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Abstract

Digital Twins as Testbeds for Iterative Simulated Neutronics Feedback Controller
Development

by
Theodore Kay Chen Ong
Doctor of Philosophy in Engineering - Nuclear Engineering
University of California, Berkeley

Professor Per F. Peterson, Chair

Before a new nuclear reactor design can be constructed and operated, its safety must be
demonstrated using models that are validated with integral effects test (IET) data. However,
because scaled integral effects tests are electrically heated, they do not exhibit nuclear reactor
feedback phenomena. To replicate the nuclear transient response in electrically heated IETs,
we require simulated neutronics feedback (SNF') controllers. Such SNF controllers can then
be used to provide SNF' capabilities for IET facilities such as the Compact Integral Effects
Test (CIET) at the University of California, Berkeley (UC Berkeley). However, developing
SNF controllers for IET facilities is non-trivial. To expedite development, we present the
use of Digital Twins as testbeds for iterative SNF controller development. In particular, we
use a Digital Twin of the Heater within CIET as a testbed for SNF Controller Development.
This Digital Twin with SNF Capabilty is run as an OPC-UA server and client written
almost entirely in Rust using Free and Open Source (FOSS) code. We then validate the
Digital Twin with experimental data in literature. We also verify the transfer function
simulation and Proportional, Integral and Derivative (PID) controllers written in Rust using
Scilab. Moreover, we demonstrate use of data driven surrogate models (transfer functions)
to construct SNF controllers in contrast to using the traditional Point Reactor Kinetics
Equations (PRKE) models with the hope that they can account for the effect of spatially
dependent neutron flux on reactor feedback. To construct the first surrogate models in
this work, we use transient data from a representative arbitrary Fluoride Salt Cooled High
Temperature Reactor (FHR) model constructed using OpenMC and GeN-Foam. Using the
Digital Twin as a testbed, two design iterations of the SNF controller were developed using
the data driven surrogate model. Compared to the potential development time taken in using
physical experiments, using the digital twin testbed for SNF controller development resulted
in a significant time saving. We hope that the approaches used in this dissertation can
expedite testing and reduce expenditure for licensing novel Gen IV nuclear reactor designs.
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Part 1

Digital Twin Construction



Chapter 1

Introduction

1.1 A Graphical Abstract

Time is limited. In the context of climate change, there is limited time to reduce carbon
emissions. Whereas in the context of business and research, time is money. Whatever the
context is, we want to use our time efficiently and purposefully. If our mission is to reduce
carbon emissions quickly, nuclear energy needs to be part of the equation. Nevertheless,
the licensing and construction process can hinder nuclear power’s effectiveness in reducing
future carbon emissions. Therefore, we want to discuss methods that may potentially save
time in the context of reactor development. To save some of your reading time as well, I

present Figure 1.1:
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Figure 1.1 summarises the key themes and content in this dissertation. We present two
tools used in tandem to save time for nuclear reactor development. This is because we wish
to make nuclear energy a practical solution for climate change. To do so, a nuclear reactor or
power station often has to be run as a business or governmental operation. However, nuclear
reactors tend to have long construction and licensing processes. These have made nuclear
reactors notorious for cost overruns.

To reduce the time and monetary costs for licensing and developing nuclear reactors such
as the fluoride salt cooled high temperature reactor (FHR), the goal of this research was
to develop simulated neutronics feedback capabilities for existing scale models of the FHR,
otherwise known as Integral Effects Tests (IETs). These IETs help us understand how heat
transfer would work in a real nuclear reactor, except that the heat source is non-nuclear. To
make the IET behave more like a nuclear reactor, it must have simulated nuclear reactor
behaviour. We call this simulated neutronics feedback (SNF'). This process is reflected in
the left column of Figure 1.1. Nevertheless, the COVID-19 pandemic and lock-down came
and rendered the IETSs in my research laboratory inaccessible. Hence, with much guidance
from my supervisors, mentors and peers, I changed my research direction to develop code
suitable for constructing a Digital Twin for the IET for the FHR known as the Compact
Integral Effects Test (CIET). This was done in the hope that the Digital Twin of CIET,
or at least some of its key components, would be useful for developing SNF capability for
CIET. This is reflected in the right column of Figure 1.1. With both these tools, I wanted
to provide means which could potentially increase the development speed of test FHRs and
commercial FHRs and reduce its development costs and time frame. This is reflected in the
central column of Figure 1.1.

