.0672α2 + 0.022α2 (3.28)

u2c(α)

α2
= 0.0672 + 0.022 (3.29)

uc(α)

α
= 0.070 (3.30)

In a similar fashion, the temperature variation and measurement uncertainty in thermal
conductivity for steel can be estimated as:

uc(ksolid)

ksolid
=

√
0.0892 + 0.0152 (3.31)

uc(ksolid)

ksolid
= 0.090 (3.32)

As before, percentage uncertainty of Fo and Bi depend on percentage uncertainty of α
and ksolid respectively. Let’s substitute the Fo uncertainty of ±7.0% and Bi uncertainty of
±9.0%:

u2c(θ(t)) = 0.0702Fo2(−Bi)2 exp(−2 Bi Fo) + 0.0902(Bi)2(−Fo)2 exp(−2 Bi Fo) (3.33)

u2c(θ(t)) = 0.11412Fo2(−Bi)2 exp(−2 Bi Fo) (3.34)

Thus, the measurement uncertainty with temperature variations can be shown as:

uc(θ(t)) = 0.1141Fo(−Bi) exp(−2 Bi Fo) (3.35)

This essentially gives us a larger error bar on our plots. The plots with these new error
bars is shown in Figure 3.7:
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Figure 3.7: Residual Plot for θ(t) Lumped Capacitance Solution obtained using ther-
mal hydraulics rs Library compared to Analytical Solution Accounting for Temperature
Varying α and ksolid for Steel

In Figure 3.7, we observe much larger error bars when we account for temperature vari-
ance of α and ksolid. This shows that the simulated θ(t) using the thermal hydraulics rs
library is well matched with the analytical solution taking measurement error and temper-
ature variations in α and ksolid into account. Of course, we could have used more complex
expressions for the analytical solution using polynomial expansions for α and ksolid for a
more thorough comparison. However, these analytical expressions may be quite complex
and impractical to derive analytically.

However, for our intents and purposes, we have verified that the library functions correctly
and the code is working properly within a reasonable degree of error.

Learning Points for Temperature Variation of Thermophysical Properties

From this test, I observed that temperature variance of α and ksolid plays a large role in sim-
ulation accuracy and accuracy even of the analytical solution. This could potentially become
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a problem when the temperature varies too much in one ∆t such that the thermal resistances
vary significantly over the ∆t, thus causing calculation inaccuracy. The inaccuracy arises
because in calculation of the heat fluxes between control volumes and boundary conditions,
the thermal resistance is assumed constant or to vary little within that ∆t. When this is
assumption is untrue, significant inaccuracies would arise. To mitigate this inaccuracy, the
∆t should be picked such that the temperature changes within each ∆t are limited to a small
temperature change. Now, limiting temperature variations within each ∆t would become
an additional ∆t constraint in addition to the already existing Courant Number. Given the
extra complexities of determining a suitable timestep for explicitly coupled control volumes
or even the semi implicitly coupled control volumes, I decided to write some code which
auto calculates timesteps based on Courant number, a maximum temperature change along
with some other factors such as the mesh Fourier number. The mesh Fourier number is of
particular interest in conduction, and that’s what we shall cover next.

Conduction in Semi Infinite Medium

Analytical Solution

Now, since we have verified the ability of the solver to handle the simplest heat transfer case,
which is lumped capacitance, we shall develop the solver to solve more complex cases. For
explicitly coupled schemes, we consider conduction in a semi infinite medium. We choose
this because the analytical solution is well known in literature [Trojan, 2014]:

θ(x, t) = erfc

(
x

2
√
αt

)
(3.36)

θ(x, t) =
T (x, t)− Ti
Tsurface − Ti

(3.37)

T (x, t) is the temperature in the semi infinite medium at position x and time t. Ti
is the initial temperature, and Tsurface is the surface temperature at the boundary. The
reader should note that this analytical solution is specific to a constant surface temperature
boundary condition. There are other analytical solutions available for constant heat flux
as well, but we shall consider only the constant temperature case to validate the thermal
hydraulics solvers.

Time Step Considerations

One critical component for solving transient conduction is ensuring that the solver is nu-
merically stable. For explicitly or semi-implicitly coupled schemes, the right timestep must
be selected. Now, we could apply an implicitly coupled solution method, but we would still
need to consider timescales relevant to simulate the physical phenomena of the system. These
timescales are tied more to the length scales of the system rather than the length scales of the
mesh. However, the mesh length scale is usually smaller or equal to the system length scale.
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Hence, the timescales calculated using the mesh length scale would usually be a conservative
estimate of the required system timescales. In the case where we have a ultra coarse mesh
such that the mesh length scales and system length scales are similar, then the algorithms for
calculating system timescales for physical phenomena and mesh stability timescales become
quite interchangeable. As discussed in the literature review section, I used a semi-implicit
coupling method for this dissertation. Since the algorithm is not fully implicit, methods
timescales relevant to explicit coupling will be relevant for discussion here. For time step-
ping, the stability is highly dependent on a mesh Fourier number or discretisation Fourier
number [Thomas, Samarasekera, and Brimacombe, 1984]. For such simulations, the mesh
Fourier number must be lower than a set value in order for the simulation to be stable . The
stability criteria for explicit time stepping [Thomas, Samarasekera, and Brimacombe, 1984]
is shown in Equation 3.38:

Fodiscretisation =
α∆t

∆x2
≤ 0.25 (3.38)

For this criterion to be fulfilled, the product of α∆t cannot exceed a certain value.
Therefore, materials with higher α tend to require a smaller ∆t to be stable. The material
with one of the highest α values commonly used in heat transfer applications is copper.
Hence, we shall restrict ourselves to using a copper medium for this case rather than steel as
it has a higher thermal diffusivity. Firstly, I wanted to test and ensure that different material
properties work within the thermal hydraulics rs library. Secondly, the solution stability is
tied closely to the Fourier number, and lower Fourier numbers usually imply better numerical
stability. Since this is the case, a higher thermal diffusivity means that the solution is more
likely to become unstable compared to other materials of similar grid size and time step.
Hence, if the solver can obtain a stable transient conduction solution for copper, it is likely
to supply a stable solution for other materials as well.

To illustrate the point, we present data from Parker’s original paper on using the flash
method to determine thermal diffusivity [Parker et al., 1961] in Table 3.1:

Material α (cm2s−1) 22◦C α (cm2s−1) 135◦C

Aluminium 0.94 0.89

Copper Allow OFHC 1.15 1.04

Silver 1.61 not available

Steel Alloy 4340 0.096 0.09

Steel Alloy 1020 0.14 0.13

Table 3.1: α for various materials [Parker et al., 1961]

The precision of the information in Table 3.1 was reported to vary by about ±5% and
the variance in measured data compared to other sources was found to be within ±10% of
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the nominal values [Parker et al., 1961]. Of course, the instruments have gotten better over
time as α for steel was measured with a measurement uncertainty of ±2% [Graves et al.,
1991]. However, we shall make do for now with at least the ±5% precision error. Regardless,
Table 3.1 shows that copper has the highest α of the common construction materials. Silver
has a higher α but was not used for CIET and is not likely to be used as a construction
material for IETs or reactor applications. Hence, we can consider copper to be suitable for
a case with the highest α. Again, a high α means that Fo will be higher, all else equal.

Now, we know that if a mesh is evenly sized, then the entire mesh is described by only one
Fodiscretisation. However, we do not take it for granted that the mesh is always evenly sized
especially across various components in heat transfer systems such as CIET.It is likely that
each local mesh would have its own local Fodiscretisation criteria. In this case, whenever we
join control volumes and nodes together with thermal resistances, one appropriate method
to time step is to load each control volume node with a vector of maximum allowable time
step given each interaction. The maximum allowable time step for this node is the minimum
of this vector.

We should likewise calculate a maximum time step based on changing material properties
and add it to the vector as well. We then take the global minimum ∆t by repeating this
over all control volume nodes to determine the best ∆t for the current time step. I coded
an algorithm that calculates the timestep based on the Fodiscretisation. The test code would
then automatically determine the timestep used for the simulation. If the simluation is
stable, it would mean that the auto timestepping algorithm works and that the algorithm is
successfully programmed.

Methods

Geometry, Boundary Conditions and Initial Conditions The simulation of a semi
infinite copper medium was compared to the analytical solution. In this setup, a constant
wall temperature boundary condition of 80◦C was placed against a semi infinite medium
initially at 21.67◦C. The medium was 20 cm long and the simulation was done for 20

seconds. This was to ensure that x
2
√
αt

≥ 2.0 so that erfc
(

x
2
√
αt

)
≤ 0.005 at the 20 cm

boundary. The analytical solution was first generated using an average α to generate the
temperature profiles. This average temperature was 45◦C.

For the numerical solution, 3D control volumes were used, but since the simulation is
essentially 1D, a basis cross sectional area of 1m2 was used across all control volumes and
boundary conditions. Radially, an adiabatic boundary condition was surrounded all other
sides besides the constant temperature boundary condition.

Thermophysical Properties dditionally, the material properties for copper were re-
trieved from previous work in CIET’s RELAP and SAMmodel [Zou, R. Hu, and Charpentier,
2019; Nicolas Zweibaum, 2015] as shown in Table 3.2:
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Temperature (K) k (W m−1 K−1) cp (J kg−1 K−1)

250 406 373.6018

300 401 384.7875

350 396 392.6174

400 393 398.2103

500 386 407.1588

1000 352 417.226

Table 3.2: Thermophysical Properties of Copper [Zou, R. Hu, and Charpentier, 2019; Nicolas
Zweibaum, 2015]

To interpolate the material properties, the cubic spline function from the Peroxide crate
in Rust was used. Whenever the material property was desired, a cubic spline object was
constructed using all the available data points, the desired temperature for calculating the
material properties was given, and then the material property was retrieved. At the end of
the function, the spline object went out of scope. This was computationally inefficient, but
a high degree of optimisation was not required at the time of testing. Therefore, it was left
unoptimised. An example of this code is presented here:

fn copper_specific_heat_capacity(

temperature: ThermodynamicTemperature) -> SpecificHeatCapacity {

let temperature_value_kelvin: f64 = temperature.get::<kelvin>();

// here we use a cubic spline to interpolate the values

// it’s a little calculation heavy

//

// and actually, rebuilding the spline is quite problematic

// we need to build it ONCE and read from it

//

let thermal_cond_temperature_values_kelvin = c!(200.0,

250.0, 300.0, 350.0,

400.0, 500.0, 1000.0);

let specific_heat_capacity_values_joule_per_kilogram_kelvin

= c!(355.7047,

373.6018, 384.7875, 392.6174,

398.2103, 407.1588, 417.2260);

let s = CubicSpline::from_nodes(&thermal_cond_temperature_values_kelvin,

&specific_heat_capacity_values_joule_per_kilogram_kelvin);
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let copper_specific_heat_capacity_value = s.

eval(temperature_value_kelvin);

SpecificHeatCapacity::new::<joule_per_kilogram_kelvin>(

copper_specific_heat_capacity_value)

}

For density of steel, it was assumed constant at 8940 kg m−3 [Zou, R. Hu, and Charpen-
tier, 2019].

After a mesh refinement study, a suitable mesh size was decided to be such that the
distance between each node was 2cm. However, the distance between the first node and the
wall was 1cm. The same applied for the 9th and 10th node, these were the last two nodes.

Uncertainty Quantification I simply used error bars of ± 0.5 K because these are char-
acteristic of Type T thermocouples used in CIET [Zweibaum, J E Bickel, et al., 2015].

Results

The results of this test are presented in Figure 3.8:

Figure 3.8: Semi Infinite Medium Copper Conduction, Temperature Evolution over Time
for Fixed Positions within the Mesh

To evaluate the ability of the library to simulate transient conduction, I observe the
temperature evolution over time for five points in Figure 3.8. These are at 1cm, 5cm, 11cm,
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15cm and 19cm away from the constant temperature boundary. Additionally, error bars
of ± 0.5◦C are shown to give the reader a rough idea of the magnitude of the residual in
comparison to a typical thermocouple uncertainty. Figure 3.8 shows relatively reasonable
agreement between the analytical solution and the simulated values. The deviation is similar
in the order of magnitude to a typical thermocouple uncertainty. Though some points lie
outside this range, I conjectured that these were again due to variability in material properties
at different temperatures as this seemed to be the case in the example of the steel ball cooling
in air. I also wanted to spend my limited time conducting other tests for the library. Due
to these two reasons, I decided not to plot the residuals and move on to other cases. For
my intents and purposes, the thermal hydraulics library was able to reasonably predict
temperature profiles for transient conduction with a reasonably acceptable deviation from
the analytical solution.

One Dimensional Model of a Heated Pipe based on CIET’s Heater

Now that we have developed code and verified it using simple cases for transient conduction
and conjugate heat transfer, let us next test code meant for transient conjugate heat transfer
(CHT) with advection. For this, I shall use existing models and data in literature relevant
to CIET’s Heater.

The simplest of the models based on CIET’s Heater was developed by Poresky [Poresky,
2017]. As discussed in the previous chapter, CIET’s heater was heated electrically via cop-
per cables. The steel piping receiving current would have been heated volumetrically to
temperatures of about 165◦C to 185◦C. As a result, the Therminol VP-1 or Dowtherm A
flowing through the heater would have been raised from about 80 ◦C to 110 ◦C. A close up
of CIET’s Heater, especially its top head, is presented in Figure 3.9:
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Figure 3.9: CIET’s Heater with Emphasis on Top Head, brown material on heated section
is Kapton tape to allow Infra Red Imaging

Figure 3.9 shows CIET’s Heater as it stands today. It does not have any insulation as
the insulation sustained damage previously [De Wet and Per F Peterson, 2020]. However, it
used to have fiberglass insulation on it. Also, its insert used to be an annular tube [Poresky,
2017; Lukas, Kendrick, and P. Peterson, 2017] rather than a twisted tape.
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As mentioned in the previous chapter, I used the term “CIET Heater v1.0” to denote
CIET’s heater in its original configuration, with fibreglass insulation and an annular tube.
This naming convention is essentially the same as what De Wet has used before [De Wet
and Per F Peterson, 2020]. CIET Heater v1.0 was also the version present in the RELAP
model [Nicolas Zweibaum, 2015]. When the insert was changed for improved heat transfer
performance [Lukas, Kendrick, and P. Peterson, 2017], the heater was called “CIET Heater
v2.0” [De Wet and Per F Peterson, 2020]. When the heater insulation was damaged and the
insulation removed [De Wet and Per F Peterson, 2020], CIET’s Heater experienced greater
parasitic heat losses. This version I will call “CIET Heater v2.0 bare” to denote that the
heated pipe is without insulation and therefore bare.

Methods

Poresky’s simplified model was based on CIET’s Heater v1.0 with fiberglass insulation. While
there was an inner pipe within CIET heater v1.0, Poresky’s simplified model of the heater
essentially ignored much of its participation in conjugate heat transfer [Poresky, 2017]. We
can model such a simple model using an ordinary differential equation (ODE) which can be
solved analytically using Laplace Transforms. Poresky has proposed that the fluid volume
(F) within the pipe be modelled as a well mixed control volume with one fluid temperature TF
characterising it. The solid shell (S) would be modelled similarly using a lumped capacitance
model with one characteristic temperature TS. These assumptions were used to analytically
derive a transfer function model of the heater. I intend to use this transfer function to
generate Bode Plots. I then intend to test the frequency response of a similar model simulated
using thermal hydraulics library and superimpose the Bode Plots on top of each other.

Analytical Transfer Function The analytical derivation of the transfer functions is pre-
sented here for the reader. While Poresky has essentially the same derivations in his work
[Poresky, 2017], some of his derivations contained mistakes which can be verified by inspect-
ing the terms for consistency with units. I present the corrected version here.

Poresky described the energy balance equations in terms of for the fluid and shell as
follows [Poresky, 2017]:

dTF
dt

=
1

τF
(TF,in − TF ) +

(hA)S
(mcp)F

(TS − TF ) (3.39)

dTS
dt

=
P

(mcp)S
+

(hA)S
(mcp)F

(TF − TS) (3.40)

Here, (hA)S represents the thermal conductance between the shell and the fluid, P repre-
sents the heater power, (mcp)S represents the heat capacitance of the solid shell and (mcp)F
represents the heat capacitance of the fluid. τF is the residence time of the fluid. P was
recorded in kW while T was recorded in (◦C).

The analytically derived transfer function can be expressed as [Poresky, 2017]:
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TF
P

=
a

s2 + bs+ c
(3.41)

Where:

a =
(hA)S

(mcp)F (mcp)S
(3.42)

b =

[
1

τF
+

(hA)S
(mcp)F

+
(hA)S
(mcp)S

]
(3.43)

c =
(hA)S
(mcp)S

[
1

τF
− 1

τF

(hA)S
(mcp)F

+
(hA)S
(mcp)F

−
(

(hA)S
(mcp)F

)2
]

(3.44)

Unfortunately, the expressions look suspect because of unit inconsistencies.
(hA)S
(mcp)F

for

instance should be in units of Hz and so is 1
τF
. Strangely enough, in Poresky’s expression for

c, these are added alongside
(

(hA)S
(mcp)F

)2
which have units of (Hz)2. I therefore have reason to

suspect that some of the calculations have some overlooked errata. Therefore, I will perform
some calculations to re-derive the final transfer function.

Poresky uses the hat notation to denote a deviation variable. For example, deviation
in T is denoted T̂ . We begin with Laplace Transforms of the equations can be written as
[Poresky, 2017]:

T̂F =

1
τF
T̂F,in +

(hA)S
(mcp)F

T̂S

s+ 1
τF

+ (hA)S
(mcp)F

(3.45)

T̂S =

(hA)S
(mcp)S

T̂F + 1
(mcp)S

P̂

s+ (hA)S
(mcp)S

(3.46)

These seem correct with reference to the energy balance. Additionally, the units also
seem to be consistent. We shall need to substitute out T̂S to obtain T̂F in terms of P̂ :(

s+
1

τF
+

(hA)S
(mcp)F

)
T̂F − T̂F,in

τF
=

(hA)S
(mcp)F

T̂S (3.47)

(
s+

1

τF
+

(hA)S
(mcp)F

)
T̂F − T̂F,in

τF
=

(hA)S
(mcp)F

(hA)S
(mcp)S

T̂F + 1
(mcp)S

P̂

s+ (hA)S
(mcp)S

(3.48)

For a constant flowrate and constant inlet temperature, T̂F is zero [Poresky, 2017], and these
were indeed the conditions for the frequency response test conducted [Poresky, 2017]. For

this situation, the term
T̂F,in

τF

(
s+ (hA)S

(mcp)S

)
is zero, and so we get:
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(
s+

1

τF
+

(hA)S
(mcp)F

)(
s+

(hA)S
(mcp)S

)
T̂F =

(hA)S
(mcp)F

(hA)S
(mcp)S

T̂F +
(hA)S
(mcp)F

1

(mcp)S
P̂ (3.49)

(
s+

1

τF
+

(hA)S
(mcp)F

)(
s+

(hA)S
(mcp)S

)
T̂F − (hA)S

(mcp)F

(hA)S
(mcp)S

T̂F =
(hA)S
(mcp)F

1

(mcp)S
P̂ (3.50)

Thus we have a transfer function connecting P̂ and T̂F .

T̂F =

(hA)S
(mcp)F

1
(mcp)S

P̂(
s+ 1

τF
+ (hA)S

(mcp)F

)(
s+ (hA)S

(mcp)S

)
− (hA)S

(mcp)F

(hA)S
(mcp)S

(3.51)

T̂F

P̂
=

(hA)S
(mcp)F

1
(mcp)S(

s+ 1
τF

+ (hA)S
(mcp)F

)(
s+ (hA)S

(mcp)S

)
− (hA)S

(mcp)F

(hA)S
(mcp)S

(3.52)

Now, we can multiply out the factors in the denominator,

T̂F

P̂
=

(hA)S
(mcp)F

1
(mcp)S

s2 + s
(

1
τF

+ (hA)S
(mcp)F

+ (hA)S
(mcp)S

)
+ 1

τF

(hA)S
(mcp)S

+ (hA)S
(mcp)F

(hA)S
(mcp)S

− (hA)S
(mcp)F

(hA)S
(mcp)S

(3.53)

After all this, we end up with a simpler looking expression than Poresky’s:

T̂F

P̂
=

(hA)S
(mcp)F

1
(mcp)S

s2 + s
(

1
τF

+ (hA)S
(mcp)F

+ (hA)S
(mcp)S

)
+ 1

τF

(hA)S
(mcp)S

(3.54)

The units here also look more consistent because s, (hA)S
(mcp)S

and 1
τF

are all in units of s−1

or Hz.
The dimensions of the numerator are 1

second
Kelvin
Joule

or K
J ·s . When divided by the denomi-

nator, the units are indeed K
watt

, which is consistent with the units T̂F

P̂
.

If the inlet temperature is taken to be an input to the system, we can re-introduce the
ignored term in the numerator. As a result, we would end up with a multiple input single
output MISO system:

T̂F =

(hA)S
(mcp)F

1
(mcp)S

P̂ +
T̂F,in

τF

(
s+ (hA)S

(mcp)S

)
s2 + s

(
1
τF

+ (hA)S
(mcp)F

+ (hA)S
(mcp)S

)
+ 1

τF

(hA)S
(mcp)S

(3.55)

We note that the numerator is in units of K · (Hz)2 and the denominator is in units of
(Hz)2. For now, we shall just consider oscillating power input to the heater to make the
CHT test as simple as possible. The transfer function is:
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T̂F

P̂
=

a

s2 + bs+ c
(3.56)

Where:

a =
(hA)S

(mcp)F (mcp)S
(3.57)

b =

[
1

τF
+

(hA)S
(mcp)F

+
(hA)S
(mcp)S

]
(3.58)

c =
(hA)S
(mcp)S

1

τF
(3.59)

Given this analytical solution, we are able to construct a Bode Plot given this transfer
function in MATLAB.This would be the analytical solution Bode Plot. I could also construct
a representation of this CHT case in “thermal hydraulics rs” using single control volumes
and boundary conditions. I would then subject it to a MFBS signal at 10 seconds per bit
similar to De Wet’s work [De Wet and Per F Peterson, 2020] and at a 9 kW power output,
induce oscillations of about 1 kW similar to Poresky’s work [Poresky, 2017].

Simulation Setup

Initial and Boundary Conditions The simplified system is assumed be adiabatically
coupled to its surroundings in terms of conduction. The initial temperatures were 80◦C for
both heater and Therminol-VP1, and the boundary conditions for axial conduction for the
solid and fluid control volume were an adiabatic boundary condition. Only advection adds
or removes heat from the system. Additionally, the inlet temperature is also set to 80◦C so
that fluid flowing into the system is at 80◦C.

Thermal Inertia and Thermal Resistance The working fluid would be Therminol-
VP1 (also called Dowtherm A), and the solid shell would be modelled using steel. Material
properties for the analytical solution could be derived using properties for steel SS304L for
the solid shell and Therminol VP-1 for the fluid at approximately 175 ◦C for the shell and
95 ◦C for the fluid [Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson, 2014; De wet,
Per F. Peterson, and Greenwood, 2019]. Mass flow rate would be around 0.18 kg/s as is
typical for frequency response tests in CIET [Poresky, 2017]. This would leave the problem
fully determined except for the heated pipe dimensions. While the Pr, Re and Nu would
most certainly change with temperature, an average temperature can be used to obtained
these dimensionless numbers so as to obtain thermal conductance.

The Nusselt number for CIET heater v1.0 based on CIET test bay data was recorded as
[Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson, 2014]:
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NuD−hydraulic =

{
8 if ReD−hydraulic < 2000

5.44 + 0.034 Re0.82D−hydraulic if ReD−hydraulic > 2000
(3.60)

The heat transfer area used to calculate conductance will be the outer tube heat transfer
area for the CIET v1.0 heater at about 311 inch2 or 2007 cm2 [De Wet and Per F Peterson,
2020]. The main fluid volume is at 42.12 inch3 or 690.2 cm2 [De Wet and Per F Peterson,
2020]. The hydraulic diameterDH in the RELAP model is is 6.60∗10−3m [Nicolas Zweibaum,
2015], flow area was about 3.64∗10−4m2 and the heater length excluding the head was about
1.6383 m [Nicolas Zweibaum, 2015].

A summary of important parameters is shown in Table 3.3:

Parameter Quantity Unit

Fluid Volume 0.0006902 m3

Flow Area 0.000348 m2

Length 1.98333333333333 m

- - -

Outer Diameter 0.04 m

Inner Diameter 0.0381 m

Heated length 1.676 m

Shell Volume 0.000195329811289933 m3

Table 3.3: CIET Heater v1.0 Simplified 1D Model Dimensions

At the average temperature of 95 ◦C, we may use the temperature correlation for viscosity
[Nicolas Zweibaum, 2015]:

µ(Pa · s) = 0.130

T (◦C)1.072
(3.61)

The resulting viscosity is about 0.000986 Pa · s. We can also determine the Nusselt
number by first ascertaining what ReD−hydraulic is at 0.18 kg/s at prevailing flow conditions:

ReD−hydraulic =
ṁDhydraulic

Axsµ
=

0.18 kg/s ∗ 6.60 ∗ 10−3m

3.64 ∗ 10−4m ∗ 0.000986 Pa · s = 3310 (3.62)

At ReD−hydraulic = 3310, we have to consider this a turbulent flow regime. Hence, equa-
tion 3.60 shall be used. A Nusselt number of 31.6 would be obtained from that.

For the heat transfer coefficient h, we consider that the Nusselt number in this correlation
uses the outer tube heated diameter of 3.81 cm as its relevant length scale [De Wet and Per F
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Peterson, 2020]. Additionally, thermal conductivity at about 95 ◦C will need to be calculated
as well using equation 3.63 [Nicolas Zweibaum, 2015]:

k(
W

m ·K ) = 0.142− 0.00016T (◦C) (3.63)

At 95 ◦C, k is 0.1268 W
m·K . We find that h is:

h =
NuD−hydraulick

Dhydraulic

=
31.6 ∗ 0.1268 W

m·K
6.60 ∗ 10−3m

= 607
W

m ·K (3.64)

For thermal inertia of steel and the Therminol VP-1, we consider that the outer tube
of the heater had a heated length of 1.676 m [De Wet and Per F Peterson, 2020], an outer
diameter of 4.0 cm and an inner diameter of 3.81 cm. The heat capacity of SS304L was taken
at an average temperature of about 450 K or about 177◦C rather than 175◦C so that cp data
could be read directly from tables used in the SAM model [Zou, R. Hu, and Charpentier,
2019] as opposed to interpolation. This was more for convenience than anything else. cp, ρ,
k and µ were taken from previous RELAP and SAM models [Nicolas Zweibaum, 2015; Zou,
R. Hu, and Charpentier, 2019].

With these, the thermal inertia of the solid and fluid, the heat conductance and the
transfer function parameters a, b and c were calculated and shown in Table 3.4:
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Parameter Quantity Unit

hS 607 W/(m2 K)

AS 0.2007 m2

(hA)S 122 W/K

- - -

ρF 997.25 kgm−3

VF 0.0006902 m3

mF 0.68830195 kg

”cp,F” 1785.9 J/(kg ·K)

(mcp)F 1230 J/K

- - -

ρS 8030 kgm−3

VS 0.000195329811289933 m3

mS 1.56849838465816 kg

”cp,S” 490.66 J/(kg ·K)

(mcp)S 770 J/K

- - -

ṁ 0.18 kg/s

mF 0.68830195 kg

1
τF

0.262 Hz

- - -

a 0.000129 K/(J · s)
b 0.52 Hz

c 0.0415 (Hz)2

Table 3.4: CIET Heater v1.0 Simplified 1D Model Parameters for Thermal Inertia

For the purposes of validating the thermal hydraulics library, a strictly accurate Nusselt
number correlation is not strictly necessary for testing code within the thermal hydraulics
library, only that they be consistent between the analytical model and the model built using
the library. Therefore, the parameters used as described in Table 3.4 are values not exactly
equal to CIET Heater v1.0, but is meant to be in the same ballpark as that of CIET Heater
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v1.0.
Now, to test the accuracy of the thermal hydraulics library, I used MATLAB to obtain

data for Bode Magnitude and Phase plots. Thereafter, I subjected the heater modelled using
control volumes to a multifrequency binary signal (MFBS) and varied its power input from a
steady state of 9 kW with an amplitude of 1 kW. The MFBS signal was generated in the Rust
programming language using a logspace function which provides a list of frequencies which is
evenly spaced in the log-plots. This relatively simple logspace function was generated using
Perplexity Artificial Intelligence (Perplexity AI) given to expedite work and also because
logspace functions are already well used in other codebases such as Numpy [Harris et al.,
2020]. The rest of the code was written without help from AI.The angular frequencies are
generated from 0.001 rad/s to 1 rad/s over 15 evenly log spaced points.

Time Stepping For time stepping, the Courant number was used as a basis of the time
step. For the Courant number not to exceed 1.0, the timestep had to be about 3.83 s or
less. Hence, the timestep used for this simulation was about 3.83 s. For simplicity, the
timestep and sampling interval are the same. This implies a sampling frequency of about
0.261 Hz and the Nyquist frequency was about 0.130 Hz. This means that at the prevailing
sampling frequency, higher frequencies in the MFBS signal cannot be captured and are
instead registered as noise. For example, a frequency corresponding to 1 rad/s cannot be
captured as it is over the Nyquist frequency of 0.130 Hz, and therefore it would register
as noise. This initial result was problematic, and therefore the timestep in subsequent
experiments was set to 0.1s, where the Nyquist frequency was 5 Hz. This would enable it to
capture the 1 rad/s signal as well, which is the highest perturbing frequency in the MFBS
signal.

Results

Figure 3.10 shows that at frequencies close to the Nyquist frequency, the gains do not cor-
respond to the analytical solution.
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Figure 3.10: Bode Magnitude Plots for One Dimensional CIET Heater

A similar situation applies for the phase plots in Figure 3.11.
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Figure 3.11: Bode Phase Plots for One Dimensional CIET Heater

While first series of tests, does not characterise frequencies higher than the Nyquist fre-
quency well, it does show that the simulation behaves in a stable manner given the auto
timestepping algorithm. This is likely because the calculated simulation time is 3.83s. Con-
sequently, using data generated every 3.83s for the Bode Plots means that the sampling
interval is 3.83s as well. The sampling frequency here is 0.261 Hz, and therefore, the highest
frequncy that can be sampled is around 0.1305 Hz. This is the Nyquist frequency. For
oscillations higher than the Nyquist frequency, it would register as noise in the various other
frequencies. This would likely explain why there is such a bad fit at the higher frequencies
in Figure 3.10.

To obtain a better frequency response signal, a higher sampling frequency is used of
about 10 Hz. This means the timestep is 0.1s and the Nyquis frequency is 5 Hz. Therefore
frequencies below 5 Hz can be sampled. The resulting Bode plots in Figure 3.12 and Fig-
ure 3.13 show that when the sampling frequency increases to 10 Hz, the frequency response
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data due becomes cleaner:
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Figure 3.12: Bode Magnitude Plots for One Dimensional CIET Heater
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Figure 3.13: Bode Phase Plots for One Dimensional CIET Heater

Now, the plots in Figure 3.12 and Figure 3.13 show that the simulation data matches
quite well with the analytically derived transfer function. This shows that the advection
heat transfer logic has been programmed correctly into the system.

Once again, I could be more rigourous in this validation effort by providing error bars
and showing a step function plot. I will not do so since this test case is not the end product.
Its purpose was only to show that the advection heat transfer logic was working correctly.
The Bode Phase and Magnitude plots seem to show that this is indeed the case. However,
we still need to ensure that the library is successful in simulating the nodalised components
within CIET.Since we have bigger fish to fry, I will not conduct further tests on this setup,
but rather validate the library in the context of a higher fidelity model of CIET’s heater.
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CIET Heater v2.0 Bare

Now that we have validated the thermal hydraulics library using simpler test cases, it is
now time to fry bigger fish. We shall now attempt to simulate CIET Heater v2.0 Bare. As
shown in the last chapter, CIET Heater v2.0 is a heated section with a top head and bottom
head. Experimental data from CIET Heater v2.0 was obtained by recording the heater
power, inlet temperature and outlet temperature while various steady state experiments
and transient experiments were run. The inlet temperature and outlet temperature were
measured by thermocouples BT- 11 and BT-12 respectively [De Wet and Per F Peterson,
2020]. If we want to build a Digital Twin of CIET Heater v2.0 Bare which not only replicates
the experimental data from BT-11 and BT-12, but also makes predictions of how this same
system would behave under other circumstances, then we shall have to model the components
as close to the experiment as possible. Between BT-11 and BT-12, there is the CIET Heater
v2.0 Bare, and mixer MX-10 [Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson,
2014; Nicolas Zweibaum, 2015]. This is shown in Figure 3.14:

Figure 3.14: CIET Heater v2.0 Bare Layout with BT-11, BT-12 and MX-10 (Not Drawn to
Scale)

Figure 3.14 shows the five primary components present in the experiment which I intend
to model for the purposes of validation. These components are numbered based on the
component numbering convention by RELAP5 [Nicolas Zweibaum, 2015] and SAM [Zou, R.
Hu, and Charpentier, 2019].
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Now, to produce a Digital Twin of the components between BT-11 and BT-12, I not only
require a model which can reproduce the experimental steady state BT-12 temperatures and
transient behaviour, I also need to ensure that these models have calculation speeds faster
than real-time. Hence, the calculation time relative to the time steps used by the simulations
becomes an important metric. This is a complex problem where I use the principles of rapid
prototyping and avoid premature optimisation in my development process.

For this dissertation, this means planning, designing and building several prototypes of
the eventual heater simulation, and then testing these prototypes to learn lessons that can
be applied to future prototypes. This meant that I used extremely simplified heater models
during early stages of development work. As I progressed in development work, I added
complexity to the heater model to make it more realistic. Figure 3.15 shows what this
methodology may look like for this dissertation:

Figure 3.15: Rapid Prototyping Methodology for Designing a Digital Twin of CIET Heater
v2.0 Bare (Not Drawn to Scale)

In Figure 3.15, we show three different prototypes of CIET Heater v2.0 Bare models
used as a basis to build successively more optimised and realistic simulations of the CIET
Heater v2.0 Bare. Prototype 1 is the easiest to develop as it ignores the top and bottom
heads as well as the twisted tape and perforated tube within the CIET Heater v2.0 Bare.
Therefore, Prototype 1 will be used in the first phase of simulation and code optimisations.
Doing so helped me to speed up initial iterations and optimisation of of the control volume
calculations. Since Prototype 1 was merely a simplified version of CIET Heater v2.0 Bare
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meant to speed code development work, I did not validate it as thoroughly using experimental
data for transients. This is because Prototype 1 was never meant to simulate the thermal
inertia within CIET Heater v2.0 Bare, but only replicate the steady state data. Therefore,
the heater internals are forgone.

After testing and designing several optimisation techniques based on Prototype 1, I then
developed simulations based on Prototype 2 which now simulates the heater top and bottom
heads using the RELAP5/SAM nodalisation and twisted tape within the heated section as
well as the top and bottom heads. This means it replicates the thermal inertia better than
Prototype 1. Notably, simulating Prototype 2 would require more control volumes than
Prototype 1 as more components are simulated. Hence, the computational demands for
simulations based on Prototype 2 are higher as compared to simulations base on Prototype
1. Due to these higher computational demands, Prototype 2 required a higher degree of
optimisation in order to ensure that simulations were run in real time. Therefore Prototype
2 was used in the second phase of optimisation for simulations of the CIET Heater v2.0 Bare.

Now, Prototype 2 based on the RELAP5/SAM nodalisation does not account for addi-
tional thermal inertia accounted for in the Transform model [De Wet and Per F Peterson,
2020] as described in the literature review chapter. More detailed modelling of these thermal
masses is reserved for future work. For this purpose, Prototype 3 is presented as a possible
future model which is meant to account for the extra fluid and thermal masses. Its dimen-
sions are based upon my interpretation of Transform Model dimensions of CIET Heater v2.0
Bare as discussed in the last chapter.

In this subsection, we shall outline the experimental data the Prototype 2 model must
replicate and the time constraints it must achieve. Next, we shall outline methods used to
get the Prototype 1 and Prototype 2 models to meet its time constraints and the results
of using some of these methods. Lastly, we shall discuss methods and results for validation
of the optimised model against experimental data for the Prototype 2 model of CIET v2.0
Heater Bare.

Experimental Data

For steady state validation, I used forced circulation data for CIET Heater v2.0 Bare at
various heater power settings [De Wet and Per F Peterson, 2020] at a prevailing mass flow
rate of 0.18 kg/s. The experimental data and heater inlet temperature is shown in Table 3.5:
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Heater Power
(Watts)

Experimental
Heater Inlet
Temperature
(◦C) BT-11

Experimental
Heater Outlet
Temperature
(◦C) BT-12

Simulated
Heater Inlet
Temperature
(◦C) BT-11

3000 78.75 86.93 78.75

4000 79.00 90.25 79

6000 79.40 96.50 79.4

8000 79.12 102.20 79.12

10000 78.90 107.75 78.9

Table 3.5: Heater v2.0 Bare Steady State Data [De Wet and Per F Peterson, 2020], Prevailing
mass flow rate ṁ = 0.18 kg/s

As shown in Table 3.5, the inlet temperature is 79.0 ◦C ± 0.5 K. The corresponding
heater outlet temperature BT-12 given at various power settings is then given in Table 3.5.
This data is used for validating steady state behaviour of CIET’s heater.

For transient validation tests, we shall use the transient response of the BT-12 tempera-
ture to that of De Wet’s empirical transfer function of heater power to BT-12 temperature
shown in in Equation 3.65 [De Wet and Per F Peterson, 2020]:

G(s) = e−4s 3.217 ∗ 10−5s3 + 6.675 ∗ 10−7s2 + 1.139 ∗ 10−8s+ 2.423 ∗ 10−11

s5 + 0.2251s4 + 0.01688s3 + 0.0003548s2 + 3.057 ∗ 10−6s+ 1.632 ∗ 10−9
(3.65)

Equation 3.65 expresses the deviations in heater power to deviations in BT-12 tempera-
ture as an empirical transfer function. This was based on frequency response testing for a
PRBS signal of 63 bits, 500 watts and 10 seconds per bit after CIET reached a steady state
based on a heater power of 8 kW at a Therminol VP-1 mass flow rate of 0.18 kg/s [De Wet
and Per F Peterson, 2020]. The heater inlet and outlet temperature at this steady state prior
to the frequency response test is the same as that reflected in Table 3.5 for the 8 kW run.
As mentioned in the previous chapter, this transfer function also accounts for thermal pulses
that traverse round the loop. these thermal pulses take about 1 minute to traverse the loop,
thus the inlet temperatures would change. If we subject this transfer function to some step
test, the response prior to roughly 1 minute would be based on a constant inlet temperature.
This data is usable for validating the response of the heater outlet temperature BT-12 given
a constant inlet temperature and user set step input for heater power. This is the data I use
to validate the BT-12 response to a step increase in heater power.
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Time Requirements

Now that we have discussed the experimental data used to validate the model of CIET Heater
v2.0 Bare, we now want to discuss some of its time constraints. Modelling CIET Heater v2.0
Bare is part of a much bigger ambition where I want to model the whole of CIET in real-time.
To do so, I want to ensure that the digital twin library I develop is capable of simulating the
entirety of CIET in future. To do so, there are certain time requirements this digital twin
of CIET Heater v2.0 Bare must meet.

Let’s consider the breakdown in time available for us. Based on the SAM model [Zou,
R. Hu, and Charpentier, 2019], there are about 57 fluid components to model. This includes
the scaled natural circulation Direct Reactor Auxiliary Cooling System (DRACS) loop as
well as the forced circulation loop. Both loops are shown in Figure 2.4, except for any struc-
tural supports. For structural components, we consider that based on De Wet’s Transform
model diagram in his work, there are about 7 modelled support structures within the forced
circulation loop [De Wet and Per F Peterson, 2020]. Let us assume now that we need to
model another 7 within the within the natural circulation loop for the sake of estimating
computational burden. We would then arrive at a total of 71 components to model in CIET.

For all components, I want to solve the mass balance, energy balance and momentum
balances. Of course, we do not have to solve for mass balances across these support struc-
tures, but then we can still use this number as a conservative estimate for the computational
burden required at each time step. Let us assume that 70 fluid components worth of com-
putation need to be simulated in real-time. The methodology I chose was the operator split
method as explained in the last chapter. Hence, the mass, momentum and energy balances
are to be solved separately before being recombined as a solution for the next time step.
Solving these equations in real-time can be challenging. For real-time calculations, we need
to find out a time interval for which all these equations need to be solved. As discussed in
previous work, a suitable calculation time we need to meet is about 100 ms as this is the
time interval for which data is sent from CIET’s sensors to the Advanced Reactor Control
and Operations (ARCO) control system [Ong, 2023]. We now need to ration these 100 ms of
calculation time for solving mass, momentum and energy balance across all 70 components.
Again, these are fluid components shown in Figure 2.4 plus roughly 14 support structures.

To estimate the computational burden for the mass and momentum balance, we can
first refer to my master’s thesis. Based on previous work, I was able to get the mass and
momentum balances for the isothermal digital twin of CIET under 80 ms on a gaming
laptop [Ong, 2023]. This time scale was based on unoptimised compilation, otherwise known
as “debug” compilation. If I optimise the compilation, the speed would increase by roughly
10 times based on previous anecdotal experience. While I could use 8 ms as an estimate for
which I could solve the mass balance and momentum balance equations, I could not use this
timing because I needed to make changes to my original isothermal digital twin and re-run
the timed trials.

I had one primary reason for this re-run: if I wanted to build a full digital twin of
CIET eventually, I would need to ensure that passing information between mass, energy and
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momentum balance is as seamless as possible. The most practical way to ensure this is done
is to ensure that the Digital Twin is written in one language only. For this case, it is the Rust
programming language. As it stands in my master’s thesis, this was not the case because the
OPC-UA client and some of the numerical solvers use Application Program Interface (API)
in the Python programming language [Ong, 2023] in addition to using the Rust programming
language for large parts of my solver. Hence, there was a language interface where I had to
convert data in my Rust based fluid mechanics calculation data into Python based floating
point numbers. Repeating this process for about 50 components would prove cumbersome.
Hence, I wanted to rewrite my isothermal Digital Twin of CIET completely in Rust so that
I would not have the to put in extra effort to convert Rust data into Python data and vice
versa.

To convert the Python-Rust Isothermal Digital Twin into one based fully on Rust, I
needed to find a way to use an OPC-UA server API based completely in Rust. Moreover, I
also needed to use a root finding library in Rust rather than use Python’s optimised “SciPy”
library. I found that the OPC-UA server and client implementation for Rust by Github user
“locka99” [Locka99, 2022] most useful for this purpose. For the root finding library, I used
the “roots” crate by Github user “vorot” in Rust [vorot, 2022], which had a Brent-Dekker
algorithm similar to what I used in numpy. Compared to the isothermal Digital Twin in my
master’s thesis, were no changes to the code or algorithm other than essentially a language
switch. While a language change may seem insignificant in terms of the algorithms and
principles involved, it is significant for time. While the Rust programming language is known
for its speed, the “SciPy” libraries in Python could be faster because it uses optimised C
and Fortran under the hood [Virtanen et al., 2020]. Therefore, I needed to re-run the timed
trials in order to ensure that the code timing data collected was relevant to a Digital Twin
completely written in Rust.

For these tests, the test conditions were essentially the same as that mentioned in my
master’s thesis [Ong, 2023]. That is, CIET is completely isothermal at 20◦C. The tests were
run by setting a loop pressure drop (or equivalently the pressure difference over the pump),
and observing the mass flow rate. The mass balance I solved was that the sum of mass flow
rates flowing through the DHX branch and Heater branch in Figure 2.4 is equal to the mass
flow rate of the CTAH branch. The mass balance across all i components within each branch
becomes:

ṁi = constant

For a circuit of fluid components in series, the mass flowrate through each component
(ṁi) is the same. The momentum balance essentially reduces to the pressure changes over
all three branches being equal. The pressure change across each branch was given in the last
chapter as Equation 2.21 [Ong, 2023]:

∆Pchange −
n∑
i

∆Phydrostatic i −
n∑
i

∆Psource i = −
n∑
i

1

2

ṁi
2

ρA2
XS,i

(fdarcy,i
Li

Di

+Ki) (2.21)
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The factors (fdarcy,i
Li

Di
+Ki) as well as the flow area (cross sectional area) AXS are found

in Table 2.9. The hydrostatic pressure change across each pipe can also be found based on
the component length and vertical angle Table 2.9. The Brent- Dekker algorithm iteratively
solves the mass flow rates across each branch until the pressure change across each branch
is equal. This algorithm was mentioned in detail in my master’s thesis [Ong, 2023], and I
will not repeat it here. Again, while the algorithms are conceptually the same, the language
and degree of optimisation differs. Therefore, we need to re-time the isothermal solver runs.

The digital twin server essentially solves these equations within a set time. If the server
is able to reproduce the data from the previous Digital Twin in my master’s thesis, then
the language conversion process for the Digital Twin is successful. I can then use the timed
trial of this Digital Twin written in Rust to determine the time constraints for CIET Heater
v2.0 Bare. These timed trials are run on the same AFTERSHOCK PC PTE LTD. (from
Singapore) custom gaming laptop as before in my master’s thesis, with 31 GB of Random
Access Memory (RAM), using the Arch Linux operating system with the following Central
Processing Unit (CPU):

Intel i7-10875H @ 2.400 GHz

Do note that while the Intel i7-10875H CPU can have clock speeds up to 5.100 GHz,
I chose to throttle down my CPU on my gaming laptop so that it does not overheat. At
5.100 GHz with 16 active threads, the temperatures can reach up to 91 ◦C for high intensity
calculations. This is not good for CPU longevity. At clock speeds of 2.400 GHz, I did not
get temperatures higher than 80 ◦C even when all cores are used for calculation.

The OPC-UA client I used was still written in Python, same as in my previous work
[Ong, 2023] because of prior familiarity. However, the choice of client should not affect the
timed runs because the calculations are performed on the server side.

For code validation, I ran the digital twin by specifying several set loop pressure drops
in both forward and reverse flow configurations to produce the system curve, essentially
repeating validation tests outlined in my master’s thesis [Ong, 2023]. The results are shown
in Figure 3.16:
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Figure 3.16: Rust Isothermal Digital Twin System Curve Compared to Experimental System
Curve from Manometer M-42 and M-43 Plotted in Absolute Pressure Units (CTAH and
Heater Branch)

Tabulated values for Figure 3.16 are shown in Table 3.6:
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FM-40 Mass Flowrate
(kg/s)

Digital Twin Loop
Pressure Drop (Pa)

Experimental
Data

Correlation
Pressure Drop

(Pa)

0.177 16000 15920

0.170 15000 14920

0.148 12000 11930

0.132 10000 9930

0.114 8000 7930

0.0938 6000 5940

0.0706 4000 3950

0.0418 2000 1960

0.0236 1000 970

0.0127 500 480

0.00527 200 180

0.00263 100 90

0 0 0

-0.0418 -2000 outside data
range

-0.132 -10000 outside data
range

Table 3.6: Rust Digital Twin System Curve Compared to Experimental System Curve from
Manometer M-42 and M-43 Plotted in Absolute Pressure Units (CTAH and Heater Branch)

The results for the Rust Digital Twin are identical to that found in previous work [Ong,
2023] as the algorithms are essentially the same, just expressed in different code. Hence,
these numerical simulations rewritten completely in Rust produce the essentially the same
results. Therefore, residual plots are not provided as these are identical to those found in
my master’s thesis. The results show that the port from a Python OPC-UA server to a Rust
OPC-UA server was done successfully.

For timed trials, the root finding algorithm written in Rust was somewhat slower than
Python’s numpy libraries when compiled in “debug” mode. This took on the order of 200 to
240 ms to solve for mass flow rate given the prevailing CPU clock speeds. Thus, compiling
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the Rust Digital Twin in the unoptimised debug mode yielded a slower result than the Rust
and Python Digital Twin based on the Optimised “SciPy” libraries. However, when compiled
in release mode, the calculation times take only 25 ms at most. Thus, these calculations
are faster than real-time. While the Rust digital twin is slower than the previous isothermal
Digital Twin using the optimised SciPy libraries, this speed is still sufficient to ensure that
the calculations are run in real-time.

Based on these calculations, I infer that the fluid calculations in the natural circulation
DRACS loop would take < 25 ms. This is because the DRACS loop has a simpler flow
configuration in comparison to the main loop as shown in Figure 2.4. Thus, the fluid calcu-
lations take 50 ms at most if done sequentially. However, I could just run the DRACS loop
calculations in parallel with the forced circulation loop calculations to essentially have fluid
calculations take a total of 25 ms.

If we consider having some buffer time for these calculations, then for every 100 ms, we
have about 30 ms with which to calculate our fluid mechanics and 70 ms with which to
calculate heat transfer for each of our components. If have 70 components within CIET,
then we have about on the order of 1 ms to perform the heat transfer calculations per 100
ms of simulation time per component. The requirements are even more stringent if the
required time steps are shorter than 100 ms. If the required time step for stability is 15
ms. Then we shall need to perform about 6 to 7 heat transfer calculations per 100 ms.
This implies that the time allowed to calculate heat transfer for each component is about
140 µ s. Therefore, for 8 components, that is the three components for CIET Heater v2.0
Bare, the two components for the MX-10 static mixer and three dummy support structures,
we are allowed roughly 1 ms of real world time to calculate one time step’s worth of heat
transfer calculations for all 8 components. This number, of course, assumes that we perform
the mass, momentum and energy balance calculations sequentially (serially) rather than in
parallel. If we leverage parallel computation to calculate the mass flow rates and energy
balances in parallel, we would have even more time per 100 ms of simulated time. There is,
of course, a limit to how many processes we can run in parallel. For the hardware I used, the
i7-10875H, it comes with 8 cores and 16 threads. Having 8 cores means I can run roughly 8
tasks in parallel at maximum.

Regardless, based on this approximate analysis, as long as we can meet this requirement
of 1 ms for all 8 components, there is a good chance that a real-time digital twin can be
constructed. This, of course, assumes that the time step required for simulation stability is
about 15 ms. The time steps required for simulation stability, based on the Courant number
and mesh Fourier number, is quite dependent on the mesh configuration of the system. In
the finalised mesh, I found a time step of 15 ms to be suitable for a stable simulation.

Let us now consider next how the mesh is constructed and how the system is optimised
to meet these real-time requirements.
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Methods for Meshing and Optimisation

We have established previously that if the heat transfer calculations require a time step of
15 ms, we must complete all these heat transfer calculations within 1 ms in order to ensure
that the final digital twin has real-time simulation capability. I did a number of prototyping
iterations for the heater simulation in order to develop the final product with this capability.
Here, we discuss some of the key learning points learnt in the iterative development process.
We also share some of the final results of the optimisation as well as how the intermediate
models compare to the experimental data.

Optimisation Geometry and Components Developing a CIET Heater v2.0 Bare sim-
ulation from scratch in Rust with real-time was challenging. Therefore, I started initial
optimisation tests by creating models based on Prototype 1 as described in Figure 3.15.

In these initial optimisation tests, I used values for the dimensions of the heated section
of CIET Heater v2.0 Bare based on De Wet’s Transform model at first rather than the
RELAP5 and SAM model because the Transform model has a simpler nodalisation scheme.
The number of axial nodes in De Wet’s Transform models was 8 [De Wet and Per F Peterson,
2020], whereas the number of axial nodes in RELAP5 and SAM was 15 [Zou, R. Hu, and
Charpentier, 2019; Nicolas Zweibaum, 2015]. I call these initial optimisation tests based on
Prototype 1 “phase one” of my optimisation process.

After phase one optimisation, I grew more familiar with the optimisation techniques
and had developed code that automates constructions of uniform 1D meshes. With lessons
learnt from optimisation phase one, I could then base my heater model on Prototype 2
shown in Figure 3.15 and model all components between BT-11 and BT-12 and optimise
the calculation speed for all these components. Optimisation processes based on prototype
2 became what I called “phase two” optimisation. The key components simulated during
phase one and phase two optimisation can be visualised using Figure 3.17:



166

Figure 3.17: Heater v2.0 Bare Initial Tests (Optimisation Phase One) and Subsequent Tests
(Optimisation Phase Two)

As seen in Figure 3.17, we only simulate the heated section in phase one, whereas we
simulate several components in phase two. In Figure 3.17, 1b is the heater bottom head, 1a
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is the heater top head, 2a is the static mixer pipe for MX-10 and 2 is the static mixer MX-
10. I decided that these components were important to simulate based on CIET’s Process
and Instrumentation Diagram (P&ID) which showed the locations of thermocouples BT-11
and BT-12. Thermocouple BT-11, which captured the CIET Heater inlet temperatures, is
situated before tee F-11 in the P&ID diagram [Nicolas Zweibaum, 2015] whereas thermo-
couple BT-12 measuring the Heater outlet temperature is situated after static mixer MX-10
[Nicolas Zweibaum, 2015]. However, it was not explicitly stated where these thermocouples
should be in the RELAP5 or SAM model, I could only estimate what these components
were. Based on my best estimates, the components I needed to model were the CIET Heater
v2.0 Bare as well as the Static Mixer MX-10. Therefore, the two MX-10 components, the
heater top and bottom head are added into phase two of the optimisation procedures.

In addition to simulating the five components shown in Figure 3.17, I also wanted to
simulate the computation time required by support structures. This is because the support
structures contribute significantly to the thermal inertia and parasitic heat losses in the loop
[De Wet and Per F Peterson, 2020]. I do not intend to simulate the parasitic heat losses
which occur due to these support structures in an accurate manner for this dissertation.
Only their computational burden is simulated. Therefore, I added three dummy support
structures to the heater and to Static Mixer MX-10 during phase two optimisation. For
the purposes of model validation, these dummy support structures are decoupled from the
heater and MX-10.

Any study of related to support structures and their associated parasitic heat losses is
left for future work. Hence, I did not simulate support structures in the final model. For
this dissertation, as long as the final model is able to replicate the transient response of the
transfer function to within thermocouple uncertainty, it will suffice as a model with which to
test the simulated neutronics feedback controller. In this dissertation, I aim to use validate
the final model developed in phase two optimisation using De Wet’s experimental [De Wet
and Per F Peterson, 2020] described earlier in the chapter.

Optimisation Techniques

Optimisation Phase One Techniques and Procedures In phase one, I focused
my efforts on studying the effectiveness of several optimisation techniques using Prototype
1 geometry shown in Figure 3.15. These techniques included compiler optimisation, par-
allelisation, and mesh coarsening. Table 3.7 shows the test runs used to investigate the
effectiveness of these different techniques:
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Table 3.7: Table of Phase One Test Inputs, All Timed Trials have Input Temperature of
79.12◦C and Ambient Air Temperature of 21.67◦C

Table 3.7 shows five different test runs used in the earliest runs of phase one optimisation.
The “Debug” timed trial was a base case in which the compiler was run in an unoptimised
fashion, otherwise known as “Debug” mode in Rust. The “Release” timed trial was the same
as the “Debug” timed trial except that optimised compilation was used. The third trial in
Table 3.7 was the “Release” timed trial with computer parallelism introduced. For the first
three runs in Table 3.7, the mesh is identical. However, I studied mesh coarsening using the
last two timed trials in Table 3.7. Hence, a different mesh was used. The fourth run was
used to study mesh coarsening in the radial direction and fifth run was used to study mesh
coarsening in the axial direction.

In the first three timed trials in Table 3.7, namely the “Debug”, “Release” and “Released
and Parallelised Node Connections” timed trials, the heated section itself is simulated using
the meshing scheme shown in Figure 3.18:
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Figure 3.18: Optimisation Phase One Geometry and Mesh for the Baseline Model

As shown in Figure 3.18, I used De Wet’s transform nodalisation and heated section
geometry for phase one optimisation tests where two radial nodes and eight axial nodes were
used to simulate the heated section. The axial thermal conductances are assumed to be
zero for solid and fluid nodes. The time coupling scheme was also explicit because I had not
developed semi-implicit solvers at this stage of iterative development. These control volumes
were simulated using “SingleCV” objects mentioned earlier. The energy balance equations
for “SingleCV” objects are explicit as shown in Equation 2.25 in the previous chapter:

mcv
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enthalpy,i − htenthalpy,i
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H t
thermal,self ↔ j,i(−T t
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∑
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The radial thermal conductances in Equation 2.25 need to be calculated. Figure 3.19
shows the radial thermal resistance diagram for the baseline model used in the “Debug” run:
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Figure 3.19: Thermal Resistance Diagram for Phase One Baseline Model (Not Drawn to
Scale)

Figure 3.19 shows six thermal resistors in the radial direction. This represents the full
thermal resistance from the Therminol VP-1 to ambient air through the heated tube. The
ambient air thermal conductance is calculated using:

Houter surf to ambient air =
1

Router surf to ambient air

= houter surf to ambient airAsurface

= houter surf to ambient airπLnodeODheated tube

houter surf to ambient air is 20W/(m
2·K) as described in the literature review chapter. Lnode

is the node length. Nodes are uniformly spaced with lengths and radial thicknesses shown in
Figure 3.18. Finally, ODheated tube is 4.0 cm. The thermal conductance from the fluid to inner
surface of the heated tube is calculated in a similar manner using using empirical Nusselt
number correlations developed for the heater [Lukas, Kendrick, and P. Peterson, 2017; De
Wet and Per F Peterson, 2020]:

NuD−hydraulic = 0.04179 Re0.836D−hydraulic Pr
1/3 (3.66)

The hydraulic diameter to be used in calculating ReD−hydraulic is 1.467 cm as discussed
in the previous chapter. For simplicity, all fluid properties are evaluated at the bulk fluid
temperature of each control volume for the purposes of calculating a local NuD−hydraulic.
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As mentioned in the previous chapter, the thermal resistance for cylindrical geometry
can be expressed as [Perry and Green, 2015]:

Rthermal,cylinder =
ln(r2/r1)

2πkL

As shown Figure 3.19, there are four thermal resistors that need to be calculated using
Rthermal,cylinder. In all cases, the thermal resistance from the control volume surface to control
volume centre is approximated by using the half thickness of the cylinder.

As an example, let us calculate r1 and r2 for thermal resistances for a cylinder of inner
diameter ID and outer diameter OD. From the inner surface to centre:

r1 =
ID

2

r2 = r1 +
OD − ID

4

From the outer surface to centre:

r1 =
ID

2
+
OD − ID

4

r2 =
OD

2

In essence, I neglected the effect of curvature so that the thermal resistance from the
outer surface to the tube centre is slightly different from the inner surface to the tube centre
for simplicity. In this regard, I model the thermal resistance in a slightly asymmetric manner.
However, for steady state simulations, this should not matter because the sum of thermal
resistances from the inner Therminol VP-1 region to the ambient air should still be the
same. For this dissertation, I used this simplified method to calculate thermal resistances in
cylinders. I will test if this simplification significantly affects the transient results, but this
will only be done in the model validation portion later in the chapter.

Now that we have discussed the meshing scheme in the radial direction for the base case,
let us now discuss mesh coarsening. The meshing scheme for mesh coarsening in the radial
direction, the “Release and One Radial Steel Node” in Table 3.7 is shown in Figure 3.20:



172

Figure 3.20: Meshes Before Radial Mesh Coarsening (Above) and After Mesh Coarsening
(Below) for phase one optimisation (Not Drawn to Scale)

The radial thermal resistance diagram when mesh coarsening in the radial direction is
shown in Figure 3.21:
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Figure 3.21: Thermal Resistance Diagram after Radial Mesh Coarsening (Not Drawn to
Scale)

The principles for calculating the relevant thermal resistances are the same as that for
the meshes for the base case shown in Figure 3.19. Essentialy, the thermal resistances of the
centre of the control volume to both the inner surface and the outer surface are based on
the same radial thickness for simplicity such that I ignore its curvature effects as discussed
earlier.

The mesh for axial mesh coarsening is shown in Figure 3.22:
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Figure 3.22: Axial Mesh Coarsening for Phase One Optimisation (Not Drawn to Scale)

The principles for calculating the relevant thermal resistances are the same as that for
the meshes for the base case shown in Figure 3.19. The only difference here is that the
surface areas used to calculate thermal resistances are bigger because the nodes are longer
in the axial direction as shown in Figure 3.22.

Given the meshes shown for each run, let us now consider the boundary conditions
and test procedures for all runs in Table 3.7. Figure 3.23 shows the test procedure for all
modelling iterations developed under phase one.
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Figure 3.23: Phase One Test Procedure

Figure 3.23 shows that the phase one simulations started at a uniform initial temperature,
and at t = 0 seconds, the heater was switched on. As a result, the heated section outlet
temperature increased until it reached some steady state. The heater power distribution for
the first three runs in Table 3.7 is shown in Figure 3.24:
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Figure 3.24: Power Distribution for Phase One Baseline Model (Not Drawn to Scale)

In essence, power is uniformly distributed across each control volume though the thermal
masses of the control volumes are not the same. This is done for simplicity. The actual
power distribution should be based on electrical resistivity of steel, but this is left for future
work as described in the previous chapter. Therefore, I will be unable to reproduce surface
temperature profiles using a uniform volumetric heat generation term for each node as de-
scribed in this dissertation. Similar to the first three runs in Table 3.7, I determined the
power distribution over all heated tube control volumes based on this same simplification.
The resulting uniform power distribution for the axial and radial mesh coarsening tests is
shown in Figure 3.25:
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Figure 3.25: Power Distribution Diagrams after Mesh Coarsening (Not Drawn to Scale)

Hence, when the power was switched on at time = 0 seconds as shown in Figure 3.23,
the reader should understand that power was distributed evenly among all the heated tube
nodes as shown in Figure 3.24 and Figure 3.25.

As shown in Figure 3.23, the heater was left to run until the heated section outlet tem-
perature reached steady state. Assuming the heat losses in the heater top head and MX-10
components are minimal, the heated section outlet temperature should be 102.2 ±0.5◦C
given a heater power of 8 kW. If this temperature is reached, then the simulated model is
deemed to be validated with experimental data. This should imply that the code is func-
tioning as intended. Given the procedure shown in Figure 3.23, I timed the respective runs
shown in Table 3.7 using at least 1000 calculation samples for each run to obtain an average
calculation time.

To test the effects of mesh coarsening, I compared the steady state heated section outlet
temperatures as shown in Figure 3.23 against the expected experimental data of 102.2 ±
0.5 ◦C. While there was no transient experimental data for the CIET Heater v2.0 Bare in
isolation, I could use the transient response produced by the mesh in the baseline model
shown in Figure 3.18 and observe its temperature prior to reaching steady state. This start-
up transient is shown in Figure 3.23 in the sketch of the graph on the bottom left prior
to reaching steady state. I then used this as a baseline transient response and compared
the same start-up transients shown in Figure 3.23 for the two mesh coarsening cases in the
fourth and fifth run of Table 3.7.

For the all test runs in phase one shown in Table 3.7, the coupling scheme between
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each control volume was explicit because this was the simplest scheme to adopt for early
prototypes. Nevertheless, information from test runs using explicit time marching schemes
were used to inform the how test runs should be conducted for solvers with semi-implicit time
marching schemes. Moreover, I could use the behaviour of the phase one models coupled
using explicit time schemes as a basis of comparison for which later models developed in
phase one should behave. This is known as a “regression test” in programming. Hence, I
performed these regression tests during testing and development phase for the semi-implicit
solvers. This was performed in the second part of phase one.

