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Abstract

When do machine learning models generalize well? A signal-processing perspective

by

Vignesh Subramanian

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Anant Sahai, Chair

Contemporary machine learning systems have demonstrated tremendous success at a variety
of tasks including image classification, object detection and tracking, and recommendation
algorithms. This success has been driven by the enormous advances in computation capa-
bilities that enable us to utilize big training datasets, with large number classes and train
models with a vast number of parameters. In fact, these systems use models that have suffi-
cient model capacity to be trained to zero training error on noisy or even completely random
labels. However, these models often generalize well in practice and avoid harmful “overfit-
ting”. The key to good generalization lies in the implicit bias of the model architecture and
training algorithm that steers us towards solutions that generalize well. This thesis works
towards a better theoretical understanding of this phenomenon by analyzing overparameter-
ized linear models and proving sufficient and necessary conditions for good generalization.
Additionally, we also empirically investigate whether we can engineer the correct implicit
bias when training models to solve practical problems in the field of control by making use
of our knowledge about the problem domain.

We start by analyzing the simpler setting of overparameterized linear regression, fitting a lin-
ear model to noisy data when the number of features exceeds the number of training points.
By taking a Fourier-theoretic perspective we map the key challenge posed by overparameter-
ization to the well-known phenomenon of aliasing of the true signal due to under-sampling.
Borrowing from the signal-processing concepts of “signal bleed” and “signal contamination”,
we derive conditions for good generalization for the Fourier-feature setting.

Next, we analyze the generalization error for the minimum-ℓ2-norm interpolator for the
regression and binary classification problems in a Gaussian-feature setting. For regression,
we interpolate real-valued labels and for binary classification, we interpolate binary labels. (It
turns out that under sufficient overparameterization, minimum-norm interpolation of binary
labels is equivalent to other binary-classification training methods such as support-vector
machines or gradient descent on logistic loss.) We study an asymptotic setting where the
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number of features d scales with the number of training points n and both n, d → ∞. Under
a bi-level spiked covariance model for the features we prove the existence of an intermediate
regime where we we perform well on the classification task but not on a corresponding
regression task.

We then extend the analysis to the multiclass classification setting where the number of
classes also scales with the number of training points, by deriving asymptotic bounds on the
classification error incurred by the minimum-norm interpolator of one-hot encoded labels.

Finally, to understand how we can learn models that generalize well in practice, we empiri-
cally study the application of neural networks to learn non-linear control strategies for hard
control problems where the optimal solutions are unknown and linear solutions are provably
sub-optimal. By intelligently designing neural network architectures and training methods
that leverage our knowledge of the dynamics of the control system, we are able to more easily
and robustly learn control strategies that perform well.
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Chapter 1

Introduction

1.1 A traditional view of machine learning
A paradigmatic problem in supervised machine learning (ML) involves predicting an output
response from an input, based on patterns extracted from a possibly noisy training data
set. A machine learning model is used to express this input-output relation and the goal
via training is to learn the parameters for this model. Mathematically, we can express
this problem as learning the model parameters α̂ ∈ Rd from training data that consists
of n covariate(input)-response(output) pairs (Xi, Yi)

n
i=1. The model takes Xi as input and

predicts the response Ŷi = f(Xi; α̂), which is a function of the model parameters. Typically,
we learn the model parameters α̂ by minimizing the training loss (also called empirical risk
minimization) between the predicted and true responses as illustrated in Figure 1.1,

α̂ = argmin
α

n∑

i=1

ℓtrain (f(Xi; α̂), Yi) . (1.1)

Figure 1.1. Illustration of training a supervised machine learning model via empirical risk
minimization.
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We are interested in the performance of our model on a separate test or validation data
set

Etest = E(X,Y )∼P ℓtest (f(X; α̂), Y ) , (1.2)

where the test point is drawn from the test distribution P . Typically, the training points are
assumed to come from this same distribution but have some additional noise present. We
say the model generalizes well if it has low test error, i.e. we are able to correctly predict a
response on data that has not been seen before during training.

Traditionally, there are two major fears while learning the model parameters that might
lead to poor generalization. First, the model is not expressive or rich enough, i.e. it lacks the
model capacity to accurately transform the input into the output causing us to “underfit”
the data. Second, our model might be too expressive, i.e. the model capacity is too high,
causing us to “overfit” to the noise present in the training data resulting in poor performance
on unseen test data. Example 1 illustrates these two scenarios in the simple setting of
function approximation with polynomials.

Example 1. Function approximation with polynomials Suppose we have n = 16 train-
ing covariate-response pairs (Xi, Yi) where,

Yi = X4
i −X2

i + 1 + εi, (1.3)

where εi ∼ N (0, 1.6 × 10−3) is additive white Gaussian noise and Xi ∼ Unif[−1, 1]. Thus
our data comes from a degree-4 polynomial function but is corrupted by noise.

Consider a polynomial model that consists of d parameters, α̂ ∈ Rd. On a point Xi we
predict the response as,

Ŷi = f(Xi; α̂) =
d∑

j=1

α̂j+1X
j−1
i .

We learn the model parameters by minimizing the squared loss between the predicted and
labelled responses on the training data,

α̂ = argmin
α

n∑

i=1

(
Ŷi − Yi

)2
. (1.4)

Here, when d ≤ n, we have a unique minimizer. However for d > n, there are infinitely
many solutions that achieve zero training error. But not all will be a good approximation of
the true function on test data points. In Figure 1.2 we consider one particular solution, the
minimum-ℓ2-norm interpolator which corresponds to running gradient descent on the squared
loss in (1.4) starting from a zero initialization.

We are interested in how well we can approximate the true function, i.e. given test data
(X, Y ) that is generated as Y = X4−X2+1, how close is our prediction Ŷ to the true value.



CHAPTER 1. INTRODUCTION 3

Figure 1.2. Illustration of underfitting and overfitting while performing function approxi-
mation using polynomials. The true function is shown via dotted lines in black. The n = 16
training points come from the true function but are corrupted by additive white Gaussian
noise with zero mean and variance 1.6 × 10−3. If we fit a degree-2 polynomial as shown in
blue, we underfit the data, whereas if we fit a degree-19 polynomial (using minimum ℓ2−-
norm interpolation) we overfit the data as shown in green. Fitting a degree-4 polynomial
leads to a good approximation of the true function as shown in orange.

Now, from (1.3) we know that the optimal choice of d is 5 since the underlying true function
is of degree-4. If we choose a smaller value, say d = 3 then our model is not expressive
enough to capture the true function and we underfit the data. On the other hand, if we
choose a larger value, say d = 20 then we can end up learning a way-too-complex function
and overfit the data. Figure 1.2 illustrates these different scenarios.

Note that the ML problem described above is related to the signal-processing problem
of reconstructing a continuous time signal from noisy evenly spaced discrete samples. There
again, since there can be infinitely many continuous time signals corresponding to a given
set of discrete samples we need additional knowledge/assumptions about the signal to re-
construct the signal accurately. For instance, if the true signal is band-limited then we
can reconstruct the signal using an ideal low pass filter, i.e. sinc interpolation in time do-
main though in practice we perform interpolation using raised cosine filters. The problem
of non-uniqueness of reconstruction and discovery of aliases in the signal-processing domain
is related to the problem of overparameterization in ML and we elaborate more on this in
Section 2.2.

1.2 A contemporary view of machine learning
Contemporary machine learning systems have been used to great success to perform a variety
of tasks such as image classification, object detection for identifying obstacles in autonomous
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driving systems, and online recommendation algorithms for movies, songs, videos, etc. The
underlying input-output relationship that the models used by these systems capture are
highly complex and the models themselves are gigantic with parameters that vastly exceed
the (also large) number of data points used to train these models. Such big models elimi-
nate the risk of underfitting but however conventional wisdom is that when the number of
parameters is more than the number of training data points it leads to poor generalization
due to overfitting.1

However, in defiance of conventional wisdom regarding overfitting, these big models that
can be trained to achieve zero training error even with noisy labels, still generalize well in
practice [158, 53]. How can this happen? There has been a prolific amount of research in the
past few years that builds towards a better theoretical understanding of this phenomenon.

1.3 Outline of thesis
In the first part of this thesis (Chapters 2,3,4), we study generalization for overparameterized
linear models. While linear models are much simpler than the deep network models that
are commonly used in practice nevertheless they are still a rich enough class to study and
understand various phenomenon related to overparameterized learning and gain insights into
what happens when using more complex models. The input-output relation of linear models
can be expressed as,

Y = f(X; α̂) = ϕ(X)⊤α̂,

where α̂ are the model parameters and ϕ is a featurization map. Thus, while our model is
linear in the feature space it can be non-linear in the underlying covariates X. For these
generalized linear models the training procedure (1.1) and relevant test error (1.2) can be
expressed as:

α̂ = argmin
α

n∑

i=1

ℓtrain
(
ϕ(Xi)

⊤α, Yi
)
,

Etest = E(X,Y )∼P ℓtest
(
ϕ(X)⊤α̂, Y

)
.

We consider three problems. First is the regression problem where the Yi are real-valued
and both the train and test loss are the squared loss. In an overparameterized setting,
although there are infinitely many choices of parameters α̂ that can perfectly fit or interpo-
late the noisy training data, we centre our analysis on the minimum-ℓ2-norm interpolating
solution since gradient descent on squared loss converges to this particular solution when ini-
tialized at zero([45]). Chapter 2 provides a signal-processing perspective inspired analysis of

1This wisdom is corroborated in theory by worst-case generalization bounds on such overparameterized
models following from VC-theory in classification [143] and ill-conditioning in least-squares regression [98].
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the minimum-ℓ2-norm interpolation where we map overparameterization to the well known
phenomenon of aliasing. The challenge while performing minimum-ℓ2-norm interpolation is
that the aliases look identical to the true signal on training data points and thus the training
algorithm cannot distinguish between the two. As a result, the recovered signal has con-
tribution from both the true signal and its aliases. Consequently, there is shrinkage of the
true signal, which we denote as signal bleed. Further, these falsely discovered aliases differ
from the true signal on test points and thus contaminate our prediction, Using a Fourier
toy model, where we have regularly spaced training data points and Fourier features, we are
able to quantify the challenge posed by aliasing by introducing two key quantities of interest,
survival, a measure of how much of the true signal is recovered and contamination, a measure
of how much contamination is introduced by the discovery of the aliases. Figure 1.3 provides
an illustration of the aliasing phenomenon.
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Figure 1.3. Depiction of signal components “bleeding” out into spurious features as a result
of using the minimum-ℓ2-norm interpolator. The “bleeding” has two effects: lower “survival”
of signal in the original true features, and higher “contamination” by spurious features.

This chapter is based on the paper [105] and is joint work with Vidya Muthukumar,
Kailas Vodrahalli and Anant Sahai.

The second problem is that of binary classification where the Yi are binary valued (+1,
-1) and here the training loss is traditionally the logistic loss or the hinge loss while the test-
loss is the 0-1 loss based on whether we predicting the class correctly. However, empirically
it has been observed that training with logistic or hinge loss has comparable performance to
training with squared loss [122], [63]. In our work, we study the binary classifier obtained
by minimum-ℓ2-norm interpolation of the binary labels. In sufficiently overparameterized
settings this classifier is identical to the one obtained by other training methods like the
max-margin SVM (minimization of hinge loss) or minimization of logistic loss [104, 62]. In
Chapter 3 we highlight the difference between the binary classification and regression problem
by answering the key question “Is binary classification easier than regression?” To answer
this question we study an asymptotic setting, where the number of training points goes to
infinity and the number of features scales with the number of training points. Further, in
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our model the underlying2 covariance matrix of the features has a bi-level structure with a
few large eigenvalues and several small eigenvalues as shown in Figure 1.4.

Figure 1.4. The bi-level model parameterized by p, q, r that scales with number of training
points n. The number of features d = np. The covariance matrix has a bi-level structure
with the first s = nr eigenvalues having value np−q−r while the remaining eigenvalues are
approximately 1.

Here, experiments in a Fourier-feature setting provided empirical evidence of the exis-
tence of an intermediate regime of special interest where the minimum-ℓ2-norm interpolator
generalizes poorly in regression tasks, but well in binary classification tasks as shown in
Figure 1.5.

Subsequent theoretical analysis of a Gaussian-features setting with bi-level model proved
the existence of this intermediate regime beyond Fourier features as visualized in Figure 1.6.