1.2 Dissertation Outline

This dissertation provides an example for how using a Digital Twin early in the iterative
design process to create SNF Controllers can save time. The early work and availability of
a SNF Controller can expedite work done in nuclear reactor design and development.

To show how this was done, we cover much of the content in Figure 1.1. Figure 1.1, of
course, is shown in our introduction here in Chapter 1. Figure 1.1 covers much of content
for this dissertation, but the fluid mechanics libraries were developed in my master’s thesis.
Therefore, that work is only referenced and continued upon in this dissertation. Moreover,
we have not yet applied the new SNF capabilities in CIET, so this remains as future work
in Figure 1.1. These are broad topics in themselves which require separate publications.
Nevertheless, the work in this dissertation provides a foundation for future work in SNF
controller and SNF facility development.

We start discussions with Digital Twin construction in the first part of this dissertation.
This is because we cannot test SNF capabilities without an IET facility or its Digital Twin.
Therefore, the construction methodology for Digital Twins forms one of the foundational
elements for this dissertation. We review Digital Twins and previous work in Chapter 2. We



then discuss how previous work was extended by developing heat transfer libraries in the
Rust Programming Language as shown in Figure 1.1 in Chapter 3. For those unfamiliar with
Rust, the Ferris the Crab is Rust’s unofficial mascot recognised by the Rust programming
community as of 2023.

For this dissertation, we discuss how the electric heater of CIET, or its Digital Twin,
is given SNF' capabilities. Therefore, we review existing literature for SNF controllers for
electrically heated IET facilities and how we could construct a SNF controller for CIET in
Chapter 4. The SNF model is not based on Point Reactor Kinetics Equations (PRKE),
but rather on more generic data driven surrogate models developed using higher fidelity
multiphysics models. To demonstrate this method, a representative arbitrary reactor mul-
tiphysics model was constructed using the OpenMC Monte Carlo code and the GeN-Foam
reactor multiphysics code in Chapter 5. Using this multiphysics model of an arbitrary re-
actor, we also discuss how a surrogate model was constructed in Chapter 5. This surrogate
model was then used as a basis for SNF Controller development in Chapter 6.

For this dissertation, we do not complete the SNF IET development process in Fig-
ure 1.1. While this dissertation demonstrates how a SNF controller could be created using a
data-driven surrogate model, further work is needed to apply the same method to more pro-
totypical FHR designs. Nevertheless, the work described in this dissertation forms the basis
for future work in SNF controller development. We discuss some of these future possibilities
in our conclusion in Chapter 7.



Chapter 2

Literature Review and Principles for
Digital Twin Construction

2.1 Digital Twins for Gen IV Reactor Development

Digital Twins have been an attractive area of research for industrial engineering and appli-
cations in general. They are useful tool in nuclear plant design, construction, operation and
maintenance [Zhao and Guan, 2022]. These help in ensuring that nuclear plants are oper-
ated to better mitigate risks, and can also help nuclear plants be built faster and cheaper
without compromising safety. Building nuclear plants with better economics without com-
promising safety is especially important since the high capital costs of nuclear power plants
[Helmuth, 1988] tend to make them an unattractive investment option. The malady of high
capital expenditure (CapEx) is further exacerbated for Gen IV nuclear power plants, where
research and development (R&D) costs have to be considered in addition to licensing costs,
construction costs and decommissioning costs.

While Gen IV power plants, especially small modular reactors (SMRs), have the potential
to be built with better economics, nuclear power plants still suffer from a poor reputation
of high CapEx. If one wishes to use Gen IV nuclear power plants to decarbonise the power
industry, it is imperative to reduce Capkx as far as possible without compromising safety
to attract investment and initiate construction activity. Therefore, any technology that
can improve economics of a plant would be a welcome addition. This includes digital twin
technology. Therefore, exploring digital twin technology for Gen IV reactor development
and operations would be of interest.