Based on the test runs in Table 3.7, I deemed that the radial mesh coarsening was the
most suitable for this use case. The details are more thoroughly discussed in the results
section. Using the radially coarsened mesh shown in Figure 3.20, I then proceeded to write
semi-implicit solvers based on GeN-Foam Code [Robert et al., 2023].

In semi-implicit coupling scheme, I model the heater based on matrices and vectors rather
than a individual control volumes to speed the simulation up. I then used the “ndarray”
linear algebra libraries based on the “intel-mkl” libraries in order to solve the equations
expeditiously. I also took Robert’s GeN-Foam code in C++ (licensed under GNU GPL v3)
[Robert et al., 2023], translated it into Rust and adapted it for matrix construction within
the semi-implicitly solved 1D Array of Control Volumes. The solvers were based on the
N-Dimensional linear algebra libraries mentioned earlier in the chapter. These 1D arrays of
semi-implicitly solved control volumes are known as “ArrayCV” objects within the thermal
hydraulics library. The semi-implicit equations that ArrayCV objects solve internally were
already presented in the previous chapter as:
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Constructing “ArrayCV” objects rather than using several “SingleCV” objects to repre-
sent a 1D array of control volumes was done for several reasons. Firstly, I hoped to increase
calculation speed using optimised linear algebra libraries. Secondly, when I construct “Ar-
rayCV” objects, I designed it to abstract away the complexity of constructing the control
volumes. Thirdly, the time marching scheme in the axial direction would be semi-implicit,
therefore there should be added benefits for numerical stability for heat transfer calculations
in the axial direction.

ArrayCV objects are based on the principle of partitioned meshes described in the last
chapter. Internally, they are coupled in a semi-implicit fashion. When coupled externally to
other HeatTransferEntity objects, they are coupled explicitly. Again, to couple the ArrayCV
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objects explicitly to other HeatTransferEntity objects, “ArrayCV” objects would contain at
least two control volumes, one at each tail end of the array. The user would then specify
the number of “inner control volumes” the array would have in addition to the two at the
peripheries. When coupling ArrayCV objects to other heat transfer entities in the axial
directions, I would actually couple the SingleCV objects within these ArrayCVs to the other
HeatTransferEntity. Therefore, code used to couple SingleCV objects explicitly to each other
is re-used in ArrayCV objects as shown in Figure 3.3. If lateral coupling of ArrayCV objects
was done, then this would contribute to the

∑
Qt

boundary conditions,i term for each control
volume. Supposing the control volume i in two ArrayCV objects, ArrayCV 1 and ArrayCV
2 were coupled laterally for radial heat transfer, then the heat transfer from ArrayCV 2 to
Array CV1 would be:

Qt
lateral heat transfer,i = −H t

i (T
t
ArrayCV 1,i − T t

ArrayCV 2,i)

This lateral heat transfer would be one of the terms contributing to
∑
Qt

boundary conditions,i

for each control volume within the ArrayCV. Thus, laterally coupling ArrayCV objects is
done using an explicit time marching scheme.

As I was developing the ArrayCV objects based on the semi-implicit solver for phase
one, I also used learnings from the earlier phase one tests in Table 3.7. One key learning
point was that calculating thermal conductances was computationally expensive. To reduce
computational costs, I decided to calculate an averaged lateral thermal conductance (or
resistance) based on the arithmetic mean temperature of all the control volumes in the 1D
array. Another motivating factor to use an averaged thermal conductance was that it was
easier and faster to program than having individual thermal conductances used for each node
in the radial direction. This averaged lateral thermal resistance was used to calculate the
radial thermal resistances shown in Figure 3.21 for all control volumes coupled radially.

To expedite development, I also did not thoroughly record the impacts that these two
changes had on the heated section outlet temperatures individually. This is because of my
conjecture that using an averaged lateral (or radial) thermal resistance should not signifi-
cantly impact heat transfer such that the outlet temperatures were significantly different.
Hence, I only recorded and presented the steady state and transient heated section outlet
temperature when both these changes were applied. I then subjected the resulting model to
the same test Figure 3.23 and compared its steady state heated section outlet temperature
to previous runs and experimental data. This concluded phase one of the optimisation tests.

Optimisation Phase Two Techniques and Procedures In phase one, I found a
suitable mesh, developed the “ArrayCV” object which uses a semi-implicit solver internally
and decided to use an averaged lateral (radial) conductance to couple “ArrayCV” objects
using an explicit time scheme. The timing results were deemed to be acceptable and I moved
on to phase two, where I would add the phase two components as shown in Figure 3.17.
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In phase two, all components were modelled according to their SAM/RELAP5 dimen-
sions. The key differences in heater modelling between phase one and phase two are shown
in Figure 3.26:

Figure 3.26: Heated Sections for Phase One and Phase Two Optimisation Tests

For phase two, the dimensions of the components and support structures are are shown
in Figure 3.27:
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Figure 3.27: Components for Phase Two Optimisation Tests

The explanation of the component dimensions, as well as the Nu correlations for esti-
mating the heat transfer coefficient between twisted tape and Therminol VP-1 can be found
in the previous chapter. The thickness of the fibreglass shown in Figure 3.27 is 2 inches,
while the MX-10 pipe thickness is 0.277 cm as discussed in the last chapter. The convective
thermal resistance to air is determined by the heat transfer coefficient to air of 20W/(m2 ·K).

For the phase two nodalisation of these components, one can refer to Figure 3.28:
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Figure 3.28: CIET Heater v2.0 Bare and MX-10 Nodalisation (Not drawn to Scale)

Figure 3.28 shows the nodalisation scheme and boundary conditions for all fluid compo-
nents in phase two. Fluid shall now enter from the inlet (BT-11) at the bottom of the heater
bottom head (1b), flow through the heated section, exit the top head (1a), enter the static
mixer pipe (2a) and static mixer (2) before exiting the system. There is no axial conduction
between the fluid components in Figure 3.28, and the boundary conditions for conduction are
adiabatic. However, there is advection to allow fluid to carry enthalpy in at the inlet (tem-
perature measured by BT-11) and carry enthalpy out at the outlet (temperature measured
by BT-12).

For the sake of simulating the computational burden due to conduction in the support
structures shown , I simulated the three support structures using two equally sized control
volumes each. All three support structures are identical in terms of dimensions. They
are represented as 0.5 inch diameter cylinders one foot long as explained in the previous
chapter. I then coupled them to the heater top, bottom head and the steel pipe of the
MX-10 static mixer pipe as shown in Figure 3.27. The first support structure was coupled to
the heater bottom head outer pipe control volume adjacent to Node 1 of the heated section
as seen in Figure 3.28. The other end of the first support structure was coupled to the
ambient air boundary condition through a convective thermal resistance determined by h =
20W/(m2·K). The second support structure was coupled to the metallic pipe control volume
of the heater top head (1a), this is the control volume in the top head furthest from Node 8
in Figure 3.28. The last support structure was connected to the Static Mixer MX-10 Outer
Tubing of the Static Mixer Pipe (2a) in Figure 3.28, the control volume is the one adjacent



183

to Static Mixer (2) in Figure 3.28. The other ends of the remaining two support structures
were coupled to ambient air boundary conditions similar to the first support structure.

These three support structures are coupled to their respective components with the ther-
mal resistance of 0.5 foot of the 0.5 inch diameter cylinders to simulate the time taken to
couple these components thermally to each other. This was done for the sake of estimating
computational burden of the support structures. Additionally, in timed runs, I also used
this same thermal resistance based on the thermal resistance of 0.5 foot of the 0.5 inch
diameter cylinders to couple the heated outer tube of the CIET Heater to their adjacent
top and bottom heads. I also used this same thermal resistance to couple the twisted tape
within the heated section to the twisted tape within the top and bottom heads. This was
originally done for other reasons at first2, but it became useful for simulating some of the
computational burden required for coupling adjacent structures via axial conduction.

Hence, for the purpose of time trials, the support structures and heater components were
coupled to each other. A dummy thermal conductance was also used to couple the heated
section to the top and bottom heads. However, for the purposes of validation, the support
structures and heater components were decoupled from each other, and the axial conduction
between adjacent components was switched off.

As shown in Figure 3.28, the mesh adopted is one where the radial mesh is coarsened.
This meshing scheme is fixed for all test runs in phase two.

In phase two, I attempted further code optimisation to bring the calculation time for the
seven components down to about 1ms for 15 ms of simulation time. I tried using Callgrind
and flamegraphs (I installed “cargo-flamegraph”) for optimisation. These would help me
pinpoint which sections of the code were bottlenecks. Figure 3.29 shows an example of one
of these flamegraphs:

2I originally did this to investigate I could calibrate the support structures such that they could account
for parasitic heat losses. I later gave up this endeavour.
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Figure 3.29: Example of Flamegraph

Using the “cargo-flamegraph” package, I generated a flamegraph and this indicated to me
that there two main bottlenecks. Firstly, the SingleCVs contained within “ArrayCV” objects
had to have their temperatures calculated iteratively from their current specific enthalpy. The
temperatures were required whenever thermophysical and thermodynamic properties were
to be obtained. Therefore, the function for iteratively obtaining temperature from enthalpy
was executed several times in one time step, and thus it was computationally expensive. The
second bottleneck was specifically the construction of cubic splines in order to interpolate
the thermophysical properties of steel. This was also computationally expensive.

Besides these bottlenecks, I also found that the automatically calculated time step re-
mained roughly constant throughout the simulation. From phase one optimisation, I found
that the process of calculating time steps took a significant amount of computational re-
sources. Hence, I opted to use a constant time step instead to save on computation cost. I
tested using an automatic time step of 10 ms and 15 ms and found that these time steps
were suitable for a numerically stable calculation given the mesh in Figure 3.28. Based on
these findings, I made changes to several portions of code to improve the calculation times
in phase two. Again, about 1000 or more calculation samples were taken and the average
calculation time for these samples were found.

For optimisation phase two, I used only one test case for these timed trials. The test
case was again based on CIET Heater v2.0 Bare at inlet temperature of 79.12 ◦C and 8 kW
of heater power. Figure 3.30 shows the test procedure for phase two:
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Figure 3.30: Test Procedure for Optimisation Phase Two

As shown in Figure 3.30, the test procedure is quite similar to phase one except that the
initial temperature is the same as the inlet temperature. This was done out of convenience as
there were several numbers present in the code that made debugging cumbersome. Having
one less number to keep track of made coding easier. Other than this detail, and the fact
that more components were added into the phase two optimisation, the procedure was quite
similar to Figure 3.23. Once phase two optimisation was complete, the model developed was
then validated using experimental data. This is described in the validation portion later in
this chapter.

Results for Meshing and Optimisation

Optimisation Results for Phase One The initial results for phase one optimisation are
provided in Table 3.8:
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Timed Trial Total
Timestep
Calcula-
tion Time

(ms)
µ+ 2σ

Pointer
Derefer-
encing
and

Mutex
Locks
(ms)

Node
Connec-
tion (ms)

Data
Recording

and
Timestep
Computa-
tion (ms)

Timestep
Advance
(ms)

Debug 602± 5.2 0 402 139 61.5

Release 54.2± 6.8 0 36.7 12.3 5.17

Release and
Parallelised

Node
Connections

33± 3 0 16 12 5.02

Release and
One Radial
Steel Node

32.1± 3.2 0 24.1 6.03 2.02

Release and
Three Axial

Nodes

19.6± 7.8 0 13.4 4.18 2.03

Table 3.8: Initial Timed Trials for CIET Heater v2.0 using Singular Control volumes

Table 3.8 shows the times required at each stage of the calculation. The total computation
time taken for each time step was broken down into four steps.

The first step was the Atomically Reference Counted (Arc) Pointer dereferencing to
access data. The Arc Pointer is a type of smart pointer within Rust which allows multiple
threads to access the same piece of data allocated on the heap memory. Mutually exclusive
(Mutex) locks prevent two threads from changing the same piece of data at the same time,
thus preventing some data races when during parallel computation. The time required for
dereferencing these Arc pointers and obtaining the Mutex locks was negligible.

The second step was Node connection in Table 3.8 refers to calculating the energy transfer
between two control volumes. In Table 3.8 specifically, we are using an explicit time marching
scheme. This includes calculating thermal resistance between adjacent control volumes and
calculating enthalpy transfer due to advection. This seemed to take the most significant
time out of all the steps.

The third step in Table 3.8 was for data recording and time step computation. Time step
computation is where a stability time scale for all control volumes were determined based
on the methodology prescribed in the last chapter. The smallest of these time scales is then
taken to be the time step for the next calculation. Additionally, the data for each time step



187

was also written to a csv file. This is the data recording step.
The fourth step in Table 3.8 is the “Timestep Advance” step. This is where the enthalpy

changes for each control volume are summed up and used to calculate the enthalpy of the
control volume at the next time step. Several other miscellaneous operations are carried out
to clean up redundant data.

These timings were deduced from the “SystemTime” functions within Rust. Based on
Table 3.8, I saw that optimised compilation is a must for enabling real-time calculations as
the unoptimised compilation speeds were far too slow. An estimated speed up of 10 times
was observed when using the “Release” compilation mode in Rust.

Since the node connection step took the most time, I decided to introduce parallelised
calculation using 8 parallel threads from the “std::thread” libraries to speed up the node
connection step3. This had limited success as the computation speed was only reduced by
roughly 55%. From this test run, I determined that parallelisation was not sufficient for
producing the necessary speed up needed for real-time computation. Therefore I decided to
coarsen the mesh.

The fourth run in Table 3.8 involved mesh coarsening in the radial direction. This
had comparable timing results to the parallel run even though I only used one thread.
Additionally, mesh coarsening in the radial direction enabled me to use a larger time step
for computation. The baseline model in the “Release” had an auto calculated time step of
2.3 ms. However, after mesh coarsening in the radial direction, the auto calculated time
step became 13 ms. Hence, radial mesh coarsening for the heated steel tube from two radial
nodes to one radial nodes helped me reduce computational burden by about 40% and the
computational requirement by about 500% compared to the “Release” timed trial. This
made mesh coarsening in the radial direction a very attractive proposition.

The fifth run in Table 3.8 involved mesh coarsening in the axial direction as described
earlier. While the calculation time decreased significantly, the auto calculated time step
remained at 2.3 ms.

Of course, for mesh coarsening in the fourth and fifth runs in Table 3.8 one may be
concerned about accuracy loss. Therefore, we can ascertain if the losses are acceptable by
comparing steady state data of the radially and axially coarsened timed trials, “Release and
One Radial Steel Node” and “Release and Three Axial Nodes” in Table 3.8 respectively, to
the steady state and transient response from the timed runs based on the mesh the “Release”
and “Debug” runs. Again, the first three runs in Table 3.8, the “Debug”, “Release” and
“Release and Parallelised Node Connections” timed trials all use the same mesh as discussed
earlier in the chapter. Hence, they produced identical results.

The results for the simulations based on these different nodalisation schemes is presented
in Figure 3.31:

3I did not want to use the Rayon crate as I wanted to reduce the number of dependencies for my library
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Figure 3.31: CIET Heater v2.0 Initial Step Response Tests with Thermal Inertia of Internal
Twisted Tube Ignored

Figure 3.31 shows that regardless of nodalisation scheme, the steady state temperature
for all the tests was 102.43 ± 0.5 ◦C. The differences were at most ± 0.02 K between the
different test runs, much smaller than the measurement error of ± 0.5 K. Hence, the mesh
coarsening did not significantly affect the steady state heated section outlet temperatures.
For the transient start-up response shown in Figure 3.31, the radial coarsening method (One
Steel Node, Eight Axial Node) produced identical results to that produced by the original
mesh. However, the axial mesh coarsening method (Two Steel Nodes, Three Axial Nodes)
the heated section outlet temperature seems to change more slowly as compared to that
in the original mesh. This exceeds the measurement of ± 0.5 K at t ≈ 20 seconds. From
Figure 3.31, I deduced that radial mesh coarsening resulted in an acceptable fidelity loss.
Therefore, I decided on the radially coarsened mesh seen in Figure 3.20 for all prototypes
from this point on.

The next step was to test and implement the semi-implicit solvers with averaged lateral
(radial) thermal conductances to further expedite calculations. As mentioned in the results
section, I made several improvements to speed up calculation times for this test run to
expedite development. This included using semi-implicit solvers and averaged thermal con-
ductances. Using an averaged thermal conduction would significantly help to reduce time
required for the “node connection” step, whereas using semi-implicit solvers should improve
the time required for the “advance timestep” part of the calculation where temperatures for
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each control volume during the next time step are computed. I also used a constant time
step rather than an auto calculated time step to further reduce on calculation time. The
constant time step I used was 10 ms or 0.01s. This is because 13 ms was determined to be
a suitable time step from the previous tests, and I just decided to round this to a round
number. Implementing several improvements in one test did not allow me to thoroughly
investigate the reasons as to why the speed improvements came about. I did not think this
was important enough to study at the time of running the tests because I mostly cared about
obtaining the end result of having a real-time digital twin with which to test the simulated
neutronics feedback controller. Hence, I skipped past the systematic studies during phase
one optimisation.

The simplification where averaged thermal conductances were used to calculate heat
transfer in the radial direction warranted another test to ascertain whether this would ad-
versely affect the transient response and steady state response of the heated section outlet
temperature. Hence, I performed the same test procedure in outlined in Figure 3.23 to obtain
Figure 3.32:

Figure 3.32: CIET Heater v2.0 Step Response Tests with Thermal Inertia of Internal Twisted
Tube Ignored for Averaged Thermal Conductance Semi-Implicit Solver

Figure 3.32 superimposes the results from the semi implicit solver onto the results for
the explicit solver using the radially coarsened mesh. The error bars of ± 0.5 K are repre-
sentative of thermocouple measurement error. Figure 3.32 shows that there is no significant
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difference in simulated transient outlet temperatures when using the semi-implicit solvers
with an averaged conductance compared to an explicit solver with the radially coarsened
mesh. Moreover, the steady state temperature reached was 102.46 ± 0.5 ◦C, which means
that the model could reproduce the steady state experimental data of 102.2 ± 0.5 ◦C to
within thermocouple measurement error. This was a satisfactory result.

In terms of calculation time, the total time used to calculate each time step was about
0.23 ms. Therefore, there was a calculation speed improvement of about 100 times when
applying these optimisation techniques. The node connection time was about 0.2016 ± 0.032
ms. This is mainly because the number of times that thermal conductances were calculated
was reduced. Therefore, using one averaged thermal conductance to calculate the radial
heat flux for all nodes along the 1D array of control volumes was an effective technique
in reducing computation time. I found that even when using an averaged axial and radial
thermal conductance for the ArrayCV, the steady state heated section outlet temperatures
did not differ significantly from that of BT-12. Additionally, the step to solve for and update
the temperature profile of the arrays, which is the “advance timestep” calculations step, took
0.01028 ± 0.0014 ms. This was about 200 times faster than the standard explicit control
volume method of the same mesh. Thus, for this single heated section, parallelisation was
not required to ensure that the calculations were fast enough.

Given these satisfactory results, I decided to move on to phase two of the optimisation
process.

Optimisation Results for Phase Two In phase two, I added several components to the
simulation as described in Figure 3.27 and Figure 3.17. These components were constructed
using lessons learnt from phase one. This included using the semi-implicit solvers within
the ArrayCV objects, using average thermal conductances, and also coarsening the mesh
radially. I used these lessons to construct an initial model for phase two.

Initial iterations of the code using the semi-implicit solver were performed faster than
real-time, (on a i7-10875H CPU) but each component took approximately 1-2 ms to calculate
such that the total calculation time took approximately 10 ms. This was even after I used a
fixed timestep of 10 ms so that we could do away with the automatic time step calculations.
In these initial iterations, the extra computational burden of the new structures and extra
time spent coupling structures thermally to each other caused the simulation to be slower
than real time. These simulations took on the order of 10 ms, which was too slow for real-
time computation. I increased the time step as much as possible, but it seemed that 15 ms
was a practical upper limit before instability problems plagued the solver. Additionally, I
used parallel computation to reduce the computation time to about 3 to 5 ms. However, this
was still short of the 1ms goal which I had for every 15 ms of computation time. To achieve
real-time simulation capability, I had to make the code even faster. Hence, I had to use the
flamegraph tool to identify which parts of code caused the biggest calculation slowdowns.

Based on these flamegraphs, I identified that in the Single Control Volume (SingleCV)
objects, the algorithm for obtaining thermodynamic properties was slowing the calculations.
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For the SingleCV objects, their thermodynamic state was stored in the form of an enthalpy
henthalpy(T ). Whenever thermodynamic properties were requested, I would obtain the control
volume temperature T iteratively from henthalpy(T ) using the Brent-Dekker algorithm. If the
properties were requested five times, then I would recalculate T five times iteratively. To
optimise the code, I decided to add a field for the current temperature of the SingleCV.
This was added so that I could calculate the temperature of the SingleCV at each time step
once, and store it in that field. At every timestep advancement step, the temperature of
each SingleCV object is obtained from the specific enthalpy only once and then stored in
the object using this field. Consequently, whenever thermophysical properties are required,
I could just use the temperature from the SingleCV object at little or no computational
cost. These results imply that storing the thermodynamic state of the control volume as a
temperature may be computationally cheaper than storing it as an enthalpy.

For my SingleCV objects which use explicit coupling, I stored their thermodynamic state
using enthalpy. However, when using the semi-implicit solvers within ArrayCVs, I store the
thermodynamic state of the object using temperature. This may have contributed to the
observed speed up when using the semi-implicit solver rather than the explicit solver during
phase one optimisation. Hence, the speed up is not solely due to using optimised linear
algebra libraries such as OpenBLAS and intel-mkl, but also due to the fact that I stored
the thermodynamic state of the control volume using temperature as opposed to enthalpy.
While I did not quantify the calculation time savings that semi-implicit schemes alone had
over explicit coupling schemes, the added benefit of stability and the ease of instantiating
ArrayCVs of various lengths meant that I kept using them for all future prototypes of the
model.

Secondly, I found that accessing the thermodynamic properties of steel was computation-
ally expensive. This is because I stored the thermodynamic properties of steel as tabulated
data based on the data used by RELAP5 and SAM models [Zou, R. Hu, and Charpentier,
2019; Nicolas Zweibaum, 2015]. To obtain thermal conductivity k for example, I would
use the tabulated k data to construct a cubic spline first, and then interpolate k at the
desired temperature using the cubic spline object. After the calculation was complete, the
cubic spline was deleted. Therefore, every time that thermodynamic properties of steel
were requested, this cubic spline had to be constructed. To speed up the code, I used
steel thermophysical properties from Grave’s work [Graves et al., 1991] which was already
in polynomial form as opposed to using cubic splines. While this This is computationally
cheaper to calculate compared to constructing a cubic spline from data every time the ther-
mophysical property calculation function is accessed. Both of these changes sped up the
code significantly such that the heat transfer calculations for seven components could be
computed on the order of 1 ms to caluclate a timestep of about 15 ms. Thus, we have ample
room computation time for more computational burden. Hence, we could fit as many as
seventy components and still be within real-time. This shows that the code profiling and
optimisation with “cargo-flamegraph” was quite successful.

When it comes to accuracy, the results after phase two optimisation were quite acceptable.
The heater outlet temperatures were around 102.41 ± 0.5 ◦C at steady state, which is
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indistinguishable from the 102.2 ± 0.5◦C recorded in experimental runs for heater power
of 8 kW. I did not do transient testing comparisons during phase two because the model
developed after phase two was more or less ready for validation. Hence, the transient tests
would be done during model validation rather than phase two optimisation.

Validation using Steady State Tests At the end of phase two optimisation, I arrived at
a suitable model where I obtained 1 ms of calculation speed for every 15 ms of simulated time.
In these simulations, 8 computation threads were used. For the steady state validation tests,
I thermally decoupled the structural supports from the main components and also decoupled
the dummy thermal conductances between the heated section of the heater and its top head
and its bottom head.

I then ran steady state tests using a process similar to that shown in Figure 3.30. Fig-
ure 3.33 shows the steady state validation test procedure:

Figure 3.33: CIET Heater v2.0 Bare Steady State Validation Test Procedure

I used these same inlet temperatures as the inlet boundary condition for my test runs.
For these runs, the initial temperature of all the nodes in all components is set to be same as
the inlet temperature. The heater power was set to the values in Table 3.5. The simulation
was allowed to run until the heater outlet temperature (BT-12) reached a steady state. I left
the tests to run up till 300 seconds of simulated time, but based on these tests, 100 seconds
would have been enough for this simulated heated to reach steady state. The results from
the simulation runs were compared to experimental data in Table 3.5.



193

Validation using Transient Tests For this validation effort, I run am subjecting the
transfer function to two tests. Firstly, a step increase of 500 watts. Secondly a step decrease
of 500 watts. These are separate tests, and they are not run one after the other. Figure 3.34
shows the transient validation test procedure used to obtain data for the transient tests:

Figure 3.34: CIET Heater v2.0 Bare Transient Validation Test Procedure

As shown in Figure 3.34, the CIET Heater v2.0 Bare and the MX-10 piping components
are set to a uniform inlet temperature equal to the inlet temperature of 79.12 ◦C shown in
Table 3.5 for the 8 kW test. The heater power was set to 8 kW at t = 0 seconds and the
BT-12 temperature was allowed to settle at a steady state of approximately 102.2 ± 0.5 ◦C.
This took approximately 60 seconds. The system was then allowed to further rest at steady
state for another 40 seconds of simulated time because I wanted to start the transient at a
round number of 100 seconds. At 100 seconds, the transient started, and heater was brought
to 8.5 kW and 7.5 kW for the two step input tests respectively. The resulting simulated
data was then compared to that shown by the empirical transfer function in Equation 3.65.

The empirical transfer function itself records temperature deviations given deviations in
heater power from 8 kW. Hence a step input of ± 500 Watts was given as input to this
transfer function at t = 0 seconds. 500 watts was given for the step up test, and -500 watts
was given for the step down test. The resulting temperature deviations of BT-12 are over
time are recorded and then added to the steady state outlet temperature (BT-12) of the
simulated CIET Heater v2.0 Bare. At the time of step response tests, this simulated CIET
Heater BT-12 temperature would have already been matched to the experimental steady
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state BT-12 temperatures in Table 3.5 to within thermocouple measurement error of ± 0.5
K. Hence, whether I add the resulting temperatures to the experimental steady state values
(102.2 ± 0.5 ◦C) or simulated steady state values (102.41 ± 0.5 ◦C) should make little
difference.

With these simulated temperatures from the transfer function, I would then validate the
transient response of the simulated BT-12 temperature in response to the same 500 watts
increase or decrease. This would correspond to data recorded after t = 100 seconds. However,
the transient for the transfer function started at t = 0 seconds. I merely added 100 seconds
to the time coordinate for all the data points generated by the transfer function to make
this data directly comparable to that of the simulation.

As mentioned before, the transfer function Equation 3.65 would measure the heater power
to heater outlet temperature based on a full loop experiment with thermal pulses traversing
the loop as described in the previous chapter. Therefore, only the short term response,
roughly one minute after the start time of the transient, will be used for validation.

Results for Validation

Validation using Steady State Tests The simulated steady state temperatures obtained
using the steady state validation test procedure in Figure 3.33 is presented in Table 3.9:

Heater Power
(watts)

Heater Inlet
Temp BT-11

(◦C)

Experimental
BT-12 (◦C)

Simulated
BT-12 (◦C)

3000 78.75 86.93 87.11

4000 79.00 90.25 90.36

6000 79.40 96.50 96.74

8000 79.12 102.20 102.41

10000 78.90 107.75 108.09

Table 3.9: Results used for Steady State Validation Tests, Experimental Data used is from
CIET Heater v2.0 Bare Tests [De Wet and Per F Peterson, 2020]

Based on Table 3.9, the simulated BT-12 data is in good agreement with the experimental
BT-12 data to within thermocouple measurement error of ± 0.5 K. Data from Table 3.9 is
presented in Figure 3.35:
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Figure 3.35: CIET Heater v2.0 Bare Steady State Forced Circulation Validation Test

Figure 3.35 shows that the steady state BT-12 outlet temperatures are in good agreement
with experimental data to within the error bar of± 0.5 K. Again, ± 0.5 K is the thermocouple
measurement error typical of Type T thermocouples found within CIET [Zweibaum, J E
Bickel, et al., 2015]. It is apparent that the many simplifications made for when constructing
this model of CIET Heater v2.0 did not significantly impact its ability to replicate the
steady state data. This includes ignoring the wall viscosity correction factor for the surface
temperature within the Heater Nusselt Number correlation present in literature [De wet, Per
F. Peterson, and Greenwood, 2019], using simplified methods to estimate entrance effects,
using the same radial thickness to calculate thermal resistances for centre to inner surface
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and centre to outer surface for the cylindrical control volumes (ignoring curvature effects as
mentioned earlier), as well as using Gnielinski’s correlations for the heater top and bottom
heads. Other simplifying assumptions were used as mentioned in earlier parts of the chapter,
but I will not list them all for the sake of brevity.

Also, another point of interest is that the temperature of the outlet of the heated section
at steady state was only about 0.01 K to 0.02 K hotter than the BT-12 temperature in
the 8 kW test run. This means that the heated section outlet temperature and the BT-12
temperature did not differ significantly in comparison to thermocouple error. This reinforces
the assumptions used in phase one optimisation described earlier in the chapter.

Validation using Transient Tests For transient model validation I subjected the CIET
Heater v2.0 Bare simulation to a 500 watts step increase as shown in the methods section and
compared its BT-12 temperature against the transfer function data. The result is presented
in Figure 3.36:

Figure 3.36: Comparison of Step Transient from 8 kW to 8.5 kW for Simulated Heater and
Transfer Function [De Wet and Per F Peterson, 2020]

Figure 3.37 shows that the simulated heater behaviour, the “bt 12 temperature celsius”
plot agrees with the transfer function simulation, the “transfer fn temperature” plot to
within ± 0.5 K of Type T thermocouples uncertainty typical of thermocouples found in
CIET [Zweibaum, J E Bickel, et al., 2015]. For the first sixty seconds from the start of the
transient at t = 100 seconds to t = 160 seconds, there is agreement between the simulation
and the empirical transfer function to within thermocouple uncertainty. However, we observe
that the empirical transfer function has a longer process time than the simulated BT-12
temperature. This is difference is smaller than the thermocouple measurement error but still
observable within Figure 3.37. For the purposes of this dissertation, I consider this transient
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validation sufficient for testing the simulated neutronics feedback controller. However, we
can explore the extent to which modelling the additional thermal masses as described in De
Wet’s dissertation [De Wet and Per F Peterson, 2020] improves the agreement between the
simulated BT-12 temperatures and the empirical transfer function in future work.

A similar good agreement between simulation and empirical transfer function can be
found for the step down test of 500 watts from 8 kW to 7.5 kW. This is shown in Figure 3.37:

Figure 3.37: Comparison of Step Transient from 8 kW to 7.5 kW for Simulated Heater and
Transfer Function [De Wet and Per F Peterson, 2020]

It is apparent that the many simplifications made for when constructing this model of
CIET Heater v2.0 did not significantly impact its ability to replicate the transient data, at
least when a 500 watt step input was used. However, it is apparent from Figure 3.37 and
3.37 that for larger step inputs (perhaps 1 kW or 2 kW), it is plausible that neglecting the
thermal mass may cause the behaviour of the CIET Digital Twin to deviate from experiment
beyond the threshold of thermocouple measurement error of ± 0.5 K. However, using larger
step inputs for heater power would likely induce non-linear behaviour [De Wet and Per F
Peterson, 2020] and complicate the analysis. Studying this is a subject for for future work.
Also, while the deviations for the transient response of the BT-12 temperatures Figure 3.37
are smaller than ± 0.5 K, there is still a visible deviation for up to one minute after the
transient started. I could model the additional thermal masses in the Transform Model to
investigate if they reduce the deviation between model and experiment, but that is beyond
the scope of this work.

Now, given that, at least for these transients, the transfer function and simulated heater
agree to within thermocouple error, I can say that the optimised library has been successfully
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validated for the purposes of this dissertation. This version v0.0.9 of the library is published
as “thermal hydraulics rs” on the “crates.io” website for all Rust crates (packages).

3.4 Conclusion

Summary

In this chapter, we have successfully developed and tested a thermal hydraulics library
written in the Rust programming language. This library was validated using analytical
solutions and some steady state and transient forced convection flows in CIET Heater v2.0
Bare. We have also demonstrated that in terms of computational burden of the heat transfer
and fluid mechanics portions of the code, it is indeed plausible that the library can simulate
CIET in real-time.

Future Work

For now, we only wish to have a working and validated model of CIET’s Heater so that
we can use it to test and develop a simulated neutronics feedback controller. However, if
one wants to investigate the effect of simulated neutronics feedback during a transient in
CIET or, more specifically, CIET’s Digital Twin, more work needs to be done in future. We
could model CIET Heater v2.0 Bare in higher fidelity by modelling the additional thermal
inertia present in the Transform model but absent in RELAP5/SAM models. We could also
simulate the resistive heating effects in the heater so that the heat flux distribution is more
accurate. Most importantly, for transient simulation, we need to construct a fully working
version of CIET and validate it using experimental data. While we have ascertained that
there is a good chance we will be able to simulate CIET in real-time, there may be unforeseen
factors that add on to the calculation burdens at every time step such that we can no longer
have a real-time simulation. In such a case, it is important that we have relaxed stability
requirements for time stepping. For this purpose, it is important to have semi-implicit
coupling as opposed to explicit coupling in the radial direction. In this case, we can assign
a larger time step so that it becomes easier to achieve real time calculations.

Let us go into some of the possible areas of future work in more detail.

Resistive Heater Surface Temperature Modelling

In this work, we modelled CIET Heater v2.0 Bare based on a uniform user set heat generation
term at each time step. This is where each equally sized control volume generates an equal
amount of heat in the heated section. This was sufficient for the purposes of reproducing
the BT-12 steady state data and the transient data.

However, CIET Heater v2.0 Bare is a resistance heater and its power distribution along
the length of the heater is determined by the relative resistance at each section of the heater.
As discussed in the literature review section, the resistive heater outer tube made of 304L
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stainless steel has a temperature dependent resistivity ρµΩ−cm given as [Jeffrey E Bickel,
Nicholas Zweibaum, and Per F Peterson, 2014]:

ρµΩ−cm(T ) = 0.0612 · T (◦C) + 73.109 (3.67)

Here, ρµΩ−cm(T ) is the temperature dependent resistivity of steel with the units of µΩ−
cm. In Equation 3.67, the resistivity increases with temperature. Therefore, for the long
heated tube present in the heated section of CIET Heater v2.0 Bare, the hotter parts of the
heater have higher resistance than the cooler parts of the heater.

Given that the power produced by a section of the heater Psection = I2Rsection, where I is
the current flowing through the entire heated tube, and Rsection is the resistance of a section
of the heated pipe, we should expect regions of higher resistance to have a higher power
output. In other words, hotter parts of CIET’s Heater should have a higher power output.
This is quite different in contrast to the uniform heat generation profile we assumed earlier.

While this may seem trivial, especially for predicting BT-12 temperatures, having a val-
idated heater surface temperature profile is particularly interesting from the perspective of
implementing simulated neutronics feedback (SNF). In SNF, the fuel temperature directly
impacts reactivity. While we do not have fuel in CIET, we do have a heating element. In
previous experiments on CIET, the heater temperature was used to represent the fuel tem-
perature in SNF [De Wet and Per F Peterson, 2020]. Of course, we may not get the thermal
inertia of the pebbles and reflector structures scaled properly to the thermal inertia of the
heater. Despite this, using heater temperature to represent fuel temperature may serve as a
good starting point for implementing SNF based on fuel temperature. It is noteworthy that
in those experiments, SNF was implemented using the Point Reactor Kinetics Equations
(PRKE). In contrast, we are using a different methodology which will be discussed in the
following chapters. Therefore, there was no explicit need to use the heater surface temper-
ature profile. Nevertheless, it would be interesting to explore modelling the heater surface
temperature profile in future should the need arise.

For validation of heater surface temperature profiles, there is also are additional sets of
data available. This is the heater surface temperature profile [De Wet and Per F Peterson,
2020]. Heater surface temperature data is presented in the form of an empirical correlation
at several heater power inputs. In Equation 3.68, the surface temperature of the heater
would be correlated with the height at which the surface temperature was taken x [De Wet
and Per F Peterson, 2020] at 8 kW:

Tsurface(
◦C) = −0.00016353x3 + 0.013686x2 + 0.32904x+ 133.460 (x in inches) (3.68)

This data used to obtain Equation 3.68 was measured using four thermocouples on the
heater surface at about 4 inches, 19 inches, 33 inches, and about 64 inches [De Wet and
Per F Peterson, 2020]. Now, in CIET’s original design, there were give thermocouples from
bottom of the heater to its top, these are ST-10, ST-11, ST-12, ST-13, and ST-14 [Jeffrey E
Bickel, Nicholas Zweibaum, and Per F Peterson, 2014]. Assuming these thermocouples are
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evenly spaced, from each other, it appears ST-10 was placed at 4 inches from the bottom of
the heated section, ST-11 at 19 inches, ST-12 at 33 inches and ST-14 at 64 inches. ST-13
should be placed at around 49 inches, but its data was not present in this dataset.

De Wet also presented a transfer function where deviations in the steady state heater
surface temperature was taken as the output and deviations in heater power from 8 kW was
the input [De Wet and Per F Peterson, 2020]:

G(s) =
0.0002056

s2 + 0.3351s+ 0.02822
(3.69)

Temperature was measured in ◦C and power was measured in watts [De Wet and Per F
Peterson, 2020]. The surface temperature was measured using thermocouple ST-11 [De Wet
and Per F Peterson, 2020]. This is located closer to the bottom of the heater as ST-11 is
one of five thermocouples attached to the heater [Jeffrey E Bickel, Nicholas Zweibaum, and
Per F Peterson, 2014]. From bottom of the heater to its top, these are ST-10, ST-11, ST-12,
ST-13, and ST-14 [Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson, 2014]. ST-11
is most likely second from the bottom [Jeffrey E Bickel, Nicholas Zweibaum, and Per F
Peterson, 2014], likely 19 inches from the start of the heated section.

Based on this empirical temperature profile in Equation 3.68, I did some preliminary
studies on how the surface temperature profile would compare with the experimental corre-
lation in Figure 3.38 during phase one optimisation:

Figure 3.38: CIET Heater Surface Temperature Profile for Phase One Test Settings overlaid
with Experimental Data [De Wet and Per F Peterson, 2020]
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Unsurprisingly, I was not able to reproduce the experimental surface temperature profile.
This did not change regardless of the nodalisation scheme. Based on our earlier analysis,
we should expect the heat generation term to be higher in hotter regions of the heater.
Therefore, the heat received by the fluid should be higher in hotter sections of the heater if
we simulated the temperature dependent resistivity of steel properly as opposed to uniform
heating along the heated pipe. While I did not record the exact heat transfer rates, I can
perform a rough analysis assuming the thermal conductance is roughly equal throughout the
whole heater tube. I would then use the temperature difference between the fluid and heated
tube ∆T at the start and the end of the heater to estimate the relative power distribution
along the heated tube.

For my simulation using uniform heat generation, the heated section temperature at the
entrance is roughly 149 ◦C, whereas the fluid temperature at the entrance is 79.12 ◦C. Of
course, the first fluid control volume temperature within the heated section used to calculate
∆T is slightly higher at about 82 ◦C. Regardless, ∆T is about 70 K. At the exit of the
heated section, the surface temperature is roughly 162 ◦C and the fluid temperature is 102.2
◦C. Therefore ∆T is roughly 60 K at the exit. While I expect ∆T at entrance and exit
to be roughly equal when a uniform heat generation term is applied throughout the tube,
the slightly lower ∆T at the exit seems to imply that heat flow to the fluid is lower at
the exit as compared to the entrance. One possible explanation for this is that with a
higher temperature at the exit, there is additional parasitic heat loss to the surrounding
air as compared to the entrance. Therefore, for uniform heat generation among all control
volumes, a larger portion of this heat generated gets lost to the air at the exit as compared
to the entrance. Therefore, ∆T at the exit is lower than that at the entrance.

With the uniform heat generation case in mind, let us now get a sense of the heat
generation profile using the experimental correlation. At the entrance of the heated section,
the surface temperature is roughly 135 ◦C. Given a fluid temperature of 79.12 ◦C at the
entrance, ∆T is about 55.86 K. At the exit, the surface temperature is roughly 168 ◦C,
whereas the fluid temperature at the exit is 102.2 ◦C. Hence ∆T at the exit is about 65 K.
Now, we expect the heated section near the exit to lose more heat to the air as compared to
the entrance as previously mentioned. Despite this, the ∆T at the exit is higher than that
at entrance. This means that we not only lose more heat to air at the exit compared to the
heated section entrance, we also transfer more heat to the Therminol VP-1 as compared to
the entrance region. This strongly indicates that heat generation and therefore local heat
flux at the exit is much higher than that at the entrance. This is expected behaviour because
the heated section is indeed hotter at the exit than at the entrance region of the heated tube.
Therefore, the power distribution is asymmetric. More of the power should be distributed
at the hotter exit section of the heated tube rather than the entrance section. From this, we
can infer that the expected behaviour due to temperature dependent thermal resistivity of
steel is very likely present in the experimental data. Therefore, it is important to consider
ρµΩ−cm(T ) of steel if we wish to have a reasonably accurate surface temperature profile. This
will, however, slow down calculations as it will add computational burden at each time step.
This would be interesting to explore in future work.
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Thermal Inertia and Support Structure Modelling

As mentioned earlier in the chapter, the thermal inertia and structural present in the Trans-
form model are absent in the SAM/RELAP5 model and in this current prototype of the
CIET Heater v2.0 Bare Digital Twin. We can account for these extra thermal masses and
support structures in models developed in future work. We can then validate these forced
circulation models using De Wet’s Transfer Functions for various components around CIET
[De Wet and Per F Peterson, 2020] and also check if the deviations from the empirical
transfer function are smaller by performing the same tests used to obtain Figure 3.37 and
Figure 3.36.

Semi-Implicit Coupling in the Radial Direction

To relax requirements on the largest allowable time step, we could enable semi-implicit cou-
pling in the radial direction for pipe flows. This is because, at present, it is the bottleneck
preventing us from using larger time steps. As mentioned earlier, implicit or semi-implicit
coupling allows us to use larger time steps. This would be beneficial for performing calcu-
lations in real-time so long as matrices do not grow too large. This, however, would take
a fair amount of development time given that one has to develop the algorithms for matrix
construction and for retrieving elements for n number of nodes radially. For a 2D system,
matrix indexing is much more complex than for a 1D system, and therefore we need a longer
development time. Another issue to consider is that a semi-implicitly coupled system is
tightly coupled both numerically and programmatically. This means that modifications to a
tightly coupled system would often require rewrites to the entire matrix construction algo-
rithm. For example, if I were to design an implicitly or semi-implicitly coupled code capable
of constructing matrices for n radial nodes, I cannot then adapt this same code easily for a
heat exchanger. In contrast, for a pipe represented by a 1D array of solid control volumes
and a 1D array of fluid control volumes coupled explicitly to each other, I could convert it
into a heat exchanger by coupling another 1D array of fluid control volumes to the 1D array
of solid control volumes. I could also control the radial discretisation scheme by changing
the number of arrays of solid control volumes or arrays of fluid control volumes. I could
even neglect the thermal inertia of the solid control volumes by coupling the 1D fluid arrays
to each other directly via some thermal resistance. This explicit coupling gives me a large
degree of flexibility in constructing new components which I would then lose when using an
implicit or semi-implicit coupling scheme. Given this state of affairs, one should judiciously
consider which components really need tight semi-implicit coupling so that the coding and
development effort is justified.

Natural Convection Validation

If we want to construct a full Digital Twin of CIET, we must validate the Digital Twin using
natural convection data. This was done with previous RELAP models [Nicolas Zweibaum,
2015] and SAMmodels [Zou, R. Hu, and Charpentier, 2019]. Most of the work and underlying
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logic for heat transfer and fluid mechanics is already present in the thermal hydraulics library,
but we do need a working model of the entire natural circulation loop in order to perform
this test. Moreover, most of the natural circulation data uses CIET Heater v1.0, so a
validated model of CIET Heater v1.0 must also be constructed in addition to the DRACS
Heat Exchangers and other components.

Forced Convection Validation

We can also validate the CIET Digital Twin using forced convection transients. This was
done for both RELAP [Nicolas Zweibaum, 2015] and SAM [Zou, R. Hu, and Charpentier,
2019] in the time domain. De Wet also has data for validation based on frequency domain
tests [De Wet and Per F Peterson, 2020]. We can perform a similar frequency response test
using CIET’s Digital Twin and validate it using existing Bode Plots.

Heater v1.0 and Heater v2.0 Validation using Frequency Response Data

For now, we only validated CIET Heater v2.0 Bare as there was already an empirical transfer
function derived for it [De Wet and Per F Peterson, 2020]. However, we still need a model
of CIET Heater v1.0 because earlier forced convection and natural convection tests were
done using CIET Heater v1.0. Additionally, Poresky did tests for both CIET Heater v1.0
and CIET Heater v2.0 when the insulation was still intact [Poresky, 2017]. Poresky used
sinusoidal inputs to perturb the heater power for the CIET Heater v2.0 insert prior to the
removal of insulation on May 2018 [Poresky, 2017]. At a flow rate of 0.18 kg/s, the heater
power was varied from 9 kW (rather than 8 kW for De Wet’s data) using sinusoids of 1kW
amplitude. The surface temperature and heater outlet temperatures were observed and their
oscillation amplitudes were recorded. Additionally, phase lags were recorded with respect
to the phase of CIET’s oscillating power input. We can use this dataset to validate future
models of CIET Heater v2.0.

Loss of Heat Sink Transients and Beyond

The ultimate goal of these tests and validation efforts is for CIET to be able to simulate
the effects of a loss of heat sink transient on the entire loop under various scenarios. Hence,
once all the validation work is done, we shall want to use the digital twin of CIET to
simulate transients of all sorts with different reactor feedback models. We could also use
the CIET real-time model for use cases such as operator training, cybersecurity applications
or controller development. Moreover, we could even extend the capabilities of the thermal
hydraulics library to simulate molten salt, high temperature compressible flows or even
multiphase flows. These are all possibilities worth exploring in future work.
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Part II

Use Case Demonstration for the
Digital Twin: Simulated Neutronics

Facility Test bed
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Chapter 4

Simulated Neutronics Feedback
Construction Principles and
Literature Review

4.1 Background

Introduction to Part II of the Dissertation

Now that we have constructed and validated our Type I Digital Twin of CIET, or at least
one version of its heater, we now wish to provide a demonstration of this Digital Twin as a
safe development testbed for research and development specifically in simulated neutronics
feedback controller development. This specific controller would in turn be used to enable
the electrical heater in CIET to behave as if the temperature feedback mechanisms in the
reactor core are active. It is hoped that once this use case is demonstrated, we can then
show that Type I Digital Twins can expedite research and development in general where the
physical IET is not available.

Simulated neutronics is the focus of the demonstration because it was the focus of my work
prior to the COVID-19 pandemic. Converting CIET into a simulated neutronics feedback
facility was the original focus of my PhD dissertation. When CIET was unavailable, I decided
to construct the Type I Digital Twin of CIET to serve as an experimental surrogate so that
I could use it to develop a simulated neutronics feedback controller1. However, doing both
digital twin development and studies based on simulated neutronics feedback controllers
proved to be too much work to do for one dissertation. To limit the scope of work, the
focus of my PhD dissertation has evolved to emphasise the construction of the free and
open source (FOSS) Type I Digital Twin of CIET and demonstrate its use in expediting
SNF Controller Development, or at least its heater, instead of transient simulation using

1This simulated neutronics feedback controller was to be used in studying possible effects of reactor
transients on the primary loop using CIET
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simulated neutronics feedback facilities.For this topic, detailed construction of a working
simulated neutronics feedback controller would have been out of scope. Nevertheless, I could
still use previous simulated neutronics feedback work to demonstrate how the Type I Digital
Twin could be used as a testbed to assist in the development of controllers such as a simulated
neutronics feedback (SNF 2) controller.

In the longer term, Figure 4.1 illustrates how the two parts of the thesis are meant to come
together to support eventual construction of a Digital Twin of CIET with SNF capability:

2I know there may be some confusion because “SNF” in a nuclear engineering context may also refer to
spent nuclear fuel. Hence, I will spell it out in full quite often to avoid confusion for the reader
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Figure 4.1: Overarching Plan for Constructing Type I Digital Twin with Simulated Neu-
tronics Feedback(Note that the CIET diagram here was originally from my master’s thesis
[Ong, 2023])

For now, the plan is to construct the Type I digital twin of CIET’s heater and use it to
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test a reactor feedback controller. Of course, in future, I hope to test the SNF controller in
a full Digital Twin of CIET with both forced and natural circulation loops. This effort is
done in the hope that we can expedite construction of an actual SNF facility. For Digital
Twin construction, the steady state flow isothermal solvers were already completed in my
master’s thesis [Ong, 2023]. We also covered heat transfer and construction of digital twin
in the previous chapters.

For reactor feedback, I wish to construct a multiphysics model and reduce it to a data
fit surrogate model which can run in real-time. This could be something as simple as a
transfer function or something as complicated as an artificial neural network. For this first
iteration, I hope to design a SNF controller into the heater of CIET so that some form of
fuel temperature feedback can be simulated3.

Of course, a fully capable SNF controller can be quite complicated to construct and it
is too much content for this one thesis to go through. Here, we only want to demonstrate
the usefulness of the constructed Digital Twin in expediting SNF controller design4. Of
course, actual development of a simulated neutronics feedback controller might require many
iterations to achieve the desired result. For the purposes of this demonstration, we will only
run through one iteration.

The first part of this individual iteration, covered in this chapter, involves exploring the
motivation and general principles of constructing a multiphysics reactor model and data fit
surrogate model through a literature review and some discussion. In subsequent chapters, we
use these principles in constructing a reactor multiphysics simulation which is subsequently
transformed into a simple data fit surrogate model. The subsequent chapters, involve imple-
menting the desired control behaviour in the type I Digital Twin of CIET.We then use some
anecdotal estimation based on previous experience with CIET to estimate the time saved
for one controller iteration.

Chapter Introduction

In this chapter, we wish to cover the basic motivation behind simulated neutronics facilities,
and discuss how one may go about constructing one. We also discuss a method based on
data fit surrogate modelling in contrast to the traditional point reactor kinetics equations
approach. We then explore possible considerations and software options which can help us
construct these data based surrogate models. We also explore some options for constructing
multiphysics reactor models to generate data for the surrogate model, and then we shall
narrow down the options to fit the goal of this work.

Here, we only seek to demonstrate two concepts. Firstly that digital twins expedite
construction of simulated neutronics facilities in general, and secondly, that simulated neu-

3Do note I am controlling the heater rather than a valve mostly, it is just that a flow control valve
illustrates the idea a little better than a heater

4To do so without conducting actual experiments which can compare time taken to develop controllers
fully on CIET versus time taken to develop controllers on the digital twin first and then CIET, assumptions
using anecdotal knowledge could be used to estimate potential time savings.
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tronics facilities can be constructed using data fit surrogate models based on high fidelity
multiphysics models. After demonstrating these two concepts, it is hoped that future sim-
ulated neutronics facilities can be constructed and used for simulating some Fluoride Salt
Cooled High Temperature Reactor (FHR) transients and design basis events. For using sim-
ulated neutronics facilities in studies of FHR transients in a scaled integral effects test such
as CIET, a whole study needs to be performed. In fact, even constructing the simulated
neutronics feedback facility required for studying all transients is beyond the scope of this
dissertation. These endeavours are reserved for future work.

For now, we will only demonstrate the concept for how to construct of a simulated
neutronics feedback controller using high fidelity multiphysics models, and how this process
is sped up with digital twins. Hence, we will not even be constructing a controller fully
capable of simulating a transient, we will only demonstrate a plausible process for doing so.
In other words, we wish to just perform a “Dry Run” here of how to prepare a simulated
neutronics controller using a surrogate modelling method based on high fidelity models. We
then time the “Dry Run” development time for a controller and use that to estimate the
time saved by using the constructed Digital Twin of CIET.

Given the scope of the dissertation, we will first be exploring in this chapter simulated
neutronics facilities and their role in FHR development through a literature review. We
then explore the viability of various surrogate models in constructing simulated neutronics
facilities. Once the viability of surrogate models is assessed for this work, we then consider
high fidelity modelling options for the FHR to generate data for the surrogate model. This
includes discussion of underlying equations as well as software choices. We then lay down
some general principles in constructing a suitable multiphysics model a first iteration of sim-
ulated neutronics controller. For this work, we are using two group diffusion neutronics and
porous media equations to describe an arbitrary FHR core used for data generation. Lastly,
we consider frequency response testing and transfer functions as a data fit surrogate model
and how one would construct this model by testing the two group diffusion multiphysics
model.

4.2 Simulated Neutronics Facilities

Role of Test Reactors in Licensing

We have established previously that integral effects tests (IETs) such as CIET play an
important role in licensing Gen IV reactors such as the fluoride salt cooled high temperature
reactor (FHR). Expediting licensing is important so that we can build more Gen IV reactors
such as the FHR in order to help us achieve the 2050 net zero goals [Bouckaert et al., 2021].

Licensing such a reactor design does pose great challenge when it comes to regulation
as there are many steps needed before the license is granted for a power reactor [David E
Holcomb et al., 2013] such as the FHR.This is because licensing involves building test reac-
tors, such as Oak Ridge National Lab’s (ORNL’s) molten salt reactor experiment (MSRE)
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[Paul N Haubenreich and Engel, 1970], which is in itself an expensive and potentially time
consuming endeavour. We may be tempted to use a test reactor similar to the FHR such as
the MSRE so that we don’t have to spend the extra time and money.However, we cannot use
MSRE data for FHR licensing because FHRs are solid fuelled [Andreades et al., 2016] while
the MSRE was a liquid fuelled molten salt reactor. As such, we may still need to build test
reactors for each Gen IV reactor design we wish to license such as the FHR.Building these
test reactors is important because they would help us study certain transients and Design
Basis Accidents. These studies are critical to the licensing process.

Common Transients to be addressed in Licensing FHRs

For the FHR, some of these transients, such as unprotected loss of forced cooling (ULOFC),
unprotected loss of heat sink (ULOHS) and, in general, anticipated transients without
SCRAM (ATWS), are important to study because they may cause damage to the core
of the FHR or its structural supports. A particular case of interest is the ULOHS transient,
where the primary salt pump (PSP) trips and the reactor is not automatically shut down.
In this scenario, while there is convection of heat from the core, the fuel and coolant salts
would conceivably rise to very high temperatures. Thankfully, fuel pebbles within FHRs are
generally quite resilient as TRISO particles within the fuel pebble can withstand tempera-
tures of 1400 to 1600 ◦C. Nevertheless, we still have to consider the structural supports and
pipes for the FHR since they are most vulnerable to local rises in temperature. This happens
because there is relatively high thermal resistance between the metallic structures and air,
and relatively low thermal resistance between hot salt and metal. Should the salt pump con-
tinue to run, core temperatures will be lower as compared to the case where the PSP trips.
However, they are still high enough such that coolant salt exiting the core may damage the
primary loop. Even if the PSP were to trip in a ULOFC scenario, there would be natural
circulation which may bring a lower flowrate of extremely hot salt from the core. Neverthe-
less, the reactor core would be kept at a higher temperature than that of the ULOHS, and
due to fuel temperature feedback mechanisms, the reactor power output would be low for
ULOFC as compared to ULOHS.While, average temperatures throughout the loop would
be higher in ULOHS compared to ULOFC, the metallic structures in the primary loop are
the only intermediate heat sink available in both these scenarios. In both scenarios, the
structural temperatures will be subject to heightened temperatures. Therefore, we will need
to consider how their temperatures evolve over time for the case of the PSP tripping and the
PSP not tripping. In particular, we should ensure that these temperatures do not exceed
the temperature limits structural materials in the primary loop.

To better understand what these temperature limits are, we may want to review some
material properties of typical materials used for structural supports. These supports are
usually made from metallic materials such as Hastelloy N, Inconel 617, 316 L and 316 H
stainless steel. Of the 316 Stainless Steels, 316 H with higher carbon content than 316 L
has been shown to have better corrosion resistance in molten salts such as FLiNaK [Doniger
et al., 2023], and therefore tend to be favoured over 316 L stainless steels. The typical upper



211

limits of operation temperature for metallic materials such as Hastelloy N and Inconel 617
range from 700◦C to 850◦C [D. Jiang et al., 2022]. This makes these materials suitable for
FHRs, such as the Mk 1 PB-FHR and KP-FHR, which typically operate around 550 ◦C to
700 ◦C [D. Jiang et al., 2022].

At temperatures higher than these, we risk the structures experiencing accelerated creep
and deformities [T. Allen et al., 2013]. Therefore, we must be aware of the temperatures of
the coolant which come into contact with these pipes and structural supports. This may be
one of the reasons why the peak bulk coolant temperature, or the maximum temperature of
FLiBe coolant, is listed as a thermal hydraulic figure of merit for the FHR [Nicolas Zweibaum,
2015].Peak bulk coolant temperatures usually do not usually reach concerning levels except
in the case of transients and accidents. Therefore, to ensure that the FHR is designed safely,
we need to subject the test reactor to such transients and monitor the peak bulk coolant
temperatures so that they do not exceed the safety limits of the metallic materials. If they
happen to do so, the FHR should be redesigned such that the safety limits on peak bulk
coolant temperature are not exceeded.

To find out if the peak bulk coolant temperature is exceeded during a transient, we would
subject a test reactor to such a transient and perform design improvements based on the
information gathered to ensure that the reactor performs within these safety limits. However,
building multiple tests reactors for iterative design in this fashion can be impractical. This
is because constructing test reactors comes with its own set of challenges, particularly when
it comes to additional costs of obtaining permits to handle radioactive material and dispose
of spent fuel. Furthermore, performing large numbers of transients on actual reactors could
result in significant structural damage to the reactor vessel and fuel [Nicolas Zweibaum,
2015]. Such complications could make testing of these transients too economically, socially
and ecologically costly if improperly managed. Proper management of these risks would cost
more time and monetary resources. It is also likely that obtaining a license for such a test
reactor involves demonstrating that these risks are properly mitigated. This process further
adds to the time needed for reactor research and development. For all intents and purposes,
using test reactors in the early stages of FHR development may be too costly in terms of
time. If we wish to expedite FHR development, using only test reactors in the licensing
process may be impractical. Moreover, building and operating the test reactors also requires
a licensing process. While this process is less stringent than for a full power reactor, we may
still need to ascertain if the reactor itself can undergo transients safely.

Role of Integral Effects Tests (IETs) in Licensing

To ascertain if a test reactor design is safe, we might use IET such as CIET to provide us with
test data.This test data can in turn be used to show that the reactor design is reasonably safe
to operate. Additionally, using non nuclear integral effects tests (IETs) to better understand
thermal hydraulic phenomena is advantageous because we do not have the added complexity
and cost of handling radioactive material.
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However, having an IET which deals with reactor coolants such as molten salt can still
prove financially challenging due to costs of the salt [Nicolas Zweibaum, 2015]5 and materials
needed to withstand its high temperatures and salt corrosion. These costs can be prohibitive
for early research into novel reactor designs. As such, scaled IETs such as CIET takes help to
ease the technical difficulty and financial burden in the early stages by using simulant fluids
instead of molten salts. Therefore, one can investigate thermal hydraulic phenomena in the
simulant fluid IET in earlier research and development stages so that one does not have to
deal with the high temperature environment or Beryllium toxicity in the case of FLiBe.

How Simulated Neutronics Facilities can address some shortfalls
of IETs

Unfortunately, integral effects tests (IET) in general do not replicate reactor physics or
thermal feedback behaviour of a reactor core. If we want to investigate how the coupled
thermal hydraulics and neutronics phenomena affects the peak bulk fluid temperature in
real time, we will need to artificially implement a more realistic reactor behaviour in our
IET.

One method to introduce the realism of reactor physics in test facilities is to program con-
trollers which can simulate reactor behaviour in transient studies. These facilities are known
as simulated neutronics facilities. Simulated neutronics facilities have been constructed using
point reactor kinetics for space reactors [Shannon M Bragg-Sitton, Godfroy, and K. Webster,
2010], direct drive gas cooled fast reactors [S M Bragg-Sitton and K. L. Webster, 2007] using
NASA’s Safe Affordable Fission Engine (SAFE)-100a reactor [Shannon M Bragg-Sitton and
Forsbacka, 2004]. These are not limited to space reactors as simulated neutronics facili-
ties have also been used for boiling water reactors [Kok and Van der Hagen, 1999; Furuya,
Fukahori, and Mizokami, 2007; H. Chen et al., 2017; Shi et al., 2015; Marcel, Rohde, and
Van Der Hagen, 2017]. The Delft Simulated Reactor (DESIRE) loop was one such example
where simulated neutronics was used in an IET using simulant fluids (Freon-12) in place of
the actual coolant, pressurised water [Kok and Van der Hagen, 1999]. This shows that that
augmenting simulant fluid IETs, such as CIET, with simulated neutronics capabilities can
be considered to be an established method.

Most of these simulated neutronics facilities use the point reactor kinetics equations,
because they can be solved in real-time.

∂

∂t
P (r⃗, t) =

ρ(t)− β

Λ
P (r⃗, t) +

n∑
i

λdecay,iCi(r⃗, t) (4.1)

dCi(r⃗, t)

dt
=
βi
Λ
P (r, t)− λdecay,iCi(r⃗, t) (4.2)

5For Li2BeF4 (FLiBe), costs include money needed for lithium enrichment [Nicolas Zweibaum, 2015]
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P (r⃗, t) is the power distribution of the reactor. ρ(t) is the reactivity, Ci is the delayed
neutron precursor concentration for group i, with appropriate conversion factors multiplied
in to have it in units of power. Λ is the mean neutron generation time, βi is the delayed
neutron fraction for group i, and β is the total delayed neutron fraction. λdecay,i is the decay
constant for group i.

β =
n∑
i

βi (4.3)

In its simplest form, the PRKE does not usually consider spatial variations in flux or
power. However, it can partly account for neutron flux distribution provided its shape does
not change with time.

4.3 Using Surrogate Modelling in Simulated

Neutronics Facilities

Issues with the Status Quo Simulated Neutronics which use Point
Reactor Kinetics

In literature, real time simulated neutronics feedback often works well with point reactor
kinetics equations (PRKE) due to the fast calculation times of such a model. Nevertheless,
despite the relatively wide use of point kinetics based simulated neutronics feedback in
literature, one must note that PRKE does not consider variations in the shape of the neutron
flux over time. In general, PRKE is incapable of predicting detailed reactor transients caused
by rapid localised changes in reactivity [Duderstadt and Hamilton, 1976].