In the language of survival-contamination, for regression to generalize well survival must
go to 1 and contamination must go to zero. However, for binary classification to generalize
well we only require that survival is strong enough to overcome contamination, i.e the ratio
survival/contamination (this plays a similar role to the signal-to-noise ratio) goes to infinity.
This chapter is based on the paper [104] and is joint work with Adhyyan Narang, Vidya
Muthukumar, Misha Belkin, Daniel Hsu and Anant Sahai.

The third problem is that of multiclass classification and is studied in Chapter 4. Most
practical real-world problems involve more than two classes so it is natural to study what
happens when we moved beyond the binary setting. In the multiclass setting, we have k
classes and the Yi are categorical labels in the range 1 to k and the training loss is typically
the cross-entropy loss while the test-loss is the 0−1 loss. In our work we study the minimum-
ℓ2-norm interpolator of one-hot encoded labels (i.e. training loss is the squared loss) and
make use of the equivalence between different choice of training loss functions from [146].
We study an asymptotic setting as before where now in addition to the number of features
and the bi-level covariance model scaling with the number of points, the number of classes

2Section 4.7 highlights the difference between the underlying covariance matrix and the empirical eigen-
structure of our feature matrix.
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Figure 1.5. The three qualitative regimes illustrated using Fourier features and regularly
spaced training points. The top corresponds to both regression and classification succeeding,
the middle one is the intermediate regime where only classification works, and the bottom
one is where neither works. Here n = 49, s = 7, d = 441.

also scales with the number of points. When is good generalization possible in the multiclass
setting and how much harder is multiclass classification compared to binary classification?
It turns out that, as was the case in binary classification, the ratio of the relevant survival to
contamination terms plays the role of the effective signal-to-noise ratio and shows up as a key
quantity in our error analysis. Asymptotically, when this ratio grows to infinity, multiclass
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Figure 1.6. Visualization of the three asymptotic regimes from Theorem 2 for q = 0.75.
In the green region both regression and classification generalize well and in the red region
neither regression nor classification generalize well. There is an intermediate region shown
in orange where classification generalizes even though regression does not.

classification generalizes well. The key additional challenge when working with multiclass
training data is that there are relatively fewer positive examples of each class which results
in a factor k drop in survival but only a factor

√
k drop in contamination and this effectively

makes multiclass classification “harder” than binary classification. Consequently, there is a
limit to how many classes we can handle in the multiclass setting. This chapter is based on
the preprint [133] and is joint work with Rahul Arya and Anant Sahai.

Chapters 2, 3 and 4 together highlight the key differences between the regression, binary
classification and multiclass classification problems. On the one hand, the training data being
less informative i.e. real-valued for regression, binary valued for binary classification and one-
hot for multiclass classification leads to lower survival (fraction of signal that is recovered).
Figure 1.7 visualizes this difference when we perform minimum-ℓ2-norm interpolation in a
Gaussian-feature setting under the bi-level covariance model of Figure 1.4. On the other
hand, the classification task itself being easier than the regression task offsets the drop
in survival and consequently classification can succeed even when regression fails. Since
Chapters 2, 3 and 4 of this thesis build towards one big story, we present all relevant related
work in Section 1.4 below. Additionally, there are several excellent surveys in this area [11,
13, 38] that we recommend.

The second part of the thesis, Chapter 5, empirically explores how we can engineer
the right kind of implicit bias via the choice of neural network architectures and training
procedures while learning non-linear control strategies for control problems. We study two
control problems where linear control strategies are provably sub-optimal.

First, we study the Witsenhausen problem, a simple decentralized stochastic control
problem with two controllers as illustrated in Figure 1.8. The first controller receives X0 as
input where X0 is a zero-centered Gaussian random variable with variance σ2

x. Observing
X0 perfectly, the first controller determines the control U1 and the state evolves to be X1 =
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(a) Comparison of recovered coefficients. (b) Comparison of the learned predic-
tor/scores. The dashed lines are the trend
lines corresponding to y = α[τ ]x, i.e. they
have slope corresponding to the recovered
coefficient at the true feature index.

Figure 1.7. Visualization of the difference in survival while using the minimum-ℓ2-norm
interpolator in the regression, binary classification and multiclass classification problems.
We assume a bi-level covariance model with n = 500, d = 11181, s = 23, a = 0.21 and
k = 4. In subfigure (a) we plot the recovered coefficients obtained by interpolation of real-
valued labels (for regression), binary labels (for binary classification) and one-hot labels (for
multiclass classification). The true coefficient corresponding to the underlying true function
that generated the data is 1-sparse. Subfigure (a) shows the difference in survival, i.e.
fraction of recovered signal for the three cases. Subfigure (b) plots the learned predictor (for
regression) and the score (for binary classification and multiclass classification) versus the
value of the true feature (i.e the feature corresponding to index τ , where true coefficient is
1). We can see the effect of the 3 different types of training data. For regression training
data is simply along the line with slope 1, for binary classification the training label is 1 or -1
depending on sign of the x[τ ] while for multiclass classification the training label is positive
only when x[τ ] is largest of the first k features. Looking at the recovered predictor/scores
we see the difference in slopes for the three problems. Corresponding to regression the slope
of the predictor is close to 1, i.e survival is high, for binary classification the slope of the
score function is smaller while for multiclass classification the slope drops even further.

X0+U1. The second controller then receives a noisy version of the state, Y2 = X1+Z, where
Z is a standard unit variance normal random variable. Given Y2, the second controller
determines the control U2 and the final state evolves to be X2 = X1 − U2. The controllers
are designed together to ideally minimize the expected cost function k2E[∥U1∥2] +E[∥X2∥2].

The two parameters σ2
x (how variable is the initial state) and k2 (how heavily we penalize

the first controller’s control input) define an instance of the Witsenhausen problem. It
is well known that the optimal control strategy for the second controller is to output the
conditional expectation of X1 given Y2, E[X1 | Y2], however the optimal control strategy for
the first controller is more challenging to determine. An interesting feature about the the
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Figure 1.8. The Witsenhausen problem. The objective is to minimize k2E[∥U1∥2] +
E[∥X2∥2].

Witsenhausen problem is that linear control strategies are provably sub-optimal [150]. In our
work, we explore whether we can use neural networks to learn a non-linear control strategy for
the first controller while using the conditional expectation for the second controller. Inspired
by Chapters 2,3 and 4 where the implicit bias of the training data/model and the training
algorithm was crucial for ensuring good generalization we use our knowledge of the problem
domain and introduce a “lattice layer” in the neural networks helps us bias our network to
learn a slopey-quantization-like strategy that perform well. The work on the Witsenhausen
problem is based on [132] and is joint work with Laura Brink, Nikunj Jain, Kailas Vodrahalli,
Akhil Jalan, Nikhil Shinde and Anant Sahai.

Second, we investigate whether a similar idea of intelligently choosing network architec-
ture to imbue the correct implicit bias can help us tackle more complex infinite horizon
control problems. We study the problem of stabilizing a linear control system with multi-
plicative noise where the system dynamics are given by:

Xn+1 = aXn − Un (1.5)
Yn = ZnXn. (1.6)

Here, Xn is the state of the system. The controller may choose the control (Un) based on
an observation (Yn) that is corrupted by multiplicative noise (Zn ∼ N (0, 1)). The goal is to
ensure that the system is stable in second-moment sense, i.e. supn E[X2

n] < ∞.
It is notable that the optimal linear strategy for this system is Un = 0 for all n, however

non-linear strategies can significantly (and unboundedly) improve on the performance of
the linear strategy [42]. A key observation in [42] was that using the controller’s memory,
i.e. at time n using not only the value of Yn but also the values of Yn−1, Yn−2, etc. to
non-linearly generate Un, improved the controller performance. We build on this idea and
use neural networks and use the memory of multiple observations to design controllers for
this seemingly simple but still-open control problem. The challenge here is that we can
only learn our control strategy by training up to a finite-training horizon. However, our
control strategy must generalize well, in the sense that is should continue to stabilize the
system beyond the training-horizon. By choosing a periodic control structure and a greedy
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training procedure coupled with input-output scaling across time, we are able to learn control
strategies that generalize to time-horizons well beyond the finite training-horizon. The work
on the multiplicative noise control system is based on the paper [134] and is joint work with
Moses Won and Gireeja Ranade. Related work for this chapter is provided in Section 1.5 of
this introductory chapter.

1.4 Related work on overparameterized learning
Double descent phenomenon

Classically, by either operating in the underparameterized regime or by performing explicit
regularization, we can force the training procedure to average out the harmful effects of
training noise and thereby hope to obtain good generalization. The present cycle of seeking
a deeper understanding began after it was observed that modern deep networks were over-
parameterized, capable of memorizing noise, and yet still generalized well, even when they
were trained without explicit regularization [112, 158]. Experiments in [53, 14] observed a
double-descent behavior of the generalization error where in addition to the traditional U-
shaped curve in the underparameterized regime, the error decreases in the overparameterized
regime as we increase the number of model parameters. Figure 1.9 from [14] reproduced here
for the convenience of the reader illustrates this double-descent phenomenon.

Figure 1.9. The double-descent curve for test risk. The test risk/generalization error
exhibits a U-shaped behavior in the underparamterized regime. When the model capacity
is too low, the test risk is high because we end up “underfitting” the data while when
model capacity is too large, the test risk is high because we end up “overfitting” the data
by learning an overly-complex model. However, in the overparameterized regime when the
model capacity is larege enough that interpolation (zero training risk) is possible, sometimes
the test risk undergoes a second descent. (Figure reproduced from [14].)

This double-descent phenomenon is not unique to deep learning models and was replicated
for kernel learning [16]. Further, the good generalization performance in the overparameter-
ized regime cannot be explained by traditional worst-case generalization bounds based on
Rademacher complexity or VC-dimension since the models have the capacity to fit purely
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random labels. Overparameterized models must therefore have some fortuitous combination
of the model architecture with the training algorithm that leads us to a particular solution
that generalizes well.

Implicit bias and role of training loss function

In the overparameterized regime, there are infinitely many solutions that interpolate training
data (we saw an example of this in the case of function approximation with polynomials in
Example: 1), and indeed even more that separate discretely labeled data. Characterizing the
implicit regularization [57, 131, 68, 151, 107, 6, 153] induced by the choice of optimization
algorithm is thus important to understand properties of the obtained solutions. For linear
models, we have a concrete understanding of the solutions obtained by the most common
choices of training loss functions and algorithms:

1. If we minimize the logistic loss using gradient descent on separable training data3, we
will converge eventually (albeit very slowly) to the hard-margin SVM [68, 131].

2. If we minimize the square loss on training data using gradient descent while also us-
ing an overparameterized model, we will converge to the minimum-ℓ2-norm interpola-
tion (Theorem 6.1 from [45]) provided the initialization is equal to zero.

Conventional wisdom recommends the choice of the logistic loss, or the hinge loss, for
classification tasks. For example, the theory of surrogate losses [160, 9, 18] gives theoreti-
cal arguments favoring the logistic and hinge losses over other convex surrogates, including
the square loss. Yet, there have been indications that the reality is more complex, both in
underparameterized and overparameterized regimes of ML. For example, [123] extensively
compared the hard-margin support vector machine (SVM), which minimizes the hinge loss,
and regularized least-squares classification (RLSC), which minimizes the square loss — ulti-
mately concluding that “the performance of the RLSC is essentially equivalent to that of the
SVM across a wide range of problems, and the choice between the two should be based on
computational tractability considerations.” Quite similar results4 for a comparison between
the square loss and cross-entropy loss have recently been obtained in [63, 20] for a range of
modern neural architectures and data sets across several application domains. The latter is
the current dominant standard for training neural networks.

A theoretical justification for similar performance of square loss and the cross entropy/logistic
loss is provided in [104, 62] and [146] since the SVM itself interpolates one-hot/binary labels
under sufficient overparameterization.

3The implicit bias has also been characterized for the more difficult non-separable case [68], but we focus
here on separable training data as this will always be the case for an overparameterized setting.