One particular Gen IV reactor of interest is the Fluoride Salt Cooled High Temperature
Reactor (FHR). This is a solid fuelled, molten salt cooled reactor studied in the University
of California, Berkeley [Jeffrey E Bickel, Nicholas Zweibaum, and Per F Peterson, 2014;
Nicolas Zweibaum, 2015] and, at the time of writing, being developed for commercial power
production by Kairos Power [Blandford et al., 2020]. This interest in the FHR is due to
its passive safety characteristics such as low pressure, as well as the use of TRISO fuel and



molten salt, [Nicolas Zweibaum, 2015; X. Wang, 2018] all of which help to contain fission
products within the site boundary in the case of an accident. The development efforts of
these reactors can also benefit from Digital Twin technology. Digital Twins, which are used
in various stages of the product life cycle [Kholopov et al., 2019], could be used to test
various configurations of the FHR in a relatively safe environment during the development
stage even before a working FHR is constructed. This would have reduced costs for FHR
development relative to constructing several FHR prototype designs and then testing them
one by one. Of course, such Digital Twins need validation since they are basically simulated
models. To begin validating such models, both separate effects tests (SETs) and integral
effects tests (IETs) are needed. The Compact Integral Effects Test (CIET) is one such
integral effects test that has been used to validate simulation codes used to model the FHR.
It has previously been used to validate RELAP models [Nicolas Zweibaum, 2015] as well as
models built in the System Analysis Module (SAM) [Zou, R. Hu, and Charpentier, 2019].

The need for Digital Twins in Gen IV reactor research became even more apparent
during the COVID-19 pandemic, where work on CIET came to a standstill for an extend
period of time. I intended then to develop simulated neutronics feedback for CIET, and
that was to be the focus of my PhD Dissertation. Unfortunately, this was not to be since
CIET was not usable during the COVID-19 pandemic lockdown. The COVID-19 lockdown
was only one of many disruptions that could occur and slow down experimental work. The
only way to continue research during such extreme circumstances was through the use of
simulations such as digital twins. Even during normal disruptions, having digital twins to
expedite research and development work would be beneficial. This gave me motivation to
start developing a Digital Twin for CIET so that I could have a system with which to test my
simulated neutronics feedback controllers at anytime of the day without fear interruption, or
of damaging components or Therminol-VP1 spills in CIET. Such things would have expedited
my research a lot. I reckoned that developing a Digital Twin for CIET would have been
useful for more purposes than what I had originally intended. Therefore, I began my journey
into Digital Twin development.

The main component I needed to construct in CIET to test my simulated neutronics
feedback controller was the heater. Therefore, in this chapter, we review important literature
for constructing a Digital Twin of CIET, with more emphasis on its heater. Firstly, we
review why CIET was constructed and why it could use Therminol VP-1, also known as
Dowtherm A, as a surrogate fluid for the molten salt used in the FHR, Li,BeF, (FLiBe).
We then review some previous work in creating an isothermal Digital Twin of CIET from my
master’s thesis. Next, we consider how we may start constructing the heat transfer libraries
suitable for transient heat transfer simulation for CIET. Lastly, we review literature relevant
to solver stability relevant for heat transfer solvers used by the Digital Twin.



2.2 On the use of Surrogate Fluids for the Compact
Integral Effects Test (CIET)

CIET was constructed for the purpose of understanding thermal hydraulics phenomena
within the FHR [Nicolas Zweibaum, 2015]. Ideally, we would use a molten salt based IET
to study thermal hydraulics of FHR. Unfortunately, running test loops with hot FLiBe is
problematic for a number of reasons, including Beryllium toxicity and a high salt temper-
ature of 550-700 °C'. These difficulties motivated studies to investigate the use of simulant
fluids such as water or heat transfer oils to study thermal hydraulic phenomena of the FHR
[Bardet and Per F Peterson, 2008]. These simulant fluids were much less problematic to
use than FLiBe. A heat transfer oil, known as Dowtherm A or Therminol VP-1, was then
found to be a suitable candidate for this very purpose. Therminol VP-1 or Dowtherm A at
about 80 to 110 °C' matches the Prandtl number (Pr) of LisBeF, (FLiBe) at about 600 to
700 °C' [De wet, Per F. Peterson, and Greenwood, 2019; Nicolas Zweibaum, 2015]. Given
this discovery, the next step was to build an IET using Therminol VP-1 as a surrogate fluid
for FLiBe. These efforts eventually led to the construction of CIET.