Temporal variations in neutron flux shape are quite important in FHR core because these
will ultimately impact reactor stability as in the case of Xenon Oscillations. Moreover, as
control rods are inserted, the shape of the flux distribution in the core will change such that
the flux is higher in regions further from the control rods and lower in regions closer to the
control rods [Duderstadt and Hamilton, 1976] as seen in Figure 4.2.
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Figure 4.2: positions of control rods change flux shape within the reactor core, flux not
drawn to scale

In a similar manner, the fuel temperature feedback coefficients make it such that as the
fuel temperature increases, the resonance absorption cross sections over the fuel also increase.
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Thus, the effect is as if reactor poisons or control rods were “inserted” into the fuel where
temperature increases. If there is a situation where the rate at which core experiences a time
varying spatial temperature distribution, then this will cause the core to also have a time
varying neutron flux distribution. In this case, the neutron flux will be higher near colder
fuel pebbles and lower near hotter fuel pebbles.

Such time varying temperature and flux profiles are bound to happen during transients.
One possible transient where this can play an important role is unprotected loss of forced
cooling (unprotected LOFC) where reduced coolant flow would cause core temperatures in
general to rise. Figure 4.3 shows that during normal operations, the fuel temperature nearer
the exit region of the core is generally hotter than the fuel temperature near the entrance
region.
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Figure 4.3: Rate of Coolant Flow Change Flux Shape within the Reactor Core, flux not
drawn to scale

During ULOFC transients, the core temperatures rise in general. However, due to the
reduced flow of coolant, the region of warmer fuel expands. We could of course define warm
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as fuel exceeding a certain temperature, but I’m only interested to give a general idea here.
As the region of warmer fuel expands, the flux shape would also change. This would render
the assumptions behind the PRKE to be quite invalid.

If we were to insist on using PRKE for modelling reactor dynamics during ULOFC, then
we must consider the question of how an average fuel temperature, moderator temperature
or coolant temperature is obtained. This is quite important because as the flux shapes
change, then different regions of the core become more important to account for. This is
because the reactor’s power as a whole would be more sensitive to temperature changes in
regions with higher neutron fluxes. Let us consider first that reaction rates are equal to
the integral of neutron macroscopic cross sections and neutron flux over the volume of the
reactor. For a change in macroscopic cross section induced by a given temperature change,
a region with higher neutron flux would experience a greater power difference compared to
a region of lower neutron flux. This simple thought experiment assumes that the flux profile
is roughly constant with cross section changes. In reactor physics, the picture is often more
complicated as flux, cross sections and temperature profiles are often independent. I assume
here that neutron flux does not change appreciably due to temperature changes. However,
a thought experiment with this simplifying assumption is still useful in that one can see
that not all temperature changes within a reactor are created equal. In the fuller picture of
reactor feedback, one should also note that the spatial distribution of cross sections, power
distributions, temperature and flux are all interdependent. This makes certain regions of
the core more critical or important to consider for the flux and cross section profile. This
concept is explored upon heavily in literature in a concept known as “neutron importance”
frequently discussed in the context of adjoint neutron transport equations [Lewins, 1960].
Such detailed discussion is considered out of scope of this dissertation. However, the reader
should consider that obtaining a reasonable way of averaging the fuel temperature of the
fuel, coolant and moderator is no trivial task. Obviously, volume and mass averaged power
would not make sense since temperature changes would be more important in regions of high
neutron flux or high power density. However, power profiles and temperature profiles are
somewhat dependent on each other as, flux shapes and spatial distribution of cross sections
are quite dependent on each other. Therefore, we cannot assume the same power profile
in every scenario. These problems complicate the use of PRKE for accurately simulating
such transients and make the use of PRKE, in its traditional form, too cumbersome or too
inaccurate to use.

These problems are not unique to ULOFC because any unprotected transient changing
the spatial temperature distribution T (x, y, z) of the fuel, coolant and moderator in the
core would also change the flux shape, thus invalidating the PRKE assumptions. These
temperature distribution changes would ultimately affect cross sections in a non-uniform
manner over time, and thus the flux shape may differ over time when transients occur. This
leads to a heterogeneous distribution of reactivity, heat generation rate and temperature
distribution [Stewart et al., 2022]. Thus, we can see that anything that affects the thermal
hydraulics behaviour of the core would ultimately impact flux shape of the core as well. This
means we may want to take into account any entity that can affect the thermal hydraulics
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behaviour of the core. For example, the reflector structure would also heat and cool at
different rates compared to the core due to the differences in thermal inertia, this would
most definitely impact the rate at which the warm region grows during a ULOFC transient,
and also the shape of the warm region over time. It is evident that in each of these transients,
flux shape of the core changes over time. Therefore, PRKE equations may not describe these
transients with sufficient detail in real-time. Even if we were to insist on using PRKE, then
we have to consider how the feedback coefficients and average temperatures are calculated
such that overall reaction rates are preserved. As discussed earlier, this is no trivial matter.
If we want to account for time varying spatial distributions of flux and cross sections, we
may want to use another model for simulated neutronics feedback rather than PRKE.

So far, we have highlighted some deficiencies of PRKE mainly in the context of coupled
neutronics and thermal hydraulics phenomena. If we were to introduce neutron poisons,
heterogeneous burnup distributions and insertion of single control rods, then this phenomena
heterogeneous power distribution would become even more important to address and it
render PRKE even more unsuitable.

One final consideration is that PRKE equations are often treated using only one energy
group. Thus, any effect due to cross section resonances and thermalisation might not be
simulated accurately. This is an important effect to simulate in thermal spectrum FHRs since
the TRISO fuel,FLiBe and reflector blocks in FHRs would heavily moderate neutrons to the
thermal spectrum. In general, neutron moderation effects in FHRs are heavily dependent
upon the moderator temperature and density. These would, of course, include FLiBe and
any form of graphite or carbon material in the vicinity of the fissile material. Temperature
and density are not spatially uniform in the core, and we would once more have to concern
ourselves with how to find an average FLiBe density and temperature for reactivity feedback
calculations. Moreover, the neutron spectrum in the core is heavily dependent on burnup
and reactor poisons, and we wish to investigate how heavily these impact the evolution of
unprotected transients in the core. When neutron spectrum changes, we may wish to use
multi energy group equations such as multigroup diffusion to account for these changes. Of
course, two energy group PRKE equations have been developed in literature [Aboanber,
Nahla, and Al-Muhiameed, 2014], and this would mean that multigroup PRKE can be used
for modelling as well. We could add as many energy groups as we want to the PRKE.In any
phenomena where the PRKE becomes deficient in terms of fidelity, we could then, of course,
continue adding more levels to fidelity to improve upon the realism of PRKE equations.
However, computational burdens increase with each level of fidelity added and we may not
always be sure that these can be calculated in real-time.

We have discussed so far that PRKE may be deficient for simulating reactor feedback
mechanisms with spatial variations in flux, cross section, power and temperature. While
these spatial variations may not always be important, it is difficult to quantify how important
these effects are unless we have a simulation which can account for these spatial variations.
For reactors larger than test reactors in the lab (in the order of magnitude of a few kilowatts),
it may be reasonable to just assume that these spatial variations are important. Therefore,
we require higher fidelity models than the PRKE, which can potentially discretise the spatial
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variation and energy distribution of neutrons over time. Unfortunately, high fidelity models
by nature cannot produce results for reactor transients available in real time. Computational
Time and Power required scales exponentially with number of elements in a simulation. High
fidelity simulations with 1 million or more nodes may require several core hours or core days
to simulate a minute worth of transients. Therefore, using high fidelity models to simulate
reactor transients and calculate heater power in real time is just impractical.

Data Based Surrogate Modelling as Potential Solution to Address
lack of Spatial Discretisation capabilities for PRKE based
Simulated Neutronics Facilities

To capture higher order fidelity effects while retaining real time calculation capability, a
low fidelity empirical model can be used to capture the important transient effects of the
high fidelity multiphysics model. In literature, point kinetics modelling parameters were
calibrated to a high fidelity coupled thermal hydraulics and neutronics code [Stewart et al.,
2022]. However, the low fidelity model is not necessarily a point reactor kinetics model, but
could be a range of other models as well which can be calculated in real-time. Sometimes
a black box transfer function approach is used to characterise system behaviour [Chinesta
et al., 2016] so that it is modelled purely based on an input output basis [Schilders, Van
der Vorst, and Rommes, 2008]. Such a technique was used in the DESIRE Loop [Kok and
Van der Hagen, 1999; Van De Graaf, Van Der Hagen, and Mudde, 1994]. Hence, we can
see that surrogate models look promising in capturing the transient effects of a high fidelity
multiphysics models.

4.4 Surrogate Modelling Methods

The act of simplifying a more complex dynamic model into a simpler approximate model
for the purpose of speeding up computations can is sometimes known surrogate modelling
[Frangos et al., 2010]. Surrogate modelling would include methods such as data fit modelling
[Frangos et al., 2010], hierarchical surrogate modelling [Frangos et al., 2010; Asher et al.,
2015], Model Order Reduction [Schilders, Van der Vorst, and Rommes, 2008; Asher et al.,
2015] and even artificial intelligence [Alizadeh, J. K. Allen, and Mistree, 2020; Asher et al.,
2015].

Hierarchical Surrogate Modelling

Hierarchical surrogate modelling makes use of physical models and simplifying assumptions
to derive a lower fidelity model from a higher fidelity model [Frangos et al., 2010]. Addition-
ally, hierarchical surrogate models can also be derived from reducing numerical resolution
[Asher et al., 2015]. For thermal hydrualics, we could use this method for passive reactor
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safety to simplify the governing mass, momentum and energy transport equations to first-
order forms. The hierarchical, two-tiered scaling analysis (HTTSA) was used to validate
physical assumptions to reduce three dimensional governing equations to first order forms
[Per F Peterson, 1994]. This scaling approach based on examining time scales and length
scales in order to justify simplifying assumptions is also prominently featured in boundary
layer analysis [Bejan, 2013]. These simplifying assumptions greatly reduced the computa-
tional burden required to solve the equations.

Hierarchical Surrogate Modelling in Neutronics

In the context of neutronics, the PRKE, diffusion and simplified spherical harmonics (SPN)
methods would fall into this category because it applies simplifying assumptions to the
neutron transport equation in order to derive a model for the reactor. To better understand
this, let us first consider the example of the neutron transport equation [Duderstadt and
Hamilton, 1976]:

∂

∂t
n(r⃗, Ω̂, E, t) =

χ(E)

4π

∫ ∞

0

dE ′
∫
4π

dΩ̂′ν(E ′)Σf (r⃗, E
′)vn(r⃗, E ′, Ω̂′, t)

+

∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(r⃗, E
′ → E, Ω̂′ → Ω̂)vn(r⃗, E ′, Ω̂′, t)

+Qex(r⃗, Ω̂, E, t)− vΩ̂ • ∇n(r⃗, Ω̂, E, t)− Σtvn(r⃗, Ω̂, E, t)

(4.4)

Here, n(r⃗, Ω̂, E, t) represents the number of neutrons per unit volume and point r⃗, per
unit solid angle at solid angle Ω̂, per unit energy at energy E at time t.

In a reactor, this is equal to the contributions of the fission source (χ(E) term) to place
neutrons in a particular (r⃗, Ω̂, E, t), external sources Qex that places neutrons in a particular
(r⃗, Ω̂, E, t), plus inscattering from neutrons at other energies, positions and angles to this
particular (r⃗, Ω̂, E, t), minus the absorption and outscattering of neutrons from a particular
(r⃗, Ω̂, E, t), which is the Σt term, minus the neutrons leaking out of a particular volume
(Ω̂ • ∇n term).

Note that ΣS(r⃗, E
′ → E, Ω̂′ → Ω̂) is known as the double differential cross section since

it is the scattering cross section differentiated by both energy and angle.
Here, we may not keep using the term neutrons in a particular (r⃗, Ω̂, E, t). We shall

instead define and use the term phase space. Phase space is a convenient way to show all the
possible (r⃗, Ω̂, E) of a neutron at any time. Neutrons at a point in this phase space would
mean that these neutrons correspond to a particular (r⃗, Ω̂, E).

In neutronics for reactor physics, it is common to use the term neutron flux where we
define angular neutron flux: ψ(r⃗, Ω̂′, E, t) = vn(r⃗, Ω̂′, E, t). For neutrons interacting with
nuclei, density of neutrons does not matter for reaction rate as much as the collision frequency
of neutrons. The latter quantity is more closely related to flux than neutron density.

Therefore, we like to write our equations in terms of flux rather than neutron density.
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∂
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4π
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dΩ̂′ν(E ′)Σf (r⃗, E
′)ψ(r⃗, E ′, Ω̂′, t)

+

∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(r⃗, E
′ → E, Ω̂′ → Ω̂)ψ(r⃗, E ′, Ω̂′, t)

+Qex(r⃗, Ω̂, E, t)− Ω̂ • ∇ψ(r⃗, Ω̂, E, t)− Σtψ(r⃗, Ω̂, E, t)

(4.5)

Note, in both equations Qex refers to external source, in equation 4.4, this is in units
of neutron density, but in equation 4.5, this is in terms of neutron flux. We note that in
this form of the neutron transport equation, we assume that there is multiplying media that
produces neutrons isotropically when fissions occur.

This equation is difficult to solve in its entirety, hence simplifying assumptions are usually
applied. Otherwise, Monte Carlo methods such as Serpent, MCNP or OpenMC [Romano and
Forget, 2013; Romano, Horelik, et al., 2015] are used to solve the neutron transport equation.
This can be quite time and resource intensive for computers. It makes it impossible to solve
the equation for reactor transients in real time.

Applying hierarchical surrogate modelling here would mean applying simplifying assump-
tions to make the neutron transport equation easier to solve. For example, the PRKE equa-
tions often assume that we consider neutrons are all of the same energy [Duderstadt and
Hamilton, 1976] and that cross section dependence on energy and incident neutron angle is
ignored. Additionally, we also ignore changes in spatial distribution of neutrons over time.

Of course, we can choose varying levels of simplifications. We could have a multigroup
energy discretisation method for neutrons, consider time varying spatial distribution of neu-
tron flux, and consider the angular anisotropy of cross sections to some degree. The diffusion
equations and simplified spherical harmonics equations are derived by applying some of these
assumptions to simplify the solution to the NTE.

It is worthwhile noting that hierarchical surrogate modelling is not generally applicable
since the assumptions in deriving these models do not always hold well for every situation.
For example, the diffusion approximation does not work well around highly absorbing regions
[X. Wang, 2018], hence, other hierarchical surrogate models such as the SP3 equations to
better account for flux anisotropy in these regions. In fact, the SP3 equations can be shown
to be an asymptotic correction to the diffusion equations [X. Wang, 2018; E. W. Larsen,
J. E. Morel, and J. M. McGhee, 1993; M. Modest and Lei, 2012]. Hence, all of these are
hierarchical surrogate models.

Hierarchical models can also involve solving the discretised form of the equation on a
coarser mesh [Frangos et al., 2010] than what otherwise would reflect the physics exactly. For
example, in the neutron transport equation, the discrete ordinates method (SN) equations
would discretise solid angle by splitting it into a fixed number of domains rather than have
angles simualted over a contiuum just like for Monte Carlo. One other example is to use a
two energy group diffusion equation in place of a continuous energy spectrum.
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Strengths and Weaknesses of Hierarchical Surrogate Modelling

Hierarchical surrogate models allow for simplifying assumptions to be made so that a com-
plex equation becomes solveable. For example, the integrodifferential neutron transport
equation can prove extremely difficult to solve using Monte Carlo methods within a rea-
sonable timeframe for large reactors. Hence, simplifying assumptions such as the diffusion
approximation are made so that the surrogate model is solveable using less computational
power. Even desktop computers will be able to solve these surrogate modelling equations
[X. Wang, 2018]. Furthermore, while each of these models can prove to be somewhat lengthy
to derive, having knowledge of the simplifying assumptions used will allow the user to know
where the surrogate model is applicable.

The problem in using hierarchical surrogate modelling for simulated neutronics feedback
is that there is no guarantee that the models can be run in real-time just like for the diffusion
equation. One would then be tempted to introduce additional simplifications to ensure the
model can be solved in real-time.

Yet, with every simplifying assumption added to simplify the model, the surrogate model
would become less generally applicable. These models may only prove to be useful for a small
set of reactor physics applications. The PRKE equation for example, will be useful for fast
real-time calculations, but not account for spatial variations in flux over time. Remove a
few assumptions and we are back at diffusion. The diffusion equation can account for these
time varying spatial variations in flux over time, but would be impractical to calculate in
real-time despite being a surrogate model.

With hierarchical modelling, it can be difficult to find the “sweet spot” where reactor
physics are sufficiently accounted for in real-time. To see how these dynamics are at work,
we can look an example of hierarchical surrogate modelling in a neutronics context.

Overview of Deriving Multigroup Diffusion in Homogeneous Media as an
example of Hierarchical Surrogate Modelling

An overview of deriving diffusion neutronics from the NTE is presented to show an example
of how hierarchical surrogate modelling works. Hierarchical surrogate modelling can involve
physics based assumptions to simplify the model [Frangos et al., 2010]. This is done in the
diffusion equation where the treatment of cross section angular dependence and anisotropic
scattering is heavily simplified. The second example is where a coarser grid may be used
to solve equations [Frangos et al., 2010]. Spatially, we can see this as using a coarser mesh
in finite volume simulation. In terms of energy, we can see this in play when we use a few
energy groups in multigroup diffusion rather than treat the neutron energy spectrum as a
continuum. We may observe that despite these assumptions and even with the assumption
of homogeneous media, the multigroup diffusion approximation to the NTE cannot be solved
in real-time. Thus, its use in real-time simulated neutronics facilities is quite limited in its
present form.

Not all the steps are presented in detail since that would be too lengthy for this discus-
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sion. Interested readers can read neutronics textbooks such as those written by Duderstadt
[Duderstadt and Hamilton, 1976]. To demonstrate how hierarchical modelling works, let
us sequentially apply these simplifications to the NTE so that we obtain the homogeneous
medium diffusion equations.

Let’s consider the NTE again.
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v
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χ(E)

4π
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0
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′ → E, Ω̂′ → Ω̂)ψ(r⃗, E ′, Ω̂′, t)

+Qex(r⃗, Ω̂, E, t)− Ω̂ • ∇ψ(r⃗, Ω̂, E, t)− Σtψ(r⃗, Ω̂, E, t)

Zeroth Moment Equations For reactor applications, only want to care about the angle
integrated flux as these most directly impact fission rates ϕ(r⃗, E, t):

ϕ(r⃗, E, t) =

∫
4π

dΩ̂ψ(r⃗, E ′, Ω̂′, t) (4.6)

Integrating out the angles, we obtain the zeroth moment equations:
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dE ′ν(E ′)Σf (r⃗, E
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(4.7)

Where we define neutron current J⃗ as:∫
4π

dΩ̂Ω̂ψ(r⃗, Ω̂, E, t) = J⃗(r⃗, E, t) (4.8)

First Moment Equation The next step to deriving the diffusion equation is the first
moment equation. In the first moment equation, we multiply Ω̂ in first and then perform the
integration again. This is important because with a few assumptions, we will get the diffusion
coefficient from the first moment equation. Applying these assumptions is what makes the
diffusion equation a hierarchical surrogate model of the neutron transport equation (NTE).

For clarity, Ω̂ is [Duderstadt and Hamilton, 1976]:

Ω̂ = êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ = Ωx + Ωy + Ωz (4.9)

This is not to be confused with dΩ̂ as

dΩ̂ = sin θdθdϕ = −dµdϕ (4.10)
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Therefore, multiplying Ω̂ into each equation is the same as multiplying the vector compo-
nents into each equation and we integrate separately. We can then recombine each equation
into what we can represent as a vector equation. Overall, the process looks like this:

∫
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(4.11)

Now, to spare the reader from lengthy derivations, I will skip to the end result.
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(4.12)

Where,

Σs1(r⃗, E
′, t) =

∫
4π

dΩ̂Ω̂ • Ω̂′Σs(r⃗, E
′ → E, Ω̂′ • Ω̂) (4.13)

Q⃗ex1 =

∫
4π

dΩ̂Ω̂Qex(r⃗, Ω̂, E, t) (4.14)

This is done assuming a azimuthal symmetry in flux and scattering cross section, linearly
anisotropic angular flux and linearly anisotropic scattering cross section, expanded using the
P1 approximation. When external neutron sources are considered isotropic, then we can
consider the external sources in the first moment equation to go to zero as well. We also
assume that our fission source and total cross section are isotropic.

To further simplify the first moment equation, we assume the source is isotropic so
Q⃗ex1 = 0 and that the variation of neutron current with time is small. Do note that the
neutron speed v, even for thermal neutrons is v ≈ 2200m

s
at 0.0253 eV. Thus, it may be

reasonable to assume that the variation of neutron current with time is small compared to
the other terms. This of course assumes that ∂

∂t
J⃗(r⃗, E, t) is comparable in order of magnitude

to the other terms in the equation.
We can also assume that sources within the medium are isotropic (if they even exist at

all), so:

Qex(r⃗, Ω̂, E, t) = 0 (4.15)
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(∇)ϕ(r⃗, E, t) =
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′ → E, t)J⃗(r⃗, E ′, t)− Σt(r⃗, E, t)J⃗(r⃗, E, t) (4.16)

It should be noted that the first moment equations are vector equations, whereas the
zeroth moment equations are scalar equations.

Multigroup Equations as a Discretisation of Energy The next step is to discretise
the energy groups. Within these energy groups, the cross sections are assumed to be the
same regardless of energy. We can have as few as one or two energy groups, or even more
than forty [Duderstadt and Hamilton, 1976]. For FHRs, we might use around eight energy
groups to represent the entire spectrum [X. Wang, 2018]. A hierarchical surrogate model
may use coarse grids to simplify a model [Frangos et al., 2010] Here, treating the energy
dependence using multiple energy groups simplifies the calculation. This is an example of
coarsening the energy grid, and therefore, this also makes the multigroup diffusion equation
a hierarchical surrogate model.

Multigroup Zeroth Momment Equations Let us define an energy group g with an
lower bound energy of Eg and upper bound energy of Eg−1. In this definition, the highest
energy group is group 1. To obtain the neutron balance over energy group g for the zeroth
moment equations,

∫ Eg−1

Eg

dE
1

vg

∂

∂t
ϕ(r⃗, E, t) =

∫ Eg−1

Eg

dEχ(E)

∫ ∞

0

dE ′ν(E ′)Σf (r⃗, E
′)ϕ(r⃗, E ′, t)

+

∫ Eg−1

Eg

dE

∫ ∞

0

dE ′Σs(r⃗, E
′ → E)ϕ(r⃗, E ′, t) +Qex(r⃗, E, t)−

∫ Eg−1

Eg

dE∇ • J⃗(r⃗, E, t)

−
∫ Eg−1

Eg

dEΣtϕ(r⃗, E, t)

(4.17)

ϕg =

∫ Eg−1

Eg

dEϕ(r⃗, E, t) (4.18)

Qex,g =

∫ Eg−1

Eg

dEQex(r⃗, E, t) (4.19)

χg =

∫ Eg−1

Eg

dEχ(E) (4.20)

Now, the flux averaged cross sections of type i, moment n, and group g are defined as:
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Σi,n,gϕg =

∫ Eg−1

Eg

dEϕ(r⃗, E, t)Σi,n(r⃗, E, t) (4.21)

ϕg′Σs,g′→g =

∫ Eg−1

Eg

dE

∫ Eg′−1

Eg′

dE ′Σs(r⃗, E
′ → E)ϕ(r⃗, E ′, t) (4.22)

We also write the divergence of neutron current, which can be interpreted as a leakage
term from the control volume, for energy group g to be:

∇ • J⃗g(r⃗, t) =
∫ Eg−1

Eg

dE∇ • J⃗(r⃗, E, t) (4.23)

After some steps and substitutions, we arrive at our multigroup version of the zeroth
moment equations:

1

vg

∂

∂t
ϕg(r⃗, t) = χg

G∑
g′=1

νg′Σf,g′(r⃗, E
′)ϕg′(r⃗, t) +

G∑
g′=1

ϕg′Σs,g′→g −∇ • J⃗g(r⃗, t)− Σt,gϕg(r⃗, t)

(4.24)

Here, in the context of reactor physics, external sources are neglected, this is another
simplification.

Multigroup First Moment Equations Now let’s apply the same multigroup treat-
ment to the first moment equation. The divergence operator ∇• is used on the first moment
equations to convert it into a scalar equation. However, the implicit assumption in this
operation is that the material is homogeneous so that cross sections do not vary with respect
to distance position r⃗. This makes the diffusion equation in this form not as applicable with
respect to variations in cross sections with space.

∫ Eg−1

Eg

dE
1

3
(∇ •∇)ϕ(r⃗, E, t) =

∫ Eg−1

Eg

dE

∫ ∞

0

dE ′Σs1(E
′ → E, t)∇ • J⃗(r⃗, E ′, t)−∫ Eg−1

Eg

dEΣt(E, t)∇ • J⃗(r⃗, E, t)
(4.25)

After several simplifying assumptions, we arrive at a form which is our diffusion equation.

− 1

3(Σt,g − Σs1,g→g)
(∇ •∇)ϕg(r⃗, t) = ∇ • J⃗g(r⃗, t) (4.26)

Where:
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ϕg(r⃗, t)Σs1,g′→g =

∫ Eg−1

Eg

dE

∫ Eg′−1

Eg′

dE ′Σs1(E
′ → E)ϕ(r⃗, E, t) (4.27)

Our diffusion coefficient is:

Dg =
1

3(Σt,g − Σs1,g→g)
(4.28)

Here, besides assuming spatially homogeneous media, we also had to assume the following:

• Isotropic scattering between energy groups

• Leakage (∇• J⃗g) weighted Σ is approximately equal to flux weighted Σ, this implies a
non strongly absorbing media

Multigroup Diffusion Equations in Homogeneous Media We substitute in the
simplified first moment equations back to our zeroth moment equations to obtain the multi-
group diffusion equation in homogeneous media:

1

vg

∂

∂t
ϕg(r⃗, t) = χg

G∑
g′=1

νg′Σf,g′ϕg′(r⃗, t)

+
G∑

g′=1

ϕg′Σs,g′→g +Qex,g(r⃗, t) +Dg∇2ϕg(r⃗, t)− Σt,gϕg(r⃗, t)

(4.29)

Conclusion on Hierarchical Surrogate Modelling for Diffusion Now, hierarchi-
cal surrogate modelling has allowed us to simplify our equations so that we can solve faster
than with Monte Carlo methods. This makes it somewhat usable for simulating reactor
transients. We also know the limitations of these equations since we explicitly used physical
assumptions to simplify the mathematical equations. For example, cross sections and group
diffusion coefficients change with temperature. In that sense, the reactor medium is not
homogeneous. Therefore, the homogeneous material assumption limits the use of this model
in simulating transients when coupled with thermal hydraulics.

The multigroup diffusion equations when homogeneous materials are not assumed would
look like:

1

vg

∂

∂t
ϕg(r⃗, t) = χg

G∑
g′=1

νg′Σf,g′ϕg′(r⃗, t) +
G∑

g′=1

ϕg′(r⃗, t)Σs,g′→g +Qex,g(r⃗, t)

+∇ •Dg∇ϕg(r⃗, t)− Σt,gϕg(r⃗, t)

(4.30)
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Only in this form can we use the multigroup diffusion equation to account for changing
cross sections and diffusion coefficients with temperature.

In any case, the problem with this is that these equations cannot be solved in real-time.
Hence, we could be tempted to go with more simplifying assumptions, and we would then
arrive at PRKE which can be solved in real-time. Unfortunately, this would land us back in
square one as the PRKE cannot account for spatial reactor kinetics which can be important
in large reactors [Duderstadt and Hamilton, 1976].

A second problem is that the multigroup diffusion equation is not “accurate enough”
in that it fares poorly in regions of discontinuous cross sections and strongly absorbing
regions such as near control rods [X. Wang, 2018]. As a result, other hierarchical surrogate
models such as the simplified spherical harmonics (SPN) equations have been used because
of improved performance. Yet with higher fidelity required, more computational resources
and time will be needed to simulate the NTE with a higher fidelity surrogate model. This
makes it impractical for evaluating and simulating reactor feedback in real-time.

Therefore, using hierarchical surrogate modelling alone may not be suitable for use in
simulated neutronics feedback facilities.

Data Fit Surrogate Modelling

Data fit modelling is more of a “black box” technique where we extract data and try to map
the inputs to outputs. One common example well known in control theory is the transfer
function [Asher et al., 2015]. Data fit surrogate modelling would also include methods used
in deep learning such as Gaussian Processes [Frangos et al., 2010; Asher et al., 2015]. In fact,
neural networks used in artificial intelligence are considered to be a data driven surrogate
model [Asher et al., 2015].

Transfer Functions as an Example of Data Fit Surrogate Modelling

In this section, we outline transfer functions as one important method of data fit surrogate
modelling. This is because of their well known historical use in stability analysis and con-
troller development of nuclear reactors. For example,transfer functions have been used in
literature to describe the transient behaviour of small test reactors such as Iowa University’s
UTR-10 research reactor [T.-C. Chan, 1971] and the molten salt reactor experiment (MSRE)
[Ball and TW Kerlin, 1965]. Due to their use in controller development, it was thought that
using them to develop controllers for simulated neutronics feedback would be suitable as
well.

Transfer functions G(s) are describe the relationship between system inputs and outputs
in the frequency domain. We traditionally use a Laplace transform to convert these inputs
and outputs to the frequency domain [T.-C. Chan, 1971]. These inputs and outputs specif-
ically refer to the deviation of a variable from its steady state value. Therefore, the inputs
and outputs are denoted δI(s) and δO(s) respectively where s is the complex frequency.

The transfer function can be described as [De Wet and Per F Peterson, 2020]:
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G(s) =
δO(s)

δI(s)
(4.31)

s = σ + jω

An example of an input could be control rod position as it was for the MSRE [Ball and
TW Kerlin, 1965] and UTR-10 [T.-C. Chan, 1971] experiments. The corresponding output
could be reactor temperature or reactor power.

Obtaining Transfer Functions from Experimental Data To obtain transfer func-
tions, one would usually perturb the system, in this case the nuclear reactor, using some
sort of input signal δI(t) after it has reached steady state. This input signal could be a
control rod insertion or some variation of pump speed to change coolant flowrate through
the reactor.

The experimentalist would then note the change in the system’s output δO(t). These
inputs and outputs can be converted into the frequency domain using a Laplace Transform
to obtain δI(s) and δO(s). Two common examples of inputs that are used to obtain the
transfer function of the system are the step functions and sinusoidal inputs.

Step Functions and Time Domain Tests One of the most common ways to obtain
a transfer function is with the use of step inputs in time domain testing. The step function is
also known as the heaviside function [Legua, Morales, and Sánchez Ruiz, 2008]. The graph
of a step response in the time domain is shown in Figure 4.4:

Figure 4.4: Example of Heaviside Function

This test is relatively simple, but it perturbs all frequencies at once. In step responses
and pulse response tests, obtaining a good signal to noise ratio can be challenging [Kerlin,
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2012]. For a step response of amplitude A after some delay time c, the frequency domain
representation found in equation 4.32:

δI(s) =
Ae−cs

s
(4.32)

We present an Fourier Transform Plot using A = 5 and c = 0.1, in Figure 4.5:

Figure 4.5: Example of Heaviside Function in Frequency Domain

Step inputs have been used in reactivity measurements [Schmid, 1957] and to simulate
on/off switches for dynamic reactor simulations [Amendola et al., 1982]. Step increases in
reactivity were also used to determine open loop transfer functions of the miniature neutron
source reactor (MNSR) of Syria [Hainoun and Khamis, 2000]. This shows that the process
of using step functions for making measurements of reactor properties and transfer functions
has already been established in literature.

Sinusoids and Frequency Response Tests It is more common, however, to see
literature for the use of repetitive forcing compared to single step changes for nuclear reactors
[Kerlin, 2012; Sanathanan and Tsukui, 1974]. This is because we can obtain a better signal
to noise ratios with repetitive forcing methods [Kerlin, 2012]. This is because in repetitive
forcing, we amplify the signal strength in the frequency domain by repeating it periodically
[Kerlin, 2012]. Whereas for single step changes, the signals are not periodic, and therefore
weaker compared to the background noise [Kerlin, 2012]. To analyse the system response
to a periodically oscillating function, we normally look at the frequency domain rather than
the time domain. This involves plotting the ratio of the amplitudes of the input and output
signals (gain) and phase shift of the input and output signals of various frequencies. This
process of perturbing a system and characterising it by the gains and phase shifts over various
frequencies is known as frequency response testing.
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In theoretical frequency response, sinusoids (sines and cosines) have been used to charac-
terise a system [Kerlin, 2012] in frequency response tests. This is because it is easy to observe
a phase shift and gain of the system using sinusoids. In practice, sinusoids are difficult to
generate using hardware as compared to binary pulses. Therefore, binary pulses are used
more often in practical frequency response for physical systems. As sinusoidal frequency
response testing is theoretically easier to discuss, let us start with this first before moving
onto more complex signals.

When we use sinusoids in frequency response testing, we only perturb one frequency at
a time. The characteristic frequency s we perturb becomes:

s = jω

A possible frequency domain representation of the sinusoidal inputs, in this case sines,
can be written as [Oberhettinger and Badii, 2012]:

δI(s) =
ω

s2 + ω2
(4.33)

In the time domain, a hypothetical example of the sinusoidal forcing function and the
system response is plotted in Figure 4.6:

Figure 4.6: Example of Sinusoidal Function Inputs and Outputs

For a typical sinusoidal input, we see that the output is also a sinusoid. The oscillation
frequency remains the same, but the amplitude and phase of the oscillation is changed. For
an input sinusoid of amplitude a and angular frequency ω, the input would look like:

δI(t) = a sin(ωt) (4.34)
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The output can be represented as:

δO(t) = a|G(jω)| sin(ωt+ ψ) = b sin(ωt+ ψ) (4.35)

The amplitude of the output is b and the phase shift is ψ. The ratio between the input
and output amplitudes |G(jω)| is known as the system gain.

|G(jω)| = b

a
(4.36)

To obtain a transfer function, one repeats the procedure of perturbing the system with
sinusoids of various frequencies noting the phase shifts and magnitude gains at different
input frequencies. The gains and phase shifts at different frequencies are plotted in graphs
known as Bode plots. This procedure is known as frequency response testing. A Bode plot
for the system with a transfer function G(s) = 1

s+1
is provided in Figure 4.7 for the reader’s

reference.

Figure 4.7: Example of Bode Plot for G(s) = 1
s+1

For more background information on frequency response testing and frequency response
testing in CIET, one can explore work done by DeWet and Poresky [De Wet and Per F Peter-
son, 2020; Poresky, 2017]. Frequency response methods have been used in test reactors such
as the molten salt reactor experiment (MSRE) [Robinson and Fry, 1970] and Experimental
Breeder Reactor II (EBR-II) [Rhodes, Furstenau, and Larson, 2000].

Practical Considerations for Frequency Response In practice, transfer functions
can be estimated from Bode plots by hand [Sanathanan and Tsukui, 1974], or they can be
fitted using programs such as Matlab’s system identification toolbox with the function tfest
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[Ljung and Singh, 2012]. Matlab’s tfest is short for transfer function estimation. It can be
used to estimate transfer functions from both time domain and frequency domain data. This
often involves some form of least squares regression of the Frequency Response Plots [Valério,
Ortigueira, and Sá da Costa, 2008]. This method of least squares regression is already well
established in MATLAB’s system identification toolbox [Kollár, Pintelon, and Schoukens,
1991]. The fitted transfer function can then be subjected to a step response test in the time
domain to check if the transfer function has been correctly fitted [Sanathanan and Tsukui,
1974].

To obtain the frequency domain data, we may traditionally use sinusoids. While perturb-
ing a system one sinusoid at a time produces a very clean signal (it concentrates the energy
at one frequency), this procedure can be very slow. For lower frequencies such as a 0.001 Hz
sine wave, we require about 10000s for 10 oscillations. This excludes the time required for a
system to reach steady state after startup. Therefore, we may need alternate input signals
to speed up the testing procedure [De Wet and Per F Peterson, 2020].

Now presuming the system is linear, this being the simplest case, the laws of superposition
will hold. Where one sine wave is able to perturb the system at one frequency, multiple sine
waves can test it at multiple frequencies. Therefore, one could construct a signal to be a
summation of sine waves in order to perturb the system at multiple frequencies at once [De
Wet and Per F Peterson, 2020]. These are known as broadband inputs because a summation
of sine waves with a band of different frequencies is used to perturb the system rather than
a single sine wave at a time [De Wet and Per F Peterson, 2020].

If more time is required to be saved, then one could use pseudorandom noise to perturb
the system. This would, after a very long time, perturb the system at several frequencies,
thus saving time on the number of tests needed. We use pseudorandom noise rather than
truly random noise because we wish for such tests to be repeatable [Anderson, Finnie, and
Roberts, 1967].

Nevertheless, using pseudorandom noise or even sum of sinusoid inputs may prove difficult
experimentally as in the reactor system [Kerlin, 2012], the control rod may have difficulty
moving to various precise positions within a very short span of time [De Wet and Per F
Peterson, 2020]. Therefore, binary sequences are favoured as inputs over their continuous
counterparts where on or off type signals can be used in place of continuous signals. For
example, square waves can be considered the binary approximation of sine waves and pseu-
dorandom binary signals (PRBS) can be considered the binary approximation of continuous
background noise [Kerlin, 2012]. We can visualise this by plotting power spectrum (Pk) of a
square wave of amplitude A is given by [Kerlin, 2012]:

Pk =

{
A2

k2
0.81 if k odd

0 if k even
(4.37)
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Figure 4.8: Power Spectrum Comparison for Sine Wave and Square Wave with same Fun-
damental Frequency

We can see that 81% of the signal energy is contained within the first harmonic [De Wet
and Per F Peterson, 2020; Kerlin, 2012], provided this first harmonic would be in the same
frequency as the sine wave that the square wave approximates. Therefore, binary sequences
are quite suitable for substituting their sinusoidal counterparts.

Advantages of using Transfer Functions for Simulated Neutronics Facilities Trans-
fer functions are rather simple as they are 1D models that can be computed in real-time.
Furthermore, provided the oscillations are small, transfer functions obtained using frequency
response will be able to capture system dynamics at all relevant timescales [De Wet and Per
F Peterson, 2020]. Transfer functions obtained using frequency response are also able to cap-
ture some of the spatial effects for reactor dynamics especially in higher frequency regions
[Loewe, 1965]. Finally, transfer functions usually exist in the natural language of controller
design because they are derived using Laplace Transforms. Therefore, it would be relatively
easy to design controllers that can simulate neutronics feedback once the transfer functions
of the reactor is known.

Extension to Multiple Input Multiple Output Systems So far, we see transfer func-
tions being used to correlate one input to one output in a single input single output (SISO)
system. If one wished to use transfer functions in multiple input multiple output (MIMO)
systems, then networks of transfer functions can be used to correlate multiple inputs to
multiple outputs in what is known as a state space model. These state space models have
been used for control applications for Pressurised Water Reactors (PWRs) [G. Wang et al.,
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2017]. For this discussion, we constrain ourselves to SISO systems for the sake of brevity of
literature review.

However, it is important for the reader to know that the use of transfer functions to
model a system is not strictly limited to SISO systems.

Limitations of Transfer Functions Despite these benefits, it must emphasised that such
transfer functions replicate system or reactor behaviour only under certain conditions and
assumptions. Transfer functions are only well suited for characterising linear time invariant
(LTI) systems. Should the system be inherently nonlinear, the system can still be approx-
imated as linear provided the amplitudes of the oscillation are small enough not to cause
nonlinear behaviour to occur [De Wet and Per F Peterson, 2020]. In terms of using these
transfer functions for simulated neutronics feedback facilities, the utility will be limited as
the reactor system and feedback mechanisms are inherently nonlinear.

To characterise nonlinear systems using data fit surrogate modelling, we may need to
move beyond transfer functions for LTI systems. For this purpose, we can discuss neural
networks and artifical intelligence.

Artificial Intelligence, Neural Networks and Deep Learning

In this day and age (2023), the use of artificial intelligence (AI) methods has permeated all
of society. This includes the use of the well known ChatGPT [OpenAI, 2023]. For nuclear
reactors, artificial neural networks, and deep learning have also been used as a data fit
surrogate model. These neural networks are suitable for characterising system nonlinearities
[Asher et al., 2015] and have been used before in neutronics calculations [Gong, S. Cheng,
Z. Chen, and Q. Li, 2022; Gong, S. Cheng, Z. Chen, Q. Li, et al., 2022].

Machine learning has been used to model the transportable FHR (TFHR) for real-time
reactor control [Zeng et al., 2018] and thus shows promise for implementing simulated neu-
tronics feedback in IETs such as CIET.Nevertheless, given the complexity and breadth of
what AI has to offer, it will not be used in this dissertation. However, AI based simulated
neutronics feedback seems to hold promise for simulating non linear reactor phenomena in
real-time provided it has been appropriately trained.

Reduced Order Modelling and Model Order Reduction

Reduced order modelling, or model order reduction belong to a category of projection based
surrogate modelling [Asher et al., 2015]. Model Order reduction (MOR) was originally
developed in the field of control theory [Schilders, Van der Vorst, and Rommes, 2008] and
is therefore its methods are potentially well suited for controller development. A quick
internet search using Google Scholar and ChatGPT [OpenAI, 2023] shows that there are
several methods of MOR including proper orthogonal decomposition (POD) [Chinesta et
al., 2016], balanced truncation [Schilders, Van der Vorst, and Rommes, 2008] and Krylov
Subspace Methods [Schilders, Van der Vorst, and Rommes, 2008]. The goal of such methods
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is to attain an accurate enough mapping of model inputs and outputs [Chinesta et al., 2016]
that can be computed within a reasonable amount of time depending on the application.

Constrasting MOR to Data Driven Surrogate Modelling

Model Order Reduction (MOR) also aims to reduce computational complexity, but in con-
trast to data driven methods, there is often added emphasis on preserving important system
properties as compared to data driven methods of surrogate modelling. In the context of
control systems, the goal of MOR is to reduce the complexity of the system while preserv-
ing passivity6 and stability [Baur, Benner, and Feng, 2014; Schilders, Van der Vorst, and
Rommes, 2008]. Sometimes it is intended that the block structure of a dynamic system be
preserved [Quarteroni, Rozza, et al., 2014]. In the case of turbulence in fluid mechanics,
perhaps the quantity that we want to preserve is turbulent kinetic energy [Weiss, 2019].

Constrasting MOR with Hierarchical Surrogate Modelling

We also wish to contrast MOR with hierarchical surrogate modelling to avoid confusion. A
crude analogy that may help the reader understand MOR more intuitively is a low pass filter.
In low pass filter, a time varying signal is received by the low pass filter and decomposed
into various orthogonal modes or frequencies often using a Fast Fourier Transform (FFT).
The user would then decide a suitable cutoff frequency for which modes with frequencies
above this cutoff frequency are ignored. The output is then reconstructed by recombining
the remaining modes of oscillation to reconstruct a de-noised signal which takes fewer modes
to represent and yet captures the dominant and desirable dynamics of the signal. Now, MOR
often involves decomposition [Asher et al., 2015] analogous to FFT.For example, we have
the POD method and balanced truncation method [Gugercin and Antoulas, 2004]. In fact,
balanced truncation is quite conceptually similar to how the low pass filter works. First, we
have the system of equations in the form of a matrix. We then decompose this matrix using
Singular Value Decomposition (SVD) into component states [Gugercin and Antoulas, 2004].
These components have “amplitudes” which are characterised using Hankel singular values
[Gonzalez, 2018] which are analogous to frequency in the low pass filter. These singular
values characterise how reachable, observable and controllable a state is [Antoulas, 2005;
Gonzalez, 2018]. Only states above a threshold Hankel singular value are kept while the
rest are discarded as they are deemed to be “noise”. When constructing the reduced order
model, only the reachable and observable states with the highest Hankel singular values are
used. This would reduce the model while capturing the most important system dynamics.

In contrast, hierarchical surrogate modelling requires some knowledge of the system and
physical assumptions to perform this model reduction. For passive reactor safety systems,
scaling using HTTSA of the governing equations can result in simplified first-order forms,
that can be used to normalize experimental or numerical simulation data [Per F Peterson,

6Passivity can be understood as the ability of a system to remain stable even if non-linear components
are added to it [Schilders, Van der Vorst, and Rommes, 2008]
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1994]. Another prominent example of using some physical assumptions with scaling and
nondimensionalisation to simplify governing equations is in deriving the analytical solution
for boundary layer flow equations [Bejan, 2013]. In these equations, one would presume that
flow velocities perpendicular to the flat plate would be negligible compared to flow velocities
parallel to the flat plate near the boundary layer in analysis of system length scales and
time scales. This scaling analysis is one of the main simplifying assumptions specific to
boundary layer flow. Using these assumptions, we could remove some terms in the governing
equations. Thereafter, the governing equations would be nondimensionalised and solved like
an Ordinary Differential Equation (ODE) rather than a Partial Differential Equation (PDE),
thus lowering computational burden. This approach extends beyond boundary layer flow and
can be used similarly in other flow regimes. For example, the relative residence times of fluid
in different regions of the system for stratified flow can be analysed in similar scaling analysis
[Per F Peterson, 1994] to reduce the complex governing equations to simplified first order
forms.

MOR does not use such assumptions and scaling analysis in general, but rather construes
the problem as a system of matrices and vectors which can be approximated using matrix
decomposition methods. Some of these resulting components from matrix decomposition can
be neglected, thus simplifying the model. The basis of this truncation process, such as in
balanced truncation [Gugercin and Antoulas, 2004], is considerably more abstract compared
to the scaling analysis and does not require specific knowledge about the system. One such
method is the Lyapunov balancing method [Gugercin and Antoulas, 2004], which involves
matrix decomposition and characterising decomposed states based on abstract mathematical
constructs such as observability controllability and reachability which are quantified using
their respective Grammians [Gugercin and Antoulas, 2004; Gonzalez, 2018].

While both hierarchical surrogate modelling and MOR result in simplified systems of
equations, the basis of the former is based on specialised knowledge of the physical system
while the latter relies more on characterising the system using matrix decomposition and
control theory.

Examples of MOR

Besides balanced truncation MOR, there are examples of MOR in literature which we shall
briefly cover and discuss. Firstly, let’s explore Proper Orthogonal Decomposition (POD).
POD is a projection technique [Frangos et al., 2010; Asher et al., 2015] which involves
decomposing a vector which contains variables of interest into orthogonal functions similar
to how periodic functions can be decomposed using a Fourier Transform [Weiss, 2019]. These
methods originated from turbulence which were intended to reconstruct the fluctuating parts
of the velocity fields using these orthogonal functions with less computational power [Weiss,
2019]. We can use POD to reduce complex systems of Partial Differential Equations (PDEs)
into Ordinary Differential Equations (ODEs). This is known as Galerkin projection and it
has been used in both fluid mechanics [Weiss, 2019] and neutronics [Elzohery, 2022]. Of
course, the applicability of POD went past the domain of multiphysics calculation and was
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used to describe dynamic systems of input and output [Chinesta et al., 2016]. For example,
for linear time invariant (LTI) systems, POD was used to decompose the LTI systems using
frequency domain snapshots as opposed to time domain snapshots [Chinesta et al., 2016].

In the nucelar engineering context, POD was used to generate a reduced order model
transfer functions for a couple point reactor kinetics and thermal hydraulics one dimensional
model of the multi application small light water reactor (MASLWR) [Zarei, 2021]. Further-
more, it has been used in context of multiphysics simulation codes such as GeN-Foam for
neutronics feedback [German, Ragusa, and Fiorina, 2019]. However, it was known that POD
generated transfer functions could not capture the high frequency behaviour of the system
as it was a lumped system [Zarei, 2021].

Besides POD, another popular method in MOR are Krylov Subspace methods. The
Krylov Subspace methods, which are frequently used for solving linear systems of equations
Ax⃗ = b⃗ [Simoncini and Szyld, 2007] can also be used in the context of MOR to simplify
systems of equations.Interested readers can look into literature by Ipsen [Ipsen and C. D.
Meyer, 1998] which gives a primer into some of these methods. Krylov subspace methods
have also been used for model order reduction of bilinear control systems [Breiten and Damm,

2010; Benner, Breiten, and Damm, 2010]. The Krylov subspace of a matrix A and vector b⃗
is:

Kr(A, b⃗) = span
(⃗
b,Ab⃗,A2⃗b, . . . ,Ar−1⃗b

)
(4.38)

Similar to POD methods, these also involve projection onto an span of basis vectors.
These methods were invented to increase the computational speed of iteratively solving large
linear systems of equations. Hence, Krylov methods are quite well suited for simplifying high
order linear time invariant (LTI) systems [Salimbahrami and Lohmann, 2002; Bai, 2002]
where multiple transfer are interconnected. However, where generalised nonlinear problems
are concerned, there may be some difficulty in applying Krylov Subspace methods [Asher
et al., 2015; Frangos et al., 2010; Feng, 2005].

For nonlinear MOR, there has been some success in using quadratic polynomials in the
context of electrical circuits [Feng, 2005; Y. Chen, 1999], and for in reactor multiphysics,
POD has been used [German, Ragusa, and Fiorina, 2019]. These methods are not as simple to
use as a data fit surrogate model and therefore will be out of scope for this work. Furthermore,
their emphasis seems to be on preserving model fidelity more so than increasing speed to
enable real-time simulation for reactor feedback. Hence, I will not be exploring use of these
methods for this dissertation. However, they could be explored for use in future iterations
of simulated neutronics feedback facilities.

4.5 Hybrid Methods

While the surrogate modelling methods are described in three different categories [Asher et
al., 2015] for the sake of understanding their working principles, it is important to note that
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in practice, these models can be used used together rather than separately. For example,
Gong uses physics informed machine learning for a reduced order modelling (ROM) of the
HPR1000 reactor [Gong, S. Cheng, Z. Chen, and Q. Li, 2022]. This was done to solve for
flux distribution of the HPR1000. A similar approach of using both ROM and AI was used
to drive thermal hydrualics design for reactor cores [Popov et al., 2022].

One other notable use was that in the DESIRE Boiling water reactor (BWR) simulated
neutronics facility, both hierarchical surrogate models and data driven models are used as
PRKE and transfer functions were used in giving the DESIRE loop coupled thermal hy-
draulics and void reactivity feedback [Kok and Van der Hagen, 1999]. Thus, it is likely that
we will use a combination of methods for constructing simulated neutronics facilties.

4.6 Evaluation of Surrogate Models for Simulated

Neutronics Facility Development in this

Dissertation

Now that we have explored some surrogate modelling classes and methods, we now want
to evaluate how practical they are for simulated neutronics facilities. Hierarchical methods
based on physics principles [Frangos et al., 2010] alone cannot work for producing simulated
neutronics feedback in real-time. We saw that diffusion neutronics often taken too long to
solve and that the modelling capability of PRKE is limited.

A simpler method such as determining a transfer function from frequency response data
would be better suited because only need to simple model to demonstrate a proof of concept
that data-driven surrogate modelling works for simulated neutronics facilities. We might take
a high fidelity model such as the NTE, and use a hierarchical surrogate such as the diffusion
to obtain reasonably more detailed simulation than the PRKE, and then use data driven
surrogate models such as transfer functions to model the hierarchical surrogate. This is a
hybrid approach for surrogate modelling. Here, both diffusion and transfer functions have
already been established as useful methods in their own right. Frequency response testing is
an already established method to probe reactors such as the molten salt reactor experiment
(MSRE) [P N Haubenreich, 1969; Robinson and Fry, 1970]. It has favourable characteristics
such as its high signal-to-noise ratio [De Wet and Per F Peterson, 2020; Kerlin, 2012]. Given
these advantages, these simpler data driven surrogate modelling methods are preferred for
generating surrogate models as compared to MOR methods, machine learning methods and
other methods at least for this current iteration.

In future, AI and MOR can be explored for the purpose of constructing simulated neu-
tronics feedback facilities. These methods are promising because since ROM [Elzohery, 2022;
German, Ragusa, and Fiorina, 2019] and AI [Gong, S. Cheng, Z. Chen, and Q. Li, 2022;
Popov et al., 2022] have been used in reactor neutronics and thermal hydraulics applications.
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4.7 Modelling FHRs with Multiphysics code

So far, we have determined that using a combination of hierarchical surrogate modelling and
data driven surrogate modelling would be suitable for development of simulated neutronics
facilities. Specifically, we are developing the controller that gives the electrical heater in the
IET some capability to emulate reactivity feedback.

The hierarchical surrogate models to be used here consist coupled high fidelity (high
compared to point kinetics models) multiphysics models. These could be diffusion, SPN
or even discrete ordinates (SN) based models coupled with thermal hydraulics. The thermal
hydraulics models by themselves are usually hierarchical surrogates because we make physical
assumptions in order to make the Navier Stokes and heat transfer equations easier to solve.
For example, we use closure models in turbulence modelling to practically simulate the
effects of turbulence on heat and momentum transfer (e.g. large eddy simulation (LES)
[Chen Qingyan, 2000]). The way we choose a surrogate model depends heavily on the
phenomena we want to simulate. The number of phenomena we simulate in turn impacts
the levels of simulation fidelity. To address these different phenomena, different codes have
been developed for simulating reactor multiphysics at these different levels of fidelity. Given
the variety of phenomena present in the core and the simulation choices available, we now
want to survey some of the multiphysics phenomena which occur in FHR cores. Additionally,
we want to survey some methods and codes available for use for modelling FHRs and evalute
which of them is most suitable for this work.

The reader should note that material phenomena are assumed to happen on timescales
much larger than unprotected transients. Corrosion, metal creep and other material phe-
nomena may lower the threshold temperature for which structural damage over the course
of several hours, weeks, months or years, and not in seconds [Franklin, Lucas, and Bement,
1983]. Therefore, these are not directly simulated. Any such discussion is out of scope for
this dissertation.

Neutronics Modelling Equations

Now for neutronics modelling, we have discussed earlier that hierarchical surrogate modelling
is used to simplify the NTE:

1

v

∂

∂t
ψ(r⃗, Ω̂, E, t) =

χ(E)

4π

∫ ∞

0

dE ′
∫
4π

dΩ̂′ν(E ′)Σf (r⃗, E
′)ψ(r⃗, E ′, Ω̂′, t)

+

∫ ∞

0

dE ′
∫
4π

dΩ̂′Σs(r⃗, E
′ → E, Ω̂′ → Ω̂)ψ(r⃗, E ′, Ω̂′, t)

+Qex(r⃗, Ω̂, E, t)− Ω̂ • ∇ψ(r⃗, Ω̂, E, t)− Σtψ(r⃗, Ω̂, E, t)

Into surrogate models such as the multigroup diffusion equation:
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1

vg

∂

∂t
ϕg(r⃗, t) = χg

G∑
g′=1

νg′Σf,g′ϕg′(r⃗, t)

+
G∑

g′=1

ϕg′Σs,g′→g +Qex,g(r⃗, t) +Dg∇2ϕg(r⃗, t)− Σt,gϕg(r⃗, t)

(4.39)

Or PRKE:

∂

∂t
P (r⃗, t) =

ρ(t)− β

Λ
P (r⃗, t) +

n∑
i

λdecay,iCi(r⃗, t) (4.40)

dCi(r⃗, t)

dt
=
βi
Λ
P (r, t)− λdecay,iCi(r⃗, t) (4.41)

In this case, we want a model which has higher fidelity than PRKE and one that can
account for spatial reactor kinetics. There are an assortment of methods we can use for this
high fidelity model.

Monte Carlo Methods

The first method to tackle this difficult to solve equation is in essence to use brute force.
Firstly, the geometry of the core is set up so that there will be different zones of the core
filled with different materials. A neutron will then be simulated in the core independent of
other neutrons, and it will travel through the different zones. As the neutron travels , the
program will calculate the distance before an interaction occurs. And when an interaction
occurs, the computer will reference the probability of a fission reaction, scattering reaction
absorption reaction etc based on the neutron phase space and material type.

The Monte Carlo software would simulate thousands and ten thousands of these neutrons
to calculate the number of neutrons generated in the next generation along with other
quantities of interest. The collection of such neutron histories is known as the Monte Carlo
method.

Software such as Monte Carlo N Particle (MCNP), Serpent and OpenMC are common
Monte Carlo codes used for neutron transport. OpenMC is an open source implementation
of Monte Carlo code and will be used in this work [Romano and Forget, 2013; Romano,
Horelik, et al., 2015].

Deterministic Methods

As Monte Carlo methods can get computationally expensive and exceedingly long for com-
plex geometries such as full reactor calculations, there is motivation to develop an alternate
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class of methods to solve the NTE.These are known as deterministic methods. The basic
idea is to discretise the integrodifferential equations to obtain a set of coupled equations
which can then be solved iteratively.

Now there are at least four categories of discretisation that needs to be performed. One
is time discretisation, most simply shown in point reactor kinetics. If time and space are
discretised, the diffusion approximation comes about , and it accounts for linear anisotropy
of flux [Duderstadt and Hamilton, 1976]. This would be a similar level of complexity for
scalar transport such as heat transport as well as mass and momentum transport seen in
thermal hydraulics. The third and fourth category of discretisation required is solid angle
and neutron energy. Angle is also usually discretised further in regions of the reactor where
linear anisotropy (diffusion model) is insufficient to describe flux [X. Wang, 2018].

Finally, energy groups also require judicious discretisation to account for spatial self
shielding [X. Wang, 2018],[Duderstadt and Hamilton, 1976]. Discretisation results in what
we call the multigroup equations, with multigroup diffusion equations being commonly used
as an approximation for the neutron transport equation.

Multigroup Diffusion Methods

Angular Treatment For treatment of angular dependence, have already discussed
the simplest of these methods: the diffusion approximation. The diffusion approximation
assumes that angular flux is linearly anisotropic and that the scattering cross sections are
also linearly anisotropic. In a multi energy group setting, we assume that there is isotropic
inter-energy group scattering, which is a common assumption [Brantley and E. W. Larsen,
2000]. Fick’s diffusion law is applied to relate flux gradients to neutron diffusion rates in
what is known as the first moment equation. These methods are commonly used and can be
found in multiphysics reactor codes such as GeN-FOAM [Fiorina, I. Clifford, et al., 2015].

Multi-Group Energy Discretisation and Structure For Multi-Group Diffusion,
we must carefully consider how the energy groups are structured. For most LWR calculations,
about 2 to 4 groups are sufficient whereas for fast reactors, anywhere from 20 to 1000 groups
are used [Duderstadt and Hamilton, 1976].

In FHRs and HTGRs, the spectrum is heavily thermalised. Here, as many as eight or
nine groups are used [Duderstadt and Hamilton, 1976; X. Wang, 2018]. The main rationale
for these groupings are to capture the large cross section differences between fast and thermal
groups. However, resonances also have a large cross section difference compared to the cross
sections of similar energy ranges in its vicinity, hence for more detailed models, some of these
resonances are captured in energy groupings.

These groups can be determined using a few principles. First, let us can consider the
lethargy normalised neutron spectrum of the FHR.Flux spectrum data from the generic
Fluoride Salt Cooled High Temperature Reactor simulated using KENO and NEWT [Kile



243

et al., 2022] was read using GraphReader software [K. P. Larsen, 2022] and is presented here
in Figure 4.9:

Figure 4.9: Rough Sketch of gFHR Flux Spectrum [Kile et al., 2022] based on GraphReader
[K. P. Larsen, 2022]

One could create a two group spectrum to separate the maxwell boltzmann distribution
of thermal neutrons from the fast spectrum. In fact, the Maxwell Boltzmann distribution
features prominently in the FHR spectrum [X. Wang, 2018]. Hence, the Maxwell Boltzmann
peak can be considered one group. Neutrons with energy below the bell curve can be
considered one group and neutrons with energy above the bell curve can be considered one
group. Thus we can already have three groups considering the Maxwell Boltzmann Peak.

Secondly, we can consider cross section resonances as another basis for grouping fluxes.
However, there are many nuclides with resonances. Therefore, we shall only capture res-
onances pertaining to important nuclides such as U-235 fission and parasitic absorption.
Let us consider U-235 resonances obtained from ENDF/B-VII [Chadwick et al., 2006] and
overlay them with the gFHR flux spectrum as seen in Figure 4.10:
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Figure 4.10: gFHR Flux Spectrum with U-235 Cross Sections Overlaid [Chadwick et al.,
2006; Kile et al., 2022]

U-235 has have several resonances in the 10−5 to 10−2 MeV range. We may be tempted
to assign one group for each resonance here, and this would be quite troublesome for there
are many resonances. Thankfully, the flux at these energies is typically low especially within
moderated reactors as seen from the flux spectrum shape of the gFHR plot in Figure 4.10.
Hence, we do not necessarily need to use multiple groups to account for each of these res-
onances. However, low energy resonances play a larger role in overall reaction rates (and
hence reactor kinetics) than high energy resonances [Duderstadt and Hamilton, 1976]. This
is because fluxes in the thermal region are much higher than in the resonance region of 10−5

to 10−2 MeV. The relative importance of groups can be visualised by the product of the
area under the curves of the neutron spectrum and cross section energy dependence graphs
respectively. By this logic, the FHR neutron spectrum shows that most neutrons reside in
the thermal region [Fratoni, 2008; X. Wang, 2018]. Therefore, more energy groups can be
assigned to lower energy resonances (10−7 to 10−5 MeV) and one group assigned to cover all
high energy resonances (10−5 to 10−2 MeV).

In a similar manner, we can assign groups for resonances present in U-238, especially low
lying ones. One group can be assigned to the three low lying resonances [X. Wang, 2018]
for MT102 (n, γ) reactions for U-238 and one group for the rest of the resonance region in
Figure 4.11:
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Figure 4.11: gFHR Flux Spectrum with U-238 Cross Sections Overlaid [Chadwick et al.,
2006; Kile et al., 2022]

We could do the same other nuclides present when sufficiently high burnup occurs.
Last but not least, FLiBe resonances in the high energy (fast neutron) region are also

important to capture. We pay special attention to the scattering and absorption resonances
because they are important to FLiBe’s role as a moderator. However, (n,2n) reactions are
also considered, and these can be another group in itself [X. Wang, 2018]. Some of these
resonances can be seen in Fluorine-19 and Lithium-7 cross sections which I have once more
overlaid with the gFHR flux in Figure 4.12:
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Figure 4.12: gFHR Flux Spectrum with Li-7 and F-19 Cross Sections Overlaid [Chadwick
et al., 2006; Kile et al., 2022]

Lithium-7 and Fluorine-19 are two of several nuclides that make up FLiBe, but we can
already see that these high level resonances for scattering and absorption are important for
simulating the moderation process. As such, these would warrant one group on their own,
and the (n,2n) reaction would warrant another energy group.

Spherical Harmonics Methods Supposing that angular discretisation is desired, the
spherical harmonics method can be used. In the spherical harmonics (PN) method, where
the angular flux ψ is periodic in polar and azimuthal angle, the flux is generally decomposed
into a series of spherical harmonics [Duderstadt and Hamilton, 1976] usually denoted as Y m

l .
This is analogous to how periodic functions can often be broken down into sines and cosines
using a Fourier Transform.