4In fact, while the results were generally close, in a majority of classification tasks models trained using
the square loss outperformed models trained with cross-entropy.
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High dimensional linear regression

To understand the double-descent phenomenon observed by [53, 14] better several works
study the simpler setting of overparameterized linear regression, fitting a linear model to
noisy data when the number of features exceeds the number of training points, for a variety
of feature families. The minimum-ℓ2 norm interpolator is of particular interest and has
been studied extensively. (An incomplete list is [59, 97, 10, 15, 105, 19, 75, 152, 121]).
To generalize well, the feature family must satisfy a delicate balance between having a few
important directions that favor the true signal (unknown function), and a large number of
unimportant directions that absorb the noise in a harmless manner. In our work that studies
overparameterized linear models in Chapter 2 and 3, we highlight this by use of a bi-level
covariance model where the first few features correspond to larger eigenvalues as compared
to the rest of the features and such features are favored when performing minimum-ℓ2-norm
interpolation. If the true signal is among these favored features and there are sufficiently
many unfavored features then we get both signal preservation and harmless noise absorption.

The minimum-ℓ1-norm interpolator has also been studied in [105, 99, 87, 145] and while
sparsity seeking behavior helps preserve the true signal it poses a challenge for the harmless
absorption of noise since the averaging behaviour is not achieved fully.

High dimensional binary classification/logistic regression

Both concurrently with and subsequent to the wave of analyses on overparameterized re-
gression, researchers turned their attention to binary classification. A line of work poses the
overparameterized binary classification problem as an optimization problem and analyzes
it directly to obtain precise asymptotic behaviours of the generalization error [40, 125, 69,
136, 101, 73, 135]. The key technical tool employed in these works is the Convex Gaussian
Min-max Theorem and the resultant error formulas involve solutions to a system of non-
linear equations that typically do not admit closed-form expressions. The generalization
error of the max-margin SVM has also been analyzed directly by studying the iterates of
gradient descent in [25] and leveraging the implicit regularization perspective of optimization
algorithms.

However, although the above works did significantly enhance our understanding of binary
classification in the overparameterized regime, a fundamental question was not answered: “Is
classification easier than regression?” While the classification task is easier than the regres-
sion task at test time (regression requires us to correctly predict a real value while binary
classification requires us to only predict its sign correctly), the training data for classifica-
tion is less informative than that for regression since the labels are also binary. Chapter 3
answers this question by exhibiting an asymptotic regime where binary classification error
goes to zero, but the regression error does not by considering a bi-level covariance model
with Gaussian or Fourier features. It turns out that the level of anisotropy (favoring of true
features) required to perform regression correctly is significantly higher than that required
for binary classification.
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High dimensional multiclass classification

There is a large classical body of work on multiclass classification algorithms [148, 21, 41,
37, 82], with further works giving computationally efficient algorithms for extreme multiclass
problems with a huge number of classes [32, 156, 120]. Numerous theoretical works inves-
tigate the consistency of classifiers [159, 117, 116, 138, 27]. Finite-sample analysis of the
generalization error in multiclass classification problems in the underparameterized regime
has been studied in [76, 56, 3, 85, 34, 83, 93, 84, 78, 79] and includes both data dependent
bounds using Rademacher complexity, Gaussian complexity and covering numbers as well
as data-independent bounds using the VC dimension. Recent work [139] leverages the Con-
vex Gaussian Min-max Theorem to precisely characterize the asymptotic behaviour of the
least-squares classifier in underparameterized multiclass classification.

So, how different is multiclass classification from binary classification? The test time task
is more difficult and for the same total number of training points, we have fewer positive
training examples from each class. We show in our work in Chapter 4 that this poses a
challenge while recovering the true signal and consequently makes the multiclass classification
task more difficult as compared to the binary classification task.

Several empirical studies comparing the performances of multiclass classification via
learning multiple binary classifiers have been undertaken [122, 51, 3]. The effects of the
loss function while using deep nets to perform classification has also been investigated [61,
52, 77, 20, 39, 74, 63].

More recently, [146] makes progress towards bridging the gap between empirical obser-
vations and theoretical understanding by proving that in certain overparameterized regimes
the solution to a multiclass SVM problem is identical to the one obtained by minimum-norm
interpolation of one-hot encoded labels (equivalently, that gradient descent on squared loss
leads to the same solution as gradient descent on cross-entropy loss as a result of implicit bias
of these algorithms [45, 68, 131]). In addition, [146] extends the analysis presented in [104]
for the binary classification problem to the multiclass problem with finitely many classes via
an interesting reduction to analyzing a finite set of pairwise competitions, all of which must
be won for multiclass classification to succeed.

1.5 Related work on learning control strategies

Neural networks for control and communication

Neural networks have been widely used in the past for system identification as well as to
learn good control strategies [12, 111]. There has been significant investigation into the use
of modular networks for learning to control dynamical systems [65, 64]. More recently in [71],
recurrent neural network based architectures have been used for learning feedback codes in
communication system leveraging the noisy feedback from the system. The neural network
based feedback codes outperform the best hand-crafted schemes. These works have shown
that structured networks can improve training and the overall performance by imparting the
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correct implicit bias. Chapter 5 builds on older results, and our focus is on using intelligently
chosen architectures and training procedures to more easily and robustly learn good neural-
network-based control strategies.

The Witsenhausen problem

In 1968, Witsenhausen proposed the Witsenhausen Counterexample [150], where non-linear
control strategies could unboundedly outperform linear control strategies [100]. Recent
work that used an information-theoretic lens allowed for major insight into the problem
and progress towards finding the optimal control strategy (which is still open) [55, 114, 33].

This progress and insight was preceded by computational studies that examined how
various strategies performed on the counterexample; in particular, the strategy of “slopey/soft
quantization” that played a role in a provably-good strategy in [55] was related to a strategy
discovered by Baglietto et al. [8], who used neural networks to find good strategies for the
counterexample. The slopey quantization strategy visually resembled scalar instantiations
of dirty-paper-coding (DPC) based strategies [35]. DPC approaches give rise to slopey
quantization because they involve the quantization of a scaled-down version of the state as
an intermediate step.

Further numerical explorations, no matter how they were done [81, 86, 95, 70, 140, 94],
always seemed to give rise to strategies that appeared to be close to slopey quantization As
a result, the community believes that something smooth that is close to a slopey quantizer
is probably optimal or nearly optimal. The challenge is finding it, and more generally, how
to find such solutions for more practical decentralized control problems.5 Can we use neural
networks effectively to do this?

In our work in Section 5.2 of Chapter 5 we show that using neural networks for learning
control strategies for the Witsenhausen problem is not a straightforward task and choosing
an architecture that favors certain structured slopey-quantization-like strategies is required
to escape local minimas that exist due to the non-convex nature of the multi-step control
problem. In particular, use of a “lattice layer” helps us more easily and more robustly learn
good strategies.

Multiplicative noise control system

Simple control systems have been long studied in order to develop an understanding of
the fundamental trade-offs involved in communication and control. In our work, we study
a system with multiplicative noise with system dynamics given by (1.5). Our problem
formulation builds on many previous ideas in information theory and control that have been
discussed in depth in books such as [157, 46, 92]. Our specific formulation is inspired by the
data-rate theorems [22, 137, 108] as well as the intermittent Kalman Filtering setup [129];

5In fact, for the two-controller decentralized infinite-horizon scalar LQG problem, [114, 113] showed that
vector counterparts of the Witsenhausen counterexample play a critical role and similar quantization-based
strategies are within a constant factor of optimality.
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and this formulation was previously discussed in [42, 119]. Additionally, we are inspired
by previous works that have studied multiplicative noise including [5, 60, 126, 44, 118].
Xiao et al. [154] and Xu et al. [155] also consider related problems but effectively restrict
their attention to LTI strategies, which are not useful in our problem. The results in [42]
provide both an upper and lower bound of the largest a for which the system in (1.5) can
be stabilized in a second-moment sense. However, the gap between the bounds is enormous,
and we believe this is likely due to both of the bounds being loose. It is notable that the
optimal linear strategy for this system is Un = 0 for all n, however non-linear strategies can
significantly (and unboundedly) improve on the performance of the linear strategy [42]. Here
the performance of a control strategy is measured by the largest growth factor a for which it
can stabilize the system. A key observation in [42] was that using the controller’s memory,
i.e. at timestep n using not only the value of Yn but also the values of Yn−1, Yn−2, etc. in a
non-linear way to generate Un, improved the controller performance.

In Chapter 5, we build on this idea and use neural networks that use the memory of
multiple observations to design controllers for this seemingly simple but still-open control
problem. We observe that choosing a periodic control structure and a greedy training proce-
dure coupled with input-output scaling across time leads to the correct kind of implicit bias
that allows us to learn neural network strategies that perform well.

1.6 Notation
First we describe some basic notation for vectors, matrices, and functions.

Vector and matrix notation

Let ei represent the ith standard basis vector (with the dimension implicit). For a given vector
v, the functional sgn(v) denotes the sign operator applied element-wise. Let µi(M) denote
the ith largest eigenvalue of positive semidefinite matrix M, and µmax(M) and µmin(M) denote
in particular the maximal and minimal eigenvalue respectively. Further, we use ||M||op, tr(M)
and ||M||F to denote the operator norm, trace norm, and Frobenius norm respectively.

Function-specific notation

For two functions f(n) and g(n), we write f ≍ g iff there exist universal positive constants
(c, C, n0) such that

c |g(n)| ≤ |f(n)| ≤ C |g(n)| ∀n ≥ n0.

(In most places where we use the above notation, the functions f and g are positive valued
and so we automatically drop the absolute value signs.)

Next, since Chapters 2, 3 and 4 build on top of each other towards one coherent story we
summarize the notation used throughout these chapters for the convenience of the reader.
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Table 1.1: Notation
Symbol Definition Dimension Source

k Number of classes Scalar

n Number of training points Scalar

d The total number of features Scalar

s The number of favored features Scalar Def. 7

p Controls overparameterization (d = np) Scalar Def. 7

r Controls the number of favored features (s = nr) Scalar Def. 7

a Controls the favored weights (a = n−q) Scalar Def. 7

t Controls the number of classes (k = ckn
t) Scalar Def. 9

ck The number of classes when t = 0 (k = ckn
t) Scalar Def. 9

λj jth eigenvalue of the feature covariance matrix Scalar Def. 7

Xi ith training point’s covariate Abstract Sec. 2.1

ϕ(Xi) Featurized ith training point’s covariate Length-d vector Sec. 2.1

Zi ith training point’s real-valued label Scalar Sec. 2.1

Yi ith training point’s binary-valued label Scalar Eqn. 3.2

ℓi ith training point’s categorical label Scalar Eqn. 4.1

Σ Feature covariance matrix (d× d)−matrix Sec. 2.1

α∗ True coefficients in our well-specified model Length-d vector Sec. 2.1

Φtrain Training feature matrix (n× d)−matrix Eqn. 2.1

Ztrain Training real-valued labels Length-n vector Sec 2.1

Ytrain Training binary valued labels Length-n vector Sec 3.1

Wtrain Training additive white Gaussian noise Length-n vector Sec 2.1

α̂ideal Ideal interpolator that minimizes test error Length-d vector Eqn. 2.3

α̂2 Minimum ℓ2-norm interpolator Length-d vector Eqn. 2.4

α̂2,binary Minimum 2-norm interpolator of binary labels Length-d vector Eqn. 3.4

α̂2,real Minimum 2-norm interpolator of real-valued labels Length-d vector Eqn. 3.5

α̂SVM Hard-margin support vector machine Length-d vector Eqn. 3.6

Ereg(α̂) Regression loss using predictor α̂ Scalar Def. 1

Ebinary(α̂) Binary classification loss using predictor α̂ Scalar Def. 5

Emulti(α̂) Multiclass classification loss using predictor α̂ Scalar Sec. 4.1

Continued on next page
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Table 1.1: Notation (Continued)

Symbol Definition Dimension Source

SU(α̂, τ) Survival for feature τ while using predictor α̂ Scalar Eqn. 3.20

CN(α̂, τ) Contamination for feature τ while using predictor α̂ Scalar Eqn. 3.22

SUb(k) SUb(k) = SU(α̂2,binary, τ) Scalar Sec. 3.6

CNb(k) CNb(k) = CN(α̂2,binary, τ) Scalar Sec. 3.6

SUr(k) SUr(k) = SU(α̂2,real, τ) Scalar Sec. 3.6

CNr(k) CNr(k) = CN(α̂2,real, τ) Scalar Sec. 3.6

zj jth column of the feature matrix Φtrain Length-n vector Eqn. 3.26

A A = ΦtrainΦ
⊤
train =

∑d
j=1 λjzjz

⊤
j (n× n)-matrix Eqn. 3.26

A−τ A−τ =
∑d

j=1,j ̸=τ λjzjz
⊤
j (n× n)-matrix Eqn. 3.26

Yoh One-hot label matrix (n× k)-matrix Eqn. 4.2

yohm One-hot encoding of training points from class m Length-n vector Eqn. 4.3

ym Zero-mean encoding of training points from class m Length-n vector Eqn. 4.4

f̂m Learned coefficients use to predict score for class m Length-d vector Eqn. 4.7