We can verify that the Prandtl Numbers for both molten FLiBe and Therminol VP-1
match using thermophysical property correlations for both fluids. For Dowtherm A, the
correlations are shown in Equations 2.1 to 2.4 [Nicolas Zweibaum, 2015]:

p(kg/m?) = 1078 — 0.85(T°C) ; T(°C) = [20, 180] (2.1)

p(Pa - s) =0.130/(T°C)" ; T(°C) = [20, 180] (2.2)

cp(J/(kg- K)) = 1518 +2.82(T°C) ; T(°C) = [20, 180] (2.3)
k(W/(m - K)) = 0.142 — 0.00016 - (T°C) ; T(°C)) = [20, 180] (2.4)

Here, p refers to density, p is dynamic viscosity, ¢, is specific heat capacity and k is
thermal conductivity. For FLiBe, the same four thermophysical properties are presented in
[Sohal et al., 2010] Equation 2.5 to 2.8:

p(kg/m?) = 2415.6 — 0.49072(T(K)) ; T(K) = [732.2, 4498.8] (2.5)
p(Pa - s) = 0.000116 exp (%) ; T(K) = [873,1073] (2.6)
¢,(J/(kg - K)) = 2415.8 ; T(K) = [600, 1200] (2.7)

KW/(m - K)) = 0.629697 + 0.0005 - (T(K)) ; T(K) = [500, 650] (2.8)

The thermal conductivity correlation [Sohal et al., 2010] developed was initially meant
for the temperature range of 500 K to 650 K. This meant that it could not predict viscosities
normal FHR working temperatures of about 600 to 700 °C'. Nevertheless, we could inves-
tigate if this correlation can be extrapolated to work for this temperature range if we have



thermal conductivity measurements within 600 to 700 °C'. In literature, several of these
measurements were reported [Romatoski and L.-W. Hu, 2017] within this temperature range
with a measurement uncertainty of 10%. 1 plot the literature data along with Sohal’s
correlation in Figure 2.1:

FLiBe Thermal Conductivity at FHR Operating Temperatures

10% Error bars
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Figure 2.1: FLiBe Thermal Conductivity Correlation and Measured Data

We can see in Figure 2.1 that the correlation can indeed predict the thermal conductivity
of FLiBe within this 10% measurement error. Thus, extrapolating Sohal’s correlation to
the operating temperature range of the FHR would be acceptable. We can then use this
correlation for calculating the Prandtl number of FLiBe at about 600 to 700 °C'.

Now, when comparing the Prandtl number of both Therminol VP-1 and FLiBe, we want
to check if they match closely enough. Thus, we should do some uncertainty propagation in
order to ascertain if the Prandtl numbers match within the experimental uncertainty. The
Prandtl number is defined as [Perry and Green, 2015; Bejan, 2013]:

1S

Pr = = (2.9)

Where v is momentum diffusivity or kinematic viscosity. It can be expressed as v = %.

« is thermal diffusivity and this can be written as a = %. Based on Equation 2.9, the

measurement uncertainties of p, ¢, and k will contribute to the uncertainty of Pr. As

mentioned previously, ¢, has an measurement uncertainty of about 20% [Lichtenstein et

al., 2022; Sohal et al., 2010; Romatoski and L.-W. Hu, 2017] and k has a measurement

uncertainty of about 10% [Romatoski and L.-W. Hu, 2017]. For the correlation (Cantor’s

correlation) presented [Sohal et al., 2010], ¢ has a reported uncertainty of about 15 to 20%.

We can do simple uncertainty propagation as follows [Todreas, Kazimi, and Massoud, 2021;
BIPM et al., 2008]:
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In this context, dPr, du, dc, and 6k are the associated uncertainties of Pr, i, ¢, and k.
If we take the fractional uncertainties of 11, ¢, and k& to be 0.15, 0.20 and 0.10 respectively,

then:
(5) - ()« () < (%)
Pr [ Cp k
= 0.15% 4 0.20° + 0.10° (2.11)
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For the purposes of error bars, the fractional uncertainty can be rounded down to 0.26.
The 20% uncertainty of ¢, contributes the most to the fractional uncertainty of Pr. This is
supported in literature as there is a large disparity in ¢, values for FLiBe. While we have ¢,
of 2415.8 J/(kg - K) provided in literature [Sohal et al., 2010], other values in literature for
¢, of FLiBe could be as low as 1840 J/(kg - K) [Lichtenstein et al., 2022]. I plotted Pr of
Therminol VP-1 along with Pr for FLiBe using both these ¢, values in Figure 2.2:
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Figure 2.2: Comparison of FLiBe Prandtl Number with Therminol VP-1 (also known as
Dowtherm A) Prandtl Number [Nicolas Zweibaum, 2015], Low Bound FLiBe Prandtl Num-
ber [Lichtenstein et al., 2022] added for comparison