ψ(r⃗, Ω̂, E, t) =
∞∑
l=0

m=1∑
m=−l

σm
l (r⃗, E, t)Y

m
l (Ω̂) (4.42)

Where σm
l are constants to be determined. One would substitute this expression for

angular flux into the NTE and use the property of orthogonality to obtain a set of equations
known as the spherical harmonics (PN) equations. Often, one might take only the first
three terms of the expansion to form the P3 equations or even the first term to form the P1
equation. In fact, the diffusion approximation is also known as the P1 spherical harmonics
approximation because the form of the P1 equations forms the basis for diffusion equations.
More specifically, it shows gives a mathematical statement for linearly anisotropic flux and
scattering cross sections. Of course, there are other assumptions required to convert P1
equations into the diffusion equations. We shall not cover this at the moment. While P1
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equations, especially in their diffusion equation form, are applicable to general geometries,
higher order equations such as P3 Spherical Harmonics equations are difficult to use for all
but the simplest of geometries [Duerigen et al., 2010], eg. slab geometry.

Practically speaking, spherical harmonics can be used for complex geometries only if it
were simplified in the form of the simplified spherical harmonics equations (SPN) methods.
The SPN methods can be thought to be like the PN methods used for slab geometries, but
extended to 3D in an ad hoc manner. One of the most commonly used forms of the SPN
equations are the SP3 equations [Bahabadi, Pazirandeh, and Athari, 2015; Brantley and
E. W. Larsen, 2000]. These SP3 equations can be shown to be an asymptotic correction to
P1 [E. W. Larsen, J. E. Morel, and J. M. McGhee, 1993; E. Larsen, J. Morel, and J. McGhee,
1996; M. Modest and Lei, 2012]. Compared to multigroup diffusion, multigroup SP3 results
in improved behaviour near highly absorbing regions, such as control rods [X. Wang, 2018].
Due to its popularity, these equations have been implemented in codes such as GeN-Foam
[Fiorina, Hursin, and Pautz, 2017].

Fidelity for Angular and Energy Discretisation Given that the objective of this
dissertation is to formulate a methodology to compress high fidelity CFD data into a transfer
function for the purpose of controlling a heater in a simulated neutronics facility, the fidelity
levels of the CFD models need not be very high. This is because the same transfer function
methodology should be applicable to any CFD model so long as the inputs and outputs of
the system are well monitored.

Hence, for a first iteration, the reactor model can be arbitrary and the future models of
such a reactor can be subsequently refined to fit specific molten salt reactors, FHRs or even
liquid metal cooled reactors (as long as there is minimal phase change).

However, the minimum requirement is that the modelling technique should be readily ex-
tensible to capture complex geometries, thermal inertia, and all other manner of phenomena
related to anticipated transients without scram (ATWS).

Therefore, minimally, the neutronics model must incorporate spatial dependence, delayed
precursors, show capability to incorporate multigroup models. However, while control rods
are an integral part of the reactor, control rod oscillations are not necessary yet. Nevertheless
should this work be complete, a model taking into account nonlinear anisotropy of flux such
as SP3 should be the immediate next step. To facilitate this, a two group diffusion model
must be used at minimum as it can handle these variations. For angular flux dependence, an
SP3 model could be used in the immediate next steps but will be out of scope of this work.

Burnup, Reactor Poisons and Decay Heat

Now, these diffusion, SPN, SN and Monte Carlo modelling techniques do simulate energy,
spatial and angular dependence of neutrons to differing degrees. However, it is often assumed
that the reactor isotopic and chemical composition does not change significantly over the
timescale of a transient provided the transient is short enough.
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Should the transient occur over prolonged durations (hours, days or weeks), reactor
poisons and fission products may build up over time. These can cause transients of their
own. For example, reactor poisons such as Xenon-135 oscillations may be important when
power transients are done on the timescale of several hours. Xe-135 is produced from the
direct fission yield of a fissile isotope and the decay of I-135 [Lamarsh and Baratta, 2001].
Often, the fission yield of I-135 is several times the yield of Xe-135, it is about 4 times more
for U-233, about 6 times more for Pu-239 and about 30 times more for U-235 [Lamarsh and
Baratta, 2001]. Hence, the production of Xe-135 is largely governed by I-135 decay, which
has a half life of 6.7 hrs [Lamarsh and Baratta, 2001]. Transients on such timescales, while
important, do not threaten reactor safety as much as an unprotected reactivity transient,
which can be on the timescale of seconds. This gives the operator very little time to react,
and therefore, it is more important for operators to know how to handle these transients.
Moreover, GeN-Foam does not have modelling capabilities for Xe-135 built in. While it is
open source code and can be modified, the work required to develop such capabilities is
too much for this dissertation. Furthermore, the methods for converting the high fidelity
reactor models to low fidelity surrogate models would be similar regardless of whether Xe-135
concentrations are simulated. Hence, while Xe-135 transients are important they will not be
included in the first few iterations of the reactor models.

Xe-135 is just one of many fission products which can affect core reactivity. The nuclear
fission reactions can both breed new fuel and increase concentration of reactor poisons and
transuranics. These are bound to be present with increasing burnup of the pebble fuel. Fuel
burnup not only impacts reactivity, but doppler feedback coeffcients as well. In fact fuel
temperature feedback coeffcients will also become more negative with burnup because of the
buildup of transuranics [Fratoni, 2008].7.

As explained previously, the aim of this demonstration is to investigate the possibility of
reducing a high complexity multiphsyics model to a low fidelity data fit surrogate model for
use in simulated neutronics facilities. While burnup and reactor poisons are an important
consideration for reactor design, they may not be as specifically important for this endeavour.
Hence, I have chosen to relegate investigation of these effects to future work. This would
include any analysis of the effect of uneven heterogenous pebble burnup around the core and
the effect of pebble hotspots. For simplicity, I will be working with fresh cores. The fresh
core assumption also means that simulating decay heat is out of scope for the first iteration
of this work. It will be worthwhile investigating the impacts of burnup and decay heat in
future work however.

7At 425 µm diameter at C/HM ratio of 360, -2.75 pcm/K of doppler feedback is expected at 0 GWd/tHM
(gigawatt-day per ton heavy metal), but -4.5 pcm/K doppler feedback ∆ρ

∆Tfuel
is expected at about 120

GWd/tHM burnup. The prevailing enrichment here is about 10%.[Fratoni, 2008]
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Structural Expansion

Structural expansion can be considered a material and thermal hydraulics phenomena since
it deals with expansion of solid structures, and this depends on the material used to construct
the reactor core as well as the temperatures locally at each point of the core containment
structure and supports. This affects neutronics [T. Allen et al., 2013] as well since an
expanded core means more leakage would occur, thus reactivity decreases. This is potentially
concerning because graphite, used as a key structural material in FHR cores, has a thermal
coefficient of expansion of about 5.2 ∗ 10−7/K in the a direction and 2.8 ∗ 10−5/K in the c
direction at 873 K [Tsang et al., 2005]. Depending on the direction of thermal expansion,
graphite has a comparable thermal expansion coefficient to steel which used for fast reactor
structural material [Caro et al., 2013]. Steel has an estimated thermal expansion coefficient
of 1.8 ∗ 10−5/K at about 873K [Fu, X. D. Li, and Hwang, 2011]. Therefore, at typical
FHR operating temperatures, graphite potentially has a coefficient of thermal expansion in
a similar order of magnitude to steel. Of course, the alloying elements and composition
of the steel would affect this coefficient, but it should not be nought to change this order
of magnitude. Hence, thermal expansion in FHR cores and fast reactor cores could be of
a similar order of magnitude. This may make thermal expansion a potentially significiant
phenomena to address.

Nevertheless, neutronics and structural mechanics coupling for short timescales was con-
sidered to be not as critical as neutronics and thermal hydraulics coupling and thus not
considered for FHR modelling [T. Allen et al., 2013]. This is because the key factors re-
ducing reactivity during a spike in core power would be the expansion of FLiBe, otherwise
known as coolant void feedback [X. Wang, 2018; T. Allen et al., 2013] and fuel temperature
feedback [X. Wang, 2018]. Reactivity feedback due to structural expansion could be ne-
glected in comparison to these other feedback mechanisms. We could of course verify this in
another study, but this is beyond the scope of this dissertation and therefore, not included.

Over time, of course, irradiation of graphite and materials can cause expansion, and this
too would change the structural configuration of the reactor. This would in turn affect the
thermal hydrualics of the core. However, these effects occur over several weeks, months and
years [Franklin, Lucas, and Bement, 1983] and not on the same timescale as ATWS and
other transients. Therefore, these effects are neglected for this dissertation.

Coolant Expansion and Void Feedbacks

When FLiBe heats up, its density is reduced. The reduced salt density results in lower
parasitic absorption from the salt, thus increasing reactivity. This is not a desirable result as
we want to have increasing coolant temperatures result in a net negative coolant temperature
feedback. To achieve this, FHRs are designed to be undermoderrated [Greene et al., 2010].
If the core is undermoderated, then FLiBe expansion would result in negative reactivity
feedback [T. Allen et al., 2013]. In undermoderated cores, bubbles or voids in FLiBe would
also result in the same negative reactivity feedback due to decreased moderation. The degree
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of undermoderration would depend on the carbon to fuel (heavy metal) ratio. The carbon
to fuel ratio should be adjusted in FHRs such that the negative reactivity feedback from
undermoderration exceeds the positive reactivity feedback from reduced parasitic absorption
[Greene et al., 2010]. Given that coolant temperature feedback plays such a large role in FHR
reactivity feedback mechanism, it is quite important to model this phenomena [X. Wang,
2018]. Therefore, for this work, we aim to model reactivity effects of the FLiBe thermal
expansion.

However, any two phase flow phenomena due to gas entrainment will not be modelled
in this work as multiphase flow adds extra complications. As the study of this effect is not
key to this present dissertation, study of gas bubble and other such multiphase effects on
neutronics is relegated to future work.

Double Heterogeneity of TRISO Pebble Bed

One other important neutronics problem to solve for pebble bed FHRs would include simu-
lating the doubly heterogeneous geometry of pebble beds with TRISO fuel [Lou, Yao, et al.,
2020; Fratoni, 2008]. This is challenging because the simulation requires too much compu-
tational resources to be practical if a brute force Monte Carlo approach is used. Of course,
if one has enough computational resources, one can simulate full cores with doubly het-
erogeneous geometry fully preserved as was the case for the High Temperature Reactor 10
(HTR-10) test reactor MCNP simulation [Abedi and Vosoughi, 2012]. This HTR-10 simu-
lation only took into account neutronics for the HTR-10 and did not couple it with thermal
hydraulics. When thermal hydraulics is involved, there is additional computational burden
that is added.

For coupled thermal hydraulics (porous media) and neutronics calculations for doubly
heterogenous geometry such as those found in the Thorium Molten Salt Reactor Solid Fuel
(TMSR-SF) [Aufiero and Fratoni, 2016] and the generic FHR (gFHR) developed by Kairos
Power [Satvat et al., 2021]. For these calculations such as those in the TMSR-SF, high
fidelity calculations were performed where the each pebble with its TRISO particles was
fully simulated in Monte Carlo Code [Aufiero and Fratoni, 2016]. Of course, the added com-
putational burden necessitated a supercomputer and techniques to speed up calculations
in doubly heterogeneous geometries. For Serpent, an algorithm known as Woodcock Delta
Tracking was used for its Monte Carlo simulations [Aufiero and Fratoni, 2016]. This Delta
Tracking is exceptionally important for doubly heterogenous geometries where the conven-
tional ray tracing method would require copious amounts of computational time to calculate
distances between surfaces [Leppänen, 2010]. While Delta tracking speed up the TMSR-SF
simulation, calculations still required 20 cores in an Intel(R) Xeon(R) CPU E5-2670 v2 with
clock frequencies of 2.50GHz [Aufiero and Fratoni, 2016]. Essentially, we have to use super-
computers for such simulations. If one desires to save computing power, then we may want
to use deterministic methods to speed up the neutronics simulations.

Even if we were to use deterministic methods to simplify the problem, we would normally
have to use Monte Carlo simulations to generate multi group cross sections (MGXS) so that
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these deterministic calculations8 can be performed. And for PRKE, we would need Monte
Carlo methods to help generate some form of reactivity feedback. Either way, Monte Carlo
methods are going to be used. Hence, we will focus the bulk of the discussion on Monte
Carlo rather than deterministic methods.

For Monte Carlo methods for pebble beds, additional techniques besides delta tracking
are often used to speed up calculations. One such technique was used by Kairos Power in
their simulation of the gFHR using the Kairos Power Advanced Core Simulator (KPACS)
[Satvat et al., 2021]. In KPACS simulations of the gFHR, each pebble is explicitly simulated.
However, taking inspiration from the Very Superior Old Programs (VSOP) [Satvat et al.,
2021] used for pebble bed high temperature reactors (HTRs) [Rütten et al., 2005], the core
is split into spectral zones where the spatial variations in neutron spectrum and temperature
are small within these zones [Satvat et al., 2021]. Each zone has a representative pebble
simulated using Serpent 2, and coupled to the thermal hydraulics StarCCM+ code using an
in house wrapper called KPATH.As each representative pebble is explicitly modelled with
its TRISO particles, the self shielding effects within each pebble are preserved. At the same
time, the entire pebble core is not explicitly simulated, thus saving plenty of simulation time
while coupling Monte Carlo solvers with the appropriate thermal hydraulics solver. This
zoning method for FHRs bears conceptual resemblance to mesh coarsening. In this case,
the zones of the core can be thought of as an extremely coarse mesh. As such, this method
falls under the category of hierarchical surrogate modelling. This method was specifically
used for burnup calculations [Satvat et al., 2021] but has the potential to be used for MGXS
calculation as well.

If an alternate form of simplification is desired for Monte Carlo simulation, then some
form of homogenisation can be made. One should note though, that information will be
lost during homogenisation, and it is generally not suitable for high fidelity or ultra high
fidelity simulation. However, for the purposes of this dissertation, it does suffice since we are
only constructing an arbitrary reactor with which to extract prototypical reactor feedback
behaviour. Now, there are several methods of hierarchical surrogate modelling which can save
time required for Monte Carlo simulation. The simplest case involves full homogenisation of
the TRISO fuel kernel, with its layers, into the surrounding carbon matrix [Fratoni, 2008],
this “full homogenisation” is sometimes known in literature as the volumetric homogenisation
model (VHM) [Lou, Yao, et al., 2020]. VHM brings about a significant amount of deviation
for k∞ of the homogenised pebble compared to the actual TRISO fuel pebble chiefly due to
the reduction in spatial self shielding. A ballpark figure for some models is that deviations
in k∞ can be as much as 6% [Fratoni, 2008].

Secondly, we can also perform homogenisation such that the coatings of the TRISO par-
ticles are mixed with the surrounding carbon matrix, and the fuel kernels are left as they are
[Fratoni, 2008]. The k∞ of these models in literature are sometimes not statistically different

8 For deterministic codes, one must use Dancoff Factors [Fratoni, 2008; Bende et al., 1999] for double
Heterogeneity problems, but they are not relevant for use in Monte Carlo simulations. They are relevant
if one wanted to use deterministic codes to simulate the fuel and moderator regions separately rather than
lumping them together [Kloosterman and Ougouag, 2005].
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from the original TRISO fuel pebble model being within 2 σ[Fratoni, 2008], where σ in this
context is the standard deviation of the Monte Carlo k∞ calculation. Generally speaking, if
we allow complete homogenisation of TRISO fuel kernels and graphite pebble materials, keff
would be underestimated by about 6% [Fratoni, 2008]. However, if we simulate homogenisa-
tion of TRISO fuel shells with the pebble and leave the uranium fuel intact, keff would only
be underestimated by 0.2% [Fratoni, 2008]. This is mainly due to the self shielding effects
of the fuel within the pebble [Fratoni, 2008]. The former method may produce results too
far (>1%) from the benchmark keff while the latter result may still take excessively long for
a full core simulation as it was reported to save about 25% of Monte Carlo simulation time
[Fratoni, 2008]. Hence, we may want to look for another method for faster simulation.

A third method of homogenisation is known as the Reactivity Equivalent Physical Trans-
form (RPT) [Y. Kim and Baek, 2005; Lou, Yao, et al., 2020]. This modifies the VHM ap-
proach by first concentrating the fuel kernels into a smaller area within the pebble. Only
after this process will we then homogenise the section within the pebble where TRISO fuel
kernels are. Compared to VHM, RPT was reported to have better captured the spatial self
shielding effects of TRISO particles [Y. Kim and Baek, 2005]. The RPT process is illustrated
in Figure 4.13.
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Figure 4.13: Classical RPT Method

In Figure 4.13, the graphite shell and graphite matrix are essentially the same material. I
just differentiate it to distinguish the fuel region from the non fuel region. Secondly, TRISO
particles are not drawn to scale, and their respective layers are also not drawn for simplicity.
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The radius of this concentrated cylinder or sphere of homogenised TRISO fuel or matrix is
adjusted until the k∞ matches that of the original pebble or geometry. This process allows
the user to control the amount of self-shielding experienced by the fuel so that the neutron
spectrum more closely represents that of explicitly simulated doubly heterogeneous geometry
[Y. Kim and Baek, 2005]. In particular, the self-shielding effect is increased by reducing the
radius of this smaller area [Y. Kim and Baek, 2005]. The self-shielding effect is strongest if all
the fuel is concentrated into a single sphere (or cylinder) in its centre [Lou, Chai, et al., 2020].
As the fuel gets more dispersed, the self shielding decreases. The self shielding effects in these
TRISO particles are somewhere between the case of complete dispersion (VHM) and no
dispersion (where all fuel is concentrated in the center of the pebble). After homogenisation
using RPT, we can verify whether the self shielding is accurately replicated by inspecting
the neutron spectrum [Y. Kim and Baek, 2005] or even important terms within the six
factor formula such as resonance escape probability [Y. Kim and Baek, 2005; Duderstadt
and Hamilton, 1976; Lou, Chai, et al., 2020]. This technique was used successfully for pebble
beds within the very high temperature reactor (VHTR) [Noh et al., 2008].

Despite this success, RPT methods were found to be inaccurate for certain burnup cal-
culations involving dispersed burnable fuel particles within the fuel pebble [Lou, Yao, et al.,
2020]. As a result, the RPT method was heavily modified to give rise to the Ring RPT
method [Lou, Yao, et al., 2020]. Here, the TRISO particles are compressed into a ring (for
cylindrical geometry) or shell (for spherical geometry). A rough schematic can be shown in
Figure 4.14:
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Figure 4.14: Ring RPT Method Rough Schematic

Similar to RPT, the user is able to adjust the level of self-shielding by changing the
radius of the ring or shell [Lou, Chai, et al., 2020]. Spatial self shielding effects are strongest
if the fuel is concentrated in the centre of the fuel pin or fuel pebble, and these effects will
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weaken as the user increases the radius of the ring or shell so as to more evenly disperse the
fuel within the homogenised pebble. In Ring RPT, the inner radius of this ring or shell is
adjusted until k∞ of the Ring RPT pebble matches that of the original pebble [Lou, Yao, et
al., 2020]. Once more, we can check if the self-shielding is adequately replicated by inspecting
the neutron spectrum of the Ring RPT pebble and the explicitly modelled pebble.

For the shell layers of the TRISO kernel, it may matter little whether it is homogenised
with the matrix or compressed into its own shell layers. This is because the homogenisation
of TRISO shells with the pebble graphite matrix would only change keff of the pebble by
0.2% [Fratoni, 2008]. One can of course compensate for this small change by adjusting
the radius until k∞ is the same as the reference TRISO pebble. Therefore, one may not
need to worry about The Ring RPT method was found to be more practical for cylindrical
geometries compared to spherical geometries of small TRISO fuel sizes with burnable poisons
[Lou, Chai, et al., 2020].

For Ring RPT, however, the degree of fuel dispersion achievable is largely limited by
the outer radius of the pebble. Therefore, there is a lower limit for the amount of spatial
self shielding the Ring RPT can replicate [Lou, Chai, et al., 2020]. When the Ring RPT
radius is maximised, the degree of spatial self shielding is still higher than that of fully
homogenised fuel. For doubly heterogeneous fuel, the degree of self shielding may be lower
than that of the lowest self shielding the Ring RPT can replicate. This problem is especially
apparent for pebble fuel [Lou, Chai, et al., 2020]. An ad hoc solution for this is to partially
homogenise the TRISO fuel kernels with the surrounding layers of pyrolytic carbon, silicon
carbide and buffer layers and perform Ring RPT on this homogenised fuel. Doing so would
lower the threshold of spatial self shielding that can be simulated using Ring RPT such that
k∞ matches that of the explicitly simulated TRISO pebble. This could perhaps ensure that
Ring RPT is usable for pebble fuel.

Now, supposing one wanted to use MGXS generated from these Monte Carlo simulations
for deterministic multiphysics simulations, we could either opt to homogenise the entire core,
homogenise across fuel elements or not homogenise at all. If we were not to homogenise
between fuel and moderator regions, Dancoff factors become important [Bende et al., 1999;
Fratoni, 2008; Kloosterman and Ougouag, 2005]. However, for simplicity, I will homogenise
temperature dependent cross sections across the core in this work. I would calculate the
cross sections such that reaction rates over the whole core are preserved. This way, the heat
generation outputs are preserved, which is most important for the thermal hydrualics and
neutronics coupling.

Thermal Hydraulics Modelling Equations

For thermal hydraulics, we are primarily interested in mass, energy and momentum balances
in the fluid and conjugate heat transfer between fluids and solids. The Navier Stokes equa-
tions describes mass and momentum balance in the fluid (assuming it is Newtonian). The
incompressible Navier Stokes equations can be written as [Tu et al., 2023]:
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µ∇2u− ∂P

∂x
+ ρgx = ρ(

D

Dt
u) (4.43)

µ∇2v − ∂P

∂y
+ ρgy = ρ(

D

Dt
v) (4.44)

µ∇2w − ∂P

∂z
+ ρgz = ρ(

D

Dt
w) (4.45)

∇ • (v⃗) = 0 (4.46)

Where u, v and w are x, y and z components of fluid velocity, P is fluid pressure, gi is
gravitational forces or body forces in direction i. D

Dt
represents the total derivative which

includes time dependent and advection terms. ρ is fluid density. µ is fluid dynamic viscosity
which is assumed constant.

The form of the Navier Stokes equations 4.43, 4.44, 4.45 is for incompressible Newtonian
fluids. Hence, incompressibility is generally assumed, and the mass conservation equation is
represented by the continuity equation, equation 4.46. The incompressibility assumption is
generally true for molten salts except in the case where natural convection comes into play.
Also the molten salt in this case can be assumed to be Newtonian in nature. This assumption
can be supported since it has been shown that the salt BeF2 behaves like a Newtonian fluid
[Moynihan and Cantor, 1968].

For thermal transport, energy is also transported by the fluid. Therefore, an energy
transport equation is also given [Bejan, 2013].

ρ
De

Dt
+ e

(
Dρ

Dt
+ ρ∇ • v⃗

)
= −∇ • q⃗′′ + q′′′ − P∇ • v⃗ + µΦ (4.47)

Where µΦ is the dissipation term, where mechanical work converts into heat, P∇ • v⃗
constitutes part of flow work and D

Dt
represents the substantial or total derivative. q′′′

represents a heat source term which can represent the combined effects of heat generation
within the fluid due to nuclear or chemical interactions, and also due to radiation heat
transfer. e is the internal energy and q′′ is the heat flux.

If in terms of enthalpy h,

ρ
Dh

Dt
= −∇ • q⃗′′ + q′′′ + µΦ +

DP

Dt
(4.48)

If one wishes to have an equation explicitly in temperature,

ρcp
DT

Dt
= −∇ • q⃗′′ + q′′′ + µΦ + βT

DP

Dt
(4.49)

In equation 4.49 β represents coefficient of thermal expansion [Bejan, 2013], not delayed
neutron fraction.
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Simplifications can then be made to this equation using Fourier’s law, and assuming the
dissipation term contributes negligibly to the rise in temperature of the fluid. Fourier’s law
of conduction can be written as [Bejan, 2013]:

q⃗′′ = k∇T (4.50)

Where k in equation 4.50 is thermal conductivity of the medium, which can be fluid in
this case or solid in a solid medium. Furthermore, we can also assume that temperature
rises negligibly due to compressive forces in FHRs as the pressure variations are negligible
compared to the heat fluxes and the compressibility of the fluid is negligible [Bejan, 2013] .

ρcp
DT

Dt
= −∇ • (k∇T ) + q′′′ (4.51)

In the solid, only usually heat conduction dominates.

ρcp
dT

dt
= −∇ • (k∇T ) + q′′′ (4.52)

Turbulence Modelling

In FHRs and FHR cores, there are a few key phenomena we need to take into account. First
of which is turbulence modelling if the Reynold’s Number (Re) exceeds a threshold value.
Re represents the ratio of inertial forces to viscous forces within a fluid. To account for
turbulence, there are several approaches.

Firstly, if we were to use brute force, then the Navier Stokes equations are solved directly
in what is known as Direct Numerical Simulation (DNS). For DNS, it is common to use
spectral decomposition methods which break the velocity and temperature fields down into
orthogonal polynomials such as the Chebyshev Polynomials [Kasagi and Nishimura, 1997].
Of course, modelling turbulence in such a manner is extremely intensive on computational
resource and time, and is usually impractical for reactor simulation.

Reynolds Averaged Navier Stokes (RANS) To simplify this, the turbulence is usually
modelled using closure models. There are three classes of models. Firstly, the Reynold’s
Averaged Navier Stokes (RANS) methods [Tu et al., 2023; Pope, 2000]. For this, we consider
the instantaneous velocity u equal to a time averaged velocity ū and the fluctuating velocity
u′. Taking the x component of velocity u:

u = ū+ u′ (4.53)

Substituting this into the incompressible Navier Stokes equation, we can show that we
get:

µ∇2ū− ∂P̄

∂x
+ ρgx = ρ

(
D

Dt
ū

)
+ ρ

(
∂(u′u′)

∂x
+
∂(u′v′)

∂y
+
∂(u′w′)

∂z

)
(4.54)
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Closure Models The
(

∂(u′)2

∂x
+ ∂(u′v′)

∂y
+ ∂(u′w′)

∂z

)
are called the Reynold’s stress terms.

One cannot solve the turbulent Navier Stokes equations without knowledge of these Reynold’s
stresses. This is known as the closure problem [Bejan, 2013].

RANS methods such as k−ε model solve the closure problem by assuming the Reynold’s
stresses contribute to a time-averged, effective turbulent kinematic viscosity νt [Pope, 2000;
Bejan, 2013]. Thus, the Reynold’s stresses for velocity in direction i ui and direction j uj
can be expressed as [Tu et al., 2023]:

−u′iu′j = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
kδij (4.55)

Where xi and xj are i and j components of length. δij is the Kronecker delta and k is
turbulent kinetic energy. It can be expressed in Cartesian coordinates as:

k =
1

2

(
(u′)2 + (v′)2 + (w′)2

)
(4.56)

And the turbulent kinematic viscosity νt (assumed isotropic) can be modelled as:

νt = Cµ
k2

ε
(4.57)

Cµ is tested with DNS of turbulent channel flow to be almost constant at 0.09 [Pope,
2000] everywhere except for the boundary layer. ε is the rate of dissipation of k which can
be written as [Tu et al., 2023]:

ε = νt

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(4.58)

k − ε equation The values k and ε are modelled using the equations [Tu et al., 2023]:

Dk

dt
= ∇ νt

σk
• ∇k + P − ε (4.59)

Dε

dt
= ∇ νt

σε
• ∇+

ε

k
(Cε1εP − Cε2ε) (4.60)

Where σk has been data fitted to be 1.0, σε has been fitted to be 1.3, Cε1 is fitted to be
1.44 and Cε2 is fitted to 1.92 [Tu et al., 2023].

P is the production term for k denoted as [Tu et al., 2023] 9:

P = 2νt∇⃗̄u • ∇⃗̄u+ νt

[(
∂ū

∂y
+
∂v̄

∂x

)2

+

(
∂v̄

∂z
+
∂w̄

∂y

)2

+

(
∂w̄

∂x
+
∂ū

∂z

)2
]

(4.61)

9Tu wrote this in his textbook for 2D coordinates [Tu et al., 2023], I just extended it to 3D cartesian
coordinates
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Thus, the RANS (k − ε) equations can be rewritten as:

∇(µ+ µt) • ∇ū−
∂P̄

∂x
+ ρgx = ρ

(
D̄

D̄t
ū

)
(4.62)

∇(µ+ µt) • ∇v̄ −
∂P̄

∂x
+ ρgy = ρ

(
D̄

D̄t
v̄

)
(4.63)

∇(µ+ µt) • ∇w̄ − ∂P̄

∂x
+ ρgz = ρ

(
D̄

D̄t
w̄

)
(4.64)

Where

µt = 0.09ρ
k2

ε
(4.65)

And we find the equations for k and ε in equation 4.59, 4.60 and 4.61. The substantial
derivative D̄

D̄t
uses averaged velocities to account for advection rather than instantaneous

velocities.

Law of the Wall Of course, nearer the wall, different models must be used to model
the boundary layer. Here, empirical correlations are devised called the law of the wall [Bejan,
2013] which can be written as:

u+ =


y+, if y+ < 5

5 ln y+ − 3.05 if 5 < y+ < 30

2.5 ln y+ + 5.5 if y+ > 30

(4.66)

Where

u+ =
u

u∗
(4.67)

y+ =
yu∗
ν

(4.68)

u∗ is known as the friction velocity [Bejan, 2013]:

u∗ =

(
τwall

ρ

)0.5

(4.69)

The wall shear stress in 2D flows can be shown to be:

τwall = ρν
∂ū

∂y
(4.70)
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Heat Equations For fluids with heat transfer, a similar time averaging approach can
done for RANS [Bejan, 2013]:

∇k • ∇T̄ = ρcp

(
D̄

D̄t
T̄

)
+ ρcp

(
∂(T ′u′)

∂x
+
∂(T ′v′)

∂y
+
∂(T ′w′)

∂z

)
(4.71)

A similar approach can be used for closure models, to the effect that turbulence appar-
ently increases thermal diffusivity α rather than momentum diffusivity ν.

∇(α + αt) • ∇T̄ =

(
D̄

D̄t
T̄

)
(4.72)

Where α = k
ρcp

and αt is known as turbulent thermal diffusivity or eddy thermal diffusivity

[Bejan, 2013]. To solve the RANS equations, it is common to assume a constant turbulent
Prandtl Number Prt [Bejan, 2013]:

Prt =
ν

α
≈ 0.9 (4.73)

Similar to the velocity fields, thermal energy transport also requires an empirical law of
the wall. This can be written as [Bejan, 2013]:

T+ =

{
Pr y+, if y+ < 13.2

2.195 ln y+ − 13.2Pr−5.66, if y+ > 13.2
(4.74)

T+ = (T̄ − Twall)
ρcpu∗
q′′wall

(4.75)

Where Pr is the Prandtl Number, Pr = ν
α
, Twall is wall temperature, q′′wall is wall heat

flux. These only hold for 0.5 < Pr < 5.
For molten salts such as FLiBe, in the FHR, the Prandtl Number is much higher, around

12 < Pr < 24 [Nicolas Zweibaum, 2015; Nguyen and Merzari, 2023]. For these ranges, a
different law of the wall would hold [Gowen and J. Smith, 1967]. Usually, experiments or
DNS [Nguyen and Merzari, 2023] can be done to determine a law of the wall in this range.
They would then have to be fitted to empirical correlations such as [Bejan, 2013]:

T+ =

{
Pr y+, if y+ < y+csl
Pr ln y+csl +

Prt
κ
ln y+

y+csl
Pr, if y+ > y+csl

(4.76)

y+csl is dimensionless thickness of the conduction sublayer (CSL) and Prt is the turbulent
Prandtl number Prt =

νt
αt
. κ is an empirical constant to be fitted.

Now, these near wall models are useful but cannot apply in all situations. We developed
these equations without accounting for natural convection. Natural convection can interact
with forced convection to give rise to mixed convection which will dampen or increase lo-
cal turbulence. These mixed convection effects are important in the downcomer of FHRs
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[Nguyen and Merzari, 2023]. Therefore, DNS studies were performed to study these effects
[Nguyen and Merzari, 2023].

Situations like these show that RANS cannot always be trusted to give accurate results.

Large Eddy Simulations (LES) RANS is often not able to perform well in regions of
adverse pressure gradients, regions of separated flow [Alam, Thompson, and Walters, 2017],
where vortex shedding occurs [Pope, 2000], or as we previously discussed, regions of natural
convection [Nguyen and Merzari, 2023]. In these regions, should we want to use a higher
fidelity method but want to avoid DNS, then the prospect of Large Eddy Simulations (LES)
would become attractive [Alam, Thompson, and Walters, 2017]. In LES, the larger turbulent
eddy flows directly simulated, whereas the smaller eddies are treated using constituitive
models [Pope, 2000]. For LES, it is common to set the simulation such that about 80% of
the turbulent kinetic energy is directly resolved [H. Isaksson, 2019].

As opposed to RANS, LES does not average out all the turbulent eddies, instead, the
common approach is to decompose spatial oscillations into various frequencies similar again
to what a Fourier Transform does [Sagaut, 2005]. We then assign a cutoff frequency based on
the attempting to directly 80% of the turbulent kinetic energy, and we decide a mesh or grid
size based on them. In effect, we are applying a low pass filter to the Navier Stokes equa-
tions [Meyers, Geurts, and Sagaut, 2007]. The frequencies that are modelled, also known as
subgrid modes [Sagaut, 2005], can modelled using subgrid viscosity models [Sagaut, 2005].
These include the Smagorinsky model [Meyers, Geurts, and Sagaut, 2007] among many
others [Sagaut, 2005]. Unlike RANS, wall models or wall functions are only employed some-
times, some LES models do not contain wall functions. One example is the Wall Adapting
Eddy Viscosity (WALE) model which does not require wall functions to model the transition
region between bulk fluid and near wall viscous boundary layers [Nicoud and Ducros, 1999;
Weickert et al., 2010].

LES models have been used in gas liquid separators for molten salt reactors (MSRs)
[J.-J. Li et al., 2018] and molten salt flow around graphite blocks [Merzari et al., 2020], thus
showing that they are well established for MSR research in literature. LES models may
prove to work well provided the grid resolution is fine enough, however the computational
cost is still high compared to RANS.

Hybrid RANS-LES Methods Hybrid RANS-LES models were developed to leverage
the low cost of RANS near boundary layers and the suitability of LES for flow separation
[Spalart, 1997]. These were known as Detached Eddy Simulations (DES) [Spalart, 1997]. A
common problem was controlling when and how the RANS to LES transition occurred as
this could impact accuracy [Spalart et al., 2006]. The second issue was improving the wall
modelling [Shur et al., 2008]. Tweaks were made to DES simulations over time to solve these
problems and this resulted in Delayed Detached Eddy Simulation (DDES) [Spalart et al.,
2006] and Improved Delayed Detached Eddy Simulation (IDDES) [Shur et al., 2008]. IDDES
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methods were used to simulate flow around pebble beds in the gas cooled reactors [Shams
et al., 2015].

Unfortunately, LES and hybrid RANS LES methods can still be time consuming and
computational resource heavy. These can take away computational resources required for
simulating other phenomena such as neutron transport. Nevertheless, they can be used to
verify or validate empirical correlations used for porous media such as the Wakao Correlation
[Dave, Sun, and L. Hu, 2020].

Porous Media Modelling

Fluid Equations

Using turbulence modelling to directly simulate fluid flow for heat transfer within the core is
computationally expensive. This is why we often resort to use a simpler model such as the
porous medium equations [C. Wu et al., 2010]. Porous media equations regard that within
each volume element, there exists two separate phases of solid and fluid. The solid is often
referred to as the subscale structure [Fiorina, I. Clifford, et al., 2015]. The porous media
Navier stokes equations as found in multiphysics code such as GeN-Foam can be written as
[Fiorina, I. Clifford, et al., 2015]:

∂γρ

∂t
+∇ • (γρu) = 0 (4.77)

∂γρu

∂t
+∇ • (γρu⊗ u) = ∇ • (µT∇u)−∇γp+ pi∇γ + γFg + γFSS (4.78)

The energy equation of the fluid in GeN-Foam is written as [Fiorina, I. Clifford, et al.,
2015]:

∂γρe

∂t
+∇ • (uγ(ρe+ p)) = ∇ • (γkT∇T ) + γFSS • u+ γQ̇SS (4.79)

Where ⊗ is the tensor product for column vectors u and v:

u⊗ v = uvT

Where ρ is fluid density, γ is porosity of the medium otherwise known as volume fraction.
u represents the interstitial velocity of the fluid in the porous medium. p represents fluid
pressure, µT represents the turbulent dynamic viscosity Pa•s and µ represents the dynamic
viscosity10. pi is the interfacial pressure. One may note the lack of a dynamic viscosity term
µ in the equations for momentum diffusion because momentum more often diffuses into the

10There seem to be some possible errata in Fiorina’s paper as read in May 2023. First, µT was stated
as turbulent kinematic viscosity but had units of Pa • s, which is a unit for dynamic viscosity [Fiorina, I.
Clifford, et al., 2015]. The second issue is that the equations are claimed to reduce to traditional RANS when
porosity is 1 [Fiorina, I. Clifford, et al., 2015]. Unfortunately, the lack of a dynamic viscosity µ term in the
momentum equations means that the resulting RANS equation would describe inviscid flow. Upon examining
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subscale structure rather than to adjacent volume elements in the fluid medium. It is not
uncommon for µ to be left out, for example Pronghorn [AJ Novak et al., 2018], another
multiphysics code, also leaves the laplacian µ term out of its porous media equations. Q̇SS

represents the heat transferred from the porous solid in Wm−3, also known as sub-scale
structure, to the fluid , Fg represents the volumetric force vector due to gravity in Nm−3

and FSS represents the volumetric force vector of the subscale structure (porous solid) on
the fluid, also known as the drag. Of course , frictional losses contribute to the internal
energy of the fluid as well, so that is accounted for within the energy equation.

A minor note on Thermal Conductivity in GeN-Foam for Fluid Energy
Equations

kT in GeN-Foam was stated as turbulent thermal conductivity in Wm−1k−1 as of May 2023.
This is likely a publication errata because in energy equations, the fluid should be able
to conduct heat between volume elements even in laminar flow whether or not there is a
subscale structure. Thus, there should be an extra term accounting for conduction and not
just turbulent thermal conduction. Pronghorn contains this in its code [AJ Novak et al.,
2018] which shows that this term cannot be excluded in general.

However, for porous media, exclusion of fluid thermal conductivity could be a valid
assumption depending on the Peclèt number. We discuss this more in detail in Chapter 4.9.

On Interfacial Pressure pi

The interfacial pressure pi by the solid on the fluid is assumed to be p [Fiorina, I. Clifford,
et al., 2015]. So that:

−∇γp+ pi∇γ = −γ∇p

Subscale Drag

Now, FSS the term describing the subscale momentum sink, is a vector in three principal
directions. This term can be estimated in each principal direction using empirical correlations.
An empirical correlation for general porous media such as Darcy Forchheimer’s equation [I. D.
Clifford, 2013; Sobieski and Trykozko, 2014] is used for GeN-Foam’s porous media solvers
[Fiorina, I. Clifford, et al., 2015]. Let’s consider Darcy Forchheimer’s equation for the volume
element in the x direction [I. D. Clifford, 2013]:

−∂P
∂x

=
µ

k
uD,x + βρu2D,x (4.80)

the source code in “UEqn 1p.H”, I also found this issue to be the present because the viscosity term “nuEff”
is taken from the turbulence model rather than the fluid properties. Nevertheless, these equations are still
useful for porous media flow.
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In equation 4.80, k represents permeability of the porous medium, µ is fluid dynamic
viscosity, ρ is fluid density and β is an empirical constant which shows the degree of resistance
the pebble bed might give to flows in the inertial regime. Here, we assume k and β are scalars
and that flow resistance coefficients are isotropic. In general, flow resistance coefficients in
porous media are not isotropic. In fact, GeN-Foam porous media equations were developed
for fast reactor calculations [Fiorina, I. Clifford, et al., 2015; Fiorina, Kerkar, et al., 2016;
Fiorina, Hursin, and Pautz, 2017] where the porous media models were meant to model fuel
pins with coolant. In such a medium, coefficients such as k are anisotropic and depend on
flow direction. Hence, k is generally modelled using a vector rather than a scalar. For pebble
bed porous media, we assume that k in such a system is isotropic, and is independent of
flow direction. We therefore model it using a scalar. Of course, the flow velocity itself is still
a vector. And in this case, uD,x is the x component of the Darcy Velocity uD where Darcy
velocity is defined [I. D. Clifford, 2013; Fiorina, I. Clifford, et al., 2015]:

uD = γu (4.81)

Fiorina [Fiorina, I. Clifford, et al., 2015] considers these Darcy-Forchheimer equations
in terms of Darcy velocity uD because Darcy velocity does not change when the porosity
changes. Darcy velocity is more closely related to superficial velocity since both measure
flowrate per unit area [Vafai, 2015]. Now we can see a general form for FSS x direction

FSS x direction =
µ

kγ
uDx +

βρ

γ2
u2Dx = κ(UDx)UDx (4.82)

These are extended to a 3D case and be substituted back into the momentum equations.
For packed beds such as pebble beds specifically, Ergun’s equation applies [X. Wang,

2018], and it can be written as [Ergun and Orning, 1949; Hassan and Kang, 2012; Perry and
Green, 2015]:

−∆P

L
=

150qµ

Φ2
sd

2

(1− γ)2

γ3
+

1.75ρq2

Φsd

1− γ

γ3
(4.83)

Ergun’s equation is a more specific form of the Darcy-Forchheimer equation as it applies
only to packed beds. Both are equivalent if:

1

k
=

150

Φ2
sd

2

(1− γ)2

γ3
(4.84)

β =
1.75

Φsd

1− γ

γ3
(4.85)

Φs is sphericity of the pebble, this is to enable Ergun’s equation to be used in packed beds
with non spherical packings. For spheres, Φs is simply 1 [Ozahi, Gundogdu, and Carpinlioglu,
2008]. d is the diameter of the particle or sphere, q is superficial velocity or can be interpreted
to mean Darcy velocity in our context.
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Subscale Heat Transfer

The subscale heat transfer term Q̇SS which is the sub-scale heat sink or source for non
reacting components [Fiorina, I. Clifford, et al., 2015]. It is written as:

Q̇ss = Avh(Tss − Tf ) (4.86)

Where Av is the surface area per unit volume between subscale solid structure and the
fluid. Tss is the subscale structure temperature of that cell and Tf is the fluid temperature
in the same cell. For heat transfer, energy increase due to drag terms is just the dot product
of the drag force and local fluid velocity.

Now for heat transfer in FHRs, the Wakao correlation can be used [X. Wang, 2018] to
estimate heat transfer coefficeint h. This can be written as [Wakao, Kaguei, and Funazkri,
1979]:

Nudp = 2 + 1.1 Pr1/3Re0.6 (4.87)

Where Nudp is the Nusselt Number based on pebble diameter, Re is the Reynold’s number,
and Pr is the Prandtl Number.

The Nusselt number is:

Nudp =
hdp
k

(4.88)

dp in equation 4.88 is the pebble diameter. Readers should take note that this is not equal
to hydraulic diameter dh. k is fluid thermal conductivity and h is the heat transfer coefficient.
The Reynold’s number is based on the porosity and interstitial velocity magnitude, it can
be written as [Raluca Olga Scarlat, 2012; Wakao, Kaguei, and Funazkri, 1979]:

Redp = γ
ρdp
µ
uinterstitial (4.89)

The Prandtl number is defined as the ratio of momentum diffusivity ν to thermal diffu-
sivity α. It is also calculated using fluid viscosity µ constant pressure heat capacity cp and
fluid thermal conductivity k:

Pr =
ν

α
=
µcp
k

(4.90)

Solid Phase Energy Equation

Within the subscale structure, conduction heat transfer is present, and the energy equation
being solved for non heat generating media is [Fiorina, I. Clifford, et al., 2015]:

ρsscp,ss
∂Tss
∂t

= ∇ • (γkss∇T ) + Avh(Tss − Tf ) (4.91)
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Where in this case, kss is the conductivity tensor which accounts for anisotropic heat
conduction within the subscale structure. If it were isotropic, replacing kss with a scalar
would suffice.

In general, if the structure produces heat from a nuclear reaction, decay reaction or some
other reaction eg. chemical, a heat generation term can be added to the equation here:

ρsscp,ss
∂Tss
∂t

= ∇ • (γkss∇T ) + Avh(Tss − Tf ) + Q̇gen (4.92)

To calculate the heat transfer coefficient h, one can refer to an equation such as the
Wakao correlation in equation 4.87 to estimate the local heat transfer coefficient.

In codes such as GeN-FOAM however, it is common to simplify these conduction equa-
tions in the subscale structure. For fuel pins, they are simplified to 1D heat conduction
equations [Fiorina, I. Clifford, et al., 2015] where axial conduction is neglected. The conduc-
tion equation for fuel pins for example is written as [Fiorina, I. Clifford, et al., 2015]:

ρfuelcp,fuel
∂Tfuel
∂t

= kfuel
∂2Tfuel
∂r2

+
kfuel
r

∂Tf
∂r

+ Q̇f (4.93)

In such a case, conduction between the solid fractions of adjacent volume elements is
nonexistent. Conjugate heat transfer is calculated for each volume element as if a repre-
sentative solitary structure represented the solid phase of the porous media. For pebble
bed geometries, GeN-Foam also has capability to subscale structures based on a nodalised
thermal resistance model [Robert et al., 2023].

Heterogenous Heat Transfer Media in TRISO Pebble

Now, the TRISO pebble fuels themselves, as we have mentioned, are quite heterogeneous
in their geometry and material composition. This makes them a heterogeneous conduction
media as well. In this case, we cannot use the always use 1D thermal conductivity equation
or no aliased thermal resistance model directly since the heat generating material is hetero-
geneously dispersed. However, should we apply some homogenisation, these simple models
can still be used [M. Liu et al., 2019].

We could fully homogenise the TRISO particles with the graphite matrix. In this model,
the peak fuel temperatures tend to be under predicted [M. Liu et al., 2019; Oh, 2006]. In this
approach, thermal conductivity of the homogenised pebble is the volume weighted average
of the individual components:

kThermal effective =
Vpkp + Vmkm
Vm + Vp

(4.94)

And the volumetric heat capacity of the pebble can be weighted by volume.

ρpebble,T cp,ave,pebble =
N∑
i

Vi,T
Vpebble,T

ρi,T cp,ave,i (4.95)
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Where in equation 4.94 Vp and kp are the volume and thermal conductivities of the
TRISO particles and Vm and km are the volume and thermal conductivities of the matrix.
In equation 4.95, ρi,T represents density of pebble material i at temperature T. cp,ave,i is the
specific heat capacity of a pebble material i averaged over a suitable range of temperatures.
Vi stands for the volume. Where subscripts of the word “pebble” exist, these refer to the
quantities averaged over the entire pebble. For example ρpebble,T represents the volume aver-
aged density of the entire pebble. While inaccuracies would exist, this is by far the simplest
approach, and it has value for the first iterations of simulation.

We could correct for this by introducing a single heat generating TRISO particle within
the pebble fuel and use that as the reference temperature for fuel [M. Liu et al., 2019; Oh,
2006]. Despite this correction, the peak fuel temperatures may still be underpredicted be-
cause the pebble matrix is homogenised. To further correct for homogenisation, Liu suggests
to densely pack all the particles to the central region of the core, then perform homogeni-
sation over the densely packed region and then the fuel matrix [M. Liu et al., 2019]. This
packing fraction was set to 0.56 to 0.64 for the central closely packed region [M. Liu et al.,
2019]. This is not too dissimilar from the traditional reactivity equivalent physical transform
(RPT) method used to homogenise the TRISO regions for pebble with dispersed TRISO fuel
[Lou, Yao, et al., 2020; Y. Kim and Baek, 2005]. This method served to better predict the
peak fuel temperature given steady state conduction.

For this dissertation, we will just stick to the simplest model for expediency even though
this is quite important for the purposes of modelling an FHR.This is because the focus of this
work is more on deriving the data fitted surrogate model from the reactor than building the
simulated reactor. In future, studies could be done to quantify how various homogenisation
methods affect fuel temperature feedback and transient behaviour in general.

Radiation Heat Transfer

At operating temperatures of the FHR, radiation heat transfer (RHT) plays a significant
role in heat transfer in addition to conduction and convection [I. M. B. Johnson, 2022;
Derdeyn et al., 2018]. The underlying equation describing radiation heat transfer is known
as the Radiative Transfer Equation (RTE) [M. F. Modest, 2013] and bears some similarity
to the neutron transport equation (NTE). Therefore, similar methods such as Monte Carlo
methods, SN methods, PN methods [M. F. Modest, 2013] and SPN methods [M. Modest and
Lei, 2012] have been used to solve it. This can be very computationally expensive. Therefore,
we will need to be judicious about using the limited computational resources available to
simulate the most important phenomena.

To check if radiation is significant, we need to quantify the significance of RHT.Johnson
did this by normalising blackbody emissive power Eb by convective heat flux q′′conv [I. M. B.
Johnson, 2022].

Eb

q′′conv
=
σStefan−Boltzmann(T

4
hot − T 4

cold)

h(Thot − Tcold)
(4.96)
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Where σStefan−Boltzmann is the Stefan-Boltzmann constant, [M. F. Modest, 2013], Thot
and Tcold are the temperatures of the hot and cold body respectively. h is the convection
heat transfer coefficient.

Blackbody radiation represents the upper bound of how much heat can be absorbed by
the cooler body, in this case, FLiBe. This is because while FLiBe is participates in RHT, it
would not absorb all the radiation. In the core, Johnson determines this ratio to be about
0.04 given a h to be 4700W/(m2·K) as derived from the Wakao Correlation [I. M. B. Johnson,
2022]. Hence, we can see that convection tends to dominate heat transfer so that RHT in
the core is not too significant. We might choose to neglect this if computational resources
become constrained.

Nevertheless, it is possible that RHT could play an important role in heat exchangers
[I. M. B. Johnson, 2022]. A ballpark figure is that for heat exchangers, the ratio of Eb/q

′′
conv

may be around 0.40 [I. M. B. Johnson, 2022; Bardet and Per F Peterson, 2008]. This is
outside the scope of simulation for this work however, since we are mostly interested in
multiphysics in the core.

Interested readers in RHT may note that the interaction of RHT with convection in
molten salt is well studied in concentrated solar power (CSP) [Amber and O’Donovan, 2017].
For FHR specific applications, I recommend readers to consider reading about simulated
RHT with mixed convection heat transfer for FLiBe has been performed in laminar flow
[Abou Dbai, Raluca O Scarlat, and Trujillo, 2020].

4.8 Examples of Codes Used in Reactor Multiphysics

Now that we have discussed some of the phenomena that are possibly important for FHR
transients, we now want to examine how this multiphysics coupling has been done in litera-
ture.

The coupled multiphysics models we are interested in usually deal with thermal hydraulics
and neutronics aspects of the reactor. These have been simulated with Computational
Fluid Dynamics (CFD) codes which utilise the multigroup diffusion or simplified spherical
harmonics (SPN) models coupled with thermal hydraulics models. Monte Carlo models were
used to obtain the fuel temperature and coolant void feedback dependent Multi-Group Cross
Sections (MGXS) for FHRs [X. Wang, 2018] in the context of Anticipated Transient without
SCRAM (ATWS). These Monte Carlo codes include programs such as Serpent [Leppänen
et al., 2014], MCNP or OpenMC [Romano and Forget, 2013; Romano, Horelik, et al., 2015].
The resultant Multi-Group Cross Sections (MGXS) were used in the Computational Fluid
Dynamics (CFD) codes such as COMSOL [X. Wang, 2018] or OpenFOAM and GeN-Foam
[Fiorina, I. Clifford, et al., 2015]. Deterministic neutronics equations such as diffusion and
SP3 were run coupled with the porous media thermal hydraulics equations [X. Wang, 2018].
Of the multiphysics coupling methods, coupling porous media equations with deterministic
multigroup neutronics equations is considered “lower fidelity” compared to coupling the CFD
code to the Monte Carlo Code directly. Such endeavours were performed using Open Source
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Software such as OpenMC and Nek5000 within the Multiphysics Object Oriented Simulation
Environment (MOOSE) Framework [April Novak et al., 2018]. Closed Source Monte Carlo
codes such as Serpent have been coupled to Open Source codes such as OpenFOAM as
well for prompt criticality simulations [Aufiero, Fiorina, et al., 2015] and FHR simulations
[Aufiero and Fratoni, 2016].

Usually the “higher fidelity” models use the Monte Carlo Code such as Serpent to cal-
culate reactor power at each timestep for use in the CFD code such as OpenFOAM, which
then updates the spatial temperature distribution. The temperature distributions are then
fed back to the Monte Carlo Code so that reactor power is re-evaluated [Sorrell and Hawari,
2019]. This is in contrast to the “lower fidelity” coupling method where the Monte Carlo
Code calculates the MGXS at different temperatures once [X. Wang, 2018] and then MGXS
are interpolated at each timestep using a user-defined temperature correlation [X. Wang,
2018]. Usually these higher fidelity models are used for benchmarking purposes as was done
for the Generic FHR (gFHR) [Satvat et al., 2021] or for the Transient Reactor Test Facility
(TREAT)[Sorrell and Hawari, 2019]. High The benchmarks developed using higher fidelity
models can become references for lower fidelity neutronics and thermal hydraulics coupled
models or even surrogate models such as Kairos Power (KP) Advanced Gas REactor Eval-
uation (AGREE), also known as KP-AGREE [Satvat et al., 2021; Blandford et al., 2020]11.

For demonstration purposes, we may want to use simpler coupled multiphysics methods
as the basis of our simulations. Once again, we are only interested in having a high fidelity
model so that we can develop a data fit surrogate model. Hence, for this dissertation, I would
favour using diffusion neutronics as opposed to Monte Carlo methods or other deterministic
methods because of its simplicity.

In future, other high fidelity models can be used as a source of data for the data fit surro-
gate model. We may in future use a code to simulate multiphysics with SP3 neutronics or SN
neutronics as a baseline for the higher fidelity model. We can fit the improved multiphysics
model into a state space model, or even an AI model.

4.9 Justification for Software and Multi Physics

Modelling Choices

For this demonstration case, we intend to simulate the use of CIET’s digital twin (specif-
ically one for the heater) in developing controllers for simulated neutronics experiments.
Therefore, we are only interested in demonstrating how a data fitted surrogate model can be
derived from a higher fidelity simulation and then have this surrogate model developed into
a controller using the Type I digital twin. To achieve this goal, we are only going to do one
iterative “dry run” of controller development to demonstrate how CIET’s digital twin may

11Actually, KP-AGREE is possibly one example of a hierarchical reduced order model where simplifying
assumptions on the underlying reactor physics ensure that the model is faster to solve
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expedite development of a simulated neutronics facility. This, of course, will motivate both
the multiphysics model and the choice of software used to construct the multiphysics model.

The multiphysics model will be rather crude in terms of fidelity and in terms of generously
using simplifying assumptions to expedite development. However, the multiphysics model is
developed such that, for researchers familiar with coupled multiphysics simulations, it should
be easy to improve upon the existing model and apply a similar method to derive the data
fitted surrogate model. Furthermore, the surrogate model used here is quite simple as well
as we intend to develop a linear transfer function in this chapter to characterise neutronics
behaviour. Specifically, we wish to study transients such as ULOHS.In such a scenario, the
inlet temperature of the core may increase for protracted periods and the PSP does not trip.
This leads to a decrease in reactor power. The increase in inlet temperature and decrease in
reactor power would then produce changes in outlet temperature. We aim to quantify these
changes by deriving an inlet temperature to outlet temperature transfer function at constant
coolant flowrate.

To construct the multiphysics model, I favour Open Source options as the source code is
readily available and modifiable. This makes it easier for researchers who don’t have access
to software with export control or a paywall to execute what is done in this work. Of course,
proprietary software is also used provided it is not excessively expensive for students and
academic researchers.

OpenMC as the Monte Carlo Code of Choice

Deterministic neutronics and thermal hydraulics solvers such as GeN-Foam require macro-
scopic flux averaged energy cross sections as inputs for each cell zone. This is then generated
by a Monte Carlo Code. For this work, we can consider three out of the myriad of Monte
Carlo codes which are used for Monte Carlo simulations. These are MCNP, Serpent and
OpenMC.For this work, OpenMC was used because it is not as heavily export controlled
as MCNP or Serpent even though it does not have the same delta tracking capacities. The
license for MCNP and Serpent was only obtained two to three months after request, and by
that time, I had began to use and learn OpenMC12.To expedite research, OpenMC was used
as the Monte Carlo code of choice.

GeN-Foam as Multiphysics Code of Choice

GeN-Foam vs Commercial Solvers

Comsol has been used to incorporate SP3 equations to model nuetronics for the FHR [X.
Wang, 2018]. However, in this case, Comsol requires that one manually code in both equa-
tions for thermal hydraulics and the underlying Sp3 equations or diffusion equations for
neutronics.

12This is anecdotal evidence based on my own experiences as an international student from Singapore
applying for export controlled Monte Carlo code
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Furthermore, commercial codes such as Comsol are proprietary and closed source, mean-
ing that the source code of the software is not provided and cannot be edited. For a finer
level of control, Free and Open Source (FOSS) software can be used as an alternative. For
example, if the user wishes to speed up calculations using GPU computing, it is possible to
do so with OpenFOAM [Krasnopolsky and Medvedev, 2016], but not with COMSOL as of
2023 [Comsol, 2023].Hence, if the user wanted to edit the source code of COMSOL to sup-
port GPU computing, it is not possible. But if the user wants to extend the functionality of
OpenFOAM, it is very much a normal to delve into the source code and write a solver suited
for one’s use case for free. Furthermore, in terms of access, FOSS software is much more
accessible since it is licensed under copyleft licenses such As GNU General Public License 3
(GNU GPL 3). This means that simulations can be done for relatively lower cost.

GeN-Foam uses OpenFOAM libraries and extends it for neutronics with a porous media
model. It has built in libraries for Multi-Group diffusion [Fiorina, Kerkar, et al., 2016] and
SP3 [Fiorina, Hursin, and Pautz, 2017]. It is also licensed under GNU GPL 3. Therefore,
GeN-Foam seems to be a good choice among the FOSS software.

Caveats for Neutronics

The only caveats for GeN-Foam are that it is built for fast reactors. Most of these poisons
have huge absorption cross sections when incident neutrons are mostly thermalised. For fast
neutrons, the absorption cross sections are much smaller, and hence, these poisons become
less significant in the fast spectrum reactor as compared to the thermal spectrum reactor.
Therefore, the capability for simulating reactor poison buildup is absent. The capability
for simulating decay heat is also similarly absent. The MGXS inputs also do not currently
account for moderator temperature feedback by default.

When it comes to adjusting cross sections for temperature, GeN-Foam takes cross sections
at two given temperatures and interpolates between them or extrapolates beyond them
in a log-linear fashion. (see readNuclearData.H in GeN-Foam Source code). Interpolating
interpolating temperature dependent MGXS in a log-linear fashion has been used before in
FHR simulation [X. Wang, 2018] and seems to be a reasonable thing to do. However, we
must ensure that cross sections for this interpolation are taken at appropriate temperature
ranges.

For the reference temperatures, we consider that when transients occur, FHR temper-
atures can range from about 500 ◦C (773K) to 1000 ◦C (1273K). In normal operations,
temperatures may range from 600 ◦C (873K) to 700 ◦C (973K). However, OpenMC’s default
library only contains cross sections at temperatures of 250.0K, 293.6K, 600.0K, 900.0K,
1200.0K and 2500.0K. To make things worse, OpenMC’s default library does not contain
thermal scattering data even at 900.0K. We could either use NJOY [Macfarlane et al., 2017]
to generate thermal scattering data, or choose 600K and 1200K as the suitable interpolation
points.

For this work, I found NJOY too tedious to learn and use correctly. Hence I have opted
for to interpolate temperature dependent MGXS between 600K and 1200K.
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Caveats for Thermal Hydraulics

In terms of thermal hydrualics, GeN-Foam, as of May 2023, lacks the capability for simulating
a pure solid graphite reflector block because the porous media equations do not reduce to
the conduction equation when porosity is equal to 0.

In fact, heat transfer for passive (non heat generating) structures between solid portions
of each volume element is absent as the conduction term is missing. We can take a look
at some excerpts of the source code and we will see that the conduction equation (pasEqn)
only includes the time derivative term and the convection heat transfer term. For example:

“classes/thermalHydraulics/src/phaseModels/structureModels/structure.C”:

if (Tpas_.writeOpt() == IOobject::AUTO_WRITE)

{

//- Correct inert subStructure. What follows is the equivalent of doing

// the following:

/*

fvScalarMatrix pasEqn

(

fvm::ddt(alphaRhoCppas_, Tpas_)

==

iApas_*HT

- fvm::Sp(iApas_*H, Tpas_)

);

pasEqn.solve();

*/

// Except, it is faster like this rather than to solve an equation

// over the entire mesh, as the passive subStructure might not exist

// everywhere

scalar dt(mesh_.time().deltaT().value());

const volScalarField& Tpas0(Tpas_.oldTime());

forAll(cells_, i)

{

label celli(cells_[i]);

const scalar& iA(iApas_[celli]);

if (iA == 0) continue; //- Avoid solving where the passive

// structure does not exist

scalar alphaRhoCpByDt(alphaRhoCppas_[celli]/dt);

Tpas_[celli] =

(

iA*HT[celli]

+ alphaRhoCpByDt*Tpas0[celli]
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)/

(alphaRhoCpByDt + iA*H[celli]);

}

Tpas_.correctBoundaryConditions();

}

Here, we see in the comments the fvScalarMatrix pasEqn is being solved for the solid
phase in the passive structure. “alpha” here represents the phase fraction, and in the case
of a solid structure, the solid phase fraction. Users reading the source code may see “alpha”
being used for liquid phase fraction as well, so it may be confusing.

“iApas ” represents the interfacial area of the passive structure per unit volume.
“fvm::ddt(alphaRhoCppas , Tpas )” represents (1 − γ)ρcp

∂Tpassive

∂t
. Where 1 − γ is the

solid phase fraction, ρ is solid phase density, cp is solid phase heat capacity and Tpassive is
the solid phase (passive structure) temperature.

iApas_*HT - fvm::Sp(iApas_*H, Tpas_)

Would represent Avh(Tfluid − Tpassive). Where Av is interfacial area per unit volume, h
is heat transfer coefficient, HT is simply hTfluid and “fvm::Sp(iApas *H, Tpas )” represents
AvhTpassive.

This goes to show that modelling capabilities for heat conduction in the solid phase are
quite limited. Therefore, in the GeN-Foam simulation, any graphite reflector structures do
not add thermal inertia to the reactor, and instead are assumed to be at constant tempera-
ture.