ĥτ,ζ Relative survival ĥτ,ζ [j] = λ
−1/2
j (f̂τ [j]− f̂ζ [j]) Length-d vector Eqn. 4.12

CNτ,ζ Normalizing factor CNτ,ζ =

√(∑
j /∈{τ,ζ} λ

2
j (ĥζ,τ [j])

2
)

Scalar Eqn. 4.14

∥ · ∥ψ2 The sub-Gaussian norm of a scalar random variable Scalar Eqn. 4.29

µ̄ Center of the eigenvalue bounds for A−1, µ̄ = 1∑
j λj

Scalar Eqn. 4.22

♢ Deviation term in eigenvalue bounds for A Scalar Eqn. 4.32

∆µ Deviation term in eigenvalue bounds for A−1 Scalar Eqn. 4.24
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Chapter 2

Linear regression: A signal-processing
perspective

In this chapter, we provide a signal-processing perspective inspired analysis of overparame-
terized linear regression. We focus primarily on the minimum-ℓ2-norm interpolator since it
admits a closed form expression and moreover, gradient descent on the overparameterized
linear regression problem with zero initialization converges to the minimum-ℓ2-norm interpo-
lator [127, 151]. As mentioned in Section 1.4 of Chapter 1 a couple of excellent papers [59, 10]
that center around comprehensive analyses of the ℓ2-minimizing interpolator were published
concurrent to our work [105]. When it comes to whitened or Gaussian features, results that
precisely characterize the generalization error of the minimum-norm interpolator are more
or less covered across [59] and [10] respectively. The results in these papers use fundamen-
tal advances in asymptotic and non-asymptotic random matrix theory. Here, we provide a
brief alternative exposition of the main ideas through a Fourier-theoretic lens on regularly
spaced training data (Example 3). Our aim for doing this is two-fold: one, simply to com-
plement these papers; and two, to provide a signal-processing oriented perspective on salient
properties of the minimum-ℓ2-norm interpolator.

2.1 Problem setup
Throughout, we consider data that is actually generated from a well-specified overparameter-
ized linear model1. We consider covariate-response pairs (Xi, Zi ∈ Rp×R)ni=1 and generative
model Z = ⟨ϕ(X), α∗⟩+W for feature vector ϕ(X) ∈ Rd and Gaussian noise W ∼ N (0, σ2)
that is independent of X. We generically assume that the covariates {Xi}ni=1 are iid random
samples, but will also consider regularly spaced data on bounded domains for polynomial
and Fourier features. The signal α∗ is unknown apriori to an estimator. We also assume
a distribution on X ∈ Rp, which induces a distribution on the d-dimensional feature vector
ϕ(X). Let Σ = E[ϕ(X)ϕ(X)⊤] denote the covariance matrix of the feature vector under this

1The misspecified case is considered in [59, 97].



CHAPTER 2. LINEAR REGRESSION: A SIGNAL-PROCESSING PERSPECTIVE 20

induced distribution. We assume that Σ is invertible; therefore it is positive definite and its
square-root-inverse Σ−1/2 exists.

We define shorthand notation for the training data: let

Φtrain :=
[
ϕ(X1)

⊤ ϕ(X2)
⊤ . . . ϕ(Xn)

⊤]⊤ (2.1)

denote the data (feature) matrix, and let Ztrain,Wtrain ∈ Rn denote the output and noise
vectors respectively.

We will primarily consider the overparameterized, or high-dimensional regime, i.e. where
d > n. We are interested in solutions α that satisfy the following feasibility condition for
interpolation:

Φtrainα = Ztrain (2.2)

We assume that rank(Φtrain) = n, so the set {α ∈ Rd : Φtrainα = Ztrain} is non-empty in
Rd.

For any solution α̂ ∈ Rd, we define the generalization error as test MSE below.

Definition 1. The expected test mean-squared-error (MSE) minus irreducible noise er-
ror of any estimator α̂((Xi, Zi)

n
i=1) is given by

Ereg(α̂) := E[(Z − ⟨ϕ(X), α̂⟩)2]− σ2,

where the expectation is taken only over the joint distribution on the fresh test sample (X, Z),
and we subtract off the irreducible noise error E[W 2] = σ2.

For the well-specified generative model where Z = ⟨ϕ(X), α∗⟩ +W the test MSE can be
expressed as:

Ereg(α̂) := E[⟨ϕ(X), α∗ − α̂⟩2].

We have chosen the convention to subtract off the unavoidable error arising from noise, σ2,
as is standard. From now on, we will denote this quantity to be the test MSE as shorthand.

The training data matrix Φtrain can be generated via a number of choices for feature
families ϕ(X). Some examples are listed below.

Example 2 (Gaussian features). The Gaussian features on d-dimensional data comprise of
ϕ(X) := X ∼ N (0,Σ), where Σ ∈ Rd×d and Σ ≻ 0. A special case is iid Gaussian features,
i.e. Σ = Id.

Example 3 (Fourier features in complex form). Let i :=
√
−1 denote the imaginary number.

For one-dimensional data X ∈ [0, 1], we can write the d-dimensional Fourier features in their
complex form as

ϕ(X) =
[
1 e2πiX e2π(2i)X . . . e2π((d−1)i))X

]
∈ Cd.
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This is clearly an orthonormal feature family in the sense that
EX∼Unif[0,1] [ϕ(X)jϕ(X)∗k] = δj,k, where δj,k denotes the Kronecker delta and (·)∗ denotes the
complex conjugate.

We will consider one of two models for the data {Xj}nj=1:

1. n-regularly spaced training data points, i.e. Xj =
(j−1)
n

for all j ∈ [n], which we con-
sider empirically and theoretically in Section 2.4.

2. n-random training data points, i.e. Xj i.i.d ∼ Unif[0, 1], which we evaluate only
empirically.

Example 4 (Fourier features in real form). For one-dimensional data X ∈ [−π, π], we can
write the d-dimensional Fourier features in their real form as

ϕ(X) =
[

1√
2π

1√
π
sin(x) 1√

π
cos(x) . . . 1√

π
sin
(
d−1
2
x
)

1√
π
cos
(
d−1
2
x
)]

∈ Rd,

where we assumed that d is odd. This is an orthonormal feature family in the sense that
EX∼Unif[−π,π] [ϕ(X)jϕ(X)k] = δj,k where δj,k denotes the Kronecker delta.

We will consider one of two models for the data {Xi}ni=1:

1. n-regularly spaced training data points, i.e. Xi = −π + π
n
+ 2π(i−1)

n
for all i ∈ [n].

2. n-random training data points, i.e. Xi i.i.d ∼ Unif[−π, π].

Example 5 (Legendre polynomial features). For one-dimensional data X ∈ [−1, 1], we can
write the d-dimensional Vandermonde features as

ϕ(X) =
[
1 X X2 . . . Xd−1.

]

We can also uniquely define their orthonormalization with respect to the uniform measure on
[−1, 1]. In other words, we define the d-dimensional Legendre features as polynomials

ϕ(X) =
[
p0(X) p1(X) . . . pd−1(X),

]

where deg(pj(X)) = j for every j ≥ 0, and {pj(X)}j≥0 are defined such that
EX∼Unif[−1,1] [pj(X)pk(X)] = δj,k, i.e. the Legendre polynomials form an orthonormal basis
with respect to the uniform measure on [−1, 1]. When evaluating interpolating solutions for
both these polynomial features, we consider one of two models for the training data {Xi}ni=1:

1. n-regularly spaced training data points, i.e. xi = −1 + 2(i−1)
n

for all i ∈ [n].

2. n-random training data points, i.e. Xi i.i.d ∼ Unif[−1, 1].
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The ideal interpolator α̂ideal is one that minimizes the test MSE subject to the interpo-
lating constraint and is defined as:

α̂ideal = min
α

Ereg(α) (2.3)

s.t. Φtrainα = Ztrain.

From [105], we know that the ideal interpolator involves finding the minimum-ℓ2-norm
interpolator of (effectively) pure noise using appropriately whitened features. Thus, for
overparameterized linear models, it is natural to consider the minimum-ℓ2-norm solution
that interpolates the data as defined below:

Definition 2. The minimum-ℓ2-norm interpolator is defined as:

α̂2 := argmin
α∈Rd

∥α∥2 (2.4)

s.t. Φtrainα = Ztrain.

2.2 The minimum-ℓ2-norm interpolator through the
Fourier lens

The minimum-ℓ2-norm interpolator is explicitly characterizable as a linear matrix operator
on the output vector Ztrain, and can be easily computed as well. When Φtrain has full row
rank (i.e it is of rank n) then we have the closed form expression:

α̂2 = Φ⊤
train

(
ΦtrainΦ

⊤
train

)−1
Ztrain.

Corollary 1 in [105] shows that for Gaussian features the fundamental price of interpola-
tion of noise on test MSE scales as Θ

(
n
d
σ2
)
, where n is the number of training samples, d

is the number of features, and σ2 is the noise variance. Looking at Figure 2.1, we see that
when d is large, this is also the scaling that is achieved by the case of regularly spaced data
points with Fourier features. This case, as an easy-to-understand paradigmatic example,
provides a clear lens into understanding what is happening conceptually for ℓ2-minimizing
solutions2. It is first useful see how the minimum-ℓ2-norm interpolator actually behaves for
two contrasting examples.

Example 6 (Standard Gaussian features, k = 500-sparse signal). We consider d-dimensional
iid standard Gaussian features, i.e. Example 2 with Σ = Id. In other words, the features
{ϕ(X)j}dj=1 are iid and distributed as N (0, 1). Let the first 500 entries of the true signal α∗

be non-zero and the rest be zero, i.e. supp(α∗) = [500]. We take n = 2000 measurements,
each of which is corrupted by Gaussian noise of variance σ2 = 0.01.

2What we will use is the exact presence of exactly aliased higher-frequency features corresponding to any
low-frequency features. This will give extremely clean expressions for the adverse effect that ℓ2-minimization
has on recovering a signal with low-frequency components.
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(a) Median plots for E∗
reg.
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(b) Median plots with error bars. Notice the variabil-
ity near the interpolation threshold.

Figure 2.1. The converse bounds E∗
reg for interpolation, plotted on a log-log scale for

n = 15 training points. Here, the median is plotted for clarity where the randomness is due
to how the training points are drawn. Notice that all the curves overlap in the significantly
overparameterized regime, i.e. d/n ≥ 10. Here, regular refers to training points chosen on a
regularly spaced grid. Random refers to training points chosen uniformly at random. The
curves are dithered slightly for readability.Below the interpolation threshold at d = 15, the
performance of OLS is plotted since interpolation isn’t possible there.

Figure 2.2. Test MSE for Gaussian data sampled from N (0, 1). Here, n = 2000 and
k = 500 and noise W ∼ N (0, 0.01). Notice the double descent behavior of the test MSE. For
d < n, we have the U-shaped behavior where in the regime d < k, increasing d leads to lower
test MSE since we get access to more features present in the true signal. For k < d < n, the
test MSE increases with a sharp peak at the interpolation threshold (d = n). For d > n,
increasing d initially leads to a sharp decrease in test MSE due to lesser ill-conditioning of
the feature matrix but eventually the test MSE rises to the null risk.
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Figure 2.2 shows the test MSE of the minimum-ℓ2-norm interpolator on Example 6 as a
function of the number of features d. We immediately notice that the test MSE is converging
to the same level as the test error from simply using a hypothetical α̂ = 0. This property of
generalization error degenerating to that of simply predicting 0 was also pointed out in [59]
where this level was called out as the “null risk.”

Example 7 (Standard Gaussian features plus a constant, constant signal). In this example,
we consider d-dimensional iid Gaussian features with unit mean and variance equal to 0.01.
More precisely, the features {ϕ(X)j}dj=1 are iid and distributed as N (1, 0.01). We also assume
the generative model for the training data:

Z = 1 +W (2.5)

where as before, W ∼ N (0, σ2) is the observation noise in the training data, and we pick
σ2 = 0.01. Note that in this example the true “signal” is the constant 1, which is not exactly
expressible as a linear combination of the d Gaussian features.