For the reader’s convenience in obtaining values to plot the Prandtl number comparisons
in Figure 2.2, a correlation describing the Prandtl number of Therminol VP-1 in the range
of 60°C' to 180°C' is shown in Equation 2.12:
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This was constructed using regression algorithms in LibreOffice Calc to produce a trend-
line of Prandtl numbers produced using Equations 2.1 to 2.4. This correlation agrees with
the said trendline to within 3.2% of the Prandtl number value calculated from the thermo-
physical property data. Similarly, a low bound Prandtl number correlation for FLiBe in the
range 550°C' to 730°C' is shown in Equation 2.13:

Prrripe = 2.91 x 107*T(°C)? — 4.56 x 107*T(°C) + 1.88 x 10? (2.13)

Equation 2.13 reproduces plotted Prandtl number data in Figure 2.2 to within 4.4%.

Plotting Pr of Therminol VP-1 and FLiBe in Figure 2.2, we can see that these match
within the uncertainty of Pr. This confirms the notion that Pr matches between FLiBe and
Therminol VP-1 (also known as Dowtherm A) in the literature [Bardet and Per F Peterson,
2008; Nicolas Zweibaum, 2015]. In Figure 2.2, I have also added new measurement data for
FLiBe ¢, post the construction and operation of CIET (about 2015). As mentioned before,
a new ¢, measurement for FLiBe was reported at 1840 J/(kg - K) £ 5% [Lichtenstein et al.,
2022]. This was deemed to have matched the existing literature values [Lichtenstein et al.,
2022] about 2415.8 (J/(kg - K)), due to the 20% uncertainties of FLiBe’s ¢,. On Figure 2.2,
the new ¢, data [Lichtenstein et al., 2022] was plotted as a low bound Pr for FLiBe. Similar
to Equation 2.13, a low bound Prandtl number correlation for FLiBe in the range 550°C' to
730°C is shown in Equation 2.14:

PreriBe Lichtenstein2022 = 2.21 x 10747 (°C)? — 3.46 x 107'T(°C) + 1.43 x 10? (2.14)

Equation 2.14 reproduces plotted Pr data in Figure 2.2 to within 2.3%.
The associated uncertainty is calculated as:

(7e) - () () + (%)

= 0.15%2 + 0.5% + 0.10? (2.15)
OPr
— ) =0.187~ 0.19

For the purposes of plotting error bars, I round down the fractional uncertainty of Pr to
0.18.

Thus, we have a high bound and low bound Pr due to different literature values for c,.
Figure 2.2 shows is that shows that the Therminol VP-1 Pr at 60 °C' to 105°C' lies within the
high and low bound FLiBe Pr envelope which exists due to variability in ¢, from literature
data. Therefore, it further strengthens the notion that Therminol VP-1 can be used as a
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surrogate fluid for FLiBe at 560 to 680 °C. While Pr of Therminol VP-1 may not match Pr
of the low bound data within the uncertainty bounds shown in Figure 2.2, it still shows that
Therminol VP-1 can be used as a surrogate fluid for FLiBe for a FLiBe temperature of up
to about 615 °C'. We could, of course, tweak the Therminol VP-1 Pr curve to make it match
the FLiBe data by adjusting the scaling of the graphs, but that is outside the scope of this
work. For now, Figure 2.2 shows that the original Pr of FLiBe and Pr of Therminol VP-1
matches within measurement uncertainties, confirming what was already stated in literature
[Bardet and Per F Peterson, 2008; Nicolas Zweibaum, 2015].

The matching Pr for FLiBe and Therminol VP-1, was a strong justification for using
Therminol VP-1 as a surrogate fluid for FLiBe in CIET. However, to obtain thermo-hydraulic
similitude with the FHR, one would also have to match the Reynolds (Re), Froude (Fr) and
Grashof number (Gr) in CIET to that of the prototypical FHR. If we do so, the Nusselt
Number (Nu) for both forced and natural convection would be matched [Bardet and Per F
Peterson, 2008], and there would be similitude between CIET and the prototypical FHR
[Nicolas Zweibaum, 2015]. Hence, CIET was built in such a way to achieve similitude. This
is approximately a height scaling of 50% and heater power scaling of 2% at prototypical
conditions [Nicolas Zweibaum, 2015]. Therefore, CIET was used to study natural circulation
phenomena [Nicolas Zweibaum, 2015] as well as forced circulation transients [De wet, Per
F. Peterson, and Greenwood, 2019] for the FHR. The details of scaling CIET to different
reactor types is beyond the scope of this dissertation. Interested readers can read Johnson’s
dissertation for a more in depth look at scaling specifically for CIET [I. M. B. Johnson, 2022].
In any case, we established use of CIET for FHR thermal hydraulic studies. Due to this,
it was also natural for system level codes meant to simulate the FHR to also be validated
using experimental data from CIET. For example, CIET has been used to validate models
in RELAP [Nicolas Zweibaum, 2015] and the System Analysis Module (SAM) [Zou, R. Hu,
and Charpentier, 2019].