The second issue, as explained earlier, is that the fluid thermal conductivity term is
missing from the porous media equations. A reason why conduction may be neglected is
because fluid advection is the dominant form of heat transport especially within the direction
of flow. We discuss this matter after verifying that the conductivity term is missing in the
source code of GeN-Foam. Let us look into the files “fluid.C” and “fluid.H”, the thermal
conductivity used in the energy equations under “EEqn 1p.H”:

volScalarField alphaEff

(

fluid_.thermo().alphaEff(fluid_.turbulence().alphat())()

);

This code excerpt shows that only the turbulent thermal diffusivity is used to set the fluid
effective thermal diffusivity. One can verify that the αt given in this equation comes from
the turbulence model by looking where αt is defined. For the porous media k − ε model in
GeN-Foam “porousKEpsilon.C”, αt is calculated in the “correctNut()” function which does:

void porousKEpsilon<BasicTurbulenceModel>::correctNut()

{
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this->nut_ = Cmu_*sqr(k_)/epsilon_;

this->nut_.correctBoundaryConditions();

//- Correct alphat before nut is stabilized

this->Prt_ = dimensioned<scalar>::lookupOrDefault

(

"Prt",

this->coeffDict(),

1.0

);

this->alphat_ = this->rho_*this->nut_/this->Prt_;

this->alphat_.correctBoundaryConditions();

if (nutStabilization_)

{

this->nut_ +=

pos(structure_)*FSPair_.fluidRef().magU()*DhStructPtr_()/

laminarReStructPtr_();

this->nut_.correctBoundaryConditions();

}

fv::options::New(this->mesh_).correct(this->nut_);

// BasicTurbulenceModel::correctNut(); //- Eh, I don’t want other things

// messing with the stabilized nut

}

This shows that αt is correlated to µt, rather than being taken from the thermophysical
properties of the fluid. However, it would seem that the subscale structures heat transfer
terms correctly use the µ in their correlations. This would mean that the solid-fluid heat
transfer equations in GeN-Foam are likely correct, but the fluid-fluid heat transfer equations
are missing a conduction term due to a simplifying assumption that advection dominates
conduction heat transfer. The dimensionless number to quantify the relative importance of
advection to diffusion is known as the Peclèt number (Pe) [Huysmans and Dassargues, 2005].
One possible formulation is:

Pedp =
dpuD
α

= Redp Pr (4.97)

A high Pe would mean that advection is much more important than conduction for heat
transport. We can use typical Re and Pr found in FHRs to estimate Pe in the pebble bed.
Typically in FHRs, one can expect Pr of about 16 and Re of 100 to 2250 [Dave, Sun, and
L. Hu, 2020]. Therefore, a plausible lower bound for Pe is 1600, which can be found in
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natural circulation. For forced circulation, Pe is even higher because of higher Re. Given
that Pe is at least 1000 in either case for the pebble bed, we can justify that neglecting
conduction heat transfer between adjacent fluid elements would not significantly impact
heat transfer calculation. One can nondimensionalise the energy transport equation to see
that the conduction term is scaled by 1

Pe
[April Novak, 2020; Bejan, 2013].

For its intended purpose of modelling heat transport in porous media, GeN-Foam’s porous
media model works well as thermal conductivity is very small for flow in porous media as
compared to dispersion from mixing and advection. GeN-Foam also allows the user to define
a heat transfer coefficient via a Nusselt Number correlation between solid and fluid. These
would include the Wakao Correlation. The heat transfer coefficient h is then calculated
using fluid thermal conductivity and a system length scale to dimensionalise the Nusselt
Number. Hence, the porous media thermal transport does perform its job well, but would
have problems being adapted for use in modelling heat transfer regimes where conduction is
dominant.

One example is when Re ≪ 1. This happens perhaps when flow stops completely during
salt freeze. In this case, conduction can no longer be neglected and the porous media
equations as shown in GeN-Foam can no longer apply. For our case study of the reactor,
we minimally have rates of circulation typical of natural convection. Hence, neglecting
conduction along the direction of flow is a safe assumption. The other case is where radial
conduction is considered. If we consider flow to be negligible in the radial direction, then
radial conduction becomes important. This would result in higher peak temperatures in the
core as high temperature fluid in the center of the core would not diffuse into the peripheral
fluid regions. The end result is that we have a higher peak temperature in the core and
the fluid. This could perhaps be a conservative assumption from the standpoint of safety.
Hence, one need not worry too much about this issue, and any sensitivity study for this can
be relegated to future work. Therefore, GeN-Foam should not severely impact heat transfer
results unless Re ≪ 1.

Nevertheless, conduction is modelled where it is most important: the boundary layers.
Again, these are are accounted for via user defined empirical correlations describing subscale
structure heat transfer between solid and fluid. So while conduction is neglected, GeN-Foam
porous media equations may still serve as a good approximation for most transients. For
example, GeN-Foam results are found to be in good agreement with TRACE for unprotected
loss of flow (ULOF) and unprotected transient OverPower (UTOP) in the original GeN-Foam
paper [Fiorina, I. Clifford, et al., 2015]. Furthermore, with a loss of conduction between
volume elements in the fluid, the overall heat transfer rate from the core would be lower
than if there was conduction. This provides us with a more conservative estimate of heat
removal. Hence, one could argue that despite this simplification, GeN-Foam is still reasonably
useful for transient analysis. Of course, it would be ideal to add the thermal diffusivity or
non turbulent thermal conductivity term back into the energy equation in future work to
account for radial conduction from the fluid into and from the graphite blocks.

These thermal hydraulics models can be modified by the user and the source code can
be recompiled and used. This would of course take more time and testing to ensure that the
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modified code works correctly. Due to time constraints, these are out of scope for this work
and relegated to future work.

Conclusion for why I chose GeN-Foam

Despite some of the caveats in using GeN-Foam, the flexibility and accessibility it offers far
outweighs the cost of having to use software with a paywall. I have opted to accept and
use GeN-Foam with its existing caveats without modifying the source code for expediency
in this work. This is because it would not severely impede the process of deriving a transfer
function from the frequency response test of the simulated GeN-Foam reactor. We could
always improve the fidelity of the multiphysics model in future work and use a similar
process to derive a data driven surrogate model for controller design.

Geometry and Meshing Tools

It is important to consider geometry and meshing because the same geometry used for MGXS
generation in OpenMC needs to be imported into mesh construction in GeN-Foam.

For geometry construction in OpenMC, there was a choice to use Computer Aided Design
(CAD) software or Constructive Solid Geometry (CSG) for geometry construction. I used
CSG because I was intending to generate a simple geometry for the reactor. CSG works
quickly for such a situation. This geometry is easy to replicate in CAD software.

For GeN-Foam mesh construction, it is convenient to use FOSS tools with Graphical
User Interfaces (GUI) for GeN-Foam and OpenFOAM.This is more convenient than Open-
FOAM’s command line tools such as blockMesh and snappyHexMesh for mesh construction.
Therefore, FreeCAD [Riegel, Mayer, and Havre, 2016] was used for geometry construction
Salome’s TetGen platform was chosen for generating a tetrahedral mesh [Lee, Park, and
S. W. Kim, 2014] from that geometry.

Conclusion for Software Choices and Multiphysics Models

I have chosen GeN-Foam and OpenMC for multiphysics simulation because they are released
under FOSS licenses. This allows academic researchers who use them to have maximum flex-
ibility and accessibility. OpenMC’s CSG is used for geometry construction while FreeCAD
and Salome Platform’s TetGen are used to reconstruct this same geometry in GeN-Foam.
With the software choices decided upon, we can explore some principles for reactor simulation
and construction.
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4.10 Design Principles for Arbitrary Reactor

Construction

Overview

The reactor design principles are laid out in this section, this pertains mainly to the geometry
and scaling for the reactor. As we have already discussed reactor physics to a fair degree,
we will not repeat the discussion here.

We call the reactor here the arbitrary reactor. It is meant to be a scaled up version of
CIET’s Heater with some neutronics feedback added. As there are several mechanisms of
neutronics feedback, development of a fully functional simulated neutronics feedback con-
troller which can work for all transients may be challenging. To begin construction of such
a controller, we want to break the problem down into segments and apply the rapid pro-
totyping approach [Blandford et al., 2020] so that development can be expedited. Rapid
prototyping usually involves iterative development, where we construct imperfect models to
learn more about the design process so that the next model is better. What this means is
that we would build a vastly simplified model and controller first, and then improve upon this
model over several iterations until the desired outcome is achieved. This arbitrary reactor is
merely the first of many reactor models that we can use to construct simulated neutronics
feedback controllers. Hence, the scope of transient simulation is meant to be limited.

In the first iteration, we wish to obtain simulated fuel temperature feedback behaviour
in unprotected loss of heat sink (ULOHS) transients. For simplicity, we will not change
the coolant flowrate as these may introduce additional complications in system modelling
and surrogate model development. In effect, we are modelling ULOHS without a PSP trip.
A ULOHS transient without PSP trip serves as a good starting point due to the relative
simplicity for modelling using transfer functions. Without PSP trips, the only change the
reactor would likely experience is the inlet temperature. With a PSP trip, the reactor
would be subject to a lower coolant flowrate and change in inlet temperature. The latter
model requires a multiple input multiple output (MIMO) model while the former model only
requires a single input single output (SISO) model.

As mentioned earlier, this ULOHS without PSP trip scenario is perhaps more dangerous
for the primary loop compared to a PSP trip because in the former case, the reactor is
rejecting heat at a higher rate into the metal structures. Therefore, it is a very important
important transient to study. Thus, we have additional motivation to test the developed
arbitrary reactor for this particular transient. We also want to develop the arbitrary reactor
in such a way that we can scale it for use in CIET.These goals drive the design of the
arbitrary reactor.

Of course, the ultimate goal is to demonstrate the utility of the digital twin of CIET
(or at least just its heater for now) in expediting something as complicated as simulated
neutronics feedback controller development. To do this, we will only be going through one
such iteration.
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Scaling to CIET

The arbitrary reactor must be designed such that it is scalable to CIET.CIET was originally
meant to be a scaled down IET of the Pebble Bed Advanced High Temperature Reactor
(PB-AHTR) [I. M. B. Johnson, 2022], one could use a customised scaling methodology to
scale up CIET into a prototypical FHR design as was envisioned for the Mark II PB-FHR
reactor [I. M. B. Johnson, 2022].

One of the limitations of CIET is that its heater, at its time of operation, is only 10
kWth. Hence, we must ensure that the arbitrary reactor’s power output scales to this power
output or less. This is because the reactor power output might spike to a level higher than
its designed power output during unprotected transients. If we wish to enable ourselves to
simulate such power spikes, then we cannot use the full heater power during steady state.
For now, I will just assume the steady state power of CIET is 5 kWth.

We then need the arbitrary reactor to somehow scale down to this representative power
level of CIET’s heater. There are several ways this can be done. One of them is to use CIET’s
original scaling methodology [Zweibaum, J E Bickel, et al., 2015; Zweibaum, Guo, et al.,
2016; Bardet and Per F Peterson, 2008]. This is the quickest and simplest way of scaling since
a precedent has been established. However, Johnson [I. M. B. Johnson, 2022] has outlined
a more comprehensive methodology for scaling which includes taking into account radiative
heat transfer scaling distortions. For this dissertation, the simpler methodology is used for
the first iteration. Future iterations of reactors based of different scaling methodology can
be used in place of this first iteration of the arbitrary reactor and then used to construct
reactivity feedback controllers for CIET.

To scale the power of the model (CIET) Pm to the power output of the prototypical
reactor Pp, we can consider the following relation:

Pm

Pp

=
ρmcpm∆TmUmL

2
m

ρpcpp∆TpUpL2
p

(4.98)

Where in equation 4.98, the subscript m represents the model (CIET) and the subscript
p represents the prototypical FHR.cp is constant pressure specific heat capacity, ∆T is char-
acteristic temperature difference, U is fluid velocity, ρ is mass density and L is lengthscale.
We can see that to determine power scaling of the arbitrary reactor to the CIET, we need
to determine the length scales, time scales, and temperature scales as well.

Temperature Scaling

For CIET’s original scaling methodology, characteristic temperatures of Dowtherm A are
scaled to FLiBe such that Prandtl Numbers are matched. For Prandtl Number of 11.7 to 18.6
for FLiBe, this corresponds to a temperature of 600 ◦C to 704 ◦C[Zweibaum, J E Bickel, et al.,
2015]. Readers should note that Therminol VP-1 and Dowtherm A are similar enough heat
transfer fluids as both of them are eutectic mixtures of Diphenyl Oxide and Biphenyl. For
the purposes of scaling at temperatures of operation, they are virtually identical [Ong, 2023].
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Likewise for Dowtherm A, a Prandtl number of 12.8 to 16.9 corresponds to a temperature
of 80 ◦C to 111 ◦C.

The temperature difference is chosen by matching the Grashof number between the pro-
totypical reactor and CIET.The Grashof number based on a lengthscale L is [Bejan, 2013]:

GrL =
gβ∆TL3

ν2
(4.99)

In equation 4.99, ∆T is the characteristic temperature difference between the hot and cold
regions, β is coefficient of thermal expansion, ν is kinematic viscosity and g is gravitational
acceleration. For temperature difference, β∆T in equation 4.99 is matched between both
FLiBe and Dowtherm A [Bardet and Per F Peterson, 2008]. The ratio β is fixed when using
Dowtherm A to simulate FLiBe, and the ∆T of the FHR is specified, leaving ∆T of the
Dowtherm A to be determined. The remaining terms in the Grashof number are matched
when matching Re.

The overall effect is that a 1K temperature difference in FLiBe represents a 0.3 K tem-
perature difference in Dowtherm A Zweibaum, J E Bickel, et al., 2015.

Time Scaling

Time distortions were done to preserve the Strouhal number (Sr13) [Bardet and Per F Pe-
terson, 2008]. The Strouhal number can be written as:

Sr =
fL

U
(4.100)

In equation 4.100, L represents a characteristic length, U represents characteristic fluid
velocity and f represents a frequency [Ahlborn, Seto, and Noack, 2002]. The Strouhal number
has more to do with vortex shedding [Ahlborn, Seto, and Noack, 2002] than heat transfer,
but it was still used in CIET’s scaling methodology [Bardet and Per F Peterson, 2008].
Hence, the input and output frequencies are also scaled according to this. 1 second of time
in a FLiBe system represents 0.67s of time in a Dowtherm A system. Therefore, 1 Hz in a
FLiBe system represents 1.5 Hz in a Dowtherm A system.

Length, Velocity and Flowrate Scaling

CIET was scaled to a length scale of about 0.45 times the height of a prototypical FHR
[Bardet and Per F Peterson, 2008]. To obtain similitude, the Reynold’s and Froude number
of CIET and the prototypical FHR must match given this length scaling of approximately
0.45. Froude number is used to compare viscous forces to gravity forces [Bardet and Per
F Peterson, 2008] and therefore scale the head gain and loss in the loop respectively. To
achieve the same Froude and Reynold’s number given a length scaling factor of 0.45, 1 m3/s
of FLiBe volumetric flowrate should correspond to 0.122 m3/s of flowrate in Dowtherm A.

13Strouhal number is sometimes abbreviated as St [Ahlborn, Seto, and Noack, 2002], but I choose Sr to
avoid confusion with the Stanton Number which is also commonly abbreviated as St[Bejan, 2013]
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Power Scaling

Now that the temperature scales, length scales and time scales have been determined, power
scaling can then be derived from temperature and volumetric flowrate scaling provided that
the ratio of the volumetric heat capacities remain relatively constant at the relevant tem-
peratures.

For CIET, Dowtherm temperatures range from 80 ◦ C to 110 ◦ C. With a mass flowrate
of 0.18 kg/s, this corresponds to a power of 9.415 kW, which is almost the maximum power
allowed by the CIET heater of 10 kW without upgrades14 [Zweibaum, Guo, et al., 2016].
This corresponds to a FLiBe temperature difference of about 100 K, and a FLiBe flowrate
of 2.88 kg/s , and a power of 696 kW. This shows a power scaling of about 1.33 % which is
a reasonable estimate of the 1.6% power scaling described in Zweibaum’s paper [Zweibaum,
J E Bickel, et al., 2015; Zweibaum, Guo, et al., 2016] given round off errors and scaling
differences in temperature.

Of course, considering that we want to scale to 5 kW in CIET’s heater, we might have
the reactor power for the arbitrary FHR to be around 300 kW. The FLiBe flowrate through
the core would be closer to 1.44 kg/s.

Simplified Geometry

For this arbitrary FHR, the reactor geometry should be extremely simple to construct.
Therefore, we will choose a simple cylindrical geometry to represent the reactor.

Lack of Control Elements

For such ULOHS transients, control rods are not important, at least for this first iteration.
In such a transient, the primary system is not be able to remove heat from the system,
and the system is unable to SCRAM in time to reduce heat output. As mentioned earlier,
ULOHS transients mean that the PSP does not trip. This both simplifies the simulation and
also allows us to explore the severe transient where the PSP does not trip. In this transient,
the reactor should experience increased temperatures as heat removal from the primary
loop through the CTAH or some other heat exchanger system is compromised. As a result,
core temperatures rise, and this should shut down the reactor without intervention from
control rods. The concern is whether this rise in temperature would result in fuel damage or
structural damage, especially if the PSP does not trip. For such ULOHS transients, control
rods are not needed.

For this work, we are only constructing a reactor for testing ULOHS effects (without
PSP trip) in the primary loop. Additional capabilities are to be added in future iterations.
Hence, we have not added control rods in this iteration of arbitrary reactor.

14It may be possible to upgrade CIET’s heater to 20 kW, but this is out of scope of discussion for this
work.
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Double Heterogenity

We will want the reactor to behave as closely as possible to an FHR with pebble fuel filled
with TRISO particles and cooled with molten FLiBe salt. Therefore, we want to make some
effort to mimic double heterogenity effects and packing fractions in the pebble fuel so that
overall reactivity of the pebble bed is preserved. Hence, a transform using principles of
Ring RPT or RPT will be used to speed up Monte Carlo calculations. To further speed
up construction and calculation, we will therefore use packing fractions similar to randomly
packed pebble beds by arranging pebbles in a hexagonal lattice for OpenMC calculations.
This packing fraction is around 0.605, which is reasonable for randomly packed pebble beds
[Hao, Yang, and Y. Cheng, 2022; Abedi and Vosoughi, 2011].

Simplified MGXS Zones

In terms of MGXS generation, we build the reactor such it is split into four regions or cell
zones:

• fuel cell

• reflector cell

• entrance FLiBe cell

• exit FLiBe cell

While it would be ideal to have the pebble bed split into many different cell zones to
account for neutron importance, packing heterogenity and heterogenity in burnup, including
such details would not contribute to the main aim of the test. Here, we merely wish to
demonstrate that high fidelity models can be used to build surrogate models for use in
simulated neutronics facilities. Ultimately, this is meant to demonstrate a use case for the
Type I Digital Twin of CIET.Therefore, we only wish to have a single MGXS cell zone
represent the entire pebble bed so as to expedite development. This will not mean that each
zone shares the same homogeneous cross section, but rather that each zone shares the same
cross section temperature dependence.

Simplified Energy and Angular Discretisation

For purposes of this dissertation, we want the multiphysics simulation to be able to run
quickly without use of supercomputers. Furthermore, I did not want to introduce the extra
complication of coupling two separate simulation programs with the use of a wrapper at this
stage. Hence, we are not going to couple Monte Carlo code to thermal hydraulics directly.
We will instead use the Monte Carlo Code OpenMC [Romano, Horelik, et al., 2015] to
generate multigroup cross sections (MGXS) for each region in the reactor so that GeN-Foam
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can use those cross sections for a two group diffusion simulation. This greatly simplifies
energy and angular dependence of neutrons within the reactor.

For FHRs, we can use the Maxwell Boltzmann curve to decide what energy is an appro-
priate boundary for fast and thermal groups. Based on the gFHR flux spectrum [Kile et al.,
2022] and previous TMSR-SF simulations [X. Wang, 2018], 3 or 4 eV would also be a decent
choice to separate fast and thermal groups. 4 eV is of significance also because that is where
the low energy resonance region for U-238 begins. This can be seen in TMSR-SF spectra
[X. Wang, 2018].

Conclusion of Arbitrary Reactor (FHR) Principles of
Construction

We have discussed a very simple approach to quickly constructing a multiphysics model of an
Arbitrary FHR which I will just call the arbitrary reactor. The reader should note that this
reactor is meant to be a representative model of higher fidelity reactor simulations which
would account for energy and spatial dependence of flux and cross sections. Therefore,
this arbitrary reactor is rather uses many simplifying assumptions and is rather crude in
construction design as well as fidelity.

For now, we shall use a cylindrical arbitrary reactor with simplified cell zones and we will
not include control rods for the time being. We also take measures such as RPT and heat
transfer medium homogenisation to simplify the doubly heterogeneous TRISO pebble bed
geometry. Furthermore, we also neglect phenomena such as reactor poison accumulation,
burnup, structural expansion and decay heat so as to expedite model construction. Model
fidelity can be improved upon in future iterations of the arbitrary FHR.

4.11 Transfer Function Construction and Scaling

Overview

For this work, we are using transfer functions as a data fit surrogate with which to construct
simulated neutronics feedback controllers. The frequency response tests will involve using
PRBS to perturb the arbitrary FHR to obtain a transfer function via the Bode Plots as
described in the literature review.

We are interested in ensuring CIET’s heater has essentially the same transfer function of
inlet to outlet temperature as the scaled arbitrary FHR.In essence:

Garbitrary FHR scaled inletT to outletT (s) = GCIET heater inletT to outletT (s) (4.101)

The heater itself would have a heater power to outlet temperature transfer function at a
set flowrate [De Wet and Per F Peterson, 2020]. To ensure the behavior of the heater reflects
the scaled arbitrary FHR, a feedforward controller will need to be developed to control heater
power based on heater inlet temperature.
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Garbitrary FHR scaled inletT to outletT (s) =

GCIET heater heaterPower to outletT (s)GCIET heater inletT to heaterPower(s)
(4.102)

Where GCIET heater heaterPower to outletT (s) is the ideal transfer function of the feedforward
controller.

Controller Design Principles

DeWet has provided some transfer functions for heater power to outlet temperature [De Wet
and Per F Peterson, 2020]:

G(s) = e−4s 3.217 ∗ 10−5s3 + 6.675 ∗ 10−7s2 + 1.139 ∗ 10−8s+ 2.423 ∗ 10−11

s5 + 0.2251s4 + 0.01688s3 + 0.0003548s2 + 3.057 ∗ 10−6s+ 1.632 ∗ 10−9

Should we find the scaled arbitrary FHR transfer function for inlet to outlet temperature
Garbitrary FHR scaled inletT to outletT (s), then we should be able to find the feedforward controller
transfer function:

GCIET heater inletT to heaterPower(s) =
Garbitrary FHR scaled inletT to outletT (s)

GCIET heater heaterPower to outletT (s)
(4.103)

It is noteable that we will be inverting a time delay of 4 seconds. This is because the
heater power to outlet temperature transfer function in equation 3.65 contains a 4 second
time delay that we wish to invert. Inversion can be approximated with use of a 2nd order
Padé approximation [Vajta et al., 2000]:

e−cs ≈ 12− 6cs+ (cs)2

12 + 6cs+ (cs)2
(4.104)

Vajita recommends a modified Padé approximation which avoids an output signal at
t = 0s and it can be written as [Vajta et al., 2000]:

e−cs ≈ 6− 2cs

6 + 4cs+ (cs)2
(4.105)

Or in the first order approximation [Vajta et al., 2000]:

e−cs ≈ 1

1 + cs
(4.106)

The first approximation just approximates the time delay as a low pass filter, which
makes it rather convenient.
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The second thing we have to note is the numerator of the heater power to outlet tempera-
ture transfer function, which now becomes the denominator when inverted in the feedforward
controller. We would ideally want to design a stable controller to emulate reactivity feed-
back, unless of course that feedback causes the system to be actually be unstable. In either
case, we wish to find the stability of the feedforward heater controller with inverted transfer
function. To determine stability, we need to find the roots of:

3.217 ∗ 10−5s3 + 6.675 ∗ 10−7s2 + 1.139 ∗ 10−8s+ 2.423 ∗ 10−11 = 0

Using MATLAB’s root function, the roots are −0.0092+0.0150i, −0.0092−0.0150i, and
−0.0024. The first two roots pertain to a sinusoidal function while the second root indicates
(s+ 0.0024) is the other factor. These go to show that when the polynomial appears in the
denominator, the poles are such that the transfer function is stable. If the roots contain
unstable poles, a different procedure would have to be used. However, I will not cover the
stabilisation procedure in this work.

Lastly, for transfer functions, the order of the denominator should be greater or equal to
the numerator for it to be physically realisable and proper. We could add some simple low
pass filters to make it physically realisable if need be. For controllers however, we note that
the differential component of a Proportional Integral and Derivative (PID) controller is in
itself improper, so the transfer function of the controller does not always have to be proper.

Arbitrary FHR Transfer Function Construction and Verification

We will use the frequency response derived Bode Plots to obtain a transfer function. We
then verify those transfer functions with a simple step response test of both the arbitrary
FHR and the derived transfer function.

To check if nonlinearities exist, we can alter the amplitudes of frequency response and
step tests to check the limits of applicability for the resultant transfer function.

Arbitrary FHR Transfer Function Scaling

These transfer functions will need to be scaled for use in CIET so that they can be used. The
simplest way to achieve this is to scale the time domain data directly before deriving a trans-
fer function. Based on the time scales, we can scale time intervals ∆t by 2/3 approximately,
and based on the temperature scales, we can scale the using a linear relationship between
Therminol VP-1 temperature and FLiBe temperature assuming that 600◦C in FLiBe trans-
lates to 80 ◦C in Therminol VP-1, 700◦C in FLiBe translates to 110 ◦C in Therminol VP-1.
This results in:

Ttherminol V P−1 = mTFLiBe + C

Where:
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m =
110− 80

700− 600
= 0.3(dimensionless)

c = 80− 0.3 ∗ 600 = −100◦C

The final equation to translate all the time domain data is:

Ttherminol V P−1(
◦C) = 0.3TFLiBe(

◦C)− 100 (4.107)

We can then repeat the transfer function construction process using the scaled test data.

4.12 Conclusion of Literature Review and Principles

for Simulated Neutronics Facility Based on Data

Based Surrogate Model

The construction of simulated neutronics facilities based on data fit surrogate models is a
potential improvement over PRKE based simulated neutronics facilties. Nevertheless, the
process of constructing a simulated neutronics facility in this manner proves to be a non
trivial process. Therefore, it serves as a suitable case for which to demonstrate the utility of
a digital twin for CIET in expediting new developments.

Here, we have discussed principles we can use to derive surrogate models for use in con-
structing a simulated neutronics controller. We have discussed the various types of surrogate
modelling including hierarchical, data fit and projection based surrogate modelling. We also
discuss the methods and principles for constructing the higher fidelity model. In this case, it
is an FHR multiphysics model based on porous media simulated in GeN-Foam using multi-
group diffusion model. This model becomes the basis from which we deriving the data for
the data fitted surrogate model. Lastly, we describe how the information from the data fitted
surrogate model can be scaled converted into information for controller design specifically
for CIET.We also discussed the simplifications made in order to expeditiously create a first
iteration of the mulitphysics arbitrary reactor simulation.

Now that we have sufficiently covered these general aspects of arbitrary FHR construction
as well as scaling and conversion of its reactor feedback into a transfer function, we can now
proceed to the specifics of the arbitrary FHR, its test results and transfer functions.
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Chapter 5

Multiphysics Model and Surrogate
Model Construction and Results

5.1 Introduction

In this chapter, we utilise the principles outlined in the preceding chapter to construct a
scaled transfer function based on a high fidelity multiphysics model for simulated neutronics
feedback in Integral Effects Test (IET) facilities such as the Compact Integral Effects Test
(CIET).

Firstly, we discuss methods used to construct and simulate the arbitrary pebble bed
fluoride salt cooled high temperature reactor (FHR). Secondly we systematically perturb
the high fidelity model using periodic binary signals to obtain system frequency response in
the form of a Bode plot. We then analyse the Bode plot using Matlab’s tfest function to
obtain a transfer function which is representative of data fit surrogate models one can use in
future. Thirdly, we discuss methods used in constructing a scaled transfer function for use
in CIET’s heater, or more precisely, the digital twin of CIET’s heater.

5.2 Reactor Construction Methods

Let us begin by constructing the arbitrary reactor. Figure 5.1 provides an overview of how we
go from the conceptual design to OpenMC model and then lastly to the GeN-Foam model.
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Figure 5.1: Overview of the Arbirary Reactor Design Process
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Conceptual Design

As shown in Figure 5.1, we start with the concept. The arbitrary reactor or arbitrary FHR
is designed using simple cylindrical geometry. Its pebbles are packed to a packing fraction
similar to pebble beds of 0.61 far from the wall. Its coolant enters at 600◦C and exits at
700◦C. The nominal power rating is 312.5 kW based on the constraints of CIET’s heater.
The pebbles themselves filled with TRISO.

However, simulating TRISO particles is computationally expensive to use directly in a
full core. Hence, we use a modified Ring Reactivity Physical Transform (RPT) in order to
speed up the simulation. Also, to speed up development of this first iteration, there are no
control rods designed into the reactor. They can be added in future iterations. Furthermore,
the random packing of the pebbles is simulated using a simple hexagonal lattice and the
pebbles are clipped at the boundaries. This is, once more, to save time on development of a
first iteration of the simulated neutronics controller. With these in mind, let us move on to
performing Ring RPT of the TRISO fuel pebble.

Reactivity Equivalent Physical Transform of TRISO Pebble

Preliminaries

To start constructing the pebble bed core, we first consider the TRISO pebble. Normally,
FHR pebbles are annular in design to allow for buoyancy [Cisneros et al., 2014]. In this work,
the TRISO Fuel Pebble is of a non-annular design for simplicity. The reason is because I
wanted to achieve criticality with a smaller core so that Monte Carlo simulation would be
faster. To do so, I would then need to use fewer pebbles. The only way to do so is to fill
each pebble with more TRISO particles.

TRISO Particle Properties in OpenMC

This TRISO pebble is 4cm in diameter and is separated into a region where a graphite matrix
is filled with TRISO particles, and then a separate graphite shell on the outside. The TRISO
particles themselves have a Uranium Oxycarbide (UCO) fuel kernel (U0.333C0.1667O0.5). They
are coated in shells of buffer carbon, Silicon Carbide (SiC) and Pyrolytic Carbon. Each shell
in the TRISO particle has a fixed thickness shown in Table 5.1. We also show the outer
radius of each layer in the TRISO particle in Table 5.1:
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Table 5.1: TRISO Pebble Dimensions

Material Name Outer Radius (cm) Shell Thickness
(cm)

Uranium Oxycarbide
(fuel)

0.0215 -

buffer 0.0315 0.01

Pyrolytic Carbon
(PyC1)

0.035 0.0035

Silicon Carbide (SiC) 0.0385 0.0035

Pyrolytic Carbon
(PyC2)

0.0425 0.004

We should note that the UCO is the innermost sphere in the TRISO particle, and there-
fore, it does not have a shell thickness entry. We now move on to material composition.

FLiBe Material Inputs

For FLiBe, the Lithium-7 is enriched to about 99.995%. The inputs of for FLiBe material
in OpenMC are summarised in table 5.2:

Table 5.2: FLiBe OpenMC Inputs

FLiBe (600K) FLiBe (1200K)

Density g/cm3 2.1216 1.827

6Li Fraction 0.000014286 0.000014286

7Li Fraction 0.2857 0.2857

9Be Fraction 0.14286 0.14286

19F Fraction 0.57143 0.57143

Total Fraction 1 1

Two temperatures are provided in table 5.2 because we need to account for coolant
temperature feedback. Thus, two different simulations of the pebble bed will be run at two
bounding temperatures 600K and 1200 K. This is because graphite thermal scattering data
was available at these two temperatures from the OpenMC nuclear data libraries but not
at other temperatures. Unfortunately, 600K is below the freezing point of FLiBe, thus the
density reflected in Table 5.2 is not a physically realistic density, but just an extrapolation
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of the density correlation for FLiBe at this temperature. We simply ignore FLiBe freezing
in this simulation and assume density varies linearly between 600K and 1200K. This should
not be a problem for this high fidelity model because the FLiBe temperatures do not go
below freezing point anyway.

Fuel Material Inputs

The uranium in UCO is enriched to 19.9 atom%. It is then homogenised with the carbon
and SiC layers surrounding the UCO prior to Ring RPT form “Homogenised TRISO Fuel”.
The homogenisation was done to preserve total volume of the TRISO particles. A summary
of material densities is shown in table 5.3:

Table 5.3: TRISO and Ring RPT Pebble Material Densities

Material Name Density g/cm3

Uranium Oxycarbide
(fuel)

10.5

Buffer 1.0

Pyrolytic Carbon
(PyC1)

1.9

Silicon Carbide (SiC) 3.2

Pyrolytic Carbon
(PyC2)

1.87

Graphite Matrix and
Shell

1.1995

Homogenised Triso
Fuel

2.996095

The resultant atomic fraction of important nuclides and atoms within each material is
summarised in table 5.4:
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Table 5.4: TRISO and Ring RPT Pebble Material Atom Fractions

Material Name 235U 238U 16O Carbon
(Natural
Abun-
dance)

Uranium Oxycarbide
(fuel)

0.066333 0.267 0.5 0.16667

Buffer 0 0 0 1

Pyrolytic Carbon
(PyC1)

0 0 0 1

Silicon Carbide (SiC) 0 0 0 0.5

Pyrolytic Carbon
(PyC2)

0 0 0 1

Graphite Matrix and
Shell

0 0 0 1

Homogenised Triso
Fuel

0.0076737 0.030888 0.057843 0.79166

For SiC and the Homogenised TRISO Fuel in table 5.4, the remaining material is com-
posed on Silicon with 92.2% 28Si, 4.68% 29Si, and 3.08% 30Si.

The graphite matrix with TRISO will be filled with TRISO particles using packing frac-
tion of 0.30. This means that, by volume, 30% of the graphite matrix region will be filled
with TRISO particles. Figure 5.2 shows an OpenMC plot of such a pebble surrounded
with FLiBe. Here, blue colour represents FLiBe. And for those who cannot see colour, the
outermost ring is where the FLiBe is present.
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Figure 5.2: TRISO Pebble used for Ring RPT

Homogenised Ring RPT Temperature Considerations

The temperature at which the RPT was done was 600 K because that was a convenient tem-
perature which had thermal scattering data in OpenMC’s nuclear data libraries. Freezing
phenomena and its associated density changes are ignored for this case because we do not in-
tend to simulate FLiBe temperatures below freezing point anyway. Ideally, we would perform
the RPT at least 873 K which is a typical coolant inlet temperature of the FHR.However,
thermal scattering data in this temperature range was missing and needed to be generated by
NJOY.This was too time consuming to do for this “dry run”. Such things can be relegated
to future work.
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Homogenised Ring RPT compared to Traditional Ring RPT

To homogenise the pebble and simplify its geometry, a variant of the Ring RPT method [Lou,
Yao, et al., 2020; Lou, Chai, et al., 2020] was used. In traditional Ring RPT, the TRISO fuel
particles are combined into a ring. These fuel particles are not necessarily homogenised with
the shell layers of the TRISO particle. Initial trials show that performing Ring RPT method
without homogenisation of the TRISO particle with its shell layers failed for spherical fuel
because the maximum radius of the Ring RPT method and the minimum radius of the Ring
RPT method produce a k∞ range that did not bound the k∞ of the TRISO Pebble1. For
traditional Ring RPT, one lowers the spatial self shielding effects by increasing the radius of
the ring. We aim to increase the radius of the ring or spherical shell until the k∞ matches
that of the explicitly modelled TRISO pebble. However, the maximum radius of the ring
is limited by the radius of the pebble itself. I found that even when maximising the radius
of the ring, the k∞ of the Ring RPT pebble exceeds that of the k∞ of the TRISO pebble.
This is likely because there is too much self shielding in the Ring RPT pebble as compared
to the TRISO pebble. This agrees with results in literature which have also concluded that
this same limitation for Ring RPT existed for spherical fuel [Lou, Chai, et al., 2020]. As I
had already written code for the Ring RPT method, I wished to find a method which could
reuse as much of that code as possible for convenience and expediency. I had also initially
thought that I was not doing the Ring RPT method correctly and that perhaps the entire
TRISO Particle with its shell needed to be homogenised. What I then decided to do is to
homogenise the TRISO Fuel Kernel with its layers of Silicon Carbide, Pyrolytic Carbon and
Graphite into a single Ring Layer or Shell Layer. Then I would perform Ring RPT from
here. This approach turned out to be successful. I call this the “homogenised Ring RPT”
approach. On hindsight, homogenised Ring RPT further lowers the spatial self shielding
effects by partially dispersing the fuel with the carbon and silicon moderator materials, and
then it allows the user to further tweak the self shielding experienced by the fuel by adjusting
the radius. Further studies into this homogenisation method may be worthwhile, but are
out of scope for this dissertation. Figure 5.3 compares these two approaches:

1In this trial though, I homogenised the shell layers as that would likely produce negligible change in k∞
[Fratoni, 2008].
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Figure 5.3: Homogenised Ring RPT vs Traditional Ring RPT

In comparison to traditional Ring RPT, homogenised Ring RPT partially homogenises
the dispersed TRISO Fuel with graphite and SiC similar to traditional RPT [Lou, Yao, et al.,
2020], but instead of concentrating material in the centre of the fuel pebble, it is smeared
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out into a Ring or Shell Layer similar to Ring RPT [Lou, Chai, et al., 2020]. As mentioned
before, the user then varies the radius of the ring or spherical shell to adjust the degree to
which the fuel experiences spatial self shielding and therefore k∞. This partially homogenised
Ring RPT approach was able to reproduce k∞ for pebble fuels and significantly sped up the
simulation process.

A second ad hoc modification I made was to include an extra layer of FLiBe into the
Ring RPT homogenisation process. This was initially done because FLiBe also moderates
the neutron spectrum in addition to the carbon and silicon within the fuel. This process is
best illustrated by Figure 5.4:
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Figure 5.4: Process of Homogenised Ring RPT in OpenMC

Including FLiBe in the homogenised Ring RPT process was a mistake as Ring RPT in
literature would just include homogenising the pebble such that k∞ of the Ring RPT would
match k∞ of the TRISO Pebble [Lou, Chai, et al., 2020; Lou, Yao, et al., 2020]. This
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did not take into consideration the nature or moderation effects of the coolant or reflector
surrounding the pebble. However, in the interest of time, I decided that this mistake was
not critical to correct for this first iteration, and just let it pass in the interest of increasing
development speed so that I did not have to rewrite my python code again. With this in
mind, I just decided to carry on performing Ring RPT using the current setup.

Eigenvalue Calculations

To perform my variation of Ring RPT, I first performed an eigenvalue calculation for the
reference TRISO Pebble with FLiBe. This yielded the following results in OpenMC.

=======================> TIMING STATISTICS <=======================

Total time for initialization = 2.0080e+01 seconds

Reading cross sections = 6.9374e-01 seconds

Total time in simulation = 2.0993e+04 seconds

Time in transport only = 2.0990e+04 seconds

Time in inactive batches = 1.0957e+03 seconds

Time in active batches = 1.9897e+04 seconds

Time synchronizing fission bank = 2.5006e-01 seconds

Sampling source sites = 2.1309e-01 seconds

SEND/RECV source sites = 3.4434e-02 seconds

Time accumulating tallies = 1.7900e+00 seconds

Time writing statepoints = 8.0442e-01 seconds

Total time for finalization = 4.7082e+00 seconds

Total time elapsed = 2.1023e+04 seconds

Calculation Rate (inactive) = 91.2685 particles/second

Calculation Rate (active) = 95.4925 particles/second

============================> RESULTS <============================

k-effective (Collision) = 1.36904 +/- 0.00087

k-effective (Track-length) = 1.36826 +/- 0.00138

k-effective (Absorption) = 1.36903 +/- 0.00067

Combined k-effective = 1.36902 +/- 0.00066

Leakage Fraction = 0.00000 +/- 0.00000

I used a search for keff method in OpenMC’s application program interface (API). Some
data for this is plotted in figure 5.5.
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Figure 5.5: Search for keff data using OpenMC API for Ring RPT, error bars are 1σ

This was an eigenvalue calculation in OpenMC with 200 batches, 10 rejected batches,
and 10,000 particles per batch2. The initial fission source was a distributed fission source
that spreads source sites somewhat evenly among fissionable material within the pebble.
This would ensure that the source sites of the Monte Carlo calculation would reach a more
even distribution with fewer batches as compared to a point source in the beginning. Also,
using such a source would help the Monte Carlo simulation converge for dispersed fuel such
as TRISO fuel pebbles. Indeed, this initial fission source distribution among the fuel, the
k∞ of an OpenMC simulation for 10 and 50 batches were not statistically distinguishable.
For 10 batches rejected in the TRISO pebble, 200 batches total k∞ = 1.36902 ± 0.00066

2For better source convergence, I should have rejected 50 batches. I did not redo most of these calculations
including my neutron spectrum plots for expediency and convenience. For full core MGXS generation,
however, I rejected 50 batches.
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whereas for 50 batches rejected, 200 batches total, k∞ = 1.36828± 0.00080. For the TRISO
pebble with reflective boundary conditions, the difference in k∞ between using 50 inactive
batches and 10 inactive batches was statistically insignificant. This is likely because we used
a volumetrically dispersed source initially, and also that the reactor (or pebble) geometry
was small compared to a full core which necessitated about 50 inactive batches. I used 10
discarded batches because they made the iterative process search for keff process faster.

I then iteratively obtained a homogenised Ring RPT pebble of specified inner radius at
1.4933593750000003 cm. This is the merely value given by the search for keff API and is
not necessarily indicative of the level of precision needed to perform Ring RPT transforms.

This resulting RPT pebble was also subject to an eigenvalue calculation which yielded
the following results, again with 10 batches rejected:

=======================> TIMING STATISTICS <=======================

Total time for initialization = 7.8420e-01 seconds

Reading cross sections = 7.4211e-01 seconds

Total time in simulation = 1.1323e+02 seconds

Time in transport only = 1.1292e+02 seconds

Time in inactive batches = 4.4105e+00 seconds

Time in active batches = 1.0881e+02 seconds

Time synchronizing fission bank = 1.9981e-01 seconds

Sampling source sites = 1.6241e-01 seconds

SEND/RECV source sites = 3.4997e-02 seconds

Time accumulating tallies = 4.5674e-02 seconds

Time writing statepoints = 9.2186e-03 seconds

Total time for finalization = 1.7580e-03 seconds

Total time elapsed = 1.1407e+02 seconds

Calculation Rate (inactive) = 22673 particles/second

Calculation Rate (active) = 17460.9 particles/second

============================> RESULTS <============================

k-effective (Collision) = 1.36841 +/- 0.00117

k-effective (Track-length) = 1.36763 +/- 0.00134

k-effective (Absorption) = 1.36870 +/- 0.00070

Combined k-effective = 1.36863 +/- 0.00070

Leakage Fraction = 0.00000 +/- 0.00000

For 10 batches rejected in the homogenised Ring RPT pebble, 200 batches total k∞ =
1.36863±0.00070 whereas for 50 batches rejected, 200 batches total, k∞ = 1.36880±0.00080.
Hence, even at 10 inactive batches, we may consider that the fission source has converged.
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The residual of the Ring RPT k∞ value and the TRISO Pebble k∞ is 0.00039 or about 39
pcm. This is within 1σ or 1 standard deviation of either the k∞ calculation for the TRISO
fuel pebble. Thus, the k∞ are not statistically different from one another. We can then
conclude that Ring RPT was successfully performed.

Brief Investigation of Self Shielding Deviation between TRISO Pebble and its
Homogenised Ring RPT Pebble Counterpart

While the Ring RPT was performed so k∞ was matched, I found it important to check
that the self shielding phenomena was at least partially accounted for using the Ring RPT
method. To ensure that Ring RPT could somewhat reflect the self shielding phenomena in a
TRISO Fuel Pebble, I decided to check if the Ring RPT fuel pebble could produce a similar
degree of thermalisation as the TRISO Fuel Pebble. This is because the resonance escape
probability p directly impacts the degree of thermalisation within a neutron spectrum. For
a critical reactor, if there is a low resonance escape probability, then it is likely that a larger
proportion of fission neutrons originate from fast fission. In other words, the fast fission factor
ε has to be higher. In this case, we should observe a higher proportion of fast neutrons in
the neutron spectrum as compared to thermal neutrons. Therefore, I wanted to inspect the
ratio of fast neutrons to thermal neutrons, using the neutron spectrum. A second way to
quickly check if self shielding was accounted for was to inspect how the terms in the four
factor formula differ between the RPT pebble and TRISO pebble. We shall discuss both of
these here.

The reader should note that this analysis is rather brief. This is because investigating the
deviation in self shielding effects is not the main aim of this dissertation. Hence, any further
detailed analysis on self shielding deviation due to the RPT transform is out of scope. This
means that comparing quantities such as the sensitivity of p to temperature will not be done
for the RPT pebble and TRISO pebble. Analysis of quantities like these can be relegated
to future work.

Neutron Spectrum Let us begin by comparing the neutron spectrum of the TRISO fuel
pebble and homogenised ring RPT pebble over the graphite region, FLiBe region and fuel
regions. The graphite region plots are presented in Figure 5.6:
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Figure 5.6: Neutron Spectrum for k∞ for Pebble Fuel in Graphite

The neutron spectrum is plotted as Neutron Flux per Unit Lethargy in units neutron-cm
per source neutron as is indicated in OpenMC documentation in the abscissa. The ordinate
is the Neutron Energy in eV. Of course, when it comes to tallies in OpenMC, we call the
energy range where we collect the “flux scores” as “energy bins” [Romano and Forget, 2013;
Romano, Horelik, et al., 2015]. Therefore, the ordinate is called Neutron Energy Bin in eV.
Do note that only 100 bins are used because we only want to visually inspect the qualitative
shape of the graph and ensure that it is similar so that the degree of thermalisation of the
neutron spectrum is similar.

We also see the same trend in the FLiBe region shown in Figure 5.7:
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Figure 5.7: Neutron Spectrum for k∞ for Pebble Fuel in FLiBe

In Figure 5.7, the neutron spectrum shapes for both ring RPT and TRISO pebble are
quite the same shape. However, the total flux for the TRISO Pebble tends to be lower than
the RPT version for all cases. We also see the same trends in the fuel region in Figure 5.8:
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Figure 5.8: Neutron Spectrum for k∞ for Pebble Fuel in TRISO Fuel and Homogenised
TRISO Ring

The reader should note that for the fuel region plotted by Figure 5.8, I consider the
TRISO Uranium Oxycarbide (UCO) kernel, SiC, buffer, and pyrolytic carbon layers all part
of the “fuel region” since these layers are homogenised into the homogenised fuel region for
the homogenised fuel layer for ring RPT fuel. This was done specifically for Figure 5.8 so
that similar volumes and amounts of materials were used for tallying flux in both pebbles.

We can see that neutron spectrum in graphite regions, fuel regions and FLiBe regions
bear a similar neutron spectrum shape qualitatively. Therefore, we qualitatively see the ratio
of neutrons in the fast region, the resonance region and thermal region to be more or less
equal. The characteristic Boltzmann Distribution curve in the thermal region can also be
seen in both Ring RPT pebble and the reference TRISO Fuel pebble. The only difference is
that the flux per source neutron is higher for the Ring RPT pebble than the reference fuel
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pebble over the whole spectrum3.

Four Factor Formula Differences Between TRISO Pebble and Ring RPT Pebble
For now, we see that the neutron spectrum over between both TRISO pebble and Ring RPT
pebble is more or less similar in terms of shape, except that the Ring RPT pebble has a
higher flux value at all energies as compared to the original TRISO pebble. This could be
due to discrepancies in resonance escape probability p for the Ring RPT pebble as compared
to the TRISO pebble. To investigate whether this is the case, we can use OpenMC tallies to
calculate terms in the six factor formula. For infinite medium, as we are calculating k∞, the
four factor formula would suffice. The four factor formula for infinite multiplication factor
is [Duderstadt and Hamilton, 1976]:

k∞ = εpfη (5.1)

Where ε is the fast fission factor, p is the resonance escape probability, f is the thermal
utilisation factor and η is the fuel reproduction factor. We can estimate each term using
tallies in OpenMC.When we multiply them together, we should get the infinite multiplication
factor k∞, which can be expressed in terms of tallies as:

k∞ =
# neutrons produced

# neutrons lost
=

∫
reactor vol

dV
∫
All energies

dEνΣfϕ∫
reactor vol

dV
∫
All energies

dEΣabsorptionϕ
(5.2)

In the context of discussing k∞, ν refers to number of neutrons produced on average per
fission event, not kinematic viscosity. Σf refers to the macroscopic fission cross section, usu-
ally in units cm−1 for OpenMC.ϕ refers to neutron flux, and Σabsorption refers to macroscopic
absorption cross section in the same units as Σf . dV is the volume element, and for this
case, we perform volume integration over the whole pebble plus FLiBe layer. This becomes
our “reactor”. E is incident neutron energy.

ε can be expressed as the number of neutrons produced from all fissions, to the number of
neutrons produced from thermal fissions [Duderstadt and Hamilton, 1976]. We can express
this in terms of tallies:

ε =

∫
reactor vol

dV
∫
All energies

dEνΣfϕ∫
reactor vol

dV
∫
thermal energies

dEνΣfϕ
(5.3)

The fuel reproduction factor η can be calculated by comparing the number of neutrons
produced during thermal fissions in the fuel, to the number of thermal absorptions in the
fuel.

3For all neutron spectrum plots displayed in this section, about 100 energy bins were used for plot
generation because I was not as interested in the resonance peaks. I was only interested to see the relative
flux between fast and thermal and the general shape of the plot
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η =

∫
fuel vol

dV
∫
thermal energies

dEνΣfϕ∫
fuel vol

dV
∫
thermal energies

dEνΣfϕ
(5.4)

The thermal utilisation factor f can be calculated by comparing the rates of thermal
neutron absorption in the fuel to the rates of thermal neutron absorption in the whole
reactor.

f =

∫
fuel vol

dV
∫
thermal energies

dEΣabsorptionϕ∫
reactor vol

dV
∫
thermal energies

dEΣabsorptionϕ
(5.5)

When instantiating these tallies however, it is important to specify what exactly the fuel
is. This is because as the fuel itself is uranium oxycarbide (UCO), and during homogenised
Ring RPT, the UCO kernels will be homogenised with the TRISO coatings to reduce spatial
self shielding. We could also just define fuel as the uranium itself without the carbon and
oxygen within the fuel. For this discussion in this dissertation, I will take the simple approach
of considering that the fuel is the UCO material in the TRISO pebble, and the homogenised
UCO material and TRISO layers in the homogenised Ring RPT pebble. I’m not going into
detail here because I wanted to inspect the effect of the homogenisation process on p rather
than η and f .

p is in turn the ratio of the number of neutrons reaching thermal energies without ab-
sorption in the resonance region to the number of neutrons in the fast region that are being
slowed down. It can be estimated as:

p =

∫
fuel vol

dV
∫
thermal energies

dEΣabsorptionϕ∫
reactor vol

dV
∫
All energies

dEΣabsorptionϕ
(5.6)

We note that in this definition of p, we include neutron absorption in the resonance
region resonance region and the fast region. In the fast region, it may seem as if resonances
are absent if one looks at cross section library graphs, but it is good to remember that
as the incident neutron energy increases, there will be more resonances which are spaced
closely together. This is to the extent where the width of the resonances is larger than
the differences in resonance energies for adjacent peaks. This can make resonances very
difficult to distinguish from each other at high energies. At very high energies of several MeV
> 8MeV , this effect manifests itself as giant resonances [Wong, 1998]. This means that at
fast neutron energies, resonances exist also, but there is little practical use in distinguishing
between the resonances. Hence, resonance peaks are averaged out in the fast region. So
while resonance peaks look like they are absent in the fast neutron region, they are actually
present. But it is difficult to distinguish one peak from another. Therefore, absorptions in
the fast regions can also count as resonance absorptions. The most important difference, of
course, between the resonances in the resonance region (with distinguishable peaks) and the
fast region resonances is that Doppler broadening effects would more appreciably increase
resonance capture in the resonance region with distinguishable resonance peaks.
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With this in mind, we can multiply these terms together to form k∞. Of course, to avoid
confusion, we mention the fact that the neutron production rate in the fuel is equal to the
neutron production rate in the whole reactor.

∫
fuel vol

dV

∫
thermal energies

dEνΣfϕ =

∫
reactor vol

dV

∫
thermal energies

dEνΣfϕ (5.7)

In this case, our “reactor” when calculating k∞ for homogenised Ring RPT transforms is
just the TRISO or Ring RPT fuel pebble with some FLiBe and a reflective boundary condi-
tion. A second consideration when instantiating these tallies is where the energy boundary
should be between fast and thermal neutron energy groups. For this, when we consider that
the Maxwell Boltzmann curve in the gFHR spectrum, 4.0 eV seems to be a suitable upper
limit [Kile et al., 2022]. We may use that as the boundary between fast and thermal, though
with an energy bound this high, it may be more accurate to designate it an “epithermal”
group. This term is suitable for use since FHRs are known to operate with an epithermal
neutron spectrum [X. Li et al., 2015].

Using these tallies, I plotted table 5.5:

Table 5.5: Comparison of Four Factor Formula Parameters using OpenMC Reaction Rate
Tallies

Pebble Property TRISO Pebble Homgenised Ring
RPT Pebble

k∞ 1.35009± 0.0016 1.35028± 0.0019

p 0.54495± 0.00078 0.54506± 0.00088

f 0.91144± 0.0016 0.91614± 0.0018

η 2.00765± 0.0035 1.99834± 0.0040

ε 1.35391± 0.0021 1.35316± 0.0024

ηf 1.82984± 0.0064 1.83076± 0.0062

Now, k∞ here in table 5.5 differs significantly from k∞ = 1.36863±0.00070 presented using
the RPT Pebble transformation. One possible reason for this is that OpenMC uses collision,
track length and absorption estimators [Romano, Horelik, et al., 2015] for keff calculations,
but may use analog estimators for scoring reaction rates with energy filters. These different
estimators are employed in a fashion similar to MCNP [Romano, Horelik, et al., 2015].
This is probably because estimators such as track length estimators do not require as much
computational power (compared to the analog estimator method) to produce good keff
statistics. However, using different estimators may then result in differing k∞ calculations
for the same geometry. Now, the track length estimator is okay for k∞ calculations but
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ill suited for reaction rate tallies requiring energy filters. Hence, analog estimators may be
used for reaction rate tallies rather than track length estimators. For interested readers, a
detailed discussion of estimators is found in “Estimation and interpretation of keff confidence
intervals in MCNP” [Urbatsch et al., 1995], but such discussion is outside the scope of this
dissertation.

With these in mind, we can now discuss the various terms in the four factor formula in
table 5.5. k∞ differs statistically insignificantly from TRISO or RPT pebble, the same goes
for p and ε. This shows that at least for an infinite medium, the self shielding effects are
reasonably well replicated in the homogenised Ring RPT method. Now, we consider the UCO
kernel “fuel” in the TRISO pebble and homogenised fuel to be “fuel” in the homogenised
Ring RPT pebble, hence, we expect f and η to differ. f would increase as the fuel volume
increases in the homogenised Ring RPT pebble compared to the TRISO pebble. η should
decrease because the homogenised Ring RPT fuel is more dilute in fissile material compared
to pure UCO kernels in the TRISO pebble. We observe both these effects in table 5.5. We
also observe that these effects cancel out as the deviation between ηf for both pebbles is
statistically indistinguishable from the Monte Carlo uncertainty. Therefore, one can observe
that self shielding effects are well captured at least from observing four factor formula terms
in the infinite medium. We can conclude that those discrepancies in flux spectrum may
be due to some other factor. For our intents and purposes, investigating the source of
this discrepancy may not be so important since we have verified that the resonance escape
probability is the same for TRISO Pebble and Ring RPT pebble.

There are a number of caveats of course in this four factor analysis. Firstly, we make no
attempt to discuss temperature variations for these terms just yet though these are important
for quantifying deviations in temperature dependent behaviour between homogenised Ring
RPT pebbles and their TRISO pebble counterparts. This is because studying self shielding
and ensuring maximum simulation accuracy does not contribute to the main goals of the
dissertation. I am content for now to present the four factor formula comparison as is to
justify that the homogenised Ring RPT pebble is a good enough transform for the TRISO
pebble for the purposes of this dissertation. Secondly, we also make no attempt to compare
leakage or scattering for both these pebbles. Again, this may be important for accurately
determining scattering MGXS and mean free paths, but the accuracy of the multiphysics
model is not the main goal of the dissertation, we just want to demonstrate that the data fit
surrogate model can replicate behaviour of the multiphysics model. For this, I just wanted
to perform the homogenised Ring RPT process so that I could set the arbitrary reactor
simulation up for testing. To check if the homogenised Ring RPT was done properly, we
had to briefly check whether k∞ matched and as a sanity check, inspect the degree to which
self shielding is replicated. Indeed, looking at the neutron spectrum and resonance escape
probability, the self shielding behaviour is indeed replicated well at least for an infinite
medium.
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Conclusion for Homogenised Ring RPT Process

Since the k∞ deviation of the RPT pebble and TRISO Fuel pebble of 39 pcm matches
within error of 2σ of about 130 pcm. The neutron spectrum plots also show a similar degree
of thermalisation within the graphite, FLiBe and fuel regions. We also analysed some terms
in the four factor formula and showed that resonance escape probability was replicated well
for the RPT pebble in an infinite medium. Hence, we can say that the RPT method was
performed successfully.

In future work, where more rigour is desired, we could compare the neutron spectrum
and k∞ of both TRISO pebble and Ring RPT pebble at other temperatures of interest to
see if the fuel and coolant temperature feedback is similar for both. This is not done here
for the sake of brevity as we are only interested in performing a “dry run” iteration. We
could in fact compare TRISO Fuel pebbles and Ring RPT pebbles in a small reactor setup
to see if they behave similarly under temperature perturbation. One could do this in a real
study if one had the computational resources and time to do so. However, it is not done here
also because we are only doing a “dry run”. Such work is relegated for future work where
constructing a high fidelity reactor is more the focus of the project or paper.

Arbitrary Reactor Construction in OpenMC

Now that we have some assurance that Ring RPT was performed successfully, we can then
construct the OpenMC model of our arbitrary reactor. The flux spectra of the Ring RPT
Pebble Bed Reactor will be compared to flux spectra of Pebble Bed FHRs in literature such
as the Thorium Molten Salt Reactor Solid Fuelled (TMSR-SF) simulations [X. Wang, 2018]
and gFHR [Kile et al., 2022] so that we can have some confidence that the thermalisation
process and self shielding effects of the Ring RPT Homogenised Reactor is similar to Pebble
Bed FHRs found in literature.

The arbitrary reactor is meant to be a cylindrical reactor with entrance and exit Regions
for FLiBe to flow in and out of it. It is then surrounded by a graphite reflector. For
simplicity, no control rods are added at this point in time. This can perhaps be added
in future iterations where transients involving control rods are to be simulated. For this
simple demonstration case, an arbitrary reactor with simple geometry is constructed using
the Ring RPT pebble. Furthermore, the pebbles are arranged in simple hexagonal lattices4

because the packing fraction is about 0.605 [Abedi and Vosoughi, 2011] with pebble clipping
permitted. This is similar to the HTR-PM’s packing fraction of 61% [Hao, Yang, and Y.
Cheng, 2022]. Therefore, simple hexagonal (SH) lattices were used in MCNP calculations
for HTR-PMs [Abedi and Vosoughi, 2011]. We assume that the random packing in HTR-
PMs and FHRs are quite the same, so we will just use SH lattices in this demonstration for

4 Simple Hexagonal (SH) lattices are not the same as Hexagonal Closed Packed (HCP) lattices, HCP
lattices have packing factor of 0.74 rather than 0.61 for SH lattices



310

simplicity5. The resulting OpenMC reactor geometry can be seen in Figure 5.9, Figure 5.10
and Figure 5.11:

Figure 5.9: Arbitrary Reactor Cross Section on XY plane

5These SH lattices have also been used before to simulate PB-AHTR geometry [Fratoni, 2008]. Here,
pebbles flow through graphite channels rather than a randomly packed core. While the geometries are
fundamentally different, the packing fractions are remarkably similar.
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Figure 5.10: Arbitrary Reactor Cross Section on XZ plane
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Figure 5.11: Arbitrary Reactor Cross Section on YZ plane

Now, homogenised Ring RPT was performed in the hope that self shielding would be
at least partially accounted for in the transform process. This was verified to work for an
infinite medium. To verify if the Ring RPT works for a finite medium, it would need to
produce a neutron spectrum with a shape qualitatively similar to other similarly designed
reactors such as the gFHR [Kile et al., 2022] or TMSR-SF [X. Wang, 2018]. To check if
the Ring RPT method produces a reasonably correct neutron spectrum, we run eigenvalue
simulations and produce neutron spectrum plots for the arbitrary reactor in Figure 5.12. For
each arbitrary reactor simulation, I used 50 inactive batches, 150 active batches and 10,000
source particles each.



313

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107 108

0

100

200

300

400

500

600

700

Neutron Energy Bin (eV)

N
eu
tr
on

F
lu
x
p
er

U
n
it
L
et
h
ar
gy

(n
eu
tr
on

-c
m

p
er

so
u
rc
e
n
eu
tr
on

)

Arbitrary Reactor Neutron Spectrum over the Whole Reactor

Figure 5.12: Neutron Spectrum for Arbitrary Reactor over Whole Reactor

Figure 5.12 was done using 100 energy bins, and was just meant to check the flux shape.
Resonance peaks are not meant to be simulated in high resolution. Now, we see in Figure 5.12
that the flux shape is similar to that found in literature for the gFHR [Kile et al., 2022].
Here, we have a prominent Boltzmann Distribution characteristic of thermal neutrons. The
end upper energy boundary of this Boltzmann Distribution is about 2.5 to 4.0 eV which is
similar to that found in literature. This gives us some confidence that the Homogenised Ring
RPT pebble bed would give a similar reactor feedback behaviour to a pebble bed with fully
simulated TRISO particles.

We can also further check the shapes of the neutron spectrum plots are tallied based on
cells in Figure 5.13 and compare it to spectra found in literature.
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Figure 5.13: Neutron Spectrum for Arbitrary Reactor by Cell

We can see in figure 5.13, the neutron spectrum in the reflector region is predominantly
thermal whereas the neutron spectrum in the fuel region is predominantly fast with a few
resonance peaks. This flux shape for the reflector was in agreement with reflector neutron
flux shapes in literature where the TMSR-SF was simulated [X. Wang, 2018].

Nevertheless, in the TMSR-SF simulations, there was a Maxwell Boltzmann peak present
which was significantly higher than the flux in the resonance regions [X. Wang, 2018]. While
a small Maxwell Boltzmann peak was present here, it was nowhere near as high as those found
in literature. One explanation could be that the TMSR-SF had more graphite reflecting and
moderating flux back in the entrance and exit regions of the reactor as compared to this
arbitrary reactor model.

These plots show that the Ring RPT Pebble Bed Reactor can produce similar neutron
spectra to those found in literature. Hence, we can have some degree of confidence in using
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these reactors to generate MGXS.