Figure 2.3. Log-log plot for test MSE for the min 2-norm interpolator (ordinary-least-
squares to the left of the peak) vs the number of features for i.i.d. Gaussian features ∼
N (1, 0.01). Notice the clear double descent behavior when d > n. Further, for sufficiently
large d the min 2-norm interpolator has lower test MSE than what we would obtain by
simply estimating a constant (i.e mean of the observations). Here n = 10 and the true signal
is the constant 1. This is Example 7.

Example 7 is directly inspired by feature models3 in several recent papers [15, 14, 10], as
well as having philosophical connections to other recent papers [97, 59]. Figure 2.3 shows

3A more general version of this example would replace the constant 1 in the means of the features by the
relevant realizations of an underlying latent Gaussian random feature vector with the true signal being that
latent Gaussian feature vector. The qualitative behavior of double-descent will be retained, and a formal
discussion of this is provided in [104].
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the performance of the minimum-ℓ2-norm interpolator on Example 7 as we increase the
number of features. Here, we clearly see the double-descent behavior as the test MSE of the
minimum-ℓ2-norm interpolator decreases with increased overparameterization. Note from
Equation (2.5) that the true signal is not exactly representable by a linear combination of
the random Gaussian features, and in fact Example 7 is an instance of the linear model
being misspecified for any (finite) number of features d. Improved approximability from
adding more features to the model partially explains the double descent behavior, but it is
not the main reason. It turns out that we would still see the double-descent behavior with
the minimum-ℓ2-norm interpolator if we added another feature that was always the constant
1.

The minimum-ℓ2-norm interpolator generalizes well for Example 7, showing double de-
scent behavior – but extremely poorly for Example 6. Why does one case fail while the other
case works? Bartlett, Long, Lugosi and Tsigler [10] give an account of what is happening
directly using the language of random matrix theory. Their paper defines a distinct pair of
“effective ranks” using the spectrum of the covariance matrix Σ to state their necessary and
sufficient conditions for this interpolator generalizing well. Classic core concepts in signal
processing provide an alternative lens to understand these conditions. To use the Fourier-
theoretic lens, we will naturally map the number of regularly spaced training samples n to
what is called the sampling rate in signal processing, and the number of features d to what
is called the bandwidth in signal processing. What we call overparameterization is what is
called potential undersampling in the signal-processing literature.
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(b) Plot of estimated signal components
of minimum-ℓ2-interpolator for iid Gaussian
features. Here, n = 5000, d = 30000 and the
true signal α∗ has non-zero entries only in
the first 500 features.

Figure 1.3. Depiction of signal components “bleeding” out into spurious features as a result
of using the minimum-ℓ2-norm interpolator. The “bleeding” has two effects: lower “survival”
of signal in the original true features, and higher “contamination” by spurious features.
(repeated from page 5)
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Carrying out this story is what we elaborate on in the next section. The key insights are
as follows:
(a) The core issue in overparameterization is that of aliasing — there are many different ways
to represent the training data using our features. The classical Fourier case with regularly
spaced training samples is an extremely clear version of this because the higher-frequency
features look literally identical to their lower-frequency counterparts as far as the regularly
spaced training points are concerned.
(b) Without some sort of weighting trying to counteract this, standard 2-norm minimization
hedges its bets over all the aliases that look alike as far as the training points are concerned.
As a result, the signal energy that should have been assigned to the low-frequency features
(assuming that the truth is low-frequency) instead “bleeds out” into higher frequency aliases.
The more features there are for the same number of training points, the more aliases there
are, and consequently, the worse this bleeding will become. This is depicted in Figure 1.3
which was partially introduced in Section 1.3 and is reproduced here for convenience of the
reader.
(c) In the limit of severe overparameterization without any counteracting force, the predic-
tions on a randomly chosen test point will usually be something small — since while the
aliases were interfering constructively to hit the training points, they are combining non-
coherently on the typical test point chosen uniformly at random on the interval in question.
This bleeding-to-zero effect is great for absorbing any noise that was in the training data,
but it is a disaster as far as signal recovery is concerned.
(d) The only solution for 2-norm minimization is to put a strong enough prior that can
block this signal bleeding effect and cause the low frequencies to be a priori favored. If
the weights favoring the low frequencies are heavy enough relative to their aliases’ weights,
then a significant fraction of any true signal present at those low frequencies will survive
the inference process. Otherwise, it will be severely attenuated. At the same time, the
number of low-frequency features that are favored by the weighting must be sublinear in n
the number of samples to make sure that the white noise in the training points does largely
get attenuated by the “inference filter.”
(e) The 2-norm inference process ends up hallucinating nonzero weights on the higher-
frequency aliases of the true signal and these end up contaminating the predictions on test
points. This can be viewed as a kind of self-interference that is like ISI in communication.
(f) Harmless interpolation with 2-norm interpolator requires these effects to be balanced,
and the elementary calculations here naturally recover exact counterparts of the effective
rank conditions of Bartlett, et al.[10].
(g) This survival/contamination lens gives us a fresh way of viewing the role of classical ridge
regression — this can be interpreted as a kind of overparameterization, but with features
that are guaranteed to never contaminate test points. This tells us instantly that ridge
regression won’t help with poor generalization due to “signal bleed.”4

4See [105] for the analysis of the more generic Tikhonov regularization based on the language of signal
bleed and contamination.
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Aliasing — the core issue in overparameterized models

We have mapped overparameterization to undersampling of a true signal. The fundamental
issue with undersampling of a signal is one of identifiability: infinitely many solutions, each
of which correspond to different signal functions, all happen to agree with each other on
the n regularly spaced data points. These different signal functions, of course, disagree
everywhere else on the function domain, so the true signal function is not well reconstructed
by most of them. This results in increased test MSE when such an incorrect function is
used for prediction. Such functions that are different, but agree on the sampled points, are
commonly called aliases of each other in signal-processing language. Exact aliases naturally
appear among the features themselves when the features are Fourier, as we see in the below
example.

Example 8 (Fourier features with a constant signal). Denote i :=
√
−1 as the imaginary

number. Consider the Fourier features as defined in complex form in Example 3 and regularly
spaced input on the interval [0, 1), i.e. xj =

j−1
n

for all j ∈ [n].
Suppose the true signal is equal to 1 everywhere and the sampling model in the absence

of noise is

Zj = 1 for all j ∈ [n], (2.6)

The estimator has to interpolate this data with some linear combination of Fourier fea-
tures5 fk(x) = ei2πkx for k = 0 . . . d.

A trivial signal function that agrees with Equation (2.6) at all the data points is the
first (constant) Fourier feature: f0(x) = ei2π(0)x = 1. It is, however, not the only one.
For example, the complex feature fn(x) = ei2π(n)x will agree with f0(x) = 1 on all the reg-
ularly spaced points {xj}nj=1 by the cyclic property of complex Fourier features (i.e. we
have ei2π(n)

j−1
n = ei2π(j−1) = 1 = f0(x)). This is similarly true for features fℓn(x) for all

ℓ = 1, 2, . . . , d
n
− 1, and we thus have d

n
− 1 exact aliases6 of the true signal function f0(x)

on the regularly spaced data points.

The above property is not unique to the constant function f0(x): for any true signal
function that contains the complex sinusoid of frequency k∗ ∈ [n], i.e. fk∗(x) = ei2π(k

∗)x,
the one-complete-cycle signal function fk∗+n = ei2π(k

∗+n)x again agrees on the n regularly
spaced data points, and for this signal function we again have the d

n
exact aliases fk∗+ℓn for

all ℓ = 1, 2, . . . , d
n
− 1.

The presence of these aliases will naturally affect signal reconstruction. Before discussing
this issue, we show an advantage in having aliases: they naturally absorb the noise that can

5Why are we using complex features for our example instead of the real sines and cosines? Just because
keeping track of which feature is an alias of which other feature is less notationally heavy for the complex
case. The essential behavior would be identical if we just considered sines and cosines.

6These aliases are essentially higher frequency sinusoids that look the same as the low frequency one
when regularly sampled at the rate n. This is the classic “movie of a fan under a strobelight” visualization
where a fan looks like it is stationary instead of moving at a fast speed!
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harm generalization. Critically, as defined in Example 3, the Fourier features are orthonormal
to each other in complex function space (where the integral that defines the complex inner
product is taken with respect to the uniform measure on [0, 1)). If we used only the first
n Fourier features (i.e. fk(x) upto k = n − 1) to fit an n-dimensional pure noise vector
(as described by {Zj = Wj}nj=1), the coefficients of the n-dimensional fit, i.e. {α̂k}nk=1,
would directly correspond to the appropriate discrete Fourier transform (DFT)7 of the n-
dimensional noise vector. By the appropriate8 Parseval’s relation in signal processing, the
expected total energy in the feature domain, i.e. E [∥α̂∥22] would be σ2, and moreover (due
to the isotropy of white/independent Gaussian noise), this energy would be equally spread
across all n Fourier features in expectation. That is, for every k ∈ [n] we would have
E [|α̂k|2] = σ2

n
.

Now, consider what happens when we include the d
n
− 1 higher-frequency aliases corre-

sponding to each lower frequency component k ∈ [n]. This gives us d Fourier features in
total, and we now consider the minimum-ℓ2-norm interpolator of noise using all d features.
The following is what will happen:

1. In an effort to minimize ℓ2-norm, the coefficient (absolute) values will be equally di-
vided9 among the d

n
aliased features for every realization of the noise samples, i.e.

|α̂k+ℓn| = |α̂k| for all ℓ ∈ {1, 2, . . . , d
n
− 1} and for all k ∈ [n].

2. For each k ∈ [n], the expected total contribution from the low frequency feature k and

its aliases is now reduced to
(

1

( d
n)

)
· σ2

n
= σ2

d
. This results in total E [∥α̂∥22] = n

d
σ2.

For this case, we have zero signal and thus the test MSE for the (whitened) Fourier
features is exactly ∥α̂∥22. Thus, we have exactly recovered the Θ

(
σ2 n

d

)
scaling for the ideal

MSE that was bounded in Corollaries 1 and 7 of [105]. The aliases, when used with minimum-
ℓ2-interpolation of noise, are dissipating noise energy, thus directly reducing its potentially
harmful effect on generalization in the average10 case.

7The convention for defining the DFT depends on the chosen normalization. The symmetric/unitary
DFT can be viewed as choosing the orthonormal basis vectors given by 1√

n
e2π(k)ix evaluated at n regularly

spaced points from [0, 1). The classic DFT is defined by a basis with a different scaling — namely 1
n instead

of 1√
n
. This results in the classic DFT having a factor of 1

n in the inverse DFT. We choose the convention for
the DFT which normalizes in the opposite direction. The basis vectors are just the un-normalized e2π(k)ix

evaluated at n regularly spaced points from [0, 1). We do not want any scaling factors in the relevant inverse
DFT because we want to get the coefficients of the Fourier features.

8The reader can verify that the normalization convention we have chosen for the DFT implies ∥α̂∥22 =
1
n∥Wtrain∥22.

9The reader who is familiar with wireless communication theory will be able to relate this to the concept
of coherent combining gain.

10It is also clear that the average case might be very different than the worst case — a phenomenon
intimately connected to the fundamental issue of adversarial examples on neural networks that empirically
generalize well [110].
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Avoiding signal “bleed”

The problem with ℓ2-minimizing interpolation is that the above effect of absorbing and
dissipating training label energy is generic, whether those labels are signal or noise. Whereas
being able to absorb and dissipate training harmful noise energy is a good thing, the same
exact effect is harmful when there is true signal. Suppose, as in Equation (2.6), that the
true signal was a constant (thus the only true frequency component is k = 0). A simple
calculation shows that the estimated coefficient of the true function would also be attenuated
in exactly the same way, and the absolute value of the coefficient corresponding to the
constant feature (i.e. |α̂0| = n

d
) decays to 0 as d → ∞. True signal energy, which should

ideally be concentrated in the constant feature, is bleeding into its aliases in the inference
by the ℓ2-norm-minimizing interpolating solution. This is what we are seeing in the scaling
of the test MSE of the ℓ2-minimizing interpolator for iid Gaussian features (Example 6,
shown in Figure 2.2) as well as the convergence of the test MSE of the minimum-ℓ2-norm
interpolator to the “null risk” proved by Hastie, Tibshirani, Rosset and Montanari [59]. An
illustration of this bleeding effect is provided in Figure 2.4(a), and the realization of this
effect on actually recovered signal components for Example 6 is shown in Figure 2.4(b).