2.3 Review of Digital Twins and Previous Work

Now that we have reviewed why CIET was used as a scaled IET for the FHR, we shall now
review previous work done to developed Digital Twins for CIET. I began my work in Digital
Twins previously in my master’s thesis where I explored means of constructing an isothermal
digital twin of the compact integral effects test (CIET) [Ong, 2023]. As mentioned earlier,
CIET is a scaled surrogate fluid integral effects test (IET) of the Gen IV reactor known as the
fluoride salt cooled high temperature reactor (FHR) [Zweibaum, Guo, et al., 2016]. This was
merely a first step towards constructing a fully fledged Digital Twin of CIET which is free
and open source (FOSS). The work for developing such a fully fledged Digital Twin entails
many details which can span several publications, some of which are beyond the scope of
this Dissertation. In this Dissertation, I only focus on developing a Digital Twin of CIET’s
Heater along with its required libraries. This is because CIET’s Heater is the most relevant
component required for development of a simulated neutronics feedback controller, which
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was my original goal.

While developing the Digital Twin initially, I also focused on making the libraries used
for it and its source code FOSS. FOSS Digital Twins are practically non-existent in the
context of the nuclear industry to the best of my knowledge. However, constructing a
FOSS Digital Twin along with its libraries would be beneficial for students and academic
work as it would make thermal hydraulics research more accessible and repeatable. FOSS is
preferred in contrast to proprietary Digital Twins because barriers such as paywalls can make
Digital Twins inaccessible to some parties [Al-Geddawy, 2020]. Furthermore, any academic
researcher can adapt FOSS code to his or her use case. Therefore, I started writing libraries
for the Digital Twin of CIET with a strong emphasis on FOSS methodology. We shall
first recap some of the highlights of my previous work in the master’s thesis to justify some
methods taken for this work as well as the nomenclature used. After that, we can then review
some literature that addresses some potential challenges faced during the development of the
thermal hydraulics library used to model CIET in real-time.

Classification of Digital Twins

Academic work for Digital Twins had to first start by addressing the definitions of Digital
Twins. This is because there are many differing definitions in literature of what exactly
constitutes a digital twin [Sleiti, Kapat, and Vesely, 2022; Kochunas and Huan, 2021; Van
der Valk et al., 2020]. Sometimes these definitions conflict, thus causing confusion and
frustrating the reader.

Therefore, I decided to classify digital twins into three types. This was to ensure that
all existing definitions of digital twins in literature were included, and also to ensure that
distinctions between the different types of digital twins are maintained. The typing method-
ology is based on a review work by Kochunas et al. [Kochunas and Huan, 2021]. Where
digital representations of a physical system were classed as different digital entities based on
the flow of real-time data between digital entity and physical asset. These digital entities
were called “digital model”, “digital shadow” and “digital twin”. Rather than use three new
terms, I decided to classify these entities into Type I, Type II and Type III Digital Twins
respectively. For the reader’s convenience, I reproduce a table used from my master’s thesis
here to illustrate the main aspects between the types of Digital Twins [Ong, 2023]:



Digital
Twin Type

Real-Time
of Data

Flow

Similar Terms used in
Literature

Applications

Type I

None

Digital Sibling
[Rasheed, San, and
Kvamsdal, 2020],

Digital Thread
[Boschert and Rosen,
2016]

Digital Model [Kochu-
nas and Huan, 2021],
Digital Twin Pro-
totype [Enders and
Hof3bach, 2019;
Grieves and Vickers,
2017

Scenario and Risk Assessment
[Rasheed, San, and Kvams-
dal, 2020],
Penetration = Testing [Eck-
hart and Ekelhart, 2018]

Type 11

From
Asset

Physical

Digital Shadow
[Kochunas and Huan,
2021]

Digital Angel [Van
der Valk et al., 2020]