Cross Section Generation for the Arbitrary Reactor

Preliminaries

In the generating MGXS we normally weight cross sections with scalar flux. Take the total
cross section for example:

Σt =

∫
V
dV
∫ Eg−1

Eg
dEϕ(r⃗, E, t)Σt(r⃗, E, t)∫

V
dV
∫ Eg−1

Eg
dEϕ(r⃗, E, t)

(5.8)

This process is done in OpenMC to generate MGXS.For this work, we homogenise cross
sections in a rather crude manner. Σt is averaged over the whole OpenMC cell or GeN-Foam
cellZone. These are the fuel region, FLiBe inlet region, FLiBe outlet region and reflector
region. If Σt or some other cross sections vary within the region, then this procedure is
bound to have some approximation error. This error will not exist only if the cross sections
were not a function of r⃗, we can indeed take the cross sections out of the volume integral.

Σt =

∫
V
dV
∫ Eg−1

Eg
dEϕ(r⃗, E, t)Σt(E, t)∫

V
dV
∫ Eg−1

Eg
dEϕ(r⃗, E, t)

(5.9)

If the cross sections do not vary with position, then we can effectively homogenise the
entire core and obtain an exact expression. In reality, cross sections vary with position, as
they do in a heterogeneous reactor. We then realise that homogenisation across the core will,
in general, not produce accurate results [K. S. Smith, 1986]. This makes homogenisation
across the core quite unsuitable for accounting for pebbles of different burnup or differing
degrees of reactor poison accumulation, for example. Therefore, ideally speaking, different
zones of volume integration are required for different materials. We do not concern ourselves
with this for the time being as it does not fit the goals of this dissertation.

For now, we perform a two group MGXS generation as it is the simplest case of MGXS
generation. This was done with 50 inactive batches, 150 active batches and 10,000 source
neutrons per batch to achieve source convergence. We use the Maxwell Boltzmann distri-
bution of the reactor to determine the boundaries for our thermal groups. Monte Carlo
simulation shows 2.5 to 4.0 eV boundary for temperature of 600K. This may be a good
boundary for thermal and fast spectrum neutrons. However, the neutron spectrum may
harden as temperatures increase, and therefore the fast and thermal boundary may be quite
temperature dependent. Therefore, for the boundary between fast and thermal neutrons, we
may want to have it at a higher energy boundary. I took inspiration that in 8 or 9 group
calculations for molten salt cooled pebble bed reactors [X. Wang, 2018], an energy group
with higher bound of 4.0 eV was used to capture low lying resonances as well. This should
give sufficient leeway for any sort of spectrum hardening. I also skipped the simulation of a
neutron spectrum at 1200K to expedite the development and demonstration of this example.
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In study where the emphasis is on accuracy, these graphs should be plotted and compared
to check for the boundary between fast and thermal neutrons. For more than two groups,
one should check the energy boundaries for the Boltzmann distribution as well as adjust
the energy group structure to account for low lying resonances. Interested readers can visit
Wang’s dissertation [X. Wang, 2018] for an example of an 8 group model for the Thorium
Molten Salt Reactor Solid Fuelled (TMSR-SF). I did not do any of the fine energy group
modelling because this is only a demonstration case. Two group diffusion was used because
it was relatively simple to setup, and yet it is the bare minimum energy discretisation for
neutrons that can account for the effect of neutron cross section based on neutron energy.
Given all the above factors, I used 4 eV as my boundary between fast and thermal (or
epithermal) neutrons.

GeN-Foam MGXS Input Requirements

We are generating MGXS for GeN-Foam, hence we want to start by understanding the input
format of GeN-Foam MGXS files, otherwise known as the “nuclearData” input files. These
files contain the cross section information required for the deterministic simulation. More-
over, GeN-Foam uses these files to interpolate cross sections which may change due to fuel
temperature feedback and coolant void feedback. These files are “nuclearDataFuelTemp”
for fuel temperature feedback, “nuclearDataTCool” for coolant temperature (without ex-
pansion) and “nuclearDataRhoCool” for coolant void or density feedback. Again, the reader
should note that expansion feedback is neglected in this work. Quantification and simulation
of structural expansion feedback mechanisms are relegated to future studies.

In each of the nuclearData input files, the user is expected to specify the solid fuel
fraction (fuelFraction) inverse of velocity 1

v
(IV), Diffusion Coefficient (D), and several other

properties for each group. An example is shown here for the fuel cell region:

fuel_cell {

fuelFraction 0.61 ;

IV nonuniform List<scalar> 2 (

3.304179060252947e-06 0.00013921702249789254 );

D nonuniform List<scalar> 2 (

0.012083545941701444 0.010801380798703051 );

nuSigmaEff nonuniform List<scalar> 2 (

0.2295056339627519 3.2189494876053133 );

sigmaPow nonuniform List<scalar> 2 (

2.9101924511187916e-12 4.093464684696107e-11 );

scatteringMatrixP0 2 2(

(29.197094830484378 0.12178685124792211 )

(0.004719753596159622 30.310442485169414 )

);

sigmaDisapp nonuniform List<scalar> 2 (
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0.3970189096562604 1.657938605609266 );

chiPrompt nonuniform List<scalar> 2 (0.9999999999999949 0.0 );

chiDelayed nonuniform List<scalar> 2 (0.9999999999999949 0.0 );

Beta nonuniform List<scalar> 6 (

0.00022786363922605484 0.0011808230019307714

0.0011299792880896187 0.0025439311569539894

0.0010539386895804413 0.00044111556283448633 );

lambda nonuniform List<scalar> 6 (

0.012466675909351533 0.02829172165550797 0.04252436690551811

0.2924671647932258 1.6347810862262862 3.5546009259484372 );

discFactor nonuniform List<scalar> 2 (1 1 );

integralFlux nonuniform List<scalar> 2 (1.0 1.0 );

}

νΣf (nuSigmaEff) is the average number of neutrons produced per fission ν multiplied
by macroscopic fission cross section Σf . Σpow (sigmaPow) is the Σf multiplied by energy
released per fission. The zeroth moment scattering matrix (scatteringMatrixP0) contains
coefficients for scattering cross section Σs within the energy groups and between energy
groups. The removal cross sections are represented by sigmaDisapp. Thereafter, the fis-
sion spectrum for delayed neutrons (chiDelayed) and prompt neutrons (chiPrompt) is put
in. The delayed fractions (Beta) and their corresponding decay constants (lambda) is also
given. The discontinuity factor (discFactor) is meant to correct inaccuracies in the diffusion
approximation during spatial homogenisation [Fiorina, Kerkar, et al., 2016; K. S. Smith,
1986]. Consideration of such factors is neglected for this work, so that it is just set to 1.
The integralFlux entry, upon examining source code, is used in Aitken Acceleration. Aitken
Acceleration is used in GeN-Foam to speed up solution for transient solvers. This option is
disabled for this work (it is disabled by default) and the integralFlux value was left at 1.0
after copying over this entry from a tutorial case.

For the rest of the dimensioned entries, the user must note that the length scales used
in OpenMC are in centimeters, while the length scales used in GeN-Foam are in meters.
While OpenMC does have MGXS generating libraries, these are in differing units from GeN-
Foam. Additionally, different syntax is given for OpenMC’s python API and GeN-Foam
as GeN-Foam’s input file syntax behaves more like C rather than python. These make it
quite cumbersome to translate the MGXS data from OpenMC format to GeN-Foam format
manually. To automate the process, a python script was written to generate these GeN-Foam
nuclearData input files automatically.

OpenMC to GeN-Foam MGXS Input Write Python Script

We shall now describe a python script which converts OpenMC MGXS data into GeN-Foam
input files. In such a script, the first thing to do would be to use the OpenMCMGXS libraries
to generate appropriate tally inputs for the simulation prior to running OpenMC.After the
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simulation is run, OpenMC would generate hierarchical data format 5 (hdf5) files which store
information about the tallies. The native OpenMC MGXS libraries would information from
the simulation and generate the corresponding MGXS.Thereafter, I would perform some unit
conversion to convert the OpenMC units to GeN-Foam units. For example, we convert cm
to m for length scales and electron-volts to joules for energy.

An example of the python function to return sigmaPow is given:

def printSigmaPow(self,cellIndex,printData=False):

# this prints the GeNfoam input for Sigma f multiplied by

# the power per fission coefficient in J/m

description=’sigmaPow nonuniform List<scalar>’

dimensions=’ ’+str(self.nEnergyGroups())+’ ’

dataString=’(’

ev2j = 1.602176487e-19

cm2m = 0.01

for i in range(self.nEnergyGroups()):

# load sigmaPow coefficient in eV cm^-1 units

sigmaPowUnitsOpenMC=self.load_sigmaPow_value(i+1,cellIndex)

# now convert this to SI units

# conversion factor is *1.6e-19 eV/J *100 cm/m

sigmaPow=sigmaPowUnitsOpenMC*ev2j/cm2m

dataString+=str(sigmaPow)+’ ’

dataString+=’);\n’

fullString=description+dimensions+dataString

print(fullString)

if printData == True:

print(’sigmaPow is printed for the following cell: ’)

print(self.getCell(cellIndex))

print(’in units of J m^-1’)

return fullString

In the code excerpt, sigmaPow is loaded from OpenMC and converted to GeN-Foam units
for a given cell. We then concatenate the strings together for all MGXS over an OpenMC
cell, which could be our reflector region for example.This process is repeated for all cells we
wish to obtain MGXS data for. For this work, it would be the entrance and exit FLiBe
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regions, and the fuel region as a whole. The resulting string is then written to a file with
the output name “nuclearData”. The “nuclearData” file is written for MGXS at 600K due
to lack of thermal scattering data for carbon at other temperatures.

We then repeat the process for generating “nuclearDataFuelTemp” by increasing the fuel
temperature (the whole pebble) to 1200K and applying this script. Now this, of course is
rather crude, since the fuel temperature specifically refers to UCO within the fuel rather
than the whole pebble. Technically speaking, the carbon matrix of the pebble acts more as
a moderator rather than the fuel itself. However, GeN-Foam did not contain files for varying
MGXS based on changing moderator temperature. Since the fuel pebble would be more or
less similar in temperature to the UCO, a crude approximation would be to simply assume
that they are the same temperature. This was motivated out of expediency rather than
accuracy.

For “nuclearDataTCool”, it was found that altering the coolant temperature without
changing its density did not change the two group MGXS much. Hence, “nuclearDataTCool”
was left blank. By default, GeN-Foam interprets blank perturbed nuclearDataTCool files to
mean that MGXS does not change with coolant temperature and constant density.

For “nuclearDataRhoCool” the FLiBe density was altered to approximately 1.827 g/cm3

and the MGXS generation process was repeated. The FLiBe temperature remained at 600K.
GeN-Foam also contains input files such as “nuclearDataCladExp”, “nuclearDataAxi-

alExp” and “nuclearDataRadialExp” to account for cladding expansion, as well as reactor
expansion in axial and radial directions. These files are left blank to indicate to GeN-Foam
that MGXS does not change with these perturbations.

To test if the coefficients were somewhat correctly translated from OpenMC to GeN-
Foam, a simple test case of a bare critical sphere was simulated in OpenMC and then
translated to GeN-Foam for a one group case. An eigenvalue calculation was run on the
Godiva sphere test case with extracted MGXS.The keff for this was 0.998372, which is quite
reasonable. During debugging of the code, keff would sometimes go as high as 2.2 due to
conversion errors of MGXS.This gives us a ballpark figure of how much error to expect if
the python MGXS code translates MGXS wrongly between OpenMC and GeN-Foam. As an
additional test, the arbitrary reactor geometry, generated using a very coarse mesh, yielded
a keff of 1.066352. This is not ideal at about 6000 pcm difference from OpenMC’s keff , but
compared a 100,000 pcm error that occurred during erroneous translation of MGXS, this is
small. So it is likely that the errors would have arisen from elsewhere rather than MGXS
translation errors.

GeN-Foam Geometry and Mesh Construction

For model building for GeN-Foam, we wish to use Computer Aided Design (CAD) to repli-
cate the arbitrary reactor geometry constructed using constructive solid geometry (CSG) in
OpenMC.While OpenMC has the ability to use CAD geometries, it was more expeditious to
use OpenMC’s CSG for the arbitrary reactor. This arbitrary reactor geometry is relatively
simple since it only consists of enclosed cylinders, and therefore is easy to construct.
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For the arbitrary reactor, we have a central fuel (pebble bed) region and cylinder. This
has a diameter of (D) 140 cm and height (H) of 135 cm. The reflector is 70 cm thick, making
for an outer diameter (OD) of 280 cm. This is best seen in Figure 5.14:
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Figure 5.14: Arbitrary Reactor Schematics

FLiBe flows into the reactor through an entrance region with the same diameter of 140
cm, but an entrance length of 50 cm. After it exits the core, FLiBe then exits through an exit
region with the same 140 cm diameter and exit length of 50 cm. The FLiBe entrance, fuel
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region and FLiBe exit regions are surrounded by a cylindrical graphite reflector also 70 cm
thick in the radial direction and 50 cm thick in the axial direction as shown in Figure 5.14.
There are no control rods in this setup for simplicity’s sake. Lengthscales for the reflectors
and entrance/exit regions are mostly such that they are on the same order of magnitude as
the lengthscale of the core.

We first constructed the mesh by using FreeCAD to construct the geometry, and then
importing into SALOME platform to generate a crude tetrahedral mesh. This process is
summarised in Figure 5.15:

Figure 5.15: Meshing Process using FreeCAD and Salome

Salome can export the mesh via an ideas File which can be converted to OpenFoam’s
mesh files in the polymesh folder using ideasUnvToFoam. No mesh refinement study was
done in this case, and the mesh is rather coarse for expedited testing. Any mesh refinement
study is relegated to future work.

GeN-Foam Inputs other than MGXS

Besides the mesh geometry and the MGXS inputs, GeN-Foam still requires other inputs in
order to simulate the arbitrary reactor.
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Solid Phase Thermal Hydraulics Properties

The first of these inputs is the thermal hydraulics properties we wish to discuss are that of
the solid phase. These inputs will be stored in a file called “fluidRegion”. The reader should
note that the “fluidRegion” contains information for both solid and fluid thermal hydraulics
calculations within porous media. It is perhaps better to consider it a “porousFluidRegion”
so that it is less confusing.

For the heat generating solid media of the core, we adapt a 1D generating media heat
conduction model:

ρcp
∂T

∂t
=

1

r2
∂

∂r

(
kr2

∂T

∂r

)
+ q′′′ (5.10)

Thermal Conductance and Conductivity Here, q′′′ represents the heat generation
term, r is the radius, T is temperature, ρ is density, k is thermal conductivity and cp is specific
heat capacity. Equation 5.10 of course assumes homogenised media. However, the TRISO
pebble is quite heterogeneous. Nevertheless, in the interest of expediency, a homogenised
model was assumed for the thermal hydraulics for this iteration. We therefore use a volume
weighted thermal conductivity [M. Liu et al., 2019].

kThermal effective =
VTRISOkTRISO + Vmkm

Vm + VTRISO

(5.11)

Equation 5.11 uses the total volume of the particles VTRISO, total volume of the graphite
matrix Vm, thermal conductivity of the TRISO particles kTRISO and matrix km in order to
obtain a volume weighted average thermal conductivity kThermal effective. We can express
equation 5.11 in terms of packing fraction f:

kThermal effective = fkTRISO + (1− f)km (5.12)

Where for equation 5.11, f = VTRISO

VTRISO+Vm
. These thermal conductivities, along with other

properties such as the density ρ and heat capacity cp will be used to calculate the thermal
resistance in a nodalised thermal conductance (or indirectly, thermal resistance) model by
GeN-Foam [Robert et al., 2023]. A two node thermal conductance or resistance model is
shown in Figure 5.16:
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Figure 5.16: Two Node Thermal Conductance (Resistance) Model

A two node model is used because this is the minimum number of nodes required that does
not assume lumped capacitance of the pebble. Now, in GeN-Foam, the surface temperature
is not considered a “node”. In GeN-Foam, each node must have a characteristic temperature
and thermal inertia (volumetric heat capacity). The surface does not have volumetric heat
capacity and is therefore not considered a “node”. Hence, this two node model is considered a
one node model in GeN-Foam. For GeN-Foam in particular, the requested input for thermal
conductance is the inverse of thermal resistance per unit volume of the pebble (Vpebble). For
a spherical shell, the 1D thermal conductance per unit volume (Hs) can be expressed as:

Hs =
k4πr1r2
r1 − r2

1

Vpebble
(5.13)

Where conductance is measured between the radius r1 and r2. Also, r1 > r2. In equa-
tion 5.13, k represents thermal conductivity of the layer. As of the time of writing this
dissertation, GeN-Foam lacks the ability to adjust thermal conductance based on tempera-
ture. This can of course, be coded in manually. However, in the interest of expediency, this
was considered out of scope for this present work. We can improve upon model fidelity and
accuracy in future iterations. For now, some averaged value of thermal conductance will be
used.

To calculate thermal conductance, we also require two reasonable bounds for r1 and r2.
r1 was chosen as 2 cm because the pebble is 4 cm in diameter, and the outermost node
needs to be the surface temperature. For a two node model, we need to assume the inner
node with temperature T0 as shown in Figure 5.16, to behave as a lumped capacitance



325

body. That is to say r2 should be decided such that the inner sphere has a spatially uniform
temperature at all times. We could do some scaling analysis and derive some dimensionless
number analogous to the Biot Number. However, I chose a guess of r2 =0.2 cm to expedite
development of this present reactor.

For calculation of the thermal conductances, plenty of libterty was taken besides what
was already mentioned. We calculate a rough guess of the effective thermal conductivity
kThermal effective assuming the TRISO particles have a similar thermal conductivity to UO2

of 3.86W/(mK) [M. Liu et al., 2019], and also that the graphite matrix thermal conductivity
is 25 W/(mK). With a packing fraction of 0.3, we get a kThermal effective = 18.658 W/(mK).
Using the r1 = 2cm and r2 = 0.2 cm, the thermal conductance H was estimated at 0.521029
W/K. With a pebble volume based on r1 = 2cm, Hs = 15548 W/(m3 ·K).

In future reactor iterations, we might redo this analysis by considering correlations for
thermal conductivity of UCO, SiC, pyrolytic carbon and buffer layers from literature [W.
Jiang et al., 2021]. Furthermore, we may consider not homogenising the entire medium and
accounting for thermal conductivity variation with temperature. For now, however, we shall
not consider these as it can be quite time consuming and not critical to the goals of this
dissertation.

Specific and Volumetric Heat Capacity Next, we shall discuss cp. We wish to be more
meticulous for cp and ρcp because we want to match the thermal inertia of the core. For
cp, correlations for various stoichiometric ratios of U, C and O were available for UCO [W.
Jiang et al., 2021]. Substituting our stoichiometric ratio of U0.3333C0.1667O0.5, we obtain the
following correlation for cp using reduced temperature in kelvin TK :

cp,UCO

(
J

kgK

)
=

52.1743 + 87.951TK − 84.211T 2
K + 31.542T 3

K − 2.633T 4
K − 0.71391

T 2
K

0.2675
(5.14)

Where TK = T (K)
1000

.
Seeing how GeN-Foam does not allow for temperature variation, we have to average it

using:

cp,ave =

∫ T2

T1
cpdT

T2 − T1
(5.15)

A simple way for interpolation is to use Simpson’s 1
3
rule for the integral [Uddin, Mo-

heuddin, and Kowsher, 2019]. The resultant expression for cp,ave is:

cp,ave ≈
1

6

(
cp(T1) + cp(T2) + 4cp(

T1 + T2
2

)

)
(5.16)

For UCO, I would select the temperature bound to be 700◦C to 1000◦C as these are
reasonable guesses of temperatures which the fuel experiences during normal operation. A
similar procedure was done for SiC with a temperature correlation of [W. Jiang et al., 2021]:
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cp,SiC

(
J

kgK

)
= 925.65 + 0.3772TK − 7.9259 ∗ 10−5T 2

K − 3.1946 ∗ 107
T 2
K

(5.17)

The averaged values of cp for UCO and SiC are 316 J/(kg K) and 1223 J/(kg K)
respectively. It is noteworthy that the cp of UCO in this temperature range is similar to the
nonstoichiometric UO2 cp value of 310 ± 10 J/(kg K) [Kavazauri et al., 2016]. The cp value
of UCO also changes little in this temperature range, quite comparable to measurement
error of 10 J/(kg K). For SiC, we can see from table 5.6 that the values vary quite linearly
with temperature in this range. Hence, using Simpson’s 1

3
rule should not result in gross

inaccuracies. The cp dependence on temperature for UCO and SiC are shown in Table 5.6:

Table 5.6: cp for UCO and SiC J
kg K

Temperature (K) cp UCO cp SiC

873 311.3 1153

973 313.8 1184

1073 315.6 1211

1173 317.1 1236

1273 319 1258

1373 321.6 1277

1473 325.3 1295

For the carbon layers such as the buffer and pyrolytic carbon, a typical average value for
the heat capacity is 720 J/(kg K) [W. Jiang et al., 2021]. The volumetric heat capacity for
a TRISO particle then then be a volume weighted average of the volumetric heat capacity
of each layer denoted i:

ρTRISOcp,ave,TRISO =
N∑
i

Vi
VTRISO

ρicp,ave,i (5.18)

The volume fractions, densities and average heat capacities for each layer is shown in
table 5.7:
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Table 5.7: Volume Fraction, Densities and cp used to calculate ρcp
J

m3 K

Layer within
TRISO Particle

Outer
Radius
(cm)

Volume
Fraction

ρ (kg/m3) cp,ave
J

kg K

UCO Fuel
Kernel

2.15E-02 0.129 10500 316

Buffer 3.15E-02 0.278 1000 720

PyC1 3.50E-02 0.151 1900 720

SiC 3.85E-02 0.185 3200 1223

PyC2 4.25E-02 0.257 1870 720

The resultant average volumetric heat capacity we use is 1.905 ∗106 J
m3 K

. This can
be used to calculate the average volumetric heat capacity of the pebble (ρcp,ave,pebble). Each
pebble is modelled with a TRISO matrix and a pure graphite outer shell. The TRISO matrix
layer has a radius of 1.9 cm and is covered by the graphite shell 0.1 cm thick. Overall, the
pebble has a radius of 2 cm or diameter of 4cm. The formula used to calculate the average
ρcp,ave,pebble is:

ρpebblecp,ave,pebble =
N∑
i

Vi
Vpebble

ρicp,ave,i (5.19)

The ρcp for graphite matrix and the graphite outer shell is calculated using ρgraphite
= 1199.5 kg/(m3), and cp = 720 J

kg K
. The TRISO volume fraction is modelled to be 0.3

of the volume within the TRISO matrix.

Table 5.8: Volume Fraction, Densities and cp used to calculate ρcp
J

m3 K

Material Volume Fraction ρcp,ave
J

m3 K

TRISO Particles 0.2572 1904790.8

Graphite within
TRISO matrix

0.6002 863640

Graphite Shell 0.1426 863640

The resulting volumetric heat capacity of the pebble as a whole is 1.131 ∗ 106 J
m3 k

. This
can be substituted into the conduction equation as a GeN-Foam input.
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Parameters for Solid-Fluid Interface

In GeN-Foam, correlations for heat transfer and pressure drop across the pebble bed are used
to calculate the subscale structure interaction terms for the momentum and energy equation
in porous media. These correlations are in turn based on the Reynold’s Number (Re) and
Prandtl Number (Pr).

We can see from “FSPair.C” that Re is defined as:

Re =
εuinterstitialdh

ν
(5.20)

Hence, for all correlations in GeN-Foam, we will need to define correlations in terms of
Re as shown in equation 5.20. Here, dh is hydraulic diameter, uinterstitial is the interstitial
velocity, ε is the porosity of the medium and ν is kinematic viscosity of the fluid. This is
important to note because correlations such as the Wakao correlation and Ergun Correlation
are based on particle diameter rather than hydraulic diameter [Wakao, Kaguei, and Funazkri,
1979; Ergun and Orning, 1949]. Hence, we will need to perform some conversion to obtain
these equations in terms of dh.

To sort this issue out, we can use the Carman-Kozeny theory to correlate hydraulic
diameter to pebble diameter [Pilehvar et al., 2013]:

dh =
4Vvoid
Apebble

(5.21)

Where Vvoid is the volume of the voids or fluids within the pebble bed and Apebble is
the total surface area of the pebbles within the pebble bed. It is sometimes easier to write
equation 5.21 in terms of Vpebble, the total volume of the pebbles:

dh =
4Vpebble
Apebble

ε (5.22)

The surface to volume ratio for spherical pebbles is simply 3
r
where r is the radius of the

pebble. We use a solid packing fraction of 0.61 to get a porosity of 0.39. Hence, we arrive
at dh in terms of pebble diameter dp:

dh =
2dp
3

∗ 0.39 (5.23)

We can obtain Ergun’s equation for spheres in terms of dh:

−∆P

L
=

66.6667qµ

d2h

(1− ε)2

ε
+

1.1667ρq2

dh

1− ε

ε2
(5.24)

ρ is fluid density, and q is Darcy velocity or superficial velocity:

q = εuinterstitial (5.25)

We can write Re in terms of q:



329

Req,dh =
qdh
ν

(5.26)

GeN-Foam requires input to be in the form of the drag coefficient fD:

fD =
∆P

1
2
ρu2interstitial

dh
L

(5.27)

Substitution of these equations together, and using ε of 0.39, we can show that:

fD =
19.3492

Req,dh
+ 1.4234 (5.28)

For clarity, I denote Re as Req,dh so that we know the Reynold’s number is based on
Darcy velocity q and hydraulic diameter dh. Similarly, the Wakao correlation has to be
transformed in a similar manner:

Nudh = 0.52 + 0.64177Pr1/3Re0.6q,dh
(5.29)

Of course, Nudh only gives us the heat transfer coefficient h to calculate a heat flux
between pebble surface and fluid. A surface area input is still needed for heat transfer
calculation. GeN-Foam calls this input the “volumetricArea”, which is surface area per unit
volume of the reactor (including coolant and pebbles).

volumetricArea =
4πr2

4
3
πr3

(1− ε) =
3

r
(1− ε) (5.30)

For pebble packing fraction of 0.61 and pebble radius r of 0.02 m, the volumetric area is
91.5 m−1.

GeN-Foam also requires a “powerDensity” input for its input file. Normally, this input is
neglected when neutronics solvers are switched on. While we may be tempted to leave this
entry at some random value, the powerDensity term is important in stabilising the GeN-
Foam solver. GeN-Foam tends to be quite unstable during case startup where neutronics
and thermal hydraulics solvers are switched on. The procedure to work around this is to
switch on these solvers sequentially. That is, we switch on thermal hydraulics solvers first
and assume some constant power is supplied to the reactor. This term is the powerDensity.
This is the total pebble power per unit volume of the whole pebble bed (pebble and fluid).
It is calculated using the reactor’s target operating power of 312.5 kWth. The final input of
powerDensity is 246513 W/m3.

Fluid Thermal Hydraulics Inputs

Now, for the fluid, we deal with single phase FLiBe where radiation heat transfer is ignored
for simplicity. We have also seen that this is probably a safe assumption within the pebble
bed [I. M. B. Johnson, 2022].
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FLiBe Thermophysical Properties FLiBe thermophysical properties for GeN-Foam
used are [Sohal et al., 2010]:

ρ(kg/m3) = 2415.6− 0.49072(T (K)) ; T (K) = [732.2, 4498.8] (5.31)

µ(Pa · s) = 0.000116 exp

(
3755

T (K)

)
; T (K) = [873, 1073] (5.32)

cp(J/(kg ·K)) = 2415.8 ; T (K) = 973 K (5.33)

k(W/(m ·K)) = 0.629697 + 0.0005 · (T (K)) ; T (K) = [500, 650] (5.34)

On Thermal Conductivity As mentioned in the preceeding chapters, it seems that
the thermal conductivity correlations [Sohal et al., 2010] were not sufficient as they do not
cover the temperature range of operation. Nevertheless, a measured value for FLiBe thermal
conductivity at 1 W/(m ·K) was given for 873K [Sohal et al., 2010]. For 973K, a thermal
conductivity of 1.1 W/(m ·K)± 10% [Romatoski and L.-W. Hu, 2017]. Given a 10% error
bar, the correlations provided [Sohal et al., 2010] do are indeed applicable in the operating
temperature of the FHR.Figure 5.17 plots some existing FLiBe thermal conductivity data
[Romatoski and L.-W. Hu, 2017] against given correlations [Sohal et al., 2010] with 10%
error bars:

Figure 5.17: FLiBe Thermal Conductivity Correlation and Measured Data

This shows that the provided correlations are indeed within experimental error up to
approximately 1130 K. The data for plotting Figure 5.17 is in Table 5.9:
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Table 5.9: Experimental Thermal Conductivity compared with Correlation

Temperature
(K)

Experimental
Thermal

Conductivity
(W/(m · k))

[Romatoski and
L.-W. Hu, 2017]

Correlation
(W/(m · k))
[Sohal et al.,

2010]

821 1.03 1.04

826 1.075 1.042

929 1.186 1.094

1025 1.162 1.142

1136 1.129 1.198

On Dynamic Viscosity FLiBe’s dynamic viscosity is described by Cantor’s Corre-
lation [Sohal et al., 2010; Romatoski and L.-W. Hu, 2017] with error bars of about ±20%
[Romatoski and L.-W. Hu, 2017]. Unfortunately, its range of validity is from 873K to 1073K.
A similar equation, by Gierszewski [Romatoski and L.-W. Hu, 2017] has a wider temperature
range and is only slightly different:

µ(Pa · s) = 0.000116 exp

(
3760

T (K)

)
; T (K) = [600, 1200] (5.35)

Gierszewski’s correlation would sufficiently cover the range of temperatures during reactor
operation for FLiBe. However, another technical issue arises due to GeN-Foam’s input
format. Here, if we wish to use polynomial correlations to describe thermal conductivity for
FLiBe, we must also use polynomials to describe all other thermophysical properties. Due
to this limitation in input, we had to fit a polynomial to Gierszewski’s correlation. This was
done in the range for [700K, 1200K] where transients of interest are expected to occur. The
polynomial is written as:

µ(Pa · s) = 1.0651− 3.9767 ∗ 10−3T (K) + 5.6614 ∗ 10−6T (K)2

−3.6142 ∗ 10−9T (K)3 + 8.6943 ∗ 10−13T (K)4 ; T (K) = [600, 1200]
(5.36)

To verify that the polynomial works for our desired temperature range, we plot Cantor’s
Correlation, Gierszewski’s correlation and this polynomial in the range [700K, 1270K]:



332

Figure 5.18: FLiBe Viscosity Correlation Comparisons

Figure 5.18 shows that the polynomial satisfies both Cantor and Gierszewski’s correlation
within 20% error bar for the temperature range [700K, 1200K].

Molar Weight, a Potentially Redundant Input for Single Phase Pure Mixture of
FLiBe For thermophysical property input syntax, we need to specify the model “icoPoly-
nomial” in the thermophysical property library to indicate that polynomials based on tem-
perature are used as inputs for thermophysical properties of an incompressible fluid. Unfor-
tunately, the “icoPolynomial” input syntax also requires a “molWeight” entry which refers
to molecular weight. 99.0377003 g/gmol was used as the input molecular weight for FLiBe.
This molecular weight was not done rigourously because the readme portion in IcoPolyno-
mial.H found in OpenFOAM’s source code seems to indicate that the code uses a molar basis
internally for its calculation. Hence, molar weight is used to convert a mass basis inputs to
a molar basis, and then the outputs are likely returned in mass basis form using the same
“molWeight”. Hence, our choice of molar weights may not matter too much.

Boundary Conditions and Initial Conditions We also set initial and boundary con-
ditions for Temperature (T) fields, velocity (U) fields, pressure (p) fields and pressure less
the hydrostatic component (p rgh) fields.

The temperature fields are set to zeroGradient at all boundaries except for the entrance,
this is essentially an adiabatic condition for simplicity and expedited initial model develop-
ment. The zeroGradient boundary condition is a Neumann boundary condition where the
gradient or derivative of the field is set to zero. T is set to a specific uniform inlet value
(uniformFixedValue) based on a custom csv file so that either a custom uniform tempera-
ture or a PRBS signal can be given as a forcing function. The initial conditions are 873K
uniformly through the mesh.

U is set such that the mass flowrate of the inlet is 1.2934 kg/s. This would ensure that
at 312.5 kWTh, the temperature change is about 100K. The outlet boundary condition
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is inletOutlet, essentially a modified zeroGradient boundary condition meant for improved
stability of the numerical solver.

The p boundary conditions depend on p rgh. Dirichlet (fixedValue) boundary conditions
are set for the exit of approximately 1 atmosphere, thus indicating that the reactor should
operate at atmospheric pressure if hydrostatic pressure is subtracted.

Simplifications for Fluid Models For this work, turbulence is ignored because the flow
was slow enough. Furthermore, in the pebble bed, it is safe to assume that interaction with
the subscale structure would dominate turbulence effects [Fiorina, I. Clifford, et al., 2015].
Outside the pebble bed, flow was slow enough that Re did not exceed the transition regime
for turbulence.

Simplifications for Reflector Structure Models For this work, thermal inertia of
the reflector structure is ignored as the porous media models within GeN-Foam are not
yet well suited for a solid reflector block with conduction heat transfer. Hence, for this
iteration, the reflector is essentially simulated at a constant temperature. The source code
can be rewritten in future to include the reflector structure for conjugate heat transfer plus
moderator temperature feedback in future iterations.

Fuel Region Input Example

Based on these inputs, one can program in properties for each region of the reactor. Only
the fuel region inputs are supplied here as an example as it is most complex:

"fuel_cell"

{

volumeFraction 0.61;

Dh 0.0104;

powerModel

{

type lumpedNuclearStructure;

// total pebble surface area per unit

// volume of reactor (includes coolant and pebbles)

// (m^2/m^3) units

volumetricArea 92;

// Power density smeared over the entire

// structure (W/m^3)

// this is total pebble power divide

// by total pebble volume

powerDensity 2.46513e5;
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// Number of nodes

nodesNumber 1;

// Define which node temperature is used

// to paramtrize XS according to

// nuclearDataFuelTemp

nodeFuel 0;

// Define which node temperature is used

// to paramtrize XS according to

// nuclearDataCladExp. Of course, it does

// not have to represent a cladding. It

// could be used to paramtrize over the

// graphite temperature in PBRs

// I’m not calculating expansion, so just leave

// it as zero

nodeClad 0;

// Heat conductances from

// average to max,

// and average to surface.

// Note that heat conductances (W/K)

// must be divided by the volume

// of the entire structure.

// This is thermal conductance divide by

// volume of ONE pebble

//

// There must be one more conductance

// than the number of nodes

// (see explanation in class)

heatConductances (15548000 15548);

// volumetric heat capacity of

// each node. This is J/(m^3 K)

// for each node

rhoCp (1131437);

// Frction of the volume of the structure

// occupied by each node

volumeFractions (1);

// Fraction of total power in the strucure

// that goes to each node

powerFractions (1);

// Initial temperature, if no temps found in

// the time folder

// kelvin unit

T0 1173;
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}

}

Heat Transfer Parameters Explained Here, an initial temperature entry for the fuel
(T0) is required and put at 1173 K. Since this is a one node structure, only one volumetric
heat capacity (rhoCp) is supplied. Two heat conductances are supplied, a heat conductance
to some inner maximum temperature Tmax and a heat conductance to the pebble surface.
This Tmax is connected to T [0] via a thermal conductance. It can be used to represent the
maximum temperature of the fuel.

In lumpedNuclearStructure.H in GeN-Foam, we see a diagram in the readme for a model
with n nodes:

Tmax T[0] T[1] T[n-1] Tsurface

| --- H[0] --- | --- H[1] --- | --- H[2] --- | --- H[n] --- |

Here, n represents the number of heat conductances the user must supply. Of course, in
this case, n = 3. Tmax is used by GeN-Foam to calculate the maximum fuel temperature in
that cell in case that becomes important. For TRISO fuel however, we are not interested in
this because the threshold for fuel failure is almost never reached during reactor transients
of interest. In fact, for the purposes of reactor fuel temperature feedback, the user can only
select the representative fuel temperature from the various nodes inside the model from T [0],
T [1], all the way to T [n− 1]. Tmax and Tsurface are not even selectable. Hence, Tmax is quite
irrelevant except for printing out the maximum fuel temperature. This can be verified by
looking in GeN-Foam’s source code in lumpedNuclearStructure.C.

For this reason, I gave H[0] an arbitrary value which was 1000 times the conductance
value between T [0] and Tsurface. This is because I wanted Tmax to be the same value as
T [0] as far as possible. Therefore, I gave it an arbitrarily large conductance value. Again,
the subscale fuel model is a grossly simplified version of a potentially doubly heterogeneous
heat transfer model. Fidelity improvements can be made in future work, but not in this
iteration as fidelity in terms of the heterogeneous heat transfer media is not the goal in this
dissertation.

Temperature used for Fuel Temperature Feedback We use one node for this fuel
because it is the most simple model available. The nodeFuel “0” entry here indicates that I
use T [0] as the relevant temperature for fuel temperature feedback. The nodeClad entry is
functionally similar except that it pertains to cladding expansion. Since cladding expansion
is irrelevant in this scenario, the default value of “0” is also given.

Subscale Heat Sink and Momentum Sink Now, the Wakao Correlation and Ergun
Correlation are also put in here:
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"fuel_cell:reflector_cell"

{

type byRegime;

regimeMap "lamTurb";

//- List of subdicts specifying a heatTransferModel for each regime

// in the lamTurb regimeMap

"laminar"

{

// Nu = const + coeff * Re^expRe * Pr^expPr

type NusseltReynoldsPrandtlPower;

const 0.52;

coeff 0.64177;

expRe 0.6;

expPr 0.333333333333;

}

"turbulent"

{

type NusseltReynoldsPrandtlPower;

const 0.52;

coeff 0.64177;

expRe 0.6;

expPr 0.333333333333;

}

"fuel_cell"

{

// this is based on Ergun Correlation

// for workings and derivation, please see readme

// f_d = 19.3492 / Re + 1.4234

// Again, we are not really interested in

// drag for now, but it is good to see

// how the terms are derived through the readme.

type ReynoldsPower;

coeff 19.3492;

exp -1.00;

const 1.4234;

}
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On the Reflector and FLiBe Regions

For regions other than the fuel region, we know physically that porous media does not apply.
The reflector region is meant to be 100% solid graphite and the FLiBe regions were meant
to be 100% fluid.

For FLiBe, it was easy to set porosity to 100% so that the equations (almost) resembled
pure Navier-Stokes with heat transfer. We mentioned before that radial conduction was ne-
glected, and this could cause some inaccuracies. However, since advection was still modelled,
and this was still somewhat okay as we could model at least one form of heat transport.

For the graphite reflector region, the porosity cannot be set to zero so that the porous
media does not contain fluid. These porous media equations are designed to have fluid, so
there was little choice in what could be done with GeN-Foam in its present (June 2023 and
prior) state. The graphite reflector was then modelled to have a 1% porosity, which was
close-ish to 99%. This was done chiefly because the porous media model cannot accept a
0% porosity input in its present state. Of course, in a real FHR, the graphite reflector is not
usually a monolithic block, but instead is made of smaller constituent blocks. There would
be gaps between these blocks which would be filled with FLiBe, and this would perhaps be a
physical means of justifying the 1% porosity. However, the porous media model in GeN-Foam
fails to account for thermal conduction between the solid phase in adjacent control volumes.
A redesign of source code is still necessary to model conjugate heat transfer accurately. For
now, we do our best to approximate a solid medium, and this means setting the momentum
sink terms to very high values within the graphite block. This would ensure that the coolant
mostly flows through the FLiBe entrance and exit regions as well as the core and not through
the graphite block. In terms of heat transfer, the reflector structure cannot participate in it
because heat does not flow between adjacent solid regions of the cells by default.

Therefore, the graphite reflector effectively becomes a reflector structure perfectly ther-
mally insulated from the reactor. This inaccuracy was tolerated as I would otherwise have
to re-write, compile and test the GeN-Foam source code. This was out of scope for this
work. A second consideration I thought of, but didn’t work, would be to make the graphite
region a fluid, but replace it with a “fluid” of extremely high viscosity so much so that it
acts like a solid similar to glass or tar. The medium would then conduct heat away from the
reactor (or to it) and act as a body with thermal inertia. Unfortunately, we found that the
GeN-Foam equations do not normally include fluid conduction for its porous media. Hence,
this approach is also currently unsuitable, but can be explored in future work.

Neutronics Boundary Conditions

Vacuum Boundary Condition Syntax in GeN-Foam For neutronics, vacuum bound-
ary conditions were placed at all boundaries for simplicity. We adapt a boundary condition
from SP3 equations [Fiorina, Hursin, and Pautz, 2017] known as the “albedoSP3” bound-
ary conditions put under a “defaultFlux” field. The source code can be found in “albe-
doSP3FvPatchField.C” and “albedoSP3FvPatchField.H”.
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The equations used for this boundary condition are as follows [Fiorina, Hursin, and Pautz,
2017]:

Di∇ϕ̂0,i = −1

2

[
1− αi

1 + αi

](
ϕ̂0,i −

3

4
ϕ2,i

)
(5.37)

3

7

1

Σt,i

∇ϕ2,i =
1

2

[
1− αi

1 + αi

](
3

20
ϕ̂0,i −

21

20
ϕ2,i

)
(5.38)

ϕ2,i is a second moment flux for energy group i and it pertains to the SP3 equations. For
diffusion neutronics, ϕ2,i can be essentially set to zero to reduce the SP3 boundary conditions

to a diffusion neutronics boundary condition. This would simplify the term ϕ̂0,i = 2ϕ2,i+ϕ0,i

to ϕ̂0,i = ϕ0,i. The resultant albedoSP3 boundary condition equation becomes:

Di∇ϕ0,i = −1

2

[
1− αi

1 + αi

]
ϕ0,i (5.39)

Where αi is the ratio between incoming and outgoing neutron partial currents for energy
group i [Fiorina, Hursin, and Pautz, 2017]:

αi =
J−
i

J+
i

(5.40)

Verification of Adapting SP3 Boundary Condition for Diffusion Vacuum Bound-
ary Condition We can verify that the albedoSP3 boundary conditions can indeed be
adapted for diffusion by setting ϕ̂0,i = ϕ0,i and ϕ2,i = 0 by deriving the flux boundary condi-
tions using partial currents. This limited derivation is for a 1D slab geometry. We can start
by expressing angular flux assuming it is linearly anisotropic [Duderstadt and Hamilton,
1976]:

ψ(x, µ) =
1

2
[ϕ0(x) + 3µJ(x)] (5.41)

From diffusion theory, we further approximate neutron current as follows:

J(x) = −D∂ϕ0(x)

∂x
(5.42)

From diffusion neutronics, we can express angular flux in terms of the zeroth moment
flux, scattering angle µ, Diffusion Coefficient D and flux gradient:

ψ(x, µ) =
1

2

[
ϕ(x)− 3µD

∂ϕ(x)

∂x

]
(5.43)

Positive and negative partial currents can be found by integration:
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J+(x) =

∫ 1

0

dµµψ(x, µ) =

∫ 1

0

dµµ

(
1

2
ϕ(x)− 3µD

∂ϕ(x)

∂x

)
=
ϕ(x)

4
− D

2

dϕ(x)

dx
(5.44)

J−(x) =

∫ 1

0

dµµψ(x, µ) =
ϕ(x)

4
+
D

2

dϕ(x)

dx
(5.45)

We can then substitute these expressions of partial currents into the definition of αi:

αi =
ϕ(x)
4

+ D
2

dϕ(x)
dx

ϕ(x)
4

− D
2

dϕ(x)
dx

(5.46)

Using an ad-hoc extension of the 1D flux derivative to 3D, and by making Di∇ϕ0,i the
subject of Equation 5.46, we obtain Equation 5.47:

Di∇ϕ0,i = −1

2

[
1− αi

1 + αi

]
(ϕ0,i) (5.47)

Equation 5.47 is indeed the SP3 boundary conditions adapted for diffusion by setting
ϕ̂0,i = ϕ0,i and ϕ2,i = 0 in equation 5.39.

albedoSP3 γ input for Vacuum Boundary Condition Now that we have verified this,
we need to specify parameters for the albedoSP3 boundary condition. The most important
parameter for this boundary condition is γ where:

γ =
1

2

1− α

1 + α
(5.48)

For a vacuum boundary condition, incoming flux J− is zero, so αi is zero for all energy
groups. Hence γ = 0.5.

Post Processing

Use of the Boussinesq Approximation The outlet temperature was measured using
OpenFOAM’s postProcessing. This is put into GeN-Foam’s “controlDict” input file. We
can obtain a mass flow weighted average of the temperature measured at the outlet. We are
given options to perform a weighted area average of the temperature field by the fluid flux,
also known as “phi” in the OpenFOAM solvers. Unfortunately, OpenFOAM may use “phi”
to represent mass flux or volume flux depending on the solver.

In GeN-Foam’s context, phi does look like it represents volume flux rather than mass
flux. However, it may not matter greatly as FLiBe is a liquid. Liquids do not change much
in density so their changes in density can be neglected except in calculating buoyancy forces.
I opted to use this assumption (Boussinesq approximation) and used the volume flowrate
weighted temperature to approximate the mass flowrate weighted temperature. This was
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purely out of convenience because accessing mass flux weighted temperature in the post
processing tools was more difficult in terms of syntax. I chose volume averaged flux because
it saved some time.

To show that mass flux averaged temperature and volume flux averaged temperature is
more or less equal, we can begin with some equations for mass flowrate averaged temperature:

Tbulk =

∫∫
dA uρcpT∫∫
dA uρcp

(5.49)

For FLiBe, heat capacity is essentially constant based on the molten salt databases [Sohal
et al., 2010]. Hence, it can be divided out:

Tbulk =

∫∫
dA uρT∫∫
dA uρ

(5.50)

Now of course, we can assume fluid density doesn’t change much, this is essentially the
Boussinesq approximation. Now, we are left with:

Tbulk =

∫∫
dA uT∫∫
dA u

(5.51)

Given this assumption, we can infer that volumetric flow weighted average temperature
is equal to mass flow weighted average temperature. Of course, we can estimate the degree
to which density affects the discrepancy between volumetric flow rate averaged temperature
and mass flowrate averaged temperature.

Tbulk mass average − Tbulk volume average =

∫∫
dA uρcpT∫∫
dA uρcp

−
∫∫

dA uT∫∫
dA u

(5.52)

Let ρ be represented as a sum between a reference density and a density deviation:

ρ(T ) = ρref +∆ρ(T ) (5.53)

If the density deviation is small enough, we should be able to safely say that volume
weighted temperature averages are same as mass weighted temperature averages. One way
to quantify if a density change is small enough is to compare it to experimental measurement
uncertainty and data variability. For FLiBe, an estimate of this variability is about 2% to a
maximum of 11% [Vidrio et al., 2022]. We can use equation 5.54 to estimate ∆ρ(T ):

ρ(kg/m3) = 2415.6− 0.49072(T (K)) (5.54)

To estimate an upper bound for temperature variation for outlet fluid temperatures
assuming it is somewhat well mixed, we can use the temperature difference between inlet
and outlet temperature of the Mark I FHR, which is about 100◦C:

∆ρ(T ) = −0.49072 ∗ 100 ≈ 49.1kg/m3 (5.55)
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Now, the variation in experimental data for FLiBe density being around 2.2% to 11%
translates to about 42 kg/m3 to 213 kg/m3. This is at a reference ρ of 1938kg/m3 at
973 K. This temperature variation is within this variability and therefore the temperature
discrepancy between using volume weighted and mass weighted temperature averages is
quite indistinguishable from variations between mass weighted temperature averages due to
variations in FLiBe density measurements.

Hence, for this case, whether ϕ represents volumetric flux or mass flux, one need not
worry too much about the discrepancy in temperature measurement. A second issue with
ambiguous naming convention phi is that is called “flux” in the documentation. Volume flux
can sometimes be in units of m3/s [Ma et al., 2023] or be considered volumetric flowrate per
unit area m/s. This naming convention can be a source of confusion for users of OpenFOAM
and GeN-Foam. Therefore, it is important to explore the source code to ascertain what
“flux” actually means in each context. In the case of GeN-Foam, it is likely to be volumetric
flowrate through each face in the mesh. This is shown from some source code exploration
in the Appendix on page 457. With these concerns out of the way, we can find the average
temperature using volume flux (phi) as a weight field.

Simplification: Natural Convection Switched off For low flowrates, however, natural
convection induced local flow tends to produce flows with local velocities comparable to
the superficial velocity of fluid through the reactor. This tends to cause the ϕ averaged
temperature generated by the post processor to become inaccurate and unphysical. For
example, we get negative temperatures in kelvin due to backflow or some other flow patterns.
I could of course debug the post processing tool to ensure that it produces the right averaged
temperature values. However, I decided to switch off the natural convection phenomena in
this case as I was not interested in studying mixed convection. This may reduce heat transfer
coefficient as we are having aiding mixed convection, but it will not impact the main goals
of the work. This goal is to demonstrate the methodology of “training” a surrogate model
to replicate transient behaviour of the multiphysics reactor.

Input functionObject Example The following syntax was used to obtain volumetric
flowrate averaged temperature. These inputs are placed in “controlDict” under a “functions”
section:

outletTempAvg_byFlux

{

type surfaceFieldValue;

libs ( fieldFunctionObjects );

writeControl adjustableRunTime;

log true;

writeFields false;

regionType patch;

name outlet;



342

operation weightedAverage;

weightField phi;

region fluidRegion;

fields ( T );

executeControl adjustableRunTime;

executeInterval 0.5;

writeInterval 0.5;

}

Stabilisation Procedures

Getting a coupled neutronics and thermal hydraulics multiphysics simulation presents some
practical challenges in terms of solver stability and ensuring that keff = 1. If one were
to simply start an eigenvalue simulation or transient simulation with all equations solved
simultaneously, solver instability becomes almost certain. In this section, we discuss some
important procedures used to ensure that the GeN-Foam solver can run in a stable manner.

Understanding the GeN-Foam Solver

GeN-Foam uses the multigroup diffusion equation with delayed neutrons accounted for [Fio-
rina, Kerkar, et al., 2016] to solve its diffusion equation:

1

vg

∂

∂t
ϕg(r⃗, t) =

χg(1− βtotal)
∑G

g′=1 νg′Σf,g′ϕg′(r⃗, t)

keff
+

6∑
k=1

λkCk

+
G∑

g′=1

ϕg′(r⃗, t)Σs,g′→g +Qex,g(r⃗, t)

+∇ •Dg∇ϕg(r⃗, t)− Σt,gϕg(r⃗, t)

(5.56)

Where βtotal is the total delayed fraction. λk represents decay constant for precursor
group k and Ck represents concentration of delayed precursors for group k in m−3 [Fiorina,
Kerkar, et al., 2016]. For solid fuel, the delayed precursors are governed by balance equations
for each group:

∂Ck

∂t
=
βk
∑G

g′=1 νg′Σf,g′ϕg′(r⃗, t)

keff
− λkCk (5.57)

The diffusion solver can be used for eigenvalue calculations, and here, all time dependent
variables in equation 5.57 and equation 5.56 are set to zero, and the solver iteratively finds
keff . In transient (non-eigenvalue) mode, keff is specified by the user manually, while the
time dependent terms are non zero [Fiorina, Kerkar, et al., 2016]. For a critical reactor
keff = 1. However, even if the Monte Carlo simulation has a keff of 1 and we replicate the



343

geometry and cross sections in GeN-Foam, keff may not be exactly 1 but a value close to 1
possibly because of approximation errors within GeN-Foam.

Hence, to get the reactor ready for transient simulation, we must ensure the reactor
is 1 even if the eigenvalue calculations do not yield keff = 1. To do so, we first run an
eigenvalue simulation at the steady state conditions of the reactor so as to obtain a keff ,
and then substitute this keff into the transient simulator to compensate for whatever errors
or discrepancies may arise from the multiphysics diffusion and Monte Carlo simulation.

To do so, we ideally want to run GeN-Foam in eigenvalue mode so that the keff can
be obtained by the diffusion solver at steady state. I found that when I tried solving the
thermal hydraulics and neutronics equations simultaneously, the solver ran into instabilities.

Solver Multiphysics Stabilisation

To solve the solver instabilities during eigenvalue calculations, I ensured that neutronics was
not solved within the simulation first. GeN-Foam has entries within its “controlDict” input
to allow the user to switch neutronics, energy, fluids and thermal mechanics solvers on and
off. As mentioned before, thermal mechanics solvers are switched off always. However, I
switched on the energy and fluid mechanics solvers first and switched neutronics solvers off.
The reactor would then output a fixed power output of 312.5 kW. This would allow us to
have a steady state temperature field to work with.

The second step I took was to switch on the neutronics solver with eigenvalue mode
on. However, I switched the energy solver off. Hence, only the neutronics and fluid solvers
were working. These neutronics and fluid mechanics were not as interdependent as heat
transfer and neutronics, and therefore, the simulation was quite stable. Turning off the
energy solver meant also that the temperature distribution in the core was preserved. This
may not be representative of a real core since power distribution is uniform. In a real reactor,
neutron flux and therefore power generation near the center of the core is higher. However,
a uniform power distribution also allows for maximum temperature to be at the center of
the core. In terms of temperature profile, it is a close enough approximation to a realistic
power distribution. This approximation is quite important for solver stability because the
solver might calculate large changes in the system heat transfer or neutronics. These large
changes simulated tend to destabilise the solver.

At the end of these two steps, we would have had a keff estimation, a starting temperature
distribution, as well as a neutron flux distribution. With these, we could switch neutronics,
energy and fluid mechanics solver on, and toggle off the eigenvalue mode for GeN-Foam.
Thereafter, the GeN-Foam solver could be run in transient (non-eigenvalue) mode. Before
the model was subject to further perturbation, GeN-Foam was allowed to run the model at
steady state for an extended time with all the physics turned on.

After this period of stabilisation, we can say that the reactor has somehow reached
steady state where we have a steady temperature distribution and a steady neutron flux
distribution. At this state, multiple copies of the reactor simulation were made so that the
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computer could run frequency response tests and step response tests starting from the exact
same initial steady state condition.

I used a bash script to automate this process because it was quite tedious to remember
what steps needed to be taken. An excerpt of this script is presented in the Appendix on
page 449 for the reader’s reference.

Mesh Stabilisation

Another stability issue I encountered was due partly to the tetrahedral meshes and finite
volume discretisation schemes. In OpenFOAM and GeN-Foam, partial differential equations
(PDEs) are converted into matrix equations by discretisation. For example, we discretise the
thermal hydraulics equations by splitting the entire volume into discrete finite volumes. We
make approximations of the divergence, gradient and laplacian terms within each equation
so that we get a system of matrix equations.

For GeN-Foam and OpenFOAM, these have to be manually specified by the user. For
this arbitrary reactor, a tetrahedral mesh using Salome’s NetGEN 1D-2D-3D algorithm
was used. Nevertheless, some discretisation defaults used in previous simulations were not
suitable as they were meant for more structured meshes. For tetrahedral meshes, Jasak
recommends a least squares gradient scheme, upwinding for convection (divergence) schemes,
and non-orthogonality limiters for diffusion (laplacian) schemes [Jasak, 2015]. An example
of fvSchemes for the thermal hydraulics solver is provided for the reader’s reference in the
Appendix on page 450.

5.3 Obtaining Transfer Function

Preliminaries

Now that we have a GeN-Foam simulation set up, we need to obtain data for a data driven
surrogate model. For surrogate modelling, we wish to represent reactor transient behaviour
with the use of transfer functions. Ideally we would have a multiple input and multiple
output (MIMO) system of equations. However, for demonstration purposes, a single input
single output (SISO) system would suffice.

For a practical frequency response test in an experimental setup, the amplitude should
achieve [De Wet and Per F Peterson, 2020]:

• 1. the desired signal to noise ratio

• 2. be low enough not to interfere with designed purpose of the facilities

• 3. be low enough to avoid perturbing nonlinearities

• 4. correspond to intervals that can be perturbed by chosen method
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• 5. be within operating and safety limits

Some of these pertain only to an experimental setup, where frequency response was
meant to be run during plant operations. The perturbations were not meant to disrupt the
operations and safety of the plant.

We generally wish to achieve high signal to noise ratio without perturbing the nonlin-
earities for frequency response. This would, of course, mean that a simple transfer function
is not able to replicate nonlinearities within the simulated reactor. However, nonlinearities
can be explored in future work, and for a first iteration of a simulated neutronics feedback
controller a transfer function model would suffice.

Even with this simplification, simulating frequency response tests to probe GeN-Foam
models for a suitable transfer function takes about 1 to 2 weeks to complete on a regular
PC.Hence, using single frequency forcing functions would be quite impractical. To reduce
computation time, broadband signals are used instead to perturb the system. A transfer
function was used to fit the frequency response data, and this transfer function was validated
using a time domain step response test.

Pseudorandom Binary Sequence (PRBS)

The PRBS sequences were used because they could save time by perturbing multiple fre-
quencies per test. I used MATLAB’s SerDes package which contains a PRBS generating
function. This function as used to generate a 128 bit PRBS signal. I then converted this
signal to a inlet temperature PRBS signal of 30s per bit. This was sufficient to capture the
transient characteristics for the reactor simulation. With a high frequency PRBS signal, I
could not get enough signal energy to excite the lower frequency perturbations. Hence, I
wanted to increase the number of seconds per bit. CIET was tested using PRBS of 10s per
bit [De Wet and Per F Peterson, 2020], but I found that 30s per bit seemed to work for
generating desirable input signal to noise ratios at lower frequencies. The PRBS sequence
can be shown as follows in table 5.10:
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Table 5.10: PRBS 128 Bit (16 Byte) Sequence

Byte Number PRBS Sequence

1 00000100

2 00011000

3 01010001

4 11100100

5 01011001

6 11010100

7 11111010

8 00011100

9 01001001

10 10110101

11 10111101

12 10001101

13 00101110

14 11100110

15 01010101

16 11111100

The PRBS sequence is presented as 16 bytes, where 1 byte is 8 bits. Given that there
are 30 seconds per bit, each PRBS sequence takes about 3810 seconds to complete. The full
PRBS sequence with timestamps is shown in the Appendix on page 452.

Bode Plots and Transfer Functions

Using these PRBS signals, I then performed frequency response tests using the inlet tem-
perature as a forcing function to probe how the reactor might respond to increased coolant
temperature. The amplitudes chosen were 10K, 30K and 100K respectively.

After testing and post processing, the bulk temperature time domain data at the inlet
and outlet were both subject to fast fourier transforms using a Matlab script. The resulting
peaks were filtered using Matlab’s peakFinder function from the Signal Processing Toolbox
to select the most prominent signal energies. This was done so as to select about 50 to 100
data points for the Bode Plots. Thereafter, Matlab’s bodeplot function from the System
Identification Toolbox was used to plot the Bode Plot data. Lastly, Matlab’s in house tfest
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function in the system identification toolbox was used to estimate a transfer function using
the frequency response data.

Matlab’s tfest requires the user to input the number of poles and zeroes as its input. For
this I simply tried fitting lower order models first to the frequency response data and then
I verified whether it fit using the step response test. That means I start with n poles and
(n-1) zeroes and increased n until there was the transfer function was verified using step
response data. To verify that the transfer function is derived properly from the frequency
response data, it is subject to step changes and compared to data derived from the same
test performed in GeN-Foam. In this case, a 30K step increase in inlet temperature was
performed on the transfer function. This 30K step increase was done because it simulates
an unprotected loss of heat sink (ULOHS) transient. We assume no changes in fluid mass
flowrate for simplicity. Physically, this would mean that the primary salt pump (PSP) is still
running. In a similar manner, the same 30K step increase was performed for GeN-Foam and
the average outlet temperature was measured. We quantify whether a fit is “good enough”
by comparing the deviation to typical uncertainties in K type thermocouples which might be
used to measure temperatures in an FHR.These uncertainties are around ±2.2K [Kollie et
al., 1975]. Therefore, 2.2 K error bars are added to show the are added to show if differences
are well within thermocouple measurement uncertainty.

Transfer Function and its Verification

The result from this process is a second order transfer function. The inlet temperature to
outlet temperature transfer function computed in Matlab using 30K perturbation amplitude
is:

G(s) =
7.455 ∗ 10−5s− 7.726 ∗ 10−8

s2 + 0.0005918s+ 2.268 ∗ 10−7
(5.58)

Deriving Transfer Function using “tfest” from Matlab on Frequency Response
Data The transfer function was obtained using Matlab’s “tfest” on the frequency response
data of the arbitrary reactor. Here, we present the Bode plot of the frequency response test
for a 30K perturbation amplitude in Figure 5.19:
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Figure 5.19: Bode Plot of Inlet Temperature to Outlet Temperature Transfer function using
30K Perturbation Amplitude, done using Matlab

For the gain bode plots, we use equation 5.59:

Gain (dB) = 20 log10
δO

δI
(5.59)

Figure 5.19 plots the fitted transfer function alongside the frequency response data of the
arbitrary reactor in GeN-Foam. To estimate the transfer function, Matlab’s “tfest” requires
that a suitable number of poles and zeroes are given as an input. Ideally, we would want
to fit every single point in the plot and give place it in the transfer function. We may not
have to worry as much about overfitting data (compared to fitting experimental data) in this
case because the results are simulated and we do not have measurement uncertainties due to
thermocouples or other measurement apparatus. However, adding more poles and zeroes to
fit the transfer function proved troublesome. Sometimes, the tfest algorithm would produce
a worse fit at when more poles and zeroes were given. Due to this issue, I decided that using
a simpler data-fit model which fit most of the important data points would suffice. This
importance can be quantified by the gain. Hence, I opted to ignore points below a certain
gain. This threshold was -30 dB. Usually, a -30dB gain means that the output is about 3%
the magnitude of the input. For a 30K temperature input, this is about 0.9K of output.
We would then question whether we need to worry about 0.9K of temperature deviation.
However, as mentioned earlier, this deviation is rather insignificant especially if we compare
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it to ± 2.2K of thermocouple measurement uncertainty. From this perspective, those points
should be safe to ignore. The other concern is system instability. This is because if there are
unstable poles at any frequency, high or low, of any gain, then we cannot simply ignore them.
Thankfully, the system and the transfer function are relatively stable. We shall see that this
is the case when we subject the transfer function and arbitrary reactor in GeN-Foam to a
step response test.

Another figure of merit to indicate whether the transfer function is a good fit is the steady
state gain (gain at 0 Hz). However, we don’t plot steady state gain on the Bode Plot. A
proxy for this is that we place more importance on gains at lower frequencies. Practically,
this means that the data points, especially that of the lowest frequency should be well fitted
to using the transfer function. We see that this is the case for Figure 5.19. Using these
figures of merit, we can justify that the fitted transfer function is a decently good fit to the
frequency response data.

Validation using Step Response Tests While the Bode plots show that the fitted
transfer function can replicate the frequency response data of the arbitrary reactor, the
surest way we can convince ourselves that the fitted transfer function is indeed a good fit is
using a step response test.