The asymptotic bleeding of signal is a generic issue for whitened features more generally
(see [59, Lemma 2]). This may seem to paint a hopeless picture for the ℓ2-minimizing
interpolator even in the absence of noise – how, then, can it ever work? The key is that
we can rescale, and mix, the underlying whitened features to give rise to a transformed
feature family, with respect to which we seek an interpolating solution that minimizes the
ℓ2-norm of the coefficients corresponding to these transformed features. The test MSE of
such an interpolator will of course be different from the minimum-ℓ2-norm interpolator using
whitened features. The effective difference arises only through the effective rescaling of the
whitened features through this transformation: the manifestation of the rescaling can be
explicit (the features {ϕ(X)k}dk=1 can be visibly scaled by weights wk :=

√
λk for some

λk > 0) or implicit (the eigenvalues of the covariance matrix11 Σ corresponding to the
transformed features ϕ(X)k correspond to the squared weights λk).

Consider Example 8 and rescaling wk > 0 for Fourier feature fk. For a set of coefficients
α ∈ Rd corresponding to the original whitened features {fk}d−1

k=0, we denote the corresponding
coefficients for the rescaled features by β ∈ Rd. Then, the minimum-ℓ2-norm interpolator
with respect to the rescaled feature family is as below, for any output {Zj}nj=1:

β̂ := argmin∥β∥2 subject to
d−1∑

k=0

βkwkfk(xj) = Zj for all j ∈ [n].

This would recover equivalent coefficients α̂ for the minimum-weighted -ℓ2-norm interpo-
11Bartlett, Long, Lugosi and Tsigler [10] present their results through this implicit viewpoint, but their

analysis essentially reduces to the explicit viewpoint after a transformation in the underlying geometry.
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lator of the data with weight 1
wk

corresponding to feature k, as below:

α̂ := argmin
d−1∑

k=0

α2
k

w2
k

subject to (2.7)

d−1∑

k=0

αkfk(xj) = Zj for all j ∈ [n]. (2.8)

Now, consider the case of a constant signal without noise, i.e. Zj = 1 for all j ∈
[n]. We already saw that the true signal function, which is f0(x), satisfies f(xj) = 1 for
all j ∈ [n], as does each of its

(
d
n
− 1
)

aliases {fℓn(x)} for ℓ = 1, 2, . . . , d
n
− 1. Thus,

the coefficients of α̂ will be the unique linear combination of the aliases, with coefficients
represented by {α̂ℓn}, that minimizes the re-weighted ℓ2-norm subject to the sum of such
coefficients being exactly equal to 1 (to satisfy the interpolation constraint). The special
case of whitened features corresponds to wk = 1 for all k ∈ [d], and this intuitively results
all aliases contributing equally to the recovered signal function. What happens with non-
uniform weights: in particular, what happens when wk decreases as a function of frequency k?
Intuitively, the weighted-ℓ2-norm objective implies that higher-frequency aliases are penalized
more, and thus a solution would favor smaller coefficients α̂ℓn for higher integral values of
ℓ. In fact, Section 2.4 shows by the principle of matched filtering that the ℓ2-minimizing
coefficients are precisely

α̂ℓn =
w2
ℓn

V
where V :=

d/n−1∑

ℓ=0

w2
ℓn for all ℓ = 0, 1, . . . ,

d

n
− 1. (2.9)

Since the true constant signal is represented by coefficients α∗
0 = 1 and zero everywhere

else, we are particularly interested in the absolute value of α̂0: how much of the true signal
component have we preserved? Then, the simple explicit calculation in Section 2.4 shows
that this “survival factor” is essentially12

SU :=
α̂0

α∗
0

=
w2

0
∑ d

n
−1

ℓ=0 w2
ℓn

. (2.10)

The inverse of the survival factor SU, after substituting λk := w2
k, is very closely related

to the first “effective rank” condition introduced by Bartlett, Long, Lugosi and Tsigler to
12This survival factor can also be understood as the outcome of a competition between two functions. The

true signal f0 that has squared weight w2
0, and the most attractive orthogonal alias whose squared weight

is
∑ d

n

ℓ=1 w
2
ℓn. The minimum 2-norm interpolator will pick a convex combination of the two by minimizing

γ2

w2
0
+ (1−γ)2∑ d

n
ℓ=1 w2

ℓn

where γ is the survival factor of the true feature. This is minimized by the answer given here

for γ = SU.
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characterize the bias of the minimum-ℓ2-norm interpolator in [10]. Clearly, the survival
factor intimately depends on the relative weights placed on different frequencies, how many
frequencies there are in consideration, and how many perfect aliases there are (the number
of aliases is inversely proportional to the number of training samples n). It is illustrative to
rewrite the survival factor SU as

SU :=
1

1 +
∑ d

n−1

ℓ=1 w2
ℓn

w2
0

. (2.11)

Equation (2.11) is in a form reminiscent of the classic signal-processing “one-pole-filter
transfer function”. What matters is the relative weight of the favored feature w0 to the
combined weight of its competing aliases. As long as it is relatively high, i.e. w2

0 ≫
∑ d

n
−1

ℓ=1 w2
ℓn,

the true signal will survive. So in particular, if the weights are such that the sum
∑ d

n
−1

ℓ=1 w2
ℓn

converges even as the number of features grows, the true signal will at least partially survive
even as d

n
→ ∞. Meanwhile, if the sum

∑ d
n
−1

ℓ=1 w2
ℓn diverges and does so faster than w2

0,
the signal energy will completely bleed out into the aliases (as happens for the whitened case
wk = 1 for all k).

This need for the relative weight on the true features to be high enough relative to their
aliases is something that must hold true before any training data has even been collected.
In other words, the ability of the 2-norm minimizing interpolator to recover signal is funda-
mentally restricted. There needs to be a low-dimensional subspace (low frequency signals in
our example) that is heavily favored in the weighting, and moreover the true signal needs
to be well represented by this subspace. The weights essentially encode an explicit strong
prior 13 that favors low-frequency features.

We can now start to understand the discrepancy between Examples 6 and 7. There
is no prior effect favoring in any way the first 500 features for Example 6. However, by
their very nature the features used in Example 7 heavily (implicitly, when the eigenvalue
decomposition of Σ is considered14) favor the constant feature that best explains the data.
This is because the maximal eigenvector of Σ is a “virtual feature” that is an average of the
d explicit features, i.e. its entries are iid N (1, 0.01

d
). This better and better approximates the

constant feature, the true signal, as d increases – and this improved approximability is the
primary explanation for the double descent behavior observed in Figure 2.3.

In Figure 2.4, we illustrate how changing the level of the prior weights impacts interpola-
tive solutions using Fourier features for the simple case of a sign function. Here, there is
noise in the training data, but the results would look similar even if there were no training
noise — the prior weights are primarily fighting the tendency of the interpolator to bleed
signal.

13This is in stark contrast to feature selection operators like the Lasso, which select features in a data-
dependent manner.

14In fact, this very case is evaluated in [59, Corollary 1].
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(b) Strong prior- learned function
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(d) Medium prior- learned function
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(e) Weak prior- feature weights

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Train-true
Train-prediction
Learned function

(f) Weak prior - learned function

Figure 2.4. Effect of different priors on weighted ℓ2 norm interpolation with n = 500, d =
11000 when the true signal is the sign function. The learned function approximates the true
signal well when we have a strong prior on the low frequency features but suffers from signal
bleed as weaken the prior.
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Avoiding signal contamination

We have seen that a sufficiently strong prior in a low-dimensional subspace of features avoids
the problem of asymptotically bleeding too much of the signal away — as long as the true
signal is largely within that subspace. But what happens when some of the true signal is bled
away? How does this impact prediction beyond shrinking the true coefficients? Furthermore,
the issue of signal bleed does not by itself answer the question of consistency, particularly
with the additional presence of noise. How does the strong prior affect fitting of noise – is
it still effectively absorbed by the aliases, as we saw when the features were whitened? To
properly understand this, we need to introduce the idea of “signal contamination.”

Consider Example 8 now with the constant-signal-plus-noise generative model for data:

Zj = 1 +Wj for all j ∈ [n]. (2.12)

The output energy (signal as well as noise) bleeds away from the true signal component
corresponding to Fourier feature 0 – but because we are exactly interpolating the output data,
the energy has to go somewhere. As a result, all energy that is bled from the true feature will
go into the aliased features {fℓn}d/n−1

ℓ=1 . Each of these features contributes uncorrelated zero-
mean unit-variance errors on a test point, scaled by the recovered coefficients {α̂ℓn}. Because
they are uncorrelated, their variances add and we can thus define the contamination factor

CN :=

√√√√
d/n−1∑

ℓ=1

α̂2
ℓn.

Even if there were no noise, the test MSE would be at least CN2. Consequently, it is
important to verify that CN → 0 as (d, n) → ∞.

A straightforward calculation (details in Section 2.4), again through matched-filtering,
reveals that the absolute value of the coefficient on aliased feature ℓn is directly proportional
to the weight wℓn and the original true signal strength. Thus contamination (measured as
the standard-deviation, rather than the variance in order to have common units), like signal
survival, is actually a factor

CN =

√∑d/n−1
ℓ=1 w4

ℓn

w2
0 +

∑d/n−1
ℓ=1 w2

ℓn

(2.13)

for the minimum-weighted-ℓ2-norm interpolator corresponding to weights {wk}dk=1. Substi-
tuting λk := w2

k results in an error scaling that is very reminiscent of Bartlett, Long, Lugosi
and Tsigler’s second effective-rank condition. Thus, we see that the two notions of effec-
tive ranks[10] correspond to these factors of survival and contamination, which Bartlett,
Long, Lugosi and Tsigler sharply characterize for Gaussian features using random matrix
theory. The effective “low-frequency features” there represent directions corresponding to
the dominant eigenvalues of the covariance matrix Σ.
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There is a tradeoff: while we saw earlier that the weight distribution described here
should somewhat favor low-frequency features (dominant eigenvalue directions), it cannot
put too little weight on higher-frequency features either. If that happens, the bleeding
prevention conditions can be met for a true signal that is in the appropriate low-dimensional
subspace. But the noise will give rise to non-vanishing contamination and the variance of the
prediction error will not go to 0 as (n, d) → ∞ – then, the minimum-ℓ2-norm interpolator
is inconsistent. Equation (2.13) tells us that the contamination CN will be sufficiently small
to ensure consistency iff one of the following conditions hold:

1. If the sum of squared alias-weights
∑d/n−1

ℓ=1 w2
ℓn does not diverge, the term w2

0 must

dominate this sum in the denominator. Then, we also need w2
0 ≫

√∑d/n−1
ℓ=1 w4

ℓn so
that the denominator dominates the numerator. Note that in this case, the numerator

will not diverge either since
∑d/n−1

ℓ=1 w2
ℓn ≥

√∑d/n−1
ℓ=1 w4

ℓn.

2. The alias-weights {wℓn}ℓ≥1 decay slowly enough so that the sum of squared alias-
weights

∑d/n−1
ℓ=1 w2

ℓn diverges, but decay fast enough so that the sum of fourth power of
alias-weights

∑d/n−1
ℓ=1 w4

ℓn does not diverge. This means that there is sufficient effective
overparameterization to ensure harmless noise fitting.

3. If the alias-weights decay slowly enough that the sum of fourth power of alias-weights
does not diverge then it must go to infinity at a slower rate than the sum of squared
alias-weights.

Clearly, avoiding non-zero contamination is its own condition, which is not directly implied
by avoiding bleeding.

To get consistency, it must be the case that the contamination goes to zero with increasing
n, d for everywhere that has true signal as well as an asymptotically complete fraction of the
other frequencies. If contamination doesn’t go to zero where the signal is, the test predictions
will experience a kind of non-vanishing self-interference from the true signal. If it doesn’t
go to zero for most of where the noise is, then that noise in the training samples will still
manifest as variance in predictions.

It is instructive to ask whether the above tradeoff in maximizing signal “survival” and
minimizing signal “contamination” manifests as a clean bias-variance tradeoff [14]. The
issue is that the contamination can arise through signal and/or noise energy. The fraction of
contamination that comes from true signal is mathematically a kind of variance that behaves
like traditional bias — it is an estimation error that the inference algorithm makes even when
there is no noise. The fraction of contamination that comes from noise is indeed a kind of
variance that behaves like traditional variance — it would disappear if there were no noise
in training data.
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Figure 2.5. Weighted ℓ2 norm interpolation for regularly spaced Fourier features with a
strong prior on low frequency features.