Digital Twin Instance
[Enders and Hofbach,
2019;  Grieves and
Vickers, 2017]

Fault Detection [Palak Jain
et al., 2019]

Predictive Maintenance

Type I11

To and From
Physical Asset

Digital Twin [Kochu-
nas and Huan, 2021]

Digital Twin Instance
[Enders and Hofbach,
2019; Grieves and
Vickers, 2017]

Model-Based Control [Enders
and Hof3bach, 2019; Semeraro
et al., 2021]

Table 2.1: Digital Twins and their Types
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The Digital Twin typing system works by classifying digital twins according to the flow
of real-time information between the digital twin and the physical asset. As seen in table 2.1,
Type I Digital Twins do not necessitate flow of real-time information between physical asset
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and digital twin. For the reader’s convenience, I will again reproduce a figure used in my
master’s thesis to illustrate how real-time data flows between the physical asset, user and
digital twin in real-time [Ong, 2023]. This is Figure 2.3:

Type | Type I Type IlI
Digital Twin Digital Twin Digital Twin

O @]

User User

Type ll
Digital Twin

Type lll

Digital Twin Digital Twin

Physical
Process

%

Figure 2.3: Real-Time Data Flow Comparison for each Type of Digital Twin [Ong, 2023]

Physical
Process

Physical
Process

In contrast, Type III digital twins necessarily require two way flow of real-time infor-
mation between physical asset and digital twin. Classification of Digital Twins in such a
manner is meant to help the reader have a more intuitive grasp as to what a digital twin is
when reading literature. At the same time, the Type classification necessarily implies a set
of functions each type of digital twins is best suited for. This is because the flow of real-time
data is what ultimately impacts capabilities of the said type of Digital Twin. At the same
time, the differing requirements for real-time data flows between the types of Digital Twins
and their physical assets will ultimately determine development time and costs. This knowl-
edge is very important for the manager making decisions during the product development
life cycle. Therefore, I chose this naming system. A fuller explanation of the rationale for
this Digital Twin typing system is further explored in my master’s thesis [Ong, 2023], and I
will not repeat it here.

I hoped that this nomenclature would not confuse readers with extra terminology and
instead help the reader make some sense of the inconsistent terminology used in Digital Twin
literature. Hence, this naming convention will continue to be used in this work. In this work,
the Digital Twin I am constructing for CIET is necessarily a Type I Digital Twin. However,
this Type I Digital Twin is meant to be FOSS so that it can be extended with Type II or
Type III capability in future work.
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Isothermal Digital Twin of CIET Design

Constructing a Type I Digital Twin of CIET would be quite difficult if I were to write all the
libraries from scratch. Therefore, I only developed fluid flow libraries in previous work. This
was meant only as a first iteration or first step towards constructing a fully fledged Type I
Digital Twin of CIET.This is because CIET had several components, and even constructing
a Type I Digital Twin of CIET took quite awhile.

A figure of CIET used in my master’s thesis is reproduced here for the reader’s conve-
nience [Ong, 2023]:
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Figure 2.4: Nodalised Model of CIET without Bypass Branch or Direct Reactor Auxiliary
Cooling System (DRACS) Loop

Figure 2.4 is a simplified model of CIET because I did not include the bypass branch. This
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is because previous models developed, such as those in SAM, excluded the bypass branch
[Zou, R. Hu, and Charpentier, 2019]. Furthermore, most experimental tests I could use for
code validation excluded the involvement of the bypass branch [De Wet and Per F Peterson,
2020; Nicolas Zweibaum, 2015]. Therefore, I excluded it. Additionally, while the Direct
Reactor Auxiliary Cooling System (DRACS) loop was included in CIET’s facility physically
[Nicolas Zweibaum, 2015], I neglected to include the DRACS loop because it was mostly
not used in isothermal operation. Hence, the both the DRACS loop and bypass branch was
effectively ignored in my isothermal Digital Twin.

The first Digital Twin was meant to mimic the CIET setup as much as possible at least
for isothermal operations. This meant that the mass flowrates for each branch needed to be
calculated in real-time (roughly every 100 ms) because the Labview Client received data from
the Data Acquisition System every 100 ms. Furthermore, since CIET communicated with
the user via a server client interface through a local network and this, too, was meant to be
replicated. The server-client interface was important because signals to and from CIET via
the Data Acquisition System (DAQ) had a few milleseconds of lag. This time de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>