Therefore, the arbitrary reactor and fitted transfer function were both subject to the same
step change. This step change is a 30K step increase in inlet temperature while the flowrate
is kept constant. Such a step increase would mimic a ULOHS transient and is therefore
interesting to study for FHR safety. The resulting step response plots in Figure 5.20:
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Figure 5.20: Step Input of 30K applied to Inlet Temperature for GeN-Foam compared to
Derived Transfer Function

Here, we worry whether ignoring certain frequencies would result the transfer function
being a bad fit for the arbitrary reactor behaviour. Indeed, we observe in Figure 5.20 that
there is some deviation between the outlet temperature of the transfer function and arbitrary
reactor. To quantify if this deviation is important, we can once again compare it to the
thermocouple measurement error of ± 2.2 K. Thankfully, results in Figure 5.20 show that
when both GeN-Foam and the transfer function are subject to the same 30K step increase in
inlet temperature, the system responses match to within thermocouple measurement error.
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Test for Nonlinearities with 10K Frequency Response Data Now, a transfer func-
tion model is a linear time invariant (LTI) model whereas a multiphysics reactor simulation
would have non-linearities. An issue with using transfer functions is that transfer functions
cannot capture the nonlinear behaviour of the system. To quantify non-linearities within the
system, we can subject the multiphysics simulation to PRBS signals of different amplitudes.
We show the frequency response data at for a 10K ampltiude PRBS signal is overlaid with
with data from Figure 5.19 in Figure 5.21:

Figure 5.21: Bode Plot of Inlet Temperature to Outlet Temperature Transfer function over-
laid with 30K amplitude frequency response data and 10K amplitude frequency response
data

Figure 5.21 shows that some data points from the 10K frequency response dataset match
that of the 30K PRBS dataset. However, there is significant deviation especially at low
frequencies. As mentioned previously, one important figure of merit for how well a transfer
function fits the frequency response data is the ability of the transfer function to replicate
steady state and low frequency behaviour. This may be due to system non-linearities. In
fact, at low frequencies, the gain is less than -30 dB. This means that the gain of the system
at low level frequencies is on a comparable order of magnitude as noise. For example, at
5.2 ∗ 10−5 Hz, the predicted gain from the transfer function is -10dB, but the gain for the
10K PRBS frequency response test is -30dB. Again, a -30dB gain means that the output is
about 3% the magnitude of the input. For a 10K temperature input, this is about 0.3K of
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output. Given a typical thermocouple measurement error of 2.2 K, it would be difficult to
distinguish this output signal from noise in a real experiment. Hence, data points like these
may not be good for fitting transfer functions.

These results seem to indicate that the transfer functions are probably not a good idea for
fitting reactor feedback in general as the multiphysics simulation in GeN-Foam is showing
some nonlinear behaviour. However, these non-linearities are sometimes small enough to
ignore. Figure 5.22 shows that despite the non-linearities that show between 30K and 10K
PRBS datasets, the non-linearities may be small enough to neglect:
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Figure 5.22: Step Input of 10K applied to Inlet Temperature for GeN-Foam compared to
Derived Transfer Function
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Figure 5.22 shows deviation in system response between the transfer function and the
multiphysics reactor model in GeN-Foam. While there are deviations, they are smaller than
a typical thermocouple uncertainty of ± 2.2K. Thus, they are statistically indistinguishable
from measurement error if the reactor transient response data was obtained experimentally.
This measurement error is shown by the error bars in Figure 5.22. Thus, despite the existence
of non-linearities, the non-linearities themselves may be small enough to ignore, the transfer
function would still be applicable at this temperature range.

Limitations of using Transfer Functions to model FHR Transient Behaviour

Step Response at 100K Step Input While deriving transfer functions from frequency
response testing has worked well in nuclear reactor stability analysis, we also want to show
that it has limits. We got away with non-linearities occurring between 30K and 10K PRBS
frequency response tests because these were small. However, for the GeN-Foam simluated
arbitrary FHR, non-linearities do become significant given a large enough step increase in
inlet temperature. Thus, transfer functions meant to model linear time invariant (LTI)
systems are not able to capture these nonlinear effects.

To prove this point, the arbitrary reactor and the fitted transfer function were both
subject to a step increase of 100 K in inlet temperature. The resulting system responses
show in Figure 5.23:
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Figure 5.23: Step Input of 100K applied to Inlet Temperature for GeN-Foam compared to
Derived Transfer Function

With a step input of 100K for the GeN-Foam simulated reactor, the inlet temperature
increases from 873K to 973K. The transfer function model predicts that the steady state
outlet temperature would fall below 973K. This would be an unphysical result considering
the energy balance. The GeN-Foam model shows that the reactor outlet temperature dips
initially from 970K to about 952K, but rises back up to about 970K at 10,000s. I found
it too much trouble for too little gain to wait for the outlet temperature to rise to 973K,
and hence, I just extrapolated the data up to 20,000s at 970K. In reality, we should expect
the outlet temperature to rise to 973K given the energy balance of the multiphysics reactor.
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Either way, this seems to indicate that the pebbles in the core are absorbing heat from the
FLiBe rather than supplying heat to it as the outlet temperature reaches some steady state.
Of course, in a real reactor, this is an unphysical response because there would be decay
heat, but we shall ignore that for now. The main point is that significant non-linearities
exist where transfer functions fall short.

Frequency Response using 100K PRBS The bode plots also show that the frequency
response, especially in the higher frequency regions for 30K and 100K PRBS tests do not
match well especially when it comes to the Phase Angle plots in Figure 5.24:

Figure 5.24: Bode Plot of Inlet Temperature to Outlet Temperature Transfer function over-
laid with 30K amplitude frequency response data and 100K amplitude frequency response
data

Data at lower frequencies was not captured in Figure 5.24. This is because I used a
filtering algorithm to remove data points with gains that were too low so as to prevent my
dataset from having too many points. This means that the steady state gain was essentially
zero for the multiphysics reactor model.

Discussion of Non-Linearities Both step response and frequency response plots show
that non-linearities emerge for coupled reactor multiphysics tests. This is because the mul-
tiphysics reactor simulation is a non-linear system. Firstly, cross sections vary with the
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logarithm of temperature rather than temperature [X. Wang, 2018]. Therefore, given a con-
stant flux, reactor power might vary linearly with the logarithm of inlet fluid temperature
rather than the fluid temperature itself. For small enough perturbations, the log linear de-
pendence may be small enough to ignore for this case, but this would not hold for larger
perturbations.

Secondly, we also consider that the reactor cannot physically cool the fluid. When inlet
coolant temperature increases, the fuel temperature also increases. This should lower keff
and cause the reactor to lose power until another steady state is reached. However, we
cannot expect the reactor to keep losing power till the power output becomes negative (or
below decay heat value). This is a second source non-linearities besides the log temperature
dependence. To visualise this, we can consider Figure 5.25:
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Figure 5.25: Reactor Power Response to Step Inputs of Increased Inlet Temperature

Figure 5.25 shows that at 10K step increase in inlet temperature, the reactor power
decreases to around 264 kW from 312.2 kW. This is about a 15.4% power decrease for 10K
increase in inlet temperature. For 30K step increase in inlet temperature, reactor power
decreases to about 179 kW. This is an approximate decrease of 43% in reactor power, or
14.2% decrease in reactor power per 10K increase in inlet temperature. Now, if we were to
linearly extrapolate either of these gains to a case of 100K increase in inlet temperature, we
would get reactor power reduction of >100%. This means that the transfer function model
is cooling the fluid rather than heating it. This is quite unphysical. Of course, the reactor
(without accounting for decay heat) can only output at minimum 0 kW of power. Any
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further increase in temperature beyond this point would produce a no difference in power
output. If decay heat is included, then reactor power output cannot physically be lower than
the decay heat. This is a second source of non-linearity.

To model these nonlinear responses, we may require a nonlinear model to develop our
controllers. These nonlinear models are most definitely more complicated and quite out-
side the scope of this dissertation. However, it does show that controller development for
simulated neutronics feedback would be quite complex if we wanted to capture linear and
nonlinear behaviour. Thus, it is quite plausible that we would need to go through several
iterations of controller prototypes in order to develop it. This makes digital twins ideal as a
testbed because these iterations can be performed on a digital twin before implementation
in the real physical system.

For this work, the objective is to demonstrate an iteration of simulated neutronics con-
troller development using digital twins as a testbed. Hence, the focus will not be on devel-
oping a nonlinear controller, but rather demonstrate digital twins as a testbed for iterative
controller development. The first iteration of the controller would be based on transfer func-
tions because it is simple and quick to produce relative to more complex controllers. We
shall complete this iteration by scaling this controller down to CIET and embed it in the
digtal twin model of CIET.

5.4 Obtaining Scaled Transfer Function

In this section, we describe how the scaled transfer function for CIET is derived using GeN-
Foam simulated data. For this, we use CIET’s original scaling methodology [Zweibaum, J E
Bickel, et al., 2015; Zweibaum, Guo, et al., 2016; Bardet and Per F Peterson, 2008] since was
already established. This scaling methodology for temperature is described in equation 5.60:

Ttherminol V P−1(
◦C) = 0.3TFLiBe(

◦C)− 100 (5.60)

For time scaling, we will simply scale time by 2/3.
These scaling parameters will be applied directly to the time domain data, only for the

30K amplitude PRBS and 30K amplitude step response. This is because we already verified
that the transfer function can effectively replicate the step response behaviour for step inputs
of 30K and below.

Scaled Transfer Function from Scaled Frequency Response Data

We repeat the procedure for estimating transfer function using tfest from Matlab for fre-
quency response data to obtain a transfer function. The transfer function is:

G(s) =
0.000119s− 2.201 ∗ 10−7

s2 + 0.0007903s+ 6.667 ∗ 10−7
(5.61)
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The frequency response of the scaled transfer function is plotted with the scaled frequency
response data in Figure 5.26:

Figure 5.26: Bode Plot of Inlet Temperature to Outlet Temperature Scaled Transfer Function
overlaid with Scaled 30K amplitude frequency response data

This time, for the tfest function, we assume that the transfer function has two poles
and one zero for Matlab because the transfer function in the FLiBe cooled arbitrary reactor
worked well with these settings. As before, I do not make attempts to fit data below -30dB
of gain.

Verification of Scaled Transfer Function using Scaled Step
Response Data

We also verify if this transfer function fits step response data. To do so, the arbitrary reactor
step response data was also scaled using equation 5.60. The scaled step response data was
compared to the step response of the transfer function with a scaled step input in inlet
temperature. For a 30 K step input, this translates to a 9K or 9 ◦C step input for a scaled
Therminol VP-1 or Dowtherm A system in CIET. A 9◦C step response for both scaled step
response data from GeN-Foam and the scaled transfer function is presented Figure 5.27:
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Figure 5.27: Scaled Step Input of applied to Inlet Temperature for Scaled GeN-Foam Data
compared to Scaled Transfer Function

In Figure 5.27, we observe deviations between the scaled transfer function and the scaled
frequency response data as expected. To ensure that these deviations not cause for concern,
we must ascertain if the deviations exceed thermocouple measurement error. To do this,
I add error bars to the graph. These error bars are ±0.5◦C as CIET used T type ther-
mocouples with these measurement uncertainties [Zweibaum, Guo, et al., 2016]. We note
that the transfer function has a slight overshoot compared to the scaled GeN-Foam data
which becomes statistically significant given the thermocouple measurement uncertainty of
±0.5◦C. This was not a problem before as the error bars before for type K thermocouples
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were much larger at ±2.2◦C. Of course, one could argue that this temperature error was
not scaled properly for deviations in the scaled system. However, even when we take scaling
into consideration, the scaled error for type K thermocouples using equation 5.60 is about
±0.73◦C, which is larger than the T type thermocouple. If we were to use the ±0.73◦C mea-
surement uncertainty as the measurement error, then the overshoot in Figure 5.27 becomes
indistinguishable from measurement error.

Given this fact and that the transfer function followed the data most of the way through,
I opted not to further optimise the fitting of the transfer function within the type T ther-
mocouple measurement uncertainties. I consider the transfer function well fitted enough to
replicate behaviour of the scaled GeN-Foam data.

5.5 Conclusion

In this chapter, described methods to construct the arbitrary reactor, which is a simple
cylindrical shaped FHR without control rods. This is meant to be generate data for the
surrogate model (transfer function) so that a simulated neutronics feedback controller may
be developed. We then discussed how rationale for designing the relevant GeN-Foam inputs
as well as the caveats for this rather simple and crude multiphysics model.

We also obtained transfer functions for the GeN-Foam simulated arbitrary FHR for
ULOHS transients. We found that these transfer functions were able to reproduce GeN-
Foam reactor transient data in step response tests for 30K as well as 10K step increases
in inlet temperatures. Nonlinearities were observed for 100K step inputs and frequency
response data.

For simulated neutronics feedback in CIET, we have also derived a scaled transfer function
using a similar methodology which can be used to design a controller. This transfer function
would then be suitable for programming into CIET’s Digital Twin.

5.6 Future Work

The reader should note that the multiphysics model is quite crude in nature. Furthermore,
the data driven surrogate model used is a simple SISO transfer function. These simple
models are meant to demonstrate the concept of using a data driven surrogate models to
construct simulated neutronics feedback controllers. We can improve upon these methods to
give us better data driven surrogate models in future. This section discusses possible future
work and projects which can be used to improve upon the current models. These works can
be done in the hope that an electrical heater in any IET can be modified to behave like a
real reactor with real feedback in real time.
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Reactor Fidelity

While constructing a high fidelity model is not the objective of this work, we could always
improve the fidelity of the multiphysics reactor model to ensure that it behaves closer to a
real reactor when disturbances or transients are introduced.

We may modify GeN-Foam’s thermal hydrualic models especially in its ability to model
graphite reflector structures and alter the pebble heat transfer model to more accurately
describe heat transfer in an environment laden with TRISO particles. We may include
decay heat, burnup and reactor poisons in future models as well. We could also improve
upon the energy or angular discretisation by using SP3 neutronics with more energy groups.

Reactor Design

Of course, in future, we may not necessarily use the arbitrary reactor but use a benchmark
in literature such as the gFHR [Kile et al., 2022]. We hope to model control rods as well
so reactivity insertion accidents and transients can be simulated as it was for the TMSR-SF
and Mark I PB-FHR [X. Wang, 2018].

Improvements for Data Driven Surrogate Models

The data driven surrogate models used for controller design need to be able to account for
nonlinearities in future. Hence, nonlinear data driven surrogate models such as those used
in the context of AI and deep neural networks can be explored in future.
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Chapter 6

Simulated Neutronics Feedback
Controller Development

6.1 Introduction

So far, we have constructed both the thermal hydraulics library and a validated model of
CIET’s heater based on the CIET v2.0 Heater without insulation. We are now ready to
test the Digital Twin’s effectiveness as a test bed for iterative development of a simulated
neutronics feedback (SNF) controller.

To do so, I created graphical user interface (GUI) OPC-UA Rust client with a control
systems and transfer simulation simulation toolbox , also written in Rust, to interface with
the Digital Twin server over a local area network (LAN). After this, I began testing and
developing the SNF controller using this Rust GUI server and client. For testing and de-
velopment of the SNF controller, I only performed only two design iterations in to get the
SNF controller to a roughly reproduce the transient data given by the simulated reactivity
transfer function developed in the last chapter. During these design iterations, I roughly
recorded the number of times I needed to restart the Rust OPC-UA client as well as the
rough amount of time I needed for these design iterations. By doing so, I could gauge how
many experiments I would have needed to perform in CIET if I used CIET to perform the
SNF controller design iterations. By comparing the difference between the time used for
design iterations in the Digital Twin and the estimated amount of time used for design it-
erations in CIET, I could then calculate how much faster the iterative design process was
when it was performed within the Digital Twin.

In this chapter, I first outline how I quantify the speed increase from using the CIET
Heater Digital Twin to develop the SNF controller. Next, I outline how the real-time transfer
functions and control systems simulator library was developed in Rust and then validated.
I then describe how the OPC-UA GUI client was developed in Rust. Lastly, I present the
results describing the iterative design process of the SNF controller, how well the controller
performs at each iteration stage, and roughly how much time was saved by using the Digital
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Twin of CIET’s Heater.

6.2 Methods

Quantification of Speed Increase due to use of Digital Twin for
SNF Controller Development

The main goal of this chapter is to quantify the speed increase achieved when using a
Digital Twin of CIET (or CIET’s Heater) as opposed to CIET for iterative development of
a SNF controller. To quantify this, I need to know how much time I used to develop the
SNF controller when using a Digital Twin and how much time I used to develop the SNF
controller in CIET. Unfortunately, it was difficult to develop a SNF controller in CIET due
chiefly to the COVID-19 pandemic. Therefore, I had to estimate the amount of time used
for an experiment in CIET.

For this, I based my estimates on anecdotal experience. In my experience when using
CIET prior to the COVID-19 pandemic, I knew that there was a planning and approval phase
prior to performing an experiment. This included creating documentation which outlined
the steps required to operate CIET safely. The next step was to vet and obtain approval for
the aforementioned documentation for the purposes of Nuclear Quality Assurance (NQA).
This was important not only for safety, but also to ensure that the experiment was well
documented and repeatable. Otherwise, if certain datasets were missing, or certain proce-
dures were not well recorded, the experiments would then have to be repeated. Thereafter,
I would have had to find a partner to go with me to the lab where CIET was for safety
reasons. This was because operating CIET meant heating up a fairly large quantity (about
40 kg) of Dowtherm A (otherwise known as Therminol VP-1). Should hot Therminol VP-1
leak or spill, the vapours from this oil could have caused dizziness or even present a fire
hazard. Therefore, a buddy system was enforced. Nevertheless, needing to ensure that a lab
buddy or partner was present when performing experiments prevented me from performing
experiments everyday. Even when I could perform experiments, there were bugs in Lab-
view (including race conditions) which the team had to solve before performing the actual
experiment which prevented the actual experiment from being run.

All in all, for every iterative design experiment, I estimated that I needed three days of
actual experimental work in order to debug CIET’s setup. I also assumed that a lab buddy
could only be found for three out of a five day work week. Thus, a rule of thumb would be
that one physical experiment in CIET would require about one week to perform successfully.
Of course, one might imagine that as I interfaced more with CIET, the time required to solve
the bugs would have lessened to the point where I could perform “nth-of-a-kind”(NOAK)
experiments. At that point, I may have needed one or two experimental days perhaps to
perform one experiment successfully. However, even with NOAK experimental experience,
I would have still needed to type out experimental procedures and perform data review
and analysis of the experiment. Moreover, I would have needed time to design controllers
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in Labview and ensure that they worked in CIET, hopefully without causing accidents.
These, along with other potential contingencies such as oil spills, running out of cover gas,
maintenance or other issues, would perhaps have accounted for the remaining four days of
the week in an experimental run. Also, one might argue that I could do more than one
experiment in a day. Unfortunately, the time required to start up and shut down CIET
alone (apart from experiments) would have been roughly three hours. This is because I
needed time for valve alignment in addition to time for CIET to reach steady state. This
would have taken up nearly half the work day. Practically speaking, running more than one
experiment a day would have been difficult.

To translate the number of runs in the Digital Twins to the number of experiments
I needed in CIET, I used this rough estimate: every one restart of the Rust OPC-UA
client for the Digital Twin equates to one full startup and shutdown run of CIET. This is
because for SNF controller design iterations, I would have needed to edit the SNF controller,
which would have been embedded in the Advanced Reactor Control and Operations (ARCO)
system. ARCO would need to be running whenever CIET was running. To edit ARCO
and restart ARCO safely, I would have needed to shut down CIET first. This is because
restarting CIET’s control system (ARCO) while CIET’s heater was online is generally an
unsafe procedure. Given that this is the case, every restart of CIET’s control system (CIET)
would necessitate a full shutdown and startup procedure of CIET’s heaters, fans and pumps.
Since the Rust OPC-UA client was meant to mimic the role of ARCO, restarting the client
would effectively mean restarting ARCO and CIET. Therefore, I used this one Rust OPC-UA
client restart to one CIET experiment equivalence. Using this relation, I can then estimate
the amount of time saved in using the Digital Twin to iteratively develop a SNF controller,
at least in the early stages.

Now that we have discussed a method to quantify the relative speed increases, we can
now discuss how the SNF controller is designed.

SNF Transfer Function for Coolant Inlet Temperature Changes

Let us begin discussing how our SNF controller is designed by first revisiting the SNF transfer
function. As discussed previously, the reactor feedback due to coolant inlet temperature
changes is described by transfer function of reactor inlet temperature ∆Tinlet to reactor
outlet temperature ∆Toutlet:

Garbitrary FHR scaled inletT to outletT (s) =
0.000119s− 2.201 ∗ 10−7

s2 + 0.0007903s+ 6.667 ∗ 10−7
(6.1)

Sometimes, it is customary to change the constant in the denominator to 1 in what is
known as standard form [Seborg et al., 2016]. This makes it simpler to observe what the
steady state gain is. If we were to normalise the constant to 1 within the denominator:

Garbitrary FHR scaled inletT to outletT (s) =
178.49s− 0.33013

1.4999 ∗ 106s2 + 1185.4s+ 1
(6.2)
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From Equation 6.2, we can see that the steady state gain as s → 0 is -0.33013 where s
is complex frequency in units of 1

time
. Using Wolfram Alpha [Alpha, 2023], I found that the

poles of Equation 6.2 are complimentary complex roots of s = −0.00039515± 0.000714532i.
Since the, real part of the complex roots are negative, this second order system is stable.
The imaginary parts correspond to the oscillation frequency of the exponentially decaying
sinusoids. The zero for this transfer function is at s = 0.0018495. These are characteristic
of an under damped second order system with a real zero. Since we are developing SNF
controllers, we need to ascertain if the controllers produce the desired behaviour given user
inputs. For iterative SNF controller design trials, we shall attempt to simulate this reactor
feedback transfer function in real-time as well and verify if the SNF controllers we developed
achieve this goal. Of course, we shall need to test and develop the SNF controllers such
that they run in real-time as well. To do so, it is important to derive the expression for the
controller transfer function (Gc(s)) so that I could ascertain what kind of transfer functions
I needed to simulate in real-time.

SNF Controller Modelling Requirements

The SNF controller transfer function, commonly denoted as Gc(s) could take several forms.
The first approach that I took to develop the SNF controller was to design it as a feedforward
controller. In this case, I designed a controller such that:

Gc(s) = GCIET heater inletT to heaterPower(s) =
Garbitrary FHR scaled inletT to outletT (s)

GCIET heater heaterPower to outletT (s)

Where GCIET heater inletT to heaterPower(s) is the transfer function describing the heater
inlet temperature to heater power signal. Garbitrary FHR scaled inletT to outletT (s) represents the
scaled transfer function describing the reactivity feedback due to changing inlet coolant
temperature at constant flow rate. GCIET heater heaterPower to outletT (s) represents the transfer
function of the heater power to heater outlet temperature (at BT-12) at a constant flowrate
of 0.18 kg/s. In theory, an increased inlet temperature to the heater should have caused
the heater power to decrease after some time, and therefore the temperature difference
between the inlet and outlet temperature would also decrease accordingly after some time.
However, I found out after some initial test runs that in this single input single output
(SISO) controller model, I neglected to program the heater to compensate for the increased
inlet temperatures. For a working feedforward controller, I would have needed to consider
the heater as a multiple input multiple output (MIMO) model and used a state space model
rather than just a single SISO transfer function GCIET heater inletT to heaterPower(s). Therefore,
this single SISO model was insufficient for the SNF controller, a MIMO controller or some
other controller would have to be used. Thankfully, I also found out an alternative method of
designing a SNF controller from performing early test runs. From those same initial iterative
design test runs, the timescales of the SNF transient (O(104 s)) long in comparison to
coolant recirculation time recirculation time of about 90 seconds. This was also much longer
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than that of the timescales for conjugate heat transfer within the CIET Heater (< 102 s).
Therefore, feedforward control may not be strictly necessary for gradual changes in heater
outlet temperature. In such a case, feedback control may have been sufficient. Hence, for
the purposes of this work, I deemed that deriving a state space model would have been
too much work especially if a simple Proportional, Integral and Derivative (PID) controller
sufficed. Nevertheless, I still include the derivation of GCIET heater inletT to heaterPower(s) in
the methods section because it was used in the first iteration of the reactivity feedback
controller. Moreover, GCIET heater inletT to heaterPower(s) would have still been useful in future
state space space models of Gc(s) for a feedforward controller because it may have been one
of the constituent transfer functions within the matrix of transfer functions. Therefore, I
still present the derivations in the methods section.

Now, to obtain GCIET heater inletT to heaterPower(s), I needed to obtain two transfer func-
tions. Firstly, GCIET heater heaterPower to outletT (s) which is the heater power to heater outlet
bulk temperature (BT-12). Secondly, I needed Garbitrary FHR scaled inletT to outletT (s), which
is the reactor feedback transfer function derived from perturbing the arbitrary FHR con-
structed in GeN-Foam. Let us first obtain GCIET heater heaterPower to outletT (s).

From De Wet’s work, an empirical transfer function of the heater power to heater outlet
temperature was determined [De Wet and Per F Peterson, 2020]:

G(s) = e−4s 3.217 ∗ 10−5s3 + 6.675 ∗ 10−7s2 + 1.139 ∗ 10−8s+ 2.423 ∗ 10−11

s5 + 0.2251s4 + 0.01688s3 + 0.0003548s2 + 3.057 ∗ 10−6s+ 1.632 ∗ 10−9

This transfer function is an empirical transfer function of a closed loop response where
heater power was varied while CTAH fan frequency was kept constant as opposed to keeping
the CTAH outlet temperature constant. Therefore, thermal pulses could traverse the loop
several times before the modes died out. Thus, we would observe low frequency modes in
the frequency response tests. However, for the purposes of developing Gc(s) for the SNF
controller, I was not interested in the thermal pulses traversing the loop over long timescales.
I was only interested in the CIET v2.0 Bare Heater. Therefore, I wanted another transfer
function which did not include the effect of the rest of CIET’s loop. While Poresky has
frequency response test data of the insulated heater v2.0 [Poresky, 2017], a transfer function
for the heater power to heater outlet temperature has not yet been determined. Therefore, we
need to first determine the transfer function for the heater power to heater outlet temperature
without considering the lower frequency modes. This can be easily done in Matlab using
existing step response data for expediency. If one desires to use a manual method instead,
Chen’s method in literature can also be used if the system is a second order system [L. Chen,
J. Li, and Ding, 2011]. For this work, I simply inspected the Bare Heater’s step response
data and through trial and error, manually fitted a second order model using LibreOffice
Calc because it was convenient. This is because some of the Linux computers I used did not
have Matlab.

Now, for the Heaver v2.0 Bare step response data, we could use either the step response
data from De Wet’s transfer function at least for the short term response in order to generate
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a new transfer function. Alternatively, we could use existing step response data from the
existing Heater v2.0 Bare Digital Twin in order to develop a new controller. I did the latter
since the controller is meant to be calibrated for the heater v2.0 Bare Digital Twin. This
Heater v2.0 Bare Step Response data is presented in Table 6.1 for a -500 watt step input to
the heater Digital Twin at t = 100s:

Time (s) Heater Outlet
Temperature
(BT-12) ◦C

Time (s) Heater Outlet
Temperature
(BT-12) ◦C

100.8 102.41 123 101.17

102 102.41 124.8 101.12

103.8 102.41 126 101.1

105 102.32 127.8 101.06

106.8 102.22 129 101.04

108 102.13 130.8 101.02

109.8 102 132 101.01

111 101.87 133.8 100.99

112.8 101.72 136.8 100.97

114 101.63 139.8 100.96

115.8 101.5 142.8 100.95

117 101.43 145.8 100.95

118.8 101.33 148.8 100.94

120 101.28 151.8 100.94

121.8 101.21 154.8 100.94

157.8 100.94

Table 6.1: CIET Heater v2.0 Simulated Step Response Test

The resulting data in Table 6.1 is plotted in Figure 6.1:
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Figure 6.1: Step Response Plot for Heater v2.0 Bare Simulated with 500 Watt Power Step
Decrease at t=100s

I then used data in Table 6.1 to obtain an empirical transfer function of the Heater v2.0
Bare to obtain Gc(s). To fit an empirical transfer function to data in Table 6.1 manually
in LibreOffice Calc, I first determined the form of the transfer function by observing the
shape of the step response. For the heater bare v2.0 Digital Twin, its step response data in
Figure 6.1 does not contain an overshoot. This means we could model it using a critically
damped or overdamped system plus some dead-time. The simplest method is, of course, to
use a First Order Plus Dead Time (FOPDT) system. Based on De Wet’s Transfer Function,
there is dead-time of approximately four seconds. To find Gc(s), we traditionally invert this
FOPDT transfer function. Therefore, we need to somehow invert dead-time. The textbook
approach is to use a first order Padé approximation to approximate dead time before inversion
[Seborg et al., 2016]. By using this first order Padé approximation, the FOPDT system is
approximated as a second order system. Given this case, it is convenient to just fit a second
order system to this data rather than fit a FOPDT system that has to be approximated as a
second order system anyhow. Therefore, I simply fitted a second order system to the data in
Table 6.1. This should be okay because it is common in textbook approaches to approximate



370

arbitrary transfer functions, including second order transfer functions, as FOPDT.
Now, to fit a second order system to the step response shown in Figure 6.1, I observed

that the response in Figure 6.1 has an initial response behaviour. This could indicate a
second order system with a zero. Since there is no overshoot, I am expecting an overdamped
or critically damped system with two real poles. A transfer function with two real poles and
one zero can be represented in the form:

G(s) =
Kp(T3s+ 1)

(T2s+ 1)(T1s+ 1)
(6.3)

Where T1, T2 and T3 are time constants and Kp is the process gain. For such a transfer
function, the time domain unit step response is [L. Chen, J. Li, and Ding, 2011]:

y(t) = Kp

[
1 +

T3 − T1
T1 − T2

exp

(
− t

T1

)
− T3 − T2
T1 − T2

exp

(
− t

T2

)]
(6.4)

In Equation 6.4, y(t) represents the deviation in the output from some steady state and
t is the time elapsed from the start of the step response. We can adapt this to fit data in
Table 6.1 given that the steady state temperature is 102.41◦C. In adapting Equation 6.4
for our data, we can obtain an expression for temperature profile given a step response with
magnitude a0:

T (t)(◦C) = 102.41 + a0Kp

[
1 +

T3 − T1
T1 − T2

exp

(
− t

T1

)
− T3 − T2
T1 − T2

exp

(
− t

T2

)]
(6.5)

Now, for this step response in Figure 6.1, a0Kp = −1.47◦C. a0 = −500 watts, therefore,
Kp = 0.00294

◦C
watt

. With this in mind, I fitted a transfer function with two poles and
one zero using LibreOffice Calc. Again, while Chen has proposed methods for fitting a
second order transfer function [L. Chen, J. Li, and Ding, 2011], however, for the use case
in this dissertation, I found more expedient, and convenient to perform manual trial and
error in Libreoffice Calc until suitable parameters were obtained. In doing so, I obtained
T1 = 8.5 seconds, T2 = 5.5 seconds, and T3 = −1.5 seconds. Therefore, if we fit a step the
step response data using these parameters:

T (t)(◦C) = 102.41 + a0Kp

[
1 +

−1.5− 8.5

8.5− 5.5
exp

(
− t

8.5

)
− −1.5− 5.5

8.5− 5.5
exp

(
− t

5.5

)]

T (t)(◦C) = 102.41 + a0(watts)0.00294

[
1− 10

3
exp

(
− t

8.5

)
+

7

3
exp

(
− t

5.5

)]
(6.6)

In the frequency domain, the transfer function is:
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G(s)CIET heater heaterPower to outletT

( ◦C

watt

)
= 0.00294

−1.5s+ 1

(s+ 5.5)(s+ 8.5)
(6.7)

To validate this empirical transfer function, I performed a step response of this transfer
function in Scilab [Merzlikina and Prochina, 2020] using a step amplitude of −500 watts
and recorded its step response. I then superimposed the step response of this fitted transfer
function onto the experimental.
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Figure 6.2: Step Response Plot for Heater v2.0 Bare Simulated with 500 Watt Power Step
Decrease at t=100s with fitted Transfer Function

Error bars of ±0.5 K are added to Figure 6.2 in order to show that the magnitude of
the deviation between transfer function and Heater Digital Twin Data is small in compar-
ison to the typical Type T thermocouple measurement error encountered in CIET [Nicolas
Zweibaum, 2015]. Therefore, I deemed this transfer function, GCIET heater heaterPower to outletT (s),
to have fitted well enough to experimental data. With bothGCIET heater heaterPower to outletT (s)
as well as Garbitrary FHR scaled inletT to outletT (s), I could find GCIET heater inletT to heaterPower(s).
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This would be the transfer function for my first iteration of SNF controller. I obtain
GCIET heater inletT to heaterPower(s) as follows:

GCIET heater inletT to heaterPower(s) =
Garbitrary FHR scaled inletT to outletT (s)

GCIET heater heaterPower to outletT (s)

GCIET heater inletT to heaterPower(s) =
0.000119s−2.201∗10−7

s2+0.0007903s+6.667∗10−7

0.00294 −1.5s+1
(s+5.5)(s+8.5)

Therefore,

GCIET heater inletT to heaterPower(s)

( ◦C

watt

)
= 340.136

(s+ 5.5)(s+ 8.5)

−1.5s+ 1

0.000119s− 2.201 ∗ 10−7

(s2 + 0.0007903s+ 6.667 ∗ 10−7)

Alternatively, we can write:

GCIET heater inletT to heaterPower(s)

( ◦C

watt

)
= 340.136

(s+ 5.5)(s+ 8.5)

−1.5s+ 1

178.49s− 0.33013

1.4999 ∗ 106s2 + 1185.4s+ 1

Now, unfortunately, this transfer function is potentially inherently unstable due to the
(−1.5s+1) pole. However, when performing internal model control, it is customary to simply
remove the unstable pole (colloquially known as the “bad part”) of the controller [Bequette,
1999]:

GCIET heater inletT to heaterPower(s)

( ◦C

watt

)
= 340.136

(s+ 5.5)(s+ 8.5)

1

(178.49s− 0.33013)

1.4999 ∗ 106s2 + 1185.4s+ 1

When I removed the unstable pole, I ran into another issue: this controller is not phys-
ically realisable as it has two poles and three zeroes. To solve this, I added a low pass
filter to it. This is okay because it is customary also to add low pass filters to physically
non realisable transfer functions, such as transfer functions describing derivative controllers
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(G(s) = s), so that the resulting transfer functions are physically realisable [Seborg et al.,
2016]. If we added a filter with characteristic timescale for the low pass filter, τfilter, the
resulting transfer function is:

GCIET heater inletT to heaterPower(s)

( ◦C

watt

)
= 340.136

(s+ 5.5)(s+ 8.5)

τfilters+ 1

(178.49s− 0.33013)

1.4999 ∗ 106s2 + 1185.4s+ 1

With a physically realisable transfer function for the controller, I could then determine
τfilter and design the appropriate programming classes and structures for the transfer func-
tion. For this work, I simply used τfilter = 0.1 s because, at least for a derivative controller
with derivative time τd, the appropriate derivative controller with filter has a transfer func-
tion [Seborg et al., 2016]:

G(s) =
τds

τdαs+ 1

Where α is usually around 0.1 [Seborg et al., 2016]. Now, since the coefficient of s for
both factors in (s + 5.5)(s + 8.5) is 1, τd = 1 s I decided that ατd should be 0.1 seconds.
Since τfilter = ατd, τfilter = 0.1 s. Hence, we leave ourselves with my first iteration of the
SNF controller transfer function:

GCIET heater inletT to heaterPower(s)

( ◦C

watt

)
= 340.136

(s+ 5.5)(s+ 8.5)

0.1s+ 1

(178.49s− 0.33013)

1.4999 ∗ 106s2 + 1185.4s+ 1

With this first iteration, I found out that this transfer function, meant to be designed as
a feedforward controller, was not able to reject the initial increase in heater outlet temper-
ature brought about by increase in heater temperature. Therefore, a second iteration using
some other control schemes were required. In particular, I choose Proportional, Integral and
Derivative (PID) feedback control for my second iteration of SNF controller due to its sim-
plicity. The set point of which is the desired outlet temperature of the scaled down version
of the arbitrary FHR. For this, I needed the capability to both simulate the transfer function
for the scaled arbitrary FHR, and to enable PID control based on real-time readings of the
OPC-UA server from the OPC-UA client. Now, PID controllers in textbooks are applied
to the error ε where ε = y(t) − ysp(t). Here y(t) is the controlled variable and ysp(t) is the
user specified set point (sp) of the controlled variable. However, implementing PID control
in this manner often causes proportional and derivative kicks or instabilities. To eliminate
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them, the derivative portion of the controller is usually applied in the feedback loop to y(t)
rather than the error ε [Seborg et al., 2016; Perry and Green, 2015]. The controller output,
which is the input to the process u(t) takes the following form in the time domain [Perry
and Green, 2015]:

u(t) = Kc

(
ε+

1

τI

∫
εdt− τd

dy(t)

dt

)
Of course, the same derivative filter described earlier can be applied to the derivative

portion of the controller so that it is physically realisable [Seborg et al., 2016]. Based on
these two controller designs for the SNF controller meant to run within the OPC-UA client,
the OPC-UA client would have to simulate transfer functions as well as PID controllers in
real-time. To ensure that this is done well, I took the following preliminary steps:

Firstly, I needed to obtain functionality to simulate transfer functions in real-time using
real-time inputs. This allowed me to construct the low pass filters or transfer functions that
enabled the heater to simulate the simulated neutronics feedback. For this work, I used
a single input single output (SISO) model. However, the SISO model can be extended to
multiple input multiple output (MIMO) state space models in future work.

Secondly, I also needed to construct a real-time OPC-UA server for the CIET Heater.
Now, given prior experience, I adapted the isothermally simulated CIET Digital Twin Server
to simulate the Heater in real-time given a constant flowrate and a user-adjustable heater
power input and heater inlet temperature.

Thirdly, I needed to construct a real-time OPC-UA client which is not only able to re-
quest and modify OPC-UA variables hosted on the server, but is also able to pass those
values through simulated transfer functions and PID controllers in real-time. In fact, this
third requirement is a combination of the first and second requirements. The key addi-
tional constraint for this third requirement is that both the OPC-UA server and the transfer
function and PID simulator must be run in tandem in real-time.

Given these requirements, let us consider how to best to obtain these capabilities.

Programming Language Choice for Writing the Transfer Function
Simulator

For the OPC-UA client, it must be designed such that it is able to obtain information from
the OPC-UA server in real-time, pass it through various low pass filters or transfer functions,
and translate it into a suitable power signal for the heater.

I had thought initially to use Labview given that CIET was using Labview in the past
[Poresky et al., 2022]. Additionally, Labview has a Control Design and Simulation module
[Cansalar, Maviş, and Kasnakoğlu, 2015] which is able to simulate transfer functions in real-
time such that these transfer functions are able to respond to real-time user input. This has
worked well in literature for small control loops [Cansalar, Maviş, and Kasnakoğlu, 2015].
Moreover, Labview has an OPC-UA client module which is able to request and modify OPC-
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UA server variables in real-time. Now, at the time of writing, I did not have access to the
OPC-UA module. However, Labview also has a Python module which allows me to code an
OPC-UA client using the Python implementation. I could then build an interface between
the OPC-UA client and Python code and have it communicate with Labview in real-time.

I found this process, however, to be extremely cumbersome because the Python module
was built to simulate short functions or scripts. What I needed instead was for the Python
code to run the OPC-UA client asynchronously while Labview was also running. Working
this out proved to be cumbersome. A second roadblock I faced was latency. Every interface
between Labview and the Python OPC-UA client seemed to have a noticeable performance
cost. This is because every request to read an OPC-UA variable on the server in real-time
took about 20 to 30 ms or even 300 ms. This time taken was too long, and therefore, I was not
inclined to use this Python-Labview interface. Moreover, I wanted the Control Design and
Simulation loops to run asynchronously with Python server code and share variables. Even
getting this started was not trivial. Now, I could use other programs such as Simulink within
Matlab [Cansalar, Maviş, and Kasnakoğlu, 2015]. However, I was unfamiliar with getting
Simulink in Matlab to communicate with the OPC-UA client within Matlab. Therefore, even
the prospect of Matlab and Simulink was not desirable for me. Finally, the closed source
nature of Labview’s and Matlab’s object code further deterred me from using proprietary
software. This is because I could not modify my code for follow up work if I wanted to in
future. This is because my access (or lack thereof) to Labview was highly dependent on
where I worked in future. Moreover, any research I performed using Labview could only be
repeated by researchers with access to Labview. Since I already had to expend significant
effort to get a Python OPC-UA client working with closed source Labview code, I thought
that the effort was better spent on developing Free and Open Source (FOSS) code. Therefore,
I wanted to shift to a FOSS version of OPC-UA server and client for the digital twin as well
as the transfer function and PID simulation module. This effort to move to FOSS software
was very much in line with work done in ARCO-CIET in 2021 where the OPC-UA server
and client moved away from Labview only to one that was more Open Source like so that
“ARCO- CIET can generate lessons and offer use cases that are relevant and actionable for
many advanced reactor technologies” [Poresky et al., 2022]. Given that this was the case
for ARCO-CIET, it would be natural to move to FOSS software for the Digital Twins of
ARCO-CIET as well, or at least its heater.

Given all these considerations, I decided that this effort was better spent writing a Rust
OPC-UA client with a graphical user interface (GUI) as well as a real-time control and
simulation module which could run asynchronously with the OPC-UA client and GUI app.
This would be a challenge since GUI programming in Rust was unfamiliar territory to me.
However, as I was already familiar with some of the programming constructs used in Rust
when developing the thermal hydraulics library, this barrier to entry was significantly lower
to me. The biggest advantage of developing a GUI OPC-UA server, client and process control
simulator in Rust would be customisability of the code due to it being FOSS.

Since I decided upon a FOSS approach for programming the transfer function simulator,
PID controller and the OPC-UA server and GUI client. I will outline the theory of how



376

I write each of these components. Additionally, code verification, which tests if the code
is functioning correctly [Avramova and Ivanov, 2010], is important for the newly written
transfer function simulator and PID controller. Hence, some code to code verification results
will also be presented. The validation part, which tests if the simulated transfer function
replicates behaviour of experimental data [Avramova and Ivanov, 2010], is not done since
the purpose of the transfer function simulator is to produce real-time output for transfer
functions rather than experimental data.

Transfer Function Simulator Construction

To write a real-time FOSS transfer function simulator, I needed to consider the algorithms
to be used for simulating transfer functions in real-time. This means the user should be
able to give the transfer function a real-time varying input, and the transfer function should
give a real-time varying output. Now, the user is not inclined to give a mathematically
symmetrical or elegant input. The user should be free to give any input he or she wants in
real-time. This is best modelled by a series of Heaviside functions or step functions with
various amplitudes.

Therefore, the transfer function must be able to receive a series of Heaviside or step
inputs of any amplitude and produce the appropriate output. Now, for a single Heaviside
function, we should be able to produce the equivalent output in the time domain. However,
for multiple Heaviside functions, we can just use the principle of superposition for linear
time invariant (LTI) systems so that the output is the sum of several Heaviside functions at
different times. To illustrate how this is done, I will first go through some derivations for
first order systems, and extend it to second order systems. For simplicity, I will also limit
my discussion to analog transfer function controllers using Laplace Transforms rather than
discrete time digital controllers using the “z-transform”.

First Order Plus Dead Time Example

FOPDT Transfer Functions in Standard Form To illustrate how one can program
a transfer function simulator, let us begin with a simple example of a first-order plus dead
time (FOPDT) transfer function with gain Kp, process time τp and dead-time τd:

G1st order(s) = exp(−τds)
Kp

τps+ 1
(6.8)

This class of transfer functions is important because they serve as the basis not just for
first order transfer functions, but filters and derivative controllers as well.

Now, if we were to subject the FOPDT system to one step response of amplitude a0 at
time t0, the time-domain expression of the output y(t) with dead time, the expression after
t0 is:
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y(t) = a0Kp u(t− t0 − td)

[
1− exp

(
−t− t0 − td

τp

)]
(6.9)

Of course, Equation 6.9 is valid for all values of t as its value of y(t) at values prior to
t0+ td are rightly zero. Now, suppose at t1 the user gives another step input with amplitude
a1. The time domain response should be:

y(t) = a0Kp u(t− t0 − td)

[
1− exp

(
−t− t0 − td

τp

)]
+a1Kp u(t− t1 − td)

[
1− exp

(
−t− t1 − td

τp

)]
Now, suppose the user keeps adding step inputs, it is easy to see that the equation keeps

growing longer and longer. If one unit of computer memory was allocated to account for each
user input, we would see that memory would continuously be allocated and never deallocated.
Thus, the required computer memory required to simulate this transfer function increases
over time. When memory is continuously allocated by a program and not deallocated, we
call this a “memory leak” [Xie and Aiken, 2005]. Such memory leaks are detrimental to
performance and can even cause system crashes if left unchecked [Xie and Aiken, 2005].
Obviously, this is not desirable. To prevent this, we must find a way to deallocate memory.
Thankfully, these exponentials do decay away, and after some time, they practically reach a
steady state. After that time, there is no more use in calculating the exponentially decaying

function. To quantify when the equation reaches steady state, I specified that exp
(
− t−t1−td

τp

)
should be on the order of one part per billion or 10−9. Now, this is because for FHRs, the
temperature ranges are on the order of 1000K at most. The thermocouple uncertainty
is at least ±0.5◦C as seen in CIET, though for thermocouples with higher temperature
tolerances, the uncertainties tend to be larger. For this, the uncertainty is on the order of
10−4. Deviations smaller than this tend not to be noticeable. I chose 10−9 out of some degree
of conservatism. For this, exp(−20) is about 2∗10−9. Therefore, after this time, the transfer
functions are deemed to have reached steady state, and I can deallocate memory to prevent
memory leaks.

Let us illustrate how this works supposing that the first input has reached steady state:

y(t) = a0Kp + a1Kp u(t− t1 − td)

[
1− exp

(
−t− t1 − td

τp

)]
I would then define an offset value Coffset in my program and add a0Kp to this offset

value:

y(t) = Coffset + a1Kp u(t− t1 − td)

[
1− exp

(
−t− t1 − td

τp

)]
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Where:

Coffset = aoKp

Now if the second input reached steady state, I would define:

Coffset = aoKp + a1Kp

This is so that y(t) just remains a constant:

y(t) = Coffset

Now, only one unit of memory is used to represent Coffset no matter the value of Coffset.
Thus, after the exponential values reach steady state, I effectively set a new value of Coffset

and deallocate memory used for the exponential function. In this manner, I solve my memory
leak issue, and this would allow the computational demands not need to grow exponentially
with time. Now, this manner of preventing memory leaks works only for stable transfer
functions where we observe exponential decays. For unstable transfer or undamped transfer
functions where these inputs do not decay away, we may have to find some other method of
ensuring that we have no memory leaks.

Now, this manner of programming a stable FOPDT transfer function is relatively in-
tuitive. Moreover, since the schemes are analytically integrated, we need not worry about
numerical integration or stiff problems causing numerical instability. We also need not worry
about approximation errors from numerical integration other than the steady state approx-
imation we made earlier.

FOPDT Transfer Functions with Zeroes in Non Standard Form Now of course,
even for first order stable systems, we may not merely encounter systems with one pole and
no zeroes, it is also common to come across first order systems in non standard form where
zeroes exist. Suppose that a first order physically realisable transfer function comes in the
form:

G(s) =
a1s+ b1
a2s+ b2

(6.10)

We should then be able to deal with these transfer functions. Of course, while the user
could in theory convert this transfer function to a superposition of two FOPDT simulations,
it would be more convenient for us to execute this process programmatically.

To convert equation 6.10 into standard form, we shall need to obtain Kp and τp from
these coefficients a1, a2, b1 and b2. If we were to ignore the zero, this is quite straightforward:

Kp =
b1
b2

(6.11)
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And

τp =
a2
b2

(6.12)

In SI units, τp should be in time units (s) and a2 should also be in time units (s). Assuming
b2 is dimensionless, we see unit consistency. Likewise, Kp is in units of b1. Now, with Kp and
τp defined, we can rewrite equation 6.10, separating the simple FOPDT component away
from the filtered derivative (s) term with the coefficient a1

b2
:

G(s) =
a1
b2
s+Kp

τps+ 1
=

Kp

τps+ 1
+

a1
b2
s

τps+ 1

Now, thankfully for us, the filtered derivative term can also be converted into a first order
transfer function. Therefore, we can essentially reuse code meant for FOPDT functions and
adapt it for generic FOPDT transfer functions with one zero.

G(s) =
Kp

τps+ 1
+

a1
b2
s

τps+ 1

=
Kp

τps+ 1
+

a1
b2τp

τps

τps+ 1

=
Kp

τps+ 1
+

a1
b2τp

[
τps+ 1− 1

τps+ 1

]
=

Kp

τps+ 1
+

a1
b2τp

[
1− 1

τps+ 1

]

Again doing some SI unit checks, b2 is dimensionless, a1 and τp are in units of s assuming
that G(s) is dimensionless.

Code to Code Verification Now that we have derived the FOPDT transfer functions,
we need to perform code to code verification. To do so, I used a stable FOPDT transfer
function and simulated it in the FOSS software Scilab Xcos [Merzlikina and Prochina, 2020].
The transfer function is shown in Equation 6.13:

G(s) = exp(−2s)
5− 2s

4s+ 2
(6.13)

I chose Scilab because it is licensed under GNU General Public License (GPL) v2.0 and it
is also because it was, at the time of writing, a suitable FOSS alternative to Matlab [Mikac,
Logožar, and Horvatić, 2022]. Now, the block digram of the Scilab simulation is presented
in Figure 6.3:
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Figure 6.3: fopdt system [g(s) = exp(−2s)5−2s
4s+2

] block diagram in scilab xcos

For this transfer function, I simulated an input of 9 at t = 0 for both Scilab and my
Transfer Function Library written in Rust. This was done with a time step of t = 0.1s for
my Transfer Function Library and done using an implicit auto-timestepped Runge-Kutta 45
method in Scilab. The results are plotted in Figure 6.4:
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Figure 6.4: Step Input of 9 units (dimensionless) given at t = 0s

Figure 6.4 seems to show good agreement between Scilab and the Transfer Function
Library written in Rust. Of course, to verify that the results match within satisfactory
tolerances, it is useful to look into the residual plots.

To calculate these, can we look at the fractional deviation or error (ε) between the Scilab
outputs yscilab(t) and my library outputs written in Rust yrust−library(t). This was calculated
using Equation 6.14:

εfractional =

∣∣∣∣yscilab(t)− yrust library(t)

yscilab(t)

∣∣∣∣ = ∣∣∣∣ εabsoluteyscilab(t)

∣∣∣∣ (6.14)

The maximum value of εfractional in this context was 8.2 × 10−5. It may seem small
compared to a 1% error, but we still need to put this relative error in context. To do so,
I compare εabsolute against a typical truncation error. This is because the truncation error
should give us a suitable scale of how far numerical errors should deviate from their analytical
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solution. Since we are using Runge-Kutta 45 (RK-45) solvers in Scilab, it would be natural to
use an appropriate Runge-Kutta truncation error estimate. Such error estimation methods
are well known in literature [Butcher and Johnston, 1993; Tsitouras and Papakostas, 1999].
However, I have opted for something much more crude given that the error is sufficiently
small that it is smaller than typical uncertainties in experiments. For example, in FHR
context, we deal with ∆T of around 100◦C and thermocouple measurement uncertainty of
at least ±0.5◦C. This translates to a rough uncertainty percentage of around ±0.5%. Thus,
any numerical error below this value won’t be distinguishable from thermocouple uncertainty.
For our purposes, this transfer function simulation is good enough.

Of course, it will would still be useful to measure if the simulation performs well enough
in general. To do that, the residuals should ideally be compared to the RK-45 truncation
error. Given that this is tedious and that the results are already good enough for simulating
transfer functions, I thought that using a crude estimate the typical truncation error would
suffice. This crude truncation error estimate comes from the Euler method. For this, we
consider a Taylor Series expansion of a function f(x). We can write this as [Perry and Green,
2015]:

f(x+∆h) ≈ f(x) + f ′(x)∆h+
1

2
f ′′(x)(∆h)2 + · · ·

Where f ′(x) and f ′′(x) are the first and second order derivatives respectively, and ∆h is
the stepsize. In terms of time t and time step ∆t:

f(t+∆t) ≈ f(t) + f ′(t)∆t+
1

2
f ′′(t)(∆t)2 + · · ·

Now, a lower bound for the truncation error term should be:

1

2
f ′′(t)(∆t)2

Now, for f ′′(t), we can estimate its value using the central difference approximation [Perry
and Green, 2015]:

f ′′(t) =
f(t+∆t)− 2f(t) + f(t−∆t)

(∆t)2

Thus, we are left with Equation 6.15 as a crude estimation for the truncation error:

1

2
[f(t+∆t)− 2f(t) + f(t−∆t)] (6.15)

Of course, there may be discontinuities where it is inconvenient to use Equation 6.15.
However, as I am only doing a rough estimate of the truncation error, I’m okay with using
forward and backward estimation methods for truncation error as well in Equation 6.16 and
Equation 6.17:
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1

2
[f(t+ 2∆t)− 2f(t+∆t) + f(t)] (6.16)

1

2
[f(t− 2∆t)− 2f(t−∆t) + f(t)] (6.17)

Also, since I am only concerned with the order of magnitude of the error, I also neglected
the 1

2
term when calculating the error bars. The timestep ∆t = 0.1s, and that was used to

estimate the typical truncation error. Given this, I plot the residuals in Figure 6.5:
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Figure 6.5: Step Input of 9 units (dimensionless) given at t = 0s

In Figure 6.5, the residuals all seem to be smaller than the crudely estimated truncation
error. For the purposes of this work, this is good enough.

Second Order Systems

The FOPDT algorithm described earlier is not necessarily applicable beyond the simplest first
order systems. For more complicated transfer functions, the analytical integration process for
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each transfer function becomes non trivial. Of course, for most transfer functions of interest,
we can split the transfer function up into several first and second order transfer functions
connected in series and then perform inverse Laplace Transforms on them. However, I won’t
do this for an nth order transfer function in this work as this would take a fair amount of
development time. For now, I am only interested in simulating the transfer function of the
SNF controller (or at least its first iteration):

GCIET heater inletT to heaterPower(s)

(
watt
◦C

)
= 340.136

(s+ 5.5)(s+ 8.5)

τfilters+ 1

(178.49s− 0.33013)

1.4999 ∗ 106s2 + 1185.4s+ 1

Of course, we need to ensure that the controller causes the heater to behave correctly.
Therefore, we also need to simulate the expected outlet temperature of the heater in real-
time. The inlet temperature to outlet temperature transfer function for GeN-Foam scaled
to CIET is:

G(s) =
0.000119s− 2.201 ∗ 10−7

s2 + 0.0007903s+ 6.667 ∗ 10−7

We can see that it is a second-order transfer function. As mentioned previously, it
is a stable transfer function with complex roots. For both transfer functions, we can see
that there is at least a second order transfer function involved. For the first controller
iteration, it is technically a third order transfer function, but it can be modelled by a first
order transfer function and a second order transfer function combined in series. Given that
we need to simulate second order transfer functions either way, we will at least need to
discuss a theoretical framework for simulating second order transfer functions in real-time.
These second order transfer functions can include underdamped, overdamped or critically
damped systems. Of course, we also have unstable systems where the system response grows
exponentially. However, when building SNF controllers, we generally want to avoid unstable
controller designs. Hence, for now, we will not develop code which simulates an unstable
transfer function. This is out of scope for this work.

Now, to simulate a stable second order transfer function in real-time, it is important
to obtain the response of this transfer function to a step input. We shall then apply a
similar algorithm to the FOPDT algorithm discussed earlier in order to simulate this transfer
function in real-time. The output Y (s) in the frequency domain to a step input 1/s [Irvine,
2011; Perry and Green, 2015] is:

Y (s) =
1

s

0.000119s− 2.201 ∗ 10−7

s2 + 0.0007903s+ 6.667 ∗ 10−7
(6.18)
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Y (s) =
0.000119

s2 + 0.0007903s+ 6.667 ∗ 10−7
− 1

s

2.201 ∗ 10−7

s2 + 0.0007903s+ 6.667 ∗ 10−7
(6.19)

The first term here has a convenient inverse Laplace transform in the form exp(−at) ∗
sin(ωt) [Irvine, 2011; Perry and Green, 2015]:

L{exp(−at) sin(ωt)} =
ω

(s+ a)2 + ω2

We can see that having zeroes in the numerator of transfer function would generally
induce more decaying sinusoids in underdamped systems. Now, should there be an s2 term
in the numerator of the second order system, we may have to involve cosines in calculating
the step response. The Laplace Transforms relevant for this are [Irvine, 2011; Perry and
Green, 2015]:

L{exp(−at) cos(ωt)} =
s+ a

(s+ a)2 + ω2

Since cos(ωdt) is of O(1), we can simply use the same approximation as FOPDT in order
to ascertain if it has reached steady state. That is to say, for a function exp(−at) cos(ωt),
we can say that the function has reached steady state at about at = 20. The latter term is
a prototypical 2nd order lowpass step response. Again, I used a similar algorithm to check
if the solution has reached steady state can be used to ascertain if responses have reached
steady state. These two components can be calculated separately and summed together. To
calculate the latter term in Equation 6.19, let us discuss the step response of second order
transfer functions in general.

Classifications based on Damping Factor The transfer functions for second order
systems can be written in standard form as [Seborg et al., 2016]:

Y (s) =
Kp

τ 2p s
2 + 2ζτps+ 1

(6.20)

Where τp the process timescale. While τp is defined also for the first order system, one
should note that τp in a second order system is not equivalent to τp in a first order system. ζ
is a dimensionless damping factor and Kp is the steady state process gain. For second order
systems, there are well known analytical solutions for a systems response to a step input.
For an overdamped system, the analytical solution for a step response of amplitude a0 at
time t = 0 can be written as [Seborg et al., 2016]:

y(t) = a0Kp

{
1− exp

(
−ζ t

τp

)[
cosh

(√
ζ2 − 1

τp
t

)
+

ζ√
ζ2 − 1

sinh

(√
ζ2 − 1

τp
t

)]}
(6.21)
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Where again, ζ is the damping factor, necessarily greater than 1 in overdamped system,
t is elapsed time, τp is process time and Kp is process gain. For underdamped systems, the
hyperbolic cosines and sines are replaced by their non-hyperbolic counterparts, in addition
to some sign changes with ζ [Seborg et al., 2016]1:

y(t) = a0Kp

{
1− exp

(
−ζ t

τp

)[
cos

(√
1− ζ2

τp
t

)
+

ζ√
1− ζ2

sin

(√
1− ζ2

τp
t

)]}
(6.22)

Where 0 ≤ ζ < 1. For critically damped systems, ζ = 1 and [Seborg et al., 2016]:

y(t) = a0Kp

{
1−

[
1 +

t

τp

]
exp

(
− t

τp

)}
(6.23)

Of course, there are many more complex systems than second order systems. The user
can refer to plenty of Laplace Transform tables[Irvine, 2011] in order to see the time domain
response of the system to a step change.

Steady State Values of Decaying Exponential Sinusoids The time domain response
can be readily programmed into the client side of Rust with similar algorithms to determine
when the responses reach steady state. For underdamped systems, if ζ t

τp
> 20.0, we can

consider that the exponent exp(−ζ t
τp
) has essentially reached steady state.

For the critically damped system, however, the time taken for the system to reach steady
state is slightly different as the exponential term changes:

−
[
1 +

t

τp

]
exp

(
− t

τp

)
Thus we have a term in the form x exp(−x) that needs to decay away. For this, we can

perform simple calculations to check when this will reach on the order of 10−9. For this, note
that a suitable value for x is about 23 or 24. At x = 23, x exp(−x) = 2.36 × 10−9. This is
of a suitable magnitude for it to be considered negligible. Hence, a slightly larger x (23 as
opposed to 20) is required to for the exponential terms to reach 10−9 than in the FOPDT
system. Hence, for second order systems in general, we can just set it such that t

τp
= 23 in

order for the system to reach steady state.
For overdamped systems, it is difficult to see when steady state is reached due to the

presence of hyperbolic sines and cosines. Hence, we will need to expand out the hyperbolic
sines and cosines in order to inspect when the transient components decay away Again, we
start with:

y(t) = a0Kp

{
1− exp

(
−ζ t

τp

)[
cosh

(√
ζ2 − 1

τp
t

)
+

ζ√
ζ2 − 1

sinh

(√
ζ2 − 1

τp
t

)]}
1Process Dynamics and Control, 2nd Edition Chapter and Section: 5.4.1, Page 117
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We can now examine the hyperbolic sines and cosine terms:

exp

(
−ζ t

τp

)
cosh

(√
ζ2 − 1

τp

)

= exp

(
−ζ t

τp

)(
0.5 exp

(√
ζ2 − 1

τp
t

)
+ 0.5 exp

(
−
√
ζ2 − 1

τp
t

))

= 0.5 exp

(√
ζ2 − 1

τp
t− ζ

t

τp

)
+ 0.5 exp

(
−
√
ζ2 − 1

τp
t− ζ

t

τp

)

= 0.5 exp

(
t

τp

[√
ζ2 − 1− ζ

])
+ 0.5 exp

(
− t

τp

[√
ζ2 − 1 + ζ

])
For the hyperbolic cosine terms, we see that t

τp

[√
ζ2 − 1− ζ

]
and − t

τp

[√
ζ2 − 1 + ζ

]
are both to consider to see if an exponential term decays sufficiently for us to assume
it reaches steady state. Now, we need not worry about an unbound response because
t
τp

[√
ζ2 − 1− ζ

]
< 0. This in turn is is because

√
ζ2 − 1 <

√
ζ2. With that out of

the way, we can now consider the two time scales and see which mode decays more slowly.
Firstly, we consider that:

|
√
ζ2 − 1 + ζ| > |

√
ζ2 − 1− ζ|

Given this, we know that the more slowly decaying mode is based on (
√
ζ2 − 1 − ζ) t

τp
.

This is because if we consider two time decaying modes, exp(−20t) and exp(−0.5t), the
exp(−20t) mode decays faster than exp(−0.5t). To check if the exponential term reaches
more or less steady state, we need only consider exp(−0.5t) to obtain a suitable time scale.
Therefore, we need only consider (

√
ζ2 − 1− ζ) t

τp
. The time for overdamped systems where

we consider it to have reached steady state is obtained from:

(ζ −
√
ζ2 − 1)

t

τp
> 20 (6.24)

Now of course, it is trivial to add both decay modes in and let the program check for us
if both modes have decayed out. We only need to add the condition that:

(ζ +
√
ζ2 − 1)

t

τp
> 20 (6.25)

I do not perceive this to be excessively expensive computationally, and will add it in first
out out of an abundance of caution.

To obtain more decay modes, we can do a similar analysis for the hyperbolic sine, but it
would still yield the same result in terms of which time scales are important for determining
if we have reached steady state.
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Second Order Systems in Non Standard Form Now, second order systems come in
several shapes and forms. And it can get quite cumbersome to manually obtain ζ and τp for
a given polynomial. Therefore, it would be good to programmatically obtain ζ, τp and the
gain from the second order system. This can get inconvenient if done repeatedly.