A filtering perspective on interpolation

Returning to the case of Fourier features with regularly spaced training points, we can see
that given the weightings wk on all the features, we can break the features into cohorts of
perfect aliases. All the features are orthogonal (vis-a-vis the test distribution) and because
of the regular sampling, each cohort is orthogonal to every other cohort even when restricted
to the n sample points. Consequently, we can understand the bleeding within each of the
cohorts separately. Moreover, if we assume that the true signal is going to be low-frequency15,
then we can think about how much the lowest frequency representative of each cohort bleeds.
This can be expressed in terms of the survival 0 ≤ SU(k) ≤ 1 for that low-frequency feature
k when using the weighted minimum 2-norm interpolator. These {SU(k)}n−1

k=0 together can be
viewed as a filter. This filter tells us how much the act of sampling and estimating attenuates
each frequency in the true signal. This attenuation is clearly a kind of “shrinkage.”

With the filtering perspective, we can immediately see that for the minimum-weighted-
ℓ2-norm interpolator to succeed in recovering the signal, the true signal needs to be well
approximated by the low-frequency features {k} for which SU(k) ≊ 1 – otherwise the true
pattern will be substantially bled away. We also see that to be able to substantially ab-
sorb/dissipate the noise energy (which is going to be spread equally across these n cohorts
by the isotropic property of white Gaussian noise), it must be the case that most of the
survival coefficients {SU(k)}n−1

k=0 are quite small — most of the noise energy needs to be bled
away. As we tend (n, d) to infinity, we can quantify the required conditions for consistency.
In the “continuous time” setting, as n is increasing, the continuous-time frequency (that
corresponds to the “fastest” feature) is growing with n. So, as long as the maximal value
of this frequency k for which the signal would survive (i.e. SU(k) ≊ 1) grows sub-linearly16

15This is just for simplicity of exposition and matching the standard machine learning default assumption
that all things being equal, we prefer a smoother function to a less smooth function. If the weighting were
different, then we could just as well redo this story looking at the highest-weight member of the alias cohort.

16If this is reminiscent of the conditions discussed when one considers Nadaraya-Watson kernel estimation
in non-parametric statistics, this is no coincidence as [17] points out clearly.
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in n, and the set of frequencies for which the signal would “bleed out” (i.e. SU(k) → 0) is
asymptotically n− o(n) frequencies, there is hope of both recovering a low-frequency signal
as well as absorbing noise.

On one hand, if Ω(n) of the SU(k)s stay bounded above 0, then those dimensions of the
white noise will clearly not be attenuated as desired, and will show up in our test predictions
as a classical kind of prediction variance that is not going to zero. On the other hand,
if the true signal is not eventually expressible by low-frequency features whose “survival”
coefficients approach 1, then there is asymptotically non-zero bias in the prediction.

A further nice aspect of the filtering perspective is that it also lets us immediately see that
since the relevant Moore-Penrose pseudo-inverse is a linear operator, we can also view it in
“time domain.” In machine learning parlance, we could call this the “kernel trick”, by which
the prediction rule has a direct (and in this case linear) dependence on the labels for the
training points. In a traditional signal processing, or wireless communications, perspective,
this arises from pulse-shaping filters, or interpolating kernels. A particular set of weights
induces both a “survival” filter and an explicit time-domain interpolation function. This is
illustrated in Figure 2.5 for a situation in which we put a substantial prior weight on the
low-frequency features. Notice that the low-frequency features survive, and have very little
contamination. Meanwhile, the higher-frequencies are attenuated, and though their energy
is divided across even higher frequency aliases, the net contamination is also small. The
time-domain interpolating kernel looks almost like a classical low-pass-filter, except that it
passes through zero at the training point intervals to maintain strict interpolation.

2.3 Discussion
In this chapter, via a signal-processing inspired perspective, we identified the key challenges
in overparameterized linear regression as “signal bleed” due to shrinkage of true signal and
“contamination” due to false discovery of aliases of the true signal and the additive training
noise.

For the minimum-ℓ2-norm interpolator, in the presence of a prior or weighting on the
features, the true signal can be preserved while ensuring the noise is dissipated but these
two effects can be at odds with each other and thus the prior needs to be appropriately
balanced. If we don’t have a sufficiently strong prior on the directions (features) where the
true signal is present then there is too much “signal bleed”. However, if we have too strong
of a prior on a few features then the additive training noise cannot be absorbed harmlessly
and contaminates our prediction.17

A very interesting phenomenon can be observed from Figure 2.4 while using a medium
prior. Here, the prior is not sufficiently high to recover the true signal but is high enough
that the recovered part of the true signal is able to overcome the contamination. As a

17This phenomenon persists beyond the minimum-ℓ2-norm interpolator and it has been shown that spar-
sity seeking methods such as the minimum- ℓ1-norm interpolator recover true signal but struggle to dissipate
training noise [105].
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consequence, the learned function has the same sign as the true function and can accurately
predict where the true function is positive or negative. This prompts the question, are there
regimes where we can generalize well (achieve low test error) for binary classification even
though we can’t generalize well for the regression task? The next chapter shows that this is
indeed the case.

2.4 Appendix: Calculations for the regularly spaced
Fourier features in complex form

Consider the setup as in Example 3. We have the observation Ztrain ∈ Cn and d Fourier
features, fk(Xtrain,j) = ei2πkXtrain,j for k = {0, 1, . . . , d − 1}. Here Xtrain contains regularly
spaced samples with Xtrain,j =

j
n

for j ∈ {0, 1, . . . , n − 1}. For ease of exposition we assume
d = (M+1)n for positive integer M . We wish to understand how the minimum-weighted ℓ2-
norm interpolating solution behaves in this setting. The first n features, form an orthogonal
basis for Cn and thus it suffices to understand the case where Ztrain is each basis vector
separately. Let

Ztrain = fτ (Xtrain), (2.14)
i.e Ztrain,j = eiπτXtrain,j , j ∈ [n].

for some τ ∈ {0, 1, . . . , n− 1}.Without loss of generality we consider τ in the range [0, n− 1]
since subsequent blocks of n features will be aliases of these features.

Note that we can write,

Ztrain =
d−1∑

k=0

α∗
kfk(Xtrain),

where α∗ = eτ ∈ Rn and ek denotes the kth standard basis vector. For any solution α ∈ Cn,
the interpolating constraint is,

Ztrain =
d−1∑

k=0

αkfk(Xtrain).

If we scale feature fj(Xtrain) by real weight wj, then the interpolating constraint becomes,

Ztrain =
d−1∑

k=0

βkwkfk(Xtrain),

with βk =
αk

wk
.

We are interested in the minimum weighted ℓ2-norm solution subject to the interpolating
constraint given by,



CHAPTER 2. LINEAR REGRESSION: A SIGNAL-PROCESSING PERSPECTIVE 38

α̂ = arg min
α∈Cd

∥Γ−1α∥2 (2.15)

s.t. Ztrain =
d−1∑

k=0

αkfk(Xtrain).

where Γ = diag(w0, w1, . . . , wd−1). Note that this is equivalent to the minimum ℓ2-minimizing
coefficients corresponding to the weighted features, as defined in [10]:

β̂ = argmin
β

∥β∥2 (2.16)

s.t. Ztrain =
d−1∑

k=0

βkwkfk(Xtrain).

We will solve the problem in (2.16) next. First, we list some properties of the regularly
spaced Fourier features. Denote by S(τ), the set of indices corresponding to features that
are exact aliases of fτ (Xtrain). Then,

S(τ) = {τ + n, τ + 2n, . . . , τ +Mn}. (2.17)

Note that M = |S(τ)| = d
n
− 1. We have,

fk(Xtrain) = fτ (Xtrain), k ∈ S (2.18)
⟨fk(Xtrain), fτ (Xtrain)⟩ = 0, k /∈ {{τ} ∪ S(τ)}. (2.19)

Using (2.14), (2.18) and (2.19) we can rewrite the optimization problem in (2.16) as,

β̂ = argmin
β

∥β∥2

s.t. βτwτ +
∑

k∈S(τ)

βkwk = 1.

Clearly to minimize the objective we must have β̂k = 0 for k /∈ {{τ} ∪ S(τ)} and thus it
suffices to consider the problem restricted to the indices in {{τ} ∪S(τ)}. By mapping these
indices to the set {0, 1, . . . ,M} and denoting the weight vector restricted to this set as w̃ we
write an equivalent optimization problem,

ξ̂ = argmin
ξ

∥ξ∥2

s.t.
M∑

k=0

ξkw̃k = 1.
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Note that w̃k = wτ+kn for k = 0, 1, . . . ,M .
We find an optimal solution to this problem by using the Cauchy Schwarz inequality which
states,

∥ξ̂∥2∥w̃∥ ≥
∣∣∣⟨ξ̂, w̃⟩

∣∣∣ ,

where equality occurs if and only if ξ̂ = cw̃ for some c ∈ C. Using the fact that wk ∈ R and
solving for c using the interpolating constraint we get,

ξ̂ =
w̃

∥w̃∥22
.

Mapping this back to original indices we get,

β̂k =

{
wk

V
, k ∈ {{τ} ∪ S(τ)}

0, otherwise,

and

α̂k =

{
w2

k

V
, k ∈ {{τ} ∪ S(τ)}

0, otherwise,
(2.20)

where,
V =

∑

k∈{{τ}∪S(τ)}

w2
k.

Next we consider the effect on a test point X ∈ R with i.i.d. entries X ∼ U [0, 1], when the
ground truth observation is Z = fτ (X). On this point we predict,

Ẑ =
d−1∑

k=0

α̂kfk(X).

We want to understand how different Ẑ is from Z. Using (2.20) we have,

Ẑ = α̂τfτ (X) +
∑

k∈S

α̂kfk(X)

= α̂τZ +
∑

k∈S

α̂kfk(X).

The prediction Ẑ consists of two components. The first component is the true signal atten-
uated by a factor α̂τ due to the effect of signal bleed. The signal bleeds to features that are
orthogonal to the true signal and this leads to the second component, a contamination term
that we denote by,

B =
∑

k∈S(τ)

α̂kfk(X).
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Let SU(τ) denote the fraction of the true coefficient that survives post signal bleed. Then,

SU(τ) =
α̂τ
α∗
τ

=
w2
τ∑

k∈{{τ}∪S(τ)}
w2
k

. (2.21)

Let CN(τ) denote the standard deviation of the contamination given by,

CN(τ) =

√
E[|B)|2].

Using the property of Fourier features when X is spaced uniformly in [0, 1] namely,

E[⟨fi(X), fj(X)⟩] =

{
0, i ̸= j

1, i = j.

to get,

E(|B|2) =
∑

k∈S(τ)

|α̂k|2 E[|fk(X)|2] =
∑

k∈S(τ)

|α̂k|2 .

Using this we have,

CN(τ) =

√ ∑

k∈S(τ)

|α̂k|2 =

√ ∑
k∈S(τ)

w4
k

∑
k∈{{τ}∪S(τ)}

w2
k

. (2.22)

Next we consider examples of weighting schemes for a given n, d pair with large enough
d
n

when the true signal is at τ . The set of indices containing aliases of the true signal is
denoted as S(τ) as in (2.17).

Example 9.

Uniform weights, wk = 1.

α̂k =

{
1

1+ d
n
−1

= n
d
, k ∈ {{τ} ∪ S(τ)}

0, otherwise.

SU(τ) =
n

d
.

CN(τ) =

√
d
n

1 + d
n
− 1

=

√
n

d
.

Now if we consider a 1-sparse setting where the true signal is simply one of the features
(say feature 1), we see that survival corresponding to the true feature scales as n/d and in
overparameterized settings where d > n this will not be close to 1, and thus the resulting test
MSE for regression will not be zero. Next, we consider spiked weights model that corresponds
to bi-level model from Figure 1.4.



CHAPTER 2. LINEAR REGRESSION: A SIGNAL-PROCESSING PERSPECTIVE 41

Example 10. Spiked weights on low frequency features: This selects a fraction of energy to
put on the favored set of s < n features. Namely. for a ∈ [0, 1] and s < n.

wk =





√
ad
s
, 0 ≤ k < s√

(1−a)d
d−s , otherwise.

For 0 ≤ τ < s,

α̂k =





ad
s

ad
s
+( d

n
−1).