Suppose we had a polynomial transfer function:

G(s) =
a1s

2 + b1s+ c1
a2s2 + b2s+ c2

(6.26)

The step response would be:

Y (s) =
1

s

a1s
2 + b1s+ c1

a2s2 + b2s+ c2

=
a1s+ b1 + c1/s

a2s2 + b2s+ c2

=
a1s+ b1

a2s2 + b2s+ c2
+

1

s

c1
a2s2 + b2s+ c2

We can see that the a1s + b1 term essentially has an inverse Laplace Transform which
converts it into a decaying exponential term with a steady state value of zero. Only the c1
term has a persistent steady state change after an extended amount of time. I refer to this
as a “Second Order Non Zero Steady State Mode”. Let us first consider how to deal with
Second Order Non Zero Steady State Modes. Whereas the a1s + b1 terms essentially decay
to zero over time. Therefore, I refer to them as the “Second Order Decaying Modes” for
Stable Second Order Transfer Functions.

Simulation of Second Order Non Zero Steady State Modes To simulate Y (s), we
must simulate its Second Order Non Zero Steady State Modes. For this purpose, the first
order of business would be to obtain τp and ζ. The denominator should be in the form:

τ 2p s
2 + 2ζτps+ 1

Just by comparing coefficients, we can find τp:

τp =

√
a2
c2

τp should have units of time or (seconds in SI). We see that if we use SI units, a2 has
units of s2 and c2 is dimensionless. Therefore the units are correct.

For ζ:
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2ζτp =
b2
c2

ζ = 0.5
1

τp

b2
c2

ζ = 0.5
1√
a2
c2

b2
c2

ζ =
0.5b2√
a2c2

Now, ζ is a ratio, and so it should be dimensionless, we see that
√
a2c2 is units of

√
s2,

and b2 is in units of s if we use SI units. So ζ is indeed dimensionless.
Now, the steady state gain, Kp is taken by limiting s→ 0:

Kp =
c1
c2

(6.27)

Kp should be in units of c1. Since c2 is dimensionless, the units are consistent.
If the damping factor ζ ≤ 0, we will tentatively return an error in the Transfer Function

library because for this dissertation, we only consider ζ > 0.

Second Order Decaying Modes Next, we must convert the decaying a1s+ b1 term into
a suitable form. Let’s first convert the denominator into a suitable form:

s2 +
b2
a2
s+

c2
a2

= (s+ λ)2 + ω2

s2 +
b2
a2
s+

c2
a2

= s2 + 2λs+ λ2 + ω2

Now, λ > 0 because ζ > 0. Hence we obtain:

λ = 0.5
b2
a2

(6.28)

Now, λ, which is a decay constant of sorts like those seen in radioactive decay, should be
in units of frequency, or s−1 in SI units. If we consider SI units, b2 is also in units of s and
a2 is in units of s2. Therefore the units check out.

And consequently, we must have b2 > 0 for a stable system. This agrees with our earlier
observations. Also a2 > 0 because λ > 0. Given this, c2 > 0 also. Now, not all systems are
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underdamped. In fact, only 0 < ζ < 1 constitutes an underdamped system. To ascertain if
we will have oscillations, we must look at the discriminant b22 − 4a2c2.

0 < ζ < 1 if b22 − 4a2c2 < 0

ζ = 1 if b22 − 4a2c2 = 0

ζ > 1 if b22 − 4a2c2 > 0

(6.29)

Underdamped Case Now, only in the case of underdamping, where 0 < ζ < 1 we
can calculate the decaying oscillation frequencies:

c2
a2

= λ2 + ω2

ω =

√
c2
a2

− λ2

ω =

√
c2
a2

− 0.25
b22
a22

Now, ω, like λ is a frequency unit, or s−1 in SI. If use use SI units, we see that c2 is
dimensionless while a2 has units of s2. Therefore this term is consistent. Likewise b22 has
units of s2 and a22 has units of s4. Therefore, the units check out.

Now suppose λ and ω are calculated, we shall need to use it to ascertain the first a1s +
b. Ideally, we would want to massage the terms in such a way that the inverse Laplace
Transforms are trivial:

a1s+ b1
a2s2 + b2s+ c2

=
a1
a2

s+ b1
a1

(s+ λ)2 + ω2

=
a1
a2

s+ λ− λ+ b1
a1

(s+ λ)2 + ω2

=
a1
a2

s+ λ

(s+ λ)2 + ω2
− a1
a2

λ− b1
a1

(s+ λ)2 + ω2

=
a1
a2

s+ λ

(s+ λ)2 + ω2
−
a1(λ− b1

a1
)

a2ω

ω

(s+ λ)2 + ω2

Now, we take the inverse Laplace Transforms of the expression,
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L−1

[
a1s+ b1

a2s2 + b2s+ c2

]
= L−1

[
a1
a2

s+ λ

(s+ λ)2 + ω2
−
a1(λ− b1

a1
)

a2ω

ω

(s+ λ)2 + ω2

]

=
a1
a2

exp(−λt) cos(ωt)−
a1(λ− b1

a1
)

a2ω
exp(−λt) sin(ωt)

=
a1
a2

exp(−λt) cos(ωt)− a1λ

a2ω
exp(−λt) sin(ωt)

+
b1
a2ω

exp(−λt) sin(ωt)

Now, we can clearly see that b1
a1

is of units 1
s
and so it is the same as units of λ and ω.

Therefore, both units are in units of a1
a2
. Hence, there is unit consistency.

Thus, given the polynomial expressions, we should be able to obtain the time domain
step responses the second order transfer functions with zeros.

Critically Damped Case In the critical damping case where ζ = 1, ω = 0, and
λ = 0.5 b2

a2
, we have two repeated roots in the denominator. Then we shall have [Seborg

et al., 2016] :

L
{

1

(s+ λ)2

}
= t exp(−λt) (6.30)

As mentioned earlier, we can consider the mode to have reached steady state at around
λt > 23 if we consider the term λt exp(−λt). This is a more stringent than the requirement
for λt > 20 where exp(−λt) decays away. Nevertheless, based on the Laplace Transform,
there remains a term dependent on t exp(−λt) for which we cannot easily assign a threshold
λt value and expect it to work for all cases. What we can do here is to apply a second
condition in addition to λt > 23. The base condition for this is where the exponential term
decays to around 10−9 times of the original value or maximum value. The maximum value
can be found by obtaining the stationary point:

d

dt
t exp(−λt) = −λt exp(−λt) + exp(−λt)

The relevant stationary (local maximum) point in this case is λt = 1, where the function
evaluates to 1

e
. Since this of of O(1), we can simply set the criteria to be t exp(−λt) < 10−9

and λt > 1 for the term to decay away to steady state of 0.
However, to calculate the second order time domain step response signals, we need to

consider a1s+ b1 in the numerator.
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L
{

a1s+ b1
a2s2 + b2s+ c2

}
=
a1
a2

L
{

s+ b1
a1

(s+ λ)2

}

=
a1
a2

L
{
s+ λ− λ+ b1

a1

(s+ λ)2

}

=
a1
a2

L
{

s+ λ

(s+ λ)2
+

b1
a1

− λ

(s+ λ)2

}

=
a1
a2

L
{

1

s+ λ
+

b1
a1

− λ

(s+ λ)2

}

=
a1
a2

L
{

1

s+ λ
+

(
b1
a1

− λ

)
1

(s+ λ)2

}
=
a1
a2

{
exp(−λt) +

(
b1
a1

− λ

)
t exp(−λt)

}
=
a1
a2

exp(−λt) +
(
a1
a2

b1
a1

− λ
a1
a2

)
t exp(−λt)

=
a1
a2

exp(−λt) +
(
b1
a2

− λ
a1
a2

)
t exp(−λt)

Now, let us once again check the units using SI convention, noting that exp(−λt) is

dimensionless, both b1
a1

and λ are in units of 1
s
, and t is in s. We see that

(
b1
a1

− λ
)
t is also

dimensionless. Therefore, the units check out. Based on this expression, we do see a term
with λt exp(−λt). Therefore, λt > 23.0 should be one of the criteria of consideration for
decay to steady state. The next criteria is where b1

a1
t exp(−λt) < 10−9. This should not be

too computationally expensive to compute. Therefore, I will not perform further numerical
analysis to obtain a further simplified criteria for when this exponential term decays to steady
state.

Overdamped Case Now for overdamped modes, we essentially have two real roots in
the denominator. The formula for such is given by the classic quadratic root finding formula
[Perry and Green, 2015]:

a2s
2 + b2s+ c2 = a2(s+ α)(s+ β) (6.31)

Where:
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α =
−b2 +

√
b22 − 4a2c2

−2a2

β =
−b2 −

√
b22 − 4a2c2

−2a2

Therefore, if we were to go back to the Laplace Transforms:

L
{

a1s+ b1
a2(s+ α)(s+ β)

}
=
a1
a2

L
{

s+ b1
a1

(s+ α)(s+ β)

}

=
a1
a2

L
{

A

s+ α
+

B

s+ β

}
=
a1
a2
A exp(−αt) + a1

a2
B exp(−βt)

So far, the units seem to check out, because A and B should be of the same unit.
Now we need to determine the coefficients A and B:

s+
b1
a1

= A(s+ β) +B(s+ α)

Using the Cover up Rule

{
−β + b1

a1
= B(−β + α), if s = −β

−α + b1
a1

= A(−α + β), if s = −α

Now let’s perform some unit checks in SI units again. We see that A =
−α+

b1
a1

−α+β
, and

B =
−β+

b1
a1

−β+α
. We note that the denominator is in units of α and β which are in s−1. If the

numerator of the transfer function is dimensionless, then b1/a1 is in units of s−1. Here, we
have unit consistency between A and B, both of which are dimensionless.

The final expression for overdamped systems is:

L
{

a1s+ b1
a2(s+ α)(s+ β)

}
=
a1
a2

(
−α + b1

a1

−α + β

)
exp(−αt) + a1

a2

(
−β + b1

a1

−β + α

)
exp(−βt)

Code to Code Verification Tests For code verification, we want to subject our code
to some limited tests. For code to code verification, I will first obtain step tests for some
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transfer functions using SciLab and Xcos [Campbell et al., 2010; Merzlikina and Prochina,
2020]. Then I will compare the results to that generated by the coded transfer function
libraries in Rust. Firstly, the heater inlet temperature to heater outlet temperature transfer
function was tested:

Garbitrary FHR scaled inletT to outletT (s) =
0.000119s− 2.201 ∗ 10−7

s2 + 0.0007903s+ 6.667 ∗ 10−7

This is a second order underdamped system with one zero. For this transfer function,
a 9 K step input was given at t = 0. Data was generated using the Xcos control systems
module within Scilab with timestep of 20s using a Runge-Kutta 4th Order Implicit Scheme.
I used this to validate the transfer function libraries I built.
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Figure 6.6: Transfer Function Rust Library Code to Code Verification using SciLab [Merz-
likina and Prochina, 2020]
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We can see from Figure 6.6 that the library written in Rust has almost the same output
as the Scilab. There are also well within the ±0.5K error bars. Thus, for the purposes of
heater simulation, the simulation library has shown satisfactory results.

However, we also want to ensure that the second order underdamped response works well
in general. For this, we consider the underdamped second order transfer function:

G(s) = exp(−3s)
2.5s2 − 0.5s+ 1

3s2 + 4s+ 4

The same transfer function was put in both Scilab and the Transfer Function Library
and subject to the same transient of 9 units at t = 0s. The results are plotted in Figure 6.7:
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Figure 6.7: Step Input of 9 units (dimensionless) given at t = 0s for Second Order Under-
damped System

For Figure 6.7, I present the residual plots using the same crude truncation error estima-
tion methods described for the FOPDT system in Figure 6.8:
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Figure 6.8: Residual Plot for Second Order Underdamped System with Step Input of 9 units
(dimensionless) given at t = 0s

For most points within Figure 6.8, the points fit within truncation error. However, there
are anomalous points where the residual exceeds the truncation error by as much as 1400
times. On closer examination, I found that the absolute values and relative values of these
errors were small. The absolute residual had the magnitude of about 1.3 × 10−8. When
compared to the output of Scilab, these were about 2×10−9 as much as the output of Scilab.
These are too small to even observe on the residual plot. We run into such issues because
there are points of inflection in this transfer function simulation where y′′(t) → 0. Thus, the
truncation error term also approaches zero at this point. Therefore, we observe such large
values of residuals in comparison to the truncation error even though the truncation error is
small. In my opinion, these errors are small enough to ignore for the purposes of this work,
and for the purposes most engineering simulations.

Now, we want to deal with overdamped and critically damped systems.
We deal with the following critically damped transfer function:
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G(s) =
5s2 − 2s+ 1

(s+ 2)(s+ 2)
=

5s2 − 2s+ 1

s2 + 4s+ 4

And the following overdamped transfer function:

G(s) =
5s2 − 2s+ 1

(s+ 1)(s+ 2)
=

5s2 − 2s+ 1

s2 + 3s+ 2

Results for the critically damped and overdamped transfer functions are presented in
Figure 6.9:
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We can see from Figure 6.9 that the Transfer Function Library generally matches well
with the Scilab reference for both the critically damped and overdamped transfer functions.
In fact, the largest absolute error in the critically damped and the overdamped transfer
function was less than 1% of the truncation error. In regions where the residual was larger
than the truncation error, the residual was typically on the order of 10−8. This is quite
similar to the trends shown in Figure 6.8 where the residuals are too small to even be seen
on the residual plot in comparison to a the typical truncation error scale. Now, overdamped
and critically damped transfer functions are not used for this SNF controller, therefore I
will not produce the residual plots for the sake of brevity. Suffice to say, however, that the
transfer function library is able to produce stable second order behaviour similar enough to
behaviour shown in Scilab. Therefore, the code to code verification effort has been successful.

Controller Simulator Construction

Besides transfer functions, it would also be important to have Proportional, Integral and
Derivative (PID) controllers in the toolbox so that PID can be simulated if required. This
was important for use in the second iteration of SNF controller. From experience gained
from the first iteration, I found that the timescales for transients due to change in inlet
coolant temperature were much longer than the timescales needed for the heater to respond.
Therefore, I could construct a controller where the simulated neutronics transfer function
determined the expected set point of the heater outlet temperature. Based on rudimentary
feedback control, I could use a PI and PD controller to adjust the heater power such that its
outlet met that set point. I used this approach in my second iteration of the SNF controller.

Proportional Controllers

Proportional controllers are trivial to design and code. They take the input in real-time
and multiply by a controller gain Kc to give an output. One would only need to add extra
programming if one thinks about dead-time. For the sake of development speed, I simply
used the transfer function G(s) = s+1

s+1
= 1 to represent proportional controllers. This is

because prior code for first order transfer functions have already been developed. While this
would have been a computationally heavier and somewhat overcomplicated representation of
a proportional controller, using this implementation would not be an issue if computational
speed is not a problem. Moreover, from a developer’s perspective, the first order transfer
function has already been tested and developed. Therefore, reusing the first order transfer
function would be more expedient than writing a proportional controller with delay time
function from scratch. Therefore, this was the approach I took. In this manner, I did not
have to re-verify if the proportional controller matched the Scilab reference.

However, it would be good to see the behaviour of proportional controllers in comparison
to Scilab when these are placed in a feedback loop as shown in Figure 6.10:
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Figure 6.10: Proportional Controller Feedback Loop Block Diagram in Scilab Xcos

The “continuous-fix-delay” block in Figure 6.10 provided a small delay in time. The goal
of this was to mitigate an “algebraic loop error”. This is an error given by Scilab when
attempting to solve feedback loops for all their variables simultaneously. Normally, at one
time step, a sequence of events occurs. Firstly, the error signal is sent into the controller, the
controller then sends a control signal into the transfer function to obtain an output at the
first timestep. However, to calculate the error signal ysp(t) − y(t), a value for y(t) must be
supplied. Therefore, we need y(t) in the error term to calculate y(t). This is the essence of the
“algebraic loop error”. To solve this error, we can supply an initial value of y(t) to calculate
y(t + ∆t). To achieve this, I looked in online forums and found that I needed to introduce
a small delay in the feedback loop [rupakrokade, 2018]. This is not unreasonable since in
reality, the measuring device would take some finite amount of time to measure a signal.
Therefore, this delay required for the solver could represent some sort of measurement delay.
However, I set this measurement time to as small a value as possible so that I could emulate,
as far as possible, an ideal measurement transfer function with no delay. This measurement
delay was set at 0.1 ms to mimic perhaps a typical measurement delay time or latency by
the controller. In reality, typical latency over local area networks (LAN) is on the order of
1 ms. The LAN setup was used by CIET to connect its sensors to ARCO via the PXI-e.
Therefore, such a latency is not unrealistic. I then simulated the same idealised control loop
in the transfer function library. However, no additional delay was required because I used the
previous time step’s value of y(t) to calculate the error signal for the controller. This achieved
a similar result as putting a delay in Scilab. Nevertheless, the time step became important in
feedback loops despite my control blocks being analytically integrated because these signals
were now discretised in time. Using controllers designed using Laplace Transforms in discrete
time systems generally performs worse than using controllers designed using the z-transforms
as the latter is designed with discrete time stepping in mind. However, for the purposes of
this work, designing a controller from the ground up using a z-transform was not strictly
required and the controller still performed well enough compared to Scilab.
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I plotted the results of this system in Figure 6.11:
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Figure 6.11: Proportional Controller Feedback Control, Scilab and Transfer Function Library
Comparison

Generally speaking, the proportional controller in my transfer function library performs
quite similarly to the controller block in Scilab even with the minor time delay. However,
the transfer function library tends to produce a more jerky output as compared to Scilab.
Now, Scilab simulates the controller block system using an automatically determined time
step perhaps so that the feedback control system is simulated as close to a continuous time
simulation as possible. However, for the transfer function library, I set the time step to
∆t = 0.2s. Therefore, it may behave more like a discrete time feedback control system. This
may be a significant contributing factor for the deviations as shown in Figure 6.12:
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Figure 6.12: Residual Plot for Feedback Control Test with Proportional Controller

These residuals are not small in comparison to the step input and the final steady state
output. This has important implications for the feedback control mechanism. For example,
if at t = 5s, the set point is set to ysp = 5, the error signal should have been 5 at t = 5s.
The next time step to calculate would be for t = 5.2s. However, for analogue control, we
should have a marked decrease in error between t = 5s and t = 5.2s because the system
output would have increased. For digital control, the error would have been set at 5 for the
duration of ∆t = 0.2s. Therefore, the system response would have been greater as compared
to an analog control scheme. Nevertheless, we see that the steady state outputs of the
feedback loop in both Scilab and my transfer function library are virtually equal at 0.556
with a residual of 1.6 × 10−12. If we were to use the package with real-world components,
we may have issues as the additional deviation may damage components. However, for the
purposes of creating a development sandbox for SNF controller development, this deviation
is acceptable since the steady state output is similar.
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Integral Controllers

The next item to design is an integral controller because I want to progress from a P feedback
controller to a PI feedback controller. Integral controllers are rather challenging because they
do not have modes that decay out. Therefore, we cannot use the same algorithms we used
for the stable transfer functions to avoid memory leaks.

To start developing code for integral controllers, we start with the transfer function for
integral controllers and obtain its response to a step input. The transfer function for an
integral controller is:

G(s) =
Kc

τIs

Where τI is the integral time. The step response of an integral controller is simply the
ramp function 1

s2
scaled by Kc

τI
. The ramp function is:

y(t) = t

Suppose y(t) is zero initially, and there were two step inputs given by the user, one at t1
and the other at t2 with amplitudes a1 and a2.

After the first step input:

y(t) = a1
Kc

τI
(t− t1)

After the second input:

y(t) = a1
Kc

τI
(t− t1) + a2

Kc

τI
(t− t2)

=

[
a1
Kc

τI
+ a2

Kc

τI

]
t− Kc

τI
[a1t1 + a2t2]

For a system with N inputs,

y(t) = t
N∑
i=1

[
ai
Kc

τI

]
−

N∑
i=1

[
aiti

Kc

τI

]

The units here seem to check out as t and τI are of the same units, and y(t) should be
in units of aiKc. Hence, there is no need for vectors here. There should be an offset where:

offset = −
N∑
i=1

[
aiti

Kc

τI

]



403

And a gradient:

gradient =
N∑
i=1

[
ai
Kc

τI

]
Given this expression, one can simply program two mutable variables which are changed

and every time an input is registered. The change to offset and gradient can be calculated
and put into the object code representing the integral controller. To ascertain if the PI
controller worked, I created a simple test case that I ran in both Scilab and the Transfer
Function Library, and I compared the results. The block diagram of this test case is in
Figure 6.13:

Figure 6.13: PI Feedback Controller Block Diagram

The results in Figure 6.14, show that the Transfer Function Library was able to cause
the closed loop behaviour to behave in a generally similar way to its Scilab counterpart:
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Figure 6.14: Proportional Integral Controller Feedback Control, Scilab and Transfer Function
Library Comparison

While Figure 6.14 shows a generally close match in closed loop output between Scilab and
the Transfer Function Library, , we do not get an exact match. This is shown in Figure 6.15:
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Figure 6.15: Residual Plot for Feedback Control Test with Proportional Integral (PI) Con-
troller

Nevertheless, the PI controller does its job by bringing the system to the desired set
point, and the residual tends to zero as t→ ∞. Again, these deviations are likely due to the
time discretisation effects where ∆t = 0.2s as described earlier, and care should be taken if
using such controllers for real process control. However, for the purposes of this work, the
behaviour of the PI controller suffices. Therefore, I did not tweak the code further.

Derivative Controllers

To construct a full PID controller, I needed to design the derivative controller as well.
Derivative controllers are slightly more challenging because its transfer function is s. This is
not physically realisable and challenging to model. However, for the purposes of this work,
we need to model its input to a step function as before.
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Again, the transfer function of a derivative controller is s and the frequency domain
representation of a step function is 1

s
[Seborg et al., 2016]. The corresponding output in

the frequency domain to a unit step input is 1. For this, the inverse Laplace Transform is
[Seborg et al., 2016]:

L−1 {1} = δ(t)

Now, it would be rather challenging to simulate the delta function δ(t). There are two
options though. First is to approximate it using two Heaviside functions. The first Heaviside
function is step up and the other is a step down. The time between the two Heaviside
functions is determined by the timestep. Consequently, since the area under the step is 1,
the amplitude aheaviside is determined by:

1 = ∆t ∗ aheaviside (6.32)

The problem with this approach is that the time step ∆t must be known beforehand. I
wish not to make this assumption, and therefore I looked for another method. The second
alternative is to use a filtered derivative controller, with the transfer function [Seborg et al.,
2016]:

G(s) = Kc
τds

ατds+ 1

Where τd is the derivative time, and α is known in literature as a derivative filter constant
[A. Isaksson and Graebe, 2002]. This is commonly used It is typical for α to have values
of 0.1 [Seborg et al., 2016]. However, it has been suggested in literature that α should be
a fourth parameter in PID controller design besides Kc, τI and τd [A. Isaksson and Graebe,
2002]. Therefore α should be up to the user to decide. In terms of programming, it is
essentially a first order system with one zero at s = 0. We can then reuse code from the first
order transfer function for this.

Now, it is good to compare the differences in behaviour between filtered PID and non
filtered PID controllers. Therefore a comparison was performed in Scilab to ascertain the
differences in closed loop response between these two PID controllers. The Scilab block
diagram for the unfiltered PID controller is presented in Figure 6.16:
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Figure 6.16: Scilab Block Diagram for Unfiltered PID Controller

In contrast, the filtered PID controller setup is presented in Figure 6.17:

Figure 6.17: Scilab Block Diagram for Filtered PID Controller

In Figure 6.17, essentially a low pass filter with transfer function 1
s+1

was added to the
derivative controller. When both control loops were subject to a set point change of 5 units
at t = 5s, the responses were recorded and presented in Figure 6.18:
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Figure 6.18: Proportional Integral Derivative (PID) Controller Feedback Control, Compari-
son between filtered and unfiltered Variants

Based on the general trend of Figure 6.18, it made little difference whether the filter was
added to the derivative controller. Since the behaviour is more or less similar, I refrained
from implementing a pure derivative controller within my program.

Now that we have discussed derivative filters, we shall move on to the verification case
study. The closed loop system in the Scilab block is shown in Figure 6.19:
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Figure 6.19: Scilab Block Diagram for Filtered PID Code Verification Test Case

This closed loop feedback control system with a filtered PID controller again simulated
in Scilab and the transfer function library written in Rust. The results are presented in
Figure 6.20:
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Figure 6.20: Proportional Integral Derivative (PID) Controller Feedback Control, Scilab and
Transfer Function Library Comparison with ∆t = 0.2s

From Figure 6.20, we can see that there is generally poor agreement between the feedback
controller using the transfer function library and that of Scilab. One possible reason is due
to me using a time step of ∆t = 0.2s in the transfer function library simulation. In contrast,
the Scilab simulation, once again, used an automatically determined time step. To verify if
this time discretisation was indeed the issue, I repeated the simulation using a ∆t = 0.02.
However, I plotted data I sampled every 0.2 seconds. This is shown in Figure 6.21:
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Figure 6.21: Proportional Integral Derivative (PID) Controller Feedback Control, Scilab and
Transfer Function Library Comparison with ∆t = 0.02s

In Figure 6.21, the agreement is generally much better than in Figure 6.20. The residuals
are shown in Figure 6.22:
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Figure 6.22: Residual Plot for Feedback Control Test with Proportional Integral Derivative
(PID) Controller

Figure 6.22 shows that if timestep was not an issue, then the closed loop behaviour of
the PID controller simulated in the transfer function library generally matches the data of
the Scilab data except for a few data points. Therefore, for most of the simulation, the
closed loop behaviour of the PID controller in the transfer function library matches that of
Scilab. The large residuals seen in Figure 6.22 can be attributed to a some reasons. The
most important of which was that the simulation in the transfer function library was started
one timestep (0.02 seconds) later than that of the Scilab simulation. Hence, the simulation
step input in ysp started at 5.02 seconds for the transfer function library and 5.00 seconds
for the Scilab dataset due to the way I programmed the simulation loop, and not the way
I programmed the transfer function library. This small delay caused a significant residual
from t = 5s to t = 6s in the simulation. However, it did not significantly impact the overall
closed loop behaviour for the rest of the simulation despite this small deviation. Given that
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this is the case, I decided not to spend further time in repeating the experiment. Figure 6.21
and Figure 6.22 show that the PID behaviour has been sufficiently replicated in the transfer
function library written in Rust.

However, the user should be cautious when using the analogue PID controllers in discrete
time systems. If the timestep is too large, we will then observe the oscillatory behaviour
in Figure 6.20. In real-time systems such as the digital control system in ARCO-CIET, it
may not be possible to obtain data at such small timesteps. Therefore, using filtered PID
controllers in this manner, we ought to expect oscillations to occur. These oscillations that
come about due to sudden changes in set point can be mitigated by placing the derivative
controller portion in the feedback portion of the loop [Seborg et al., 2016], thus eliminating
the proportional and derivative kick due to sudden changes in ysp [Seborg et al., 2016]. This
issue aside, I considered the transfer function library in this form sufficiently capable for the
purposes of this thesis. Therefore I released it under the Rust crates directory as “chem-eng-
real-time-process-control-simulator” version 0.0.4. This is a nod to when I first learnt process
control as a chemical engineer in my undergraduate work, and also because the majority of
references I used for this library were chemical engineering textbooks [Seborg et al., 2016]
and Perry’s Chemical Engineer’s Handbook [Perry and Green, 2015].

Graphical User Interface (GUI) and Postprocessing

Now, for the Type I Digital Twin of CIET, it is quite necessary to have a graphical user
interface (GUI) so that the operator can change the power levels of CIET as if he or she was
controlling CIET via ARCO-CIET. Therefore, I needed to construct a GUI as a frontend for
the Type I Digital Twin preferably in Rust. It may not be as aesthetically well developed
or professional looking as Labview, but it got the job done. This GUI was based on the
eframe GUI framework and the closely related egui crate [Ernerfeldt, 2023a], both of which
were written in Rust. Both are also published under Free and Open Source (FOSS) Licenses
such as Apache 2.0 and the MIT license. Therefore, this makes the code highly accessible
to all users. I also used an eframe template made by Ernerfedlt [Ernerfeldt, 2023b] as the
baseline with which to start building the tabs for the GUI. Additionally, I used Litvin’s “rs-
value-plotter” [Litvin, 2023] as a template with which to build graphs which could respond
in real-time to user input. Figure 6.23 shows one iteration of this GUI used for testing and
development.
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Figure 6.23: GUI Demo using the egui Framework

This GUI made it possible for me to interact with the Digital Twin Server in real-
time using the OPC-UA Client written in Rust. Additionally, it enabled me to integrate my
“chem-eng-real-time-process-control-simulator” crate with the client seamlessly as it was also
written in Rust. This made testing and development of the Digital Twin simpler because only
one programming language (Rust) was used as opposed to a mixture of Rust and Python, or
Rust, Python and Javascript. This simplicity greatly sped up the testing and development
process of the SNF controller.

For postprocessing, however, I did not set up an interactive GUI so that the user clicks a
button to start recording data. Instead, the OPC-UA client has a thread that runs so that
comma separated values (csv) files are produced. For this, I used the “csv” crate written in
Rust [Gallant, 2023].

SNF Controller Development Process

Now that we have constructed our transfer function simulator in the form of the “chem-
eng-real-time-process-control-simulator” crate written in Rust, we can now outline the SNF
controller development process within the context of the Type I Digital Twin for CIET’s
Heater. This is to demonstrate how effective the Type I Digital Twin is for speeding up
development of SNF controllers. Since we have previously mentioned how the speed increase
was to be quantified, we now focus on the details of how SNF Controllers can be developed
for the purposes of this work.

Simulated Neutronics and Thermal Inertia Controllers

Now, there are several approaches for SNF Controller Designs we can consider for this work.
As mentioned in the literature review, the Desire Loop SNF Controller utilised PRKE based
transfer functions for [Kok and Van der Hagen, 1999]. These would measure the actual void
fraction using a sensor within the DESIRE IET loop. Then the void feedback signal would
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be passed through a digital controller which would then control the DESIRE loop power
supplies [Kok and Van der Hagen, 1999]. The key assumption for SNF facilities such as the
DESIRE loop is that there is thermal hydraulics similitude between the actual reactor and
the scaled SNF facility [Kok and Van der Hagen, 1999]. In this manner, we only need to add
some transfer functions in order for the void-reactivity feedback to be accurately simulated
[Kok and Van der Hagen, 1999].

Unfortunately, for CIET, it was scaled originally to natural circulation flow for decay heat
removal within the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) rather
than the Mark I PB-FHR Design [De Wet and Per F Peterson, 2020]. However, it was
then adapted for use, with some scaling distortions, for the Mark I PB-FHR designs as it
still matched the thermal hydraulics behaviour of the Mark I relatively closely [I. M. B.
Johnson, 2022; De Wet and Per F Peterson, 2020; Nicolas Zweibaum, 2015]. The alternative
would be to construct another IET scaled to a more recent reactor design. However, reactor
designs change and evolve. Therefore, the use case of CIET may evolve over time as well.
In this case, we are simulating a forced flow unprotected transient for an arbitrary FHR
rather than a natural circulation flow for decay decay heat removal for the PB-AHTR or
Mark I. We could, in theory, construct another IET for this purpose. However, constructing
an IET in and of itself is not a small feat for an academic research laboratory. The more
convenient option is to make do with the experimental facilities available. Therefore, for this
dissertation especially, similitude does not exist for thermal hydraulics since we base our
reactor feedback on CIET. Therefore, the SNF controller would not only have to simulate
the neutronics feedback via various means, but also the thermal inertia of reactor of interest.
This adds an extra layer of challenge especially if the disparity in thermal hydraulics is large.

One way this may be possible is that of a “black-box” model approach. In this regard,
we do not worry about the specifics of the thermal hydraulics within the reactor. Instead,
we only concern ourselves to design a controller so that the scaled inlet temperature of the
arbitrary FHR matches that of the inlet temperature of the CIET Heater, and the scaled
outlet temperature of the arbitrary FHR matches that of the outlet temperature of CIET’s
Heater. If the arbitrary FHR has high thermal inertia, then its outlet temperature would
change extremely slowly. If CIET’s Heater has a low enough thermal inertia, one could
design a controller such that CIET’s Heater produces the desired outlet temperature of the
arbitrary FHR. If the arbitrary FHR is meant to have a slow increase in outlet temperature,
the controller can send a slowly increasing power signal to CIET’s Heater to match this
behaviour after scaling. The same can be said for when an outlet temperature decrease is
expected. One could program the controller to slowly reduce the power of CIET’s Heater such
that the decrease in the outlet temperature of CIET’s Heater matches that of the arbitrary
FHR. In this case, the heater power is not scaled to the reactor power, and therefore its
value does not hold as much physical meaning as before. Therefore, it is not as important to
monitor except that it operates within safety limits and that the inlet temperature to outlet
temperature transfer function remains the same as the scaled arbitrary FHR. However, there
is one problem with this approach: for some transients, the outlet temperature may be lower
than the inlet temperature. To illustrate this, I once again present the Step Response test
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of the arbitrary FHR to a 100K increase in inlet temperature in Figure 6.24:
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Figure 6.24: Step Input of 100K applied to Inlet Temperature for GeN-Foam compared to
Derived Transfer Function

In Figure 6.24, the arbitrary reactor was brought to a steady state where its inlet temper-
ature was 873 K and its outlet temperature was around 970 K. The transient of a 100K step
increase in inlet temperature was done at t = 0 seconds so that the inlet temperature was
973 K throughout. This effectively shut down the arbitrary FHR. Therefore, for a few hours,
the outlet temperature of the arbitrary FHR was lower than its inlet temperature likely
due to negligible heat generation and cooler fluid still remaining within the arbitrary FHR.
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Therefore, the fluid residence time and thermal inertia contributed to the outlet coolant
temperature being significantly cooler than the inlet coolant temperature from t = 2000 s
to t = 6000 s. For a SNF Controller with thermal inertia simulation capabilities, this means
that the outlet temperature must be colder than the inlet temperature for at least one hour.
In this regard, parasitic heat losses for the heater are quite necessary in order to reproduce
this effect. Therefore, the heated section must also be able to cool the liquid in addition
to heating the liquid up. In CIET’s present configuration, this is not possible even with
parasitic heat present when the heater was turned off. Hence, only a subset of transients can
be simulated with CIET’s Heater in its present state. Therefore, if SNF facilities were de-
signed to simulate thermal inertia in addition to neutronics feedback, then we should design
a heater and cooler hybrid to account for situations such as those in Figure 6.24. Designing
a new facility for the purposes of SNF and simulated thermal inertia is out of scope of this
work, but its design process would likely benefit from using Type I Digital Twins as well.

Design Options for SNF Controllers in this Dissertation

For now, CIET’s Heater, or its digital twin, is able to simulate a subset of transients which
require SNF capability given the right SNF controller. In this dissertation, I chose to use
the Type I Digital Twin to test analogue feedforward controllers since this was the most
conceptually straightforward. I also tested feedback PID controllers since the time scale for
SNF due to increased inlet coolant temperatures was much longer than the timescale for the
heater thermal inertia and residence time. These two design options did not fully reproduce
the desired SNF Controller behaviour. However, designing a working SNF Controller is
outside the scope of this dissertation. The main point is to show how the Type I Digital
Twin of the Heater sped up the design iteration process. For this purpose, two design
iterations were sufficient. Hence, I did not perform further design iterations for the SNF
Controller. This is left for future work.

6.3 Results

After performing the two design iterations for SNF Controller using the Type I Digital Twin
of CIET’s heater, I was able to demonstrate two working iterations of the SNF Controller.
These did not reproduce the SNF behaviour completely, but the PID controller was able to
follow the reference SNF behaviour quite closely for most of the transient where there were
no sudden changes in heater inlet temperature (BT-11). These two design iterations took
about 21 OPC-UA Client restarts to develop in total over two or three working days. This
equated to about 24 man hours of work. Assuming one OPC-UA client restart equates to
one successfully run CIET iteration experiment that took about three working days within
one week to complete, we would require about 21 hours per person per successful experiment.
This assumes that one working day consisted of seven hours of time spent in CIET and spent
debugging CIET. Since CIET required two people to operate, we can assume that about 42
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man hours of work was required per experiment. If this iterative process was done over 21
experiments, then we would require about 882 man hours of work. Based on this estimate,
designing the SNF Controller using the Type I Digital Twin of CIET’s Heater was roughly
21 times more efficient in terms of working hours. Also, roughly a total of 861 man hours
were saved when performing the first two design iterations on the Type I Digital Twin. Of
course, designing a SNF Controller would require many more iterations than these two design
iterations, but this would only further prove that the Type I Digital Twin is an essential
part of the design process if one wanted to be efficient with time.

Of course, to write code for this Type I Digital Twin from the ground up, it took roughly
two years of trial and error. Nevertheless, I conjecture that the time spent in these two years
would not only help to save my own time should I want to continue writing SNF controllers,
but would also help others if they want to do something similar. Thus, this was time well
spent. Additionally, several lessons were learnt during the first two design iterations. These
lessons, along with the design iteration results are presented in the following subsections.

SNF Development Initial Results

Let us now discuss some of the initial results for how the SNF controller performed and
some of the important learning points. Using the aforementioned methodology, I started
developing my SNF controller using the Type I Digital Twin Rust Server and the Rust
OPC-UA client. I took approximately 13 iterations to get my initial results as I had to
debug various issues and configure the workings of the transfer function library and csv
exports correctly. This was meant to mimic the development process I would have taken if
I used ARCO-CIET to program my SNF controller.

Unsurprisingly, my first results for the SNF Controller were not particularly successful.
When I decreased the inlet temperature of the heater (BT-11), the outlet temperature (BT-
12) ought to have increased after sometime due to higher reactor power output. Nevertheless,
erroneous behaviour and various bugs caused the SNF controller to switch off the heater
after some time despite the fact that the heater was meant to increase power output. This
behaviour is shown in Figure 6.25:
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Figure 6.25: Initial Postprocessing Results after 13 Iterations

In Figure 6.25, the heater outlet temperature was initially set to around 80 ◦C. However,
it took about 50 seconds for the heater to reach a steady state coolant outlet temperature
of 102.24◦C. At roughly 100 seconds, I reduced the inlet temperature of the coolant. This
should have gotten the outlet coolant temperature to increase due to increased reactor power
output. However, the SNF controller was not able to compensate for the decrease in inlet
temperature. This is because the SNF Controller transfer function did not account for the
decrease in inlet coolant temperature. This was an oversight on my part, but it showed
the need for iterative design processes. Additionally, after the initial response, the SNF
controller essentially lowered the heater power until it was 0 kW . This was puzzling, but
at least the basic data logging functions and other basic functions were working correctly. I
did not manage to debug the root cause of this issue until the second design iteration was
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complete.
These first 13 iterations took approximately one day. If this iteration process was done in

ARCO-CIET, the approximate time, assuming one could find the right schedules and people
for the experiment, would have been roughly 13 weeks or almost one semester. While the
SNF controller was not successful in that it did not produce the correct SNF behaviour, it
showed that the timescales for the SNF transients due to changes in inlet coolant temperature
were much longer than the timescales for transient conjugate heat transfer (CHT) within
the heater. This is because the thermal inertia of the heater is very low in comparison to
the thermal inertia of the fluid, at least compared to typical ratios found within FHRs and
the arbitrary FHR. Given that this is the case, I opted to use a simpler PID controller in
order to produce the desired SNF behaviour rather than debug the root cause of this error.

The key learning point for this design iteration was that I needed to consider a state space
representation for the SNF Controller transfer function or state space model. This would
have allowed for a control scheme with multiple inputs, and allowed me one more transfer
function to try and reject the decrease in outlet temperature brought about by decrease in
inlet temperature.

PID Type SNF Controller

Given this state of affairs, I decided to try the PID type SNF controller. In this setup, the
SNF transfer function would determine the set point for the heater outlet temperature BT-
12. Given such a set point, the controller would control the heater power so that the error
between the Digital Twin’s BT-12 temperature and the set point was minimised. In this
regard, the SNF behaviour would have been adequately replicated because the timescales
were so long. To attain the results for the second design using PID, approximately eight
attempts were needed. This took around one to two working days because of the several
hour long times for the transients.

When I iteratively designed the PID controller, I found severe limitations when using PID
controllers acting on the error. As expected, the PID controller produced severe oscillations
seen during the verification tests because of the time discretisation issue. In ARCO-CIET
and the Type I Digital Twin, temperature samples were taken every 0.1 seconds when using
digital control. Therefore, it behaved more like a discretised (digital) time system simulation
rather than a continuous time system simulation. This caused oscillatory behaviour within
the Type I Digital Twin of the heater during early iterations of the PID controller shown in
Figure 6.26:
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Figure 6.26: Oscillatory Behaviour Observed during Early Iterations of PID Control based
SNF

Moreover, Figure 6.26 showed inherent limitations in having the heater power at a maxi-
mum of 10 kW. This is because transients were performed on the heater when it was operating
at a steady state of 8 kW. At 8 kW, the heater’s behaviour was validated with experimental
data. Therefore, I could perform transients from this steady state knowing that the heater
behaved reasonably according to experimental data. Ideally, I would have operated the
heater at a lower power and flowrate, around 4 or 5 kW, and performed transient studies
from that state. However, this would require a different set of experimental validation stud-
ies for the Type I Digital Twin. I left this to future work as this did not directly contribute
to the purpose of this dissertation.

Now, to remove this oscillatory behaviour, I decided to follow Seborg’s suggestion and
place the derivative element within the feedback portion of the control loop in a PI - PD
version of the PID controller [Seborg et al., 2016]. The block diagram of which is shown in
Figure 6.27:
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Figure 6.27: PI-PD Feedback Controller Diagram

In Figure 6.27, Toutlet sp is the outlet temperature set point determined by the SNF
transfer function. Toutlet is the Heater Outlet Temperature BT-12. Gm(s) is the measurement
transfer function which should be 1 if we were to ignore the lags and delays between OPC-
UA server and client. Based on Figure 6.27, I define a transfer function for the PI and PD
controller:

GPD =
3.339s

0.1× 3.339s+ 1
+ 1 (6.33)

GPI = 80.0
watts

K

(
1

7s
+ 1

)
(6.34)

In both equations 6.33 and 6.34, the proportional and integral time were in units of
seconds. Both equations 6.33 and 6.34 were initially estimated using Chien and Fruehauf’s
internal model control (IMC) tuning correlations [Fruehauf, Chien, and Lauritsen, 1994] for
PID controller tunings found in textbooks [Seborg et al., 2016]. While Chien and Fruehauf’s
correlations were meant for PID controllers in parallel forms, they served as decent initial
estimates for the PI-PD controller that I developed. This PI-PD controller approach worked
well in removing oscillations within the outlet temperature. Early versions of the PI-PD
version of the PID controller showed that the controller was able to get the outlet temperature
of BT-12 to follow the desired output given by the transfer function at least for the longer
term. However, the PI-PD controller was not able to reject the initial disturbances in the
simulated BT-12 temperatures due to increased heater inlet temperatures (BT-11). This is
shown in Figure 6.28:
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Figure 6.28: Initial Postprocessing Results for PI-PD Controller

The initial overshoot was due to the heater requiring some settling time as it reached an
initial steady state. The latter overshoot was due to an increase in heater inlet temperature
where the feedback controller was unable to reject the disturbance. Moreover, the transient
timescale in Figure 6.28 was wrong because of a bug. The simulated reactivity feedback
transfer function was mistakenly using the difference between the heater outlet temperature
and steady state inlet temperature reading Toutlet − Tinlet steady state to calculate the desired
heater outlet temperature. This means that the transient shown was a result of mistakenly
overpredicting simulated reactivity feedback. Thus, the transient time scale in Figure 6.28
was significantly shorter than the timescale of the correct SNF behaviour. For correct SNF
behaviour, we should expect the time scale to dip after several hours rather than within one
hour.
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Despite this, Figure 6.28 showed that the PI-PD SNF controller was able to keep pace
with the calculated set point from the SNF transfer function scaled down from GeN-Foam for
the most part of the transient. Therefore, aside from the Toutlet−Tinlet steady state issue, I was
largely satisfied with the design. I then took some action to correct the Toutlet−Tinlet steady state

issue. This was largely successful, and a second transient was plotted in Figure 6.29:
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Figure 6.29: Postprocessing Results for PI-PD Controller

Figure 6.29 shows the correct SNF behaviour over the correct timescale. Other than
the inability of the controller to reject the initial increase in outlet temperature, the SNF
controller has generally performed well. While, I could make a third design iteration to
eliminate the initial increase in outlet temperature, designing a SNF controller that perfectly
mimics the SNF behaviour is not necessary for this work. Instead, I was only aiming to show
that this iterative design process for the SNF controller was expedited by the Type I Digital
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Twin. This goal has been achieved, and therefore, I decided to leave the actual design of the
SNF controller to future work.

6.4 Future Work

Based on the experiences of the two previous design iterations of the SNF controller, we can
clearly see that the Type I Digital Twin of CIET’s heater performs a vital role in expediting
the process. Given that we now have the tools with which to iteratively design the SNF
controller, we could perform more design iterations so that the SNF controller is able to
reject the initial increase in outlet temperature due to increase in heater inlet temperature.
Additionally, we might explore other designs which incorporate control rod movement and
other feedback mechanisms into the SNF controller.

Moreover, based on the time scale of the SNF transient, we may even upgrade the arbi-
trary FHR simulation to include decay heat and Xenon-135 transients, or even base these
simulations on the gFHR [Kile et al., 2022]. Additionally, the surrogate models we use for
modelling SNF behaviour could also be improved beyond transfer functions and state space
models. We could use something more sophisticated such as neural networks or even a low
fidelity deterministic lattice code.
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Chapter 7

Conclusion

7.1 TL;DR

In this dissertation, we have discussed the construction of Type I Digital Twin libraries for
incompressible flow heat transfer and validated the Type I Digital Twin of CIET’s Heater
against experimental data. This Digital Twin was then used as a testbed for iterative devel-
opment of simulated neutronics feedback (SNF) controllers which could, at least partially,
simulate reactor thermal inertia as well. We have also demonstrated a methodology of con-
structing a surrogate model based on a higher fidelity deterministic multiphysics simulation
in GeN-Foam for use in the SNF controller. To simulate this SNF controller, a transfer
function and control systems library was built in the Rust programming language. We also
have demonstrated code to code verification with this control systems library using Scilab
to show that the library was functioning correctly for this dissertation. With these tools,
we demonstrated the capability of the testbed in expediting the development process of
the SNF controller in Integral Effects Tests (IET) facilities. This is important because the
Type I Digital Twin has helped speed up the initial iterative development process for SNF
Controllers for use in electrically heated IET facilities.

7.2 Future Work

The work in this dissertation is useful for designing SNF Controllers within electrically heated
IET facilities such as the Compact Integral Effects Test (CIET). In the longer term, these
SNF Controllers were meant to be coupled with experimental facilities in real-time so that
the IETs can be used for transient tests with SNF. Experimental data from these tests can
help us ascertain the impact of transients on the primary loop. Additionally, if we wanted
to ascertain the impact of certain transients on the reactor vessel and fuel in real-time, we
could improve upon this hardware in the loop simulation such that the reactor vessel and
its components are simulated in real-time. This is similar to how a Type III Digital Twin
would be coupled both ways in real-time with the IET hardware. However, the model being
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synchronised in real-time with the IET hardware is a real-time reactor model rather than
the IET model. Building and synchronising such a reactor model with its IET hardware is
a much more daunting task than a simple SNF Controller. For such a task, using a Type I
Digital Twin test bed for iterative model development will prove to be essential.
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Appendix A: Digital Twin
Construction

Coiled Tube Air Heater (CTAH) Data for Modelling

and Validation

The air-cooled heat exchanger in the primary loop modelled in Transform was meant to
replicate the function of the CTAH in the FHR [De Wet and Per F Peterson, 2020]. In
CIET RELAP models, this air-cooled heat exchanger was also called the CTAH
[Nicolas Zweibaum, 2015]. The isothermal digital twin in previous work also follows this
naming convention [Ong, 2023]. These air-cooled heat exchangers were Xylem Standard
Exchange Model 15L F700 FanEx heat exchangers [Jeffrey E Bickel, Nicholas Zweibaum,
and Per F Peterson, 2014]. We shall stick to this naming convention to avoid confusion
with previous work.
Xylem Standard Exchange Model 15L F700 FanEx heat exchangers contain a large fan
with aluminium fins and 0.5 inch outer diameter copper tubing to aid heat exchange
[Xylem, 2023]. Its motor is a 115 Volt, single phase, 60 Hz motor [Xylem, 2023]. Modelling
this geometry with high fidelity would be challenging. Therefore, one could use simplified
calibrated models to model the CTAH.
The CTAH in Transform was modelled as an adiabatic inlet volume, followed by a heater
consisting of 12 parallel copper tubes, and then an adiabatic outlet volume. The inlet and
outlet volumes were 0.001 m3 each [De Wet and Per F Peterson, 2020]. Heat transfer in the
inner wall was assumed to be ideal as the F700 Model 15L uses hollow metal turbulator
spheres to enhance heat exchange [Xylem, 2023; De Wet and Per F Peterson, 2020]. One
should note however that this idealisation works for a flowrate of 0.18 kg/s.
The heat transfer coefficient at 0.18 kg/s oil flowrate in terms of fan frequency is [De Wet
and Per F Peterson, 2020]:

h = −0.2021f 2 + 18.15f − 43.07 (1)

Of course, we can also model the CTAH to some desired temperature boundary condition.
For the SAM model, the CTAH was set to remove heat such that its outlet temperature
was 80◦C [Zou, R. Hu, and Charpentier, 2019]. This is usually done experimentally so that
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the loop is able to reach steady state in preparation for frequency response testing [De Wet
and Per F Peterson, 2020]. If one desires to use the frequency response data from CIET for
the CTAH and the whole loop, one must note that in the PRBS frequency response tests
for forced convection, the CTAH was kept to a contanst fan frequency [De Wet and
Per F Peterson, 2020]. The correlation for that was [De Wet and Per F Peterson, 2020]:

h = 0.0352Q̇− 8.7472 (2)

I was not able to find units easily for both these correlations, but there is still some
validation data for the CTAH with units. For example, De Wet gives the correlation of the
required fan frequency in Hz to bring Therminol-VP1 temperatures from down to 80◦C.
This was derived from experimental data at 0.18 kg/s where CTAH fan speed was plotted
against heater power from 3000 W to 10000 W at 80◦C CTAH outlet temperature. The
simplified linear correlation is [De Wet and Per F Peterson, 2020]:

f(Hz) = 0.0035823 Q̇heater(W )− 3.410± 2.0Hz (3)

The other dataset we can consider is the steady state temperature profile around CTAH at
the primary loop flowrate of 0.18 kg/s and CTAH air inlet temperature of 22◦C. The fan
frequency for this data set is set to ensure that the CTAH outlet temperature is 80◦C.
This data is presented in Table 1:

CTAH Fan
Frequency

(Hz)

CTAH
Therminol

Inlet
Temperature
(BT-43) ◦C

CTAH
Therminol
Outlet

Temperature
(BT-41) ◦C

CTAH Air
Inlet

Temperature
(AT-02) ◦C

CTAH Air
Outlet Tem-
perature

(AT-01) ◦C

8.3 86.75 80 22 36.9

11.2 90.1 80 22 63.9

16.5 96.25 80.4 22 64.5

24.2 102 80 22 63.2

33.8 107.5 80 22 59.4

Table 1: CTAH Steady State Data at Various frequencies [De Wet and Per F Peterson, 2020]

This dataset provides us both temperature difference and enthalpy changes of the air and
Therminol-VP1 flowing through CTAH at different fan frequencies. With appropriate
thermophysical data and a thermal resistance model, we should be able to obtain the heat
transfer coefficient h and determine the original units. The heater power, steady state inlet
and outlet temperatures corresponding to the CTAH inlet and outlet temperatures is
presented in Table 2:
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Heater
Power (W )

Heater Inlet
Temperature
(BT-11) ◦C

Heater
Outlet

Temperature
(BT-12) ◦C

CTAH Inlet
Temperature
(BT-43) ◦C

CTAH
Outlet Tem-
perature

(BT-41) ◦C

3000 78.75 86.93 86.75 80

4000 79 90.25 90.1 80

6000 79.4 96.5 96.25 80.4

8000 79.12 102.2 102 80

10000 78.9 107.75 107.5 80

Table 2: Forced Circulation Steady State Temperature Data [De Wet and Per F Peterson,
2020]

To model the thermal resistance within the CTAH, we also need the thermophysical
properties of copper which make up the tubes. For these thermophysical properties,
Copper for the CTAH tubes was taken to have a density of 8940 kg/m3 in the SAM model
[Zou, R. Hu, and Charpentier, 2019]. The cp and k for copper are presented in the
following Table 3:

Temperature (K) k (W m−1 K−1) cp (J kg−1 K−1)

250 406 373.6018

300 401 384.7875

350 396 392.6174

400 393 398.2103

500 386 407.1588

1000 352 417.226

Table 3: Thermophysical Properties of Copper [Zou, R. Hu, and Charpentier, 2019; Nicolas
Zweibaum, 2015]

This covers most of the data necessary to model CTAH. While it is not modelled in this
current work, this modelling and validation data will become important in future work
when heat exchangers and coolers will need to be properly modelled.
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Appendix B: Simulated Neutronics
Feedback Model Construction

GeN-Foam Stabilisation Bash Script

function thermalHydraulicsStabilisation (){

copyCaseFiles rootCase thermalHydraulicsSteadyState

# to stabilise, we first turn on energy and fluid mechanics

# without the neutronics equation, run for 5000s

controlDict_solveThermalHydraulicsOnly thermalHydraulicsSteadyState

endTime="5000"

controlDict_setEndTime thermalHydraulicsSteadyState $endTime

eigenValueOff thermalHydraulicsSteadyState

runApp_controlDict thermalHydraulicsSteadyState

# thereafter we should have a proper temperature field

# and now we run the eigenValue mode so that the keff can

# be normalised for the transient simulation

eigenValueOn thermalHydraulicsSteadyState

controlDict_solveEnergy thermalHydraulicsSteadyState

extendEndTime thermalHydraulicsSteadyState 10

runApp_controlDict thermalHydraulicsSteadyState

# now we can run it with neutronics on to get it to the

# proper fields at constant temperature

# only solve fluid mechanics and neutronics

controlDict_solveNeutronicsFluidsOnly thermalHydraulicsSteadyState

extendEndTime thermalHydraulicsSteadyState 10

runApp_controlDict thermalHydraulicsSteadyState

# now that we have a proper neutronics field,

# we can turn all equations on, and solve with transient solver
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eigenValueOff thermalHydraulicsSteadyState

controlDict_solveEnergy thermalHydraulicsSteadyState

extendEndTime thermalHydraulicsSteadyState 8980

runApp_controlDict thermalHydraulicsSteadyState

# at this stage, one should be able to get a non zero

# power reading

# and we are ready to do frequency response!

}

GeN-Foam exmaple of fvSchemes for Tetrahedral

Meshes

ddtSchemes

{

default Euler;

}

gradSchemes

{

default leastSquares;

}

divSchemes

{

default none;

div(phi,alpha) Gauss upwind;

div(phir,alpha) Gauss upwind;

div(phi,alpha.liquid) Gauss upwind;

div(phir,alpha.vapour,alpha.liquid) Gauss upwind;

div(phir,alpha.structure,alpha.liquid) Gauss upwind;

div(phi,alpha.vapour) Gauss upwind;

div(phir,alpha.liquid,alpha.vapour) Gauss upwind;

div(phir,alpha.structure,alpha.vapour) Gauss upwind;

"div\(phi.*,U.*\)" Gauss upwind;

"div(alphaRhoPhi,U)" Gauss upwind;



451

"div(alphaRhoPhiNu,U)" Gauss linear;

"div(alphaRhoPhi,K)" Gauss upwind;

"div\(alphaRhoPhi.*,k.*\)" Gauss upwind;

"div\(alphaRhoPhi.*,epsilon.*\)" Gauss upwind;

"div\(alphaRhoPhi.*,(h|e).*\)" Gauss upwind;

}

laplacianSchemes

{

default Gauss linear limited corrected 0.5;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

//default corrected;

default limited corrected 0.5;

}
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PRBS Sequence with Timestamps

Table 4: PRBS Sequence 128 Bit at 30s per Bit (part i)

Bit Number PRBS Sequence Simulation
Time (s)

1 0 0

2 0 30

3 0 60

4 0 90

5 0 120

6 1 150

7 0 180

8 0 210

9 0 240

10 0 270

11 0 300

12 1 330

13 1 360

14 0 390

15 0 420

16 0 450

17 0 480

18 1 510

19 0 540

20 1 570

21 0 600

22 0 630

23 0 660

24 1 690

25 1 720

26 1 750



453

Table 5: PRBS Sequence 128 Bit at 30s per Bit (part ii)

Bit Number PRBS Sequence Simulation
Time (s)

27 1 780

28 0 810

29 0 840

30 1 870

31 0 900

32 0 930

33 0 960

34 1 990

35 0 1020

36 1 1050

37 1 1080

38 0 1110

39 0 1140

40 1 1170

41 1 1200

42 1 1230

43 0 1260

44 1 1290

45 0 1320

46 1 1350

47 0 1380

48 0 1410

49 1 1440

50 1 1470

51 1 1500

52 1 1530

53 1 1560



454

Table 6: PRBS Sequence 128 Bit at 30s per Bit (part iii)

Bit Number PRBS Sequence Simulation
Time (s)

54 0 1590

55 1 1620

56 0 1650

57 0 1680

58 0 1710

59 0 1740

60 1 1770

61 1 1800

62 1 1830

63 0 1860

64 0 1890

65 0 1920

66 1 1950

67 0 1980

68 0 2010

69 1 2040

70 0 2070

71 0 2100

72 1 2130

73 1 2160

74 0 2190

75 1 2220

76 1 2250

77 0 2280

78 1 2310

79 0 2340

80 1 2370
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Table 7: PRBS Sequence 128 Bit at 30s per Bit (part iv)

Bit Number PRBS Sequence Simulation
Time (s)

81 1 2400

82 0 2430

83 1 2460

84 1 2490

85 1 2520

86 1 2550

87 0 2580

88 1 2610

89 1 2640

90 0 2670

91 0 2700

92 0 2730

93 1 2760

94 1 2790

95 0 2820

96 1 2850

97 0 2880

98 0 2910

99 1 2940

100 0 2970

101 1 3000

102 1 3030

103 1 3060

104 0 3090

105 1 3120
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Table 8: PRBS Sequence 128 Bit at 30s per Bit (part v)

Bit Number PRBS Sequence Simulation
Time (s)

106 1 3150

107 1 3180

108 0 3210

109 0 3240

110 1 3270

111 1 3300

112 0 3330

113 0 3360

114 1 3390

115 0 3420

116 1 3450

117 0 3480

118 1 3510

119 0 3540

120 1 3570

121 1 3600

122 1 3630

123 1 3660

124 1 3690

125 1 3720

126 1 3750

127 0 3780

128 0 3810
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The meaning of Phi (ϕ) in the context of GeN-Foam

Mass Flux or Volume Flux?

Under “reconstructU 1p.H”, we find that phi may have the same units as velocity U:

U = fvc::reconstruct(fluid_.phi());

Furthermore, in “updateAlphaPhiAndInitControls 1p.H”, we see two distinct fields being
created, alphaPhi and alphaRhoPhi:

fluid_.alphaPhi() = alphaf*fluid_.phi();

fluid_.alphaRhoPhi() =

fvc::interpolate(rho)*fluid_.alphaPhi();

This gives us a clue that density ρ is multiplied with ϕ to give us ρϕ. So ϕ in the case for
GeN-Foam may not contain the density. Now of course, it is in theory possible to weight
the field by RhoPhi in GeN-Foam.

Does Flux mean Volumetric Flowrate or Volumetric Flowrate per
Unit Area?

The reader should also note that flux in GeN-Foam context is not the same unit as
velocity, but rather volumetric flowrate and this is sometimes the case in literature [Ma
et al., 2023]. It is used to represent volumetric flowrate through faces on the mesh rather
than volumetric flowrate per unit area.
We see previously that fluid .phi() is called, within “fluid.C”:

const surfaceScalarField& phi() const

{

return phiPtr_();

}

surfaceScalarField& phi()

{

return phiPtr_();

}

phiPtr is found in “fluid.C”:

//- Superficial flux of the phase

autoPtr<surfaceScalarField> phiPtr_;
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//- Volumetric flux of the phase

surfaceScalarField alphaPhi_;

//- Mass flux of the phase

surfaceScalarField alphaRhoPhi_;

We confirm that phi represents volumetric flux. Another clue is the unit convention in
alphaPhi :

alphaPhi_

(

IOobject

(

IOobject::groupName("alphaPhi", this->name()),

mesh.time().timeName(),

mesh,

IOobject::READ_IF_PRESENT,

(

(

mesh.time().controlDict().lookupOrDefault<bool>

(

"writeRestartFields",

true

)

) ?

IOobject::AUTO_WRITE :

IOobject::NO_WRITE

)

),

mesh,

dimensionedScalar("", dimVol/dimTime, 0)

),

The quantity alpha, which is the phase fraction, is dimensionless. Therefore phi has

dimensions of volumetric flowrate. Now, the question is whether ϕ = u⃗ · A⃗ or ϕ = u⃗ · A⃗

|A⃗| .

The latter can be interpreted as a projection, but projections generally are in the same
unit as u⃗ rather than volumetric flowrate. It is most likely the case that phi is in units of
volumetric flowrate.
The most concrete proof is where phi is created in “createPhi.H” under the openfoam
source files in “src/finiteVolume”:

Info<< "Reading/calculating face flux field phi\n" << endl;
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surfaceScalarField phi

(

IOobject

(

"phi",

runTime.timeName(),

mesh,

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

fvc::flux(U)

);

The function used here is “fvc::flux(U)”. These are in the source files “fvcFlux.H” and
“fvcFlux.C” under “src/finiteVolume/fvc”:

Foam::tmp<Foam::surfaceScalarField> Foam::fvc::flux

(

const volVectorField& vvf

)

{

return scheme<vector>

(

vvf.mesh(),

"flux(" + vvf.name() + ’)’

)().dotInterpolate(vvf.mesh().Sf(), vvf);

}

We see a dotInterpolate function which I would assume is the dot product. “vvf” is just
shorthand for the volVectorField, in this case “U” or the velocity vector field over the
whole volume. The volVectorField entry has a “mesh()” function which I suppose returns
the mesh, and “Sf()” which I suppose returns surface area. What then is this mesh? Based
on “fvcFlux.H”, the most likely candidate is the “volFieldsFwd” source file which is
included in “fvcFlux.H”.
Reading “fields/volFields/volFieldsFwd.H”, we see that it includes “fieldTypes.H”. Seems
to be a dead end. The other lead is “surfaceInterpolate.H”. This gives us the
dotInterpolate function:

Foam::fvc::dotInterpolate

(

const surfaceVectorField& Sf,
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const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

if (surfaceInterpolation::debug)

{

InfoInFunction

<< "interpolating GeometricField<Type, fvPatchField, volMesh> "

<< vf.name() << " using run-time selected scheme"

<< endl;

}

return scheme<Type>

(

vf.mesh(),

"dotInterpolate(" + Sf.name() + ’,’ + vf.name() + ’)’

)().dotInterpolate(Sf, vf);

}

I suppose this means that phi is really u⃗ · A⃗. This means that I need to be taking the
weighted average of velocity u⃗ using ϕ or volumetric flowrate at the surface as the weight.