(1−a)d
d−s

≈ 1

1+
(1−a)

na( 1s− 1
d
)

≈ 1

1+ s
n(

1
a
−1)

, k = τ

(1−a)d
d−s

ad
s
+( d

n
−1) (1−a)d

d−s

= 1
a(d−s)
s(1−a)

+ d
n
−1

≈ 1

( a
1−a)

d
s
+ d

n

, k ∈ S(τ)

0, otherwise.

SU(τ) ≈ 1

1 + s
n

(
1
a
− 1
) .

CN(τ) ≈

√
d
n(

a
1−a

)
d
s
+ d

n

=

√
n

d
.

1(
a

1−a

)
n
s
+ 1

=
s√
nd

.
1(

a
1−a

)
+ s

n

.

For s ≤ τ < n,

α̂k =

{
1

1+ d
n
−1

= n
d
, k ∈ {{τ} ∪ S(τ)}

0, otherwise.

SU(τ) =
n

d
.

CN(τ) =

√
d
n

1 + d
n
− 1

=

√
n

d
.

For this spike model we observe that if s/(na) ≈ 0, then the survival is close to 1. Further
contamination is close to 0 as long as s ≪ n and n ≪ d and under these conditions the test
MSE for regression will be low. We present a detailed quantitative analysis of the test MSE
in the following chapter, Chapter 3, corresponding to the qualitative discussion provided
here.
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Chapter 3

Regression vs binary classification

This chapter highlights the differences between binary classification and regression, using
the overparameterized linear model with Gaussian features. Depending on the extent of
“effective overparameterization”, the minimum-norm solution can:

• succeed at both regression and binary classification,

• succeed at binary classification and fail at regression, or

• fail at both,

as we show in Theorem 2. The intermediate regime of special interest is the one for which
minimum-ℓ2-norm interpolators generalize poorly in regression tasks, but well in binary clas-
sification tasks. Underlying these results is a sharp non-asymptotic analysis of the minimum-
ℓ2-norm interpolator for the binary classification task. We conceptually link the techniques
introduced in recent analysis of this interpolator for the regression task [10] to the binary
classification task, using the signal-processing (Fourier-theoretic) interpretation of the over-
parameterized regime introduced in the previous chapter. The key difference in the binary
classification setting is that the training data only consists of binary labels (as opposed to
real-valued labels in the regression setting). However, the binary classification task itself is
much easier than the regression task (regression is akin to predicting the correct real value,
binary classification is akin to predicting the sign correctly).

3.1 Problem setup
Here, we describe the setup for training and test data, evaluation of binary classification and
regression tasks, and choices of featurization (in that order).
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Data

Let X denote the space of input data. For binary classification, our training data are input
data-binary label pairs (X1, Y1), . . . , (Xn, Yn) taking values in X × {−1,+1}; for regression,
the training data are input data-real output pairs (X1, Z1), . . . , (Xn, Zn) taking values in X ×
R. We assume that there is a feature map ϕ : X → Rd, target linear function parameterized
by α∗ ∈ Rd, and label noise parameter 0 ≤ ν∗ < 1/2 such that for every i ∈ {1, 2, . . . , n},
we have

Zi = ⟨ϕ(Xi), α
∗⟩ and (3.1)

Yi =

{
sgn(Zi) with probability (1− ν∗)

−sgn(Zi) with probability ν∗.
(3.2)

Here, the feature map ϕ is known, but the target parameter α∗ (which we refer to as the
signal) is unknown. The label noise in Yi is assumed to be independent of everything else.

Let ϕ(x) =
[
ϕ1(x) . . . ϕd(x)

]T for x ∈ X , i.e. ϕj(x) is the value of the jth feature in
ϕ(x). We will consider the training data covariates {Xi}ni=1 to be mutually independent and
identically distributed (iid). Let Σ = E[ϕ(X)ϕ(X)⊤] denote the covariance matrix of the
feature vector ϕ(X) for X following the same distribution as Xi. We assume Σ is invertible,
so its square-root-inverse Σ−1/2 exists.

We define shorthand notation for the training data: let

Φtrain :=
[
ϕ(X1) ϕ(X2) · · · ϕ(Xn)

]⊤ ∈ Rn×d

denote the data (feature) matrix; Ztrain :=
[
Z1 . . . Zn

]⊤ ∈ Rn denote the regression output
vector; and Ytrain :=

[
Y1 . . . Yn

]⊤ denote the classification output vector. Note that if there
is no label noise (i.e. ν∗ = 0), then we have Ytrain = sgn(Ztrain).

Binary classification, regression, and interpolation

The overparameterized regime constitutes the case in which the dimension (or number) of
features is greater than the number of samples, i.e. d ≥ n. We define the two types of
solutions starting with interpolating solutions.

Definition 3. We consider solutions α that satisfy one of the following feasibility conditions
for interpolation:

Φtrainα = Ytrain or (3.3a)
Φtrainα = Ztrain (3.3b)

In particular, we denote the minimum-ℓ2-norm interpolation on binary labels as



CHAPTER 3. REGRESSION VS BINARY CLASSIFICATION 44

α̂2,binary := argmin
α∈Rd

∥α∥2 s.t. Equation (3.3a) holds. (3.4)

Similarly, we denote the minimum-ℓ2-norm interpolation on real labels as

α̂2,real := argmin
α∈Rd

∥α∥2 s.t. Equation (3.3b) holds. (3.5)

Recall from our discussion in Section 1.4 of Chapter 1 that these interpolations arise from
minimizing the square loss on training data. If we instead minimized the logistic or hinge
loss, we would obtain the hard-margin support vector machine (SVM), defined below.

Definition 4. For linearly separable data, the hard-margin Support Vector Machine (SVM)
is α̂SVM ∈ Rd, defined by

α̂SVM := argmin
α∈Rd

∥α∥2

s.t. Yiϕ(Xi)
⊤α ≥ 1 for all i = 1, . . . , n. (3.6)

Note that data is defined to be linearly separable iff the constraints in Equation (3.6) can be
feasibly satisfied by some parameter vector α.

As long as d ≥ n, there is almost surely a solution that interpolates the binary labels
{Yi}ni=1 and it satisfies Equation (3.6) with equality for any continuous distribution on the
features. Thus, in the overparameterized regime, the training data is trivially linearly sep-
arable. Note, however, that the feasibility constraints do not require the SVM solution to
interpolate the binary labels.

The standard metrics for test error in regression and binary classification tasks are,
respectively, the mean-square-error (MSE) and binary classification error, defined as follows.
In these definitions, we have ignored the irreducible error terms arising from possible additive
noise in real outputs and label noise in binary outputs respectively. This reflects the practical
goal of all prediction to get the underlying true output right, as opposed to matching noisy
measurements of that underlying true output.

Recall from Definition 1 that the excess mean-square-error (MSE) of α̂ ∈ Rd is given by,

Ereg(α̂) := E[⟨ϕ(X), α∗ − α̂⟩2].

Definition 5. The excess binary classification error of α̂ ∈ Rd is given by

Ebinary(α̂) := E [I [sgn(⟨ϕ(X), α∗⟩) ̸= sgn(⟨ϕ(X), α̂⟩)]]
= P [sgn(⟨ϕ(X), α∗⟩) ̸= sgn(⟨ϕ(X), α̂⟩)] . (3.7)
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Here, all expectations (and ensuing probabilities) are only over the random sample X of
test data. As is standard, we will characterize the regression and binary classification test
errors with high probability over the randomness in the training data {Xi, Yi}ni=1.

As a final comment, we will typically construct an empirical estimate of both test error
metrics from ntest test samples of data drawn without any label noise. This is for ease of
empirical evaluation.

Featurization

We consider zero-mean Gaussian featurization, i.e. for every i ∈ {1, . . . , n}, we have

ϕ(Xi) ∼ N (0,Σ). (3.8)

We denote the spectrum of the (positive definite) covariance matrix Σ by the vector λ :=[
λ1 . . . λd

]
, where the eigenvalues are sorted in descending order, i.e. we have λ1 ≥ λ2 ≥

. . . ≥ λd > 0.
Throughout, we will consider various overparameterized ensembles obtained by scaling

the covariance parameter Σ as a function of both the number of training data points, n, and
the number of features, d. We theoretically characterize the performance of solutions for
binary classification and regression tasks using two representative ensembles, defined below.

Definition 6 (Isotropic ensemble(n, d)). The isotropic ensemble, parameterized by (n, d),
considers isotropic Gaussian features, Σ = Id. For this ensemble, we will fix n and study the
evolution of various quantities as a function of d ≥ n.

Note that the isotropic ensemble constitutes the “maximal” level of effective overparam-
eterization (as defined in the second effective rank in [10]) for a given choice of (n, d).

Next, we describe the bi-level ensemble illustrated in Figure 1.4 and reproduced here for
the convenience of the reader. Recall that in the last chapter we saw a qualitative analysis
of regression error under this bi-level model and observed that under certain conditions on
the parameters of the bi-level model we get low regression test MSE.

Definition 7 (Bi-level ensemble(n, p, q, r)). The bi-level ensemble is parameterized by (n, p, q, r),
where1 p > 1, 0 ≤ r < 1 and 0 < q < (p− r). Here, parameter p controls the extent of artifi-
cial overparameterization), r sets the number of preferred features, and q controls the weights
on preferred features and thus effective overparameterization. In particular, this ensemble
sets parameters

d := ⌊np⌋
s = ⌊nr⌋ and
a = n−q.

1We restrict (p, q, r) to this range to ensure that a) the regime is truly overparameterized (choice of p),
b) the eigenvalues of the ensuing covariance matrix are always positive and ordered correctly (choice of q),
c) the number of “high-energy” directions is sub-linear in n (choice of r).
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Figure 1.4. The bi-level model parameterized by p, q, r that scales with number of training
points n. The number of features d = np. The covariance matrix has a bi-level structure
with the first s = nr eigenvalues having value np−q−r while the remaining eigenvalues are
approximately 1. (repeated from page 6)

The covariance matrix of the Gaussian features Σ(p, q, r) is set to be a diagonal matrix,
whose entries are given by:

λj =

{
ad
s
, 1 ≤ j ≤ s

(1−a)d
d−s , otherwise.

For this ensemble, we will fix (p, q, r) and study the evolution of various quantities as a
function of n.

The bi-level covariance matrix is parameterized by the choice for the top s eigenvalues and
the bottom (d− s) eigenvalues, with the sum of eigenvalues being invariant(equal to d). The
parameters of critical importance are p, which determines the extent of overparameterization
(i.e. number of features), r, which determines the number of larger eigenvalues, and q, which
determines the relative values of larger and smaller eigenvalues (all as a function of the
number of training points n). We make a few remarks below on this ensemble.

Remark 1. This bi-level ensemble is inspired by the study of estimation of high-dimensional
spiked covariance matrices [e.g. 147, 91] when the number of samples is much smaller than
the dimension. In these spiked matrices, the parameter s is typically set to a constant (that
does not grow with n), and the top s eigenvalues are highly spiked with respect to the other
(d−s) eigenvalues. In fact, it is often assumed that there exists a universal positive constant
C, such that the smaller eigenvalues are bounded and the top (larger) eigenvalues grow with
(d, n) in the following way:

λj ≥
d

Cn
for all j ∈ {1, . . . , s} (3.9a)

λj ≤ C for all j ∈ {s+ 1, . . . , d}. (3.9b)
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Under these conditions, the ratio of the top to the bottom eigenvalues grows as Ω
(
d
n

)
, and

Wang and Fan [147] show that the top s estimated eigenvalues of the high-dimensional co-
variance matrix can be estimated reliably from samples, even when the number of samples is
less than the dimension (i.e. n < d). This condition, which is also critical for good general-
ization2 in regression problems, can be verified to be equivalent to the condition q ≤ (1 − r)
in our bi-level ensemble (see Theorem 2 for a full statement). Our definition of the bi-level
ensemble allows further flexibility in the choice of these parameters, and we will later show
that binary classification tasks can generalize well even in the absence of this condition.

Remark 2. The bi-level ensemble can be verified to match the isotropic ensemble (Defini-
tion 6) as a special case when the parameters are set as q + r = p. This case represents the
maximal level of effective overparameterization, and in general we take q ≤ (p− r) to ensure
correct ordering of the eigenvalues. The smaller the value of q, the less the effective overpa-
rameterization. The models of [25] are spiritually related in how they also use an exponent
like q to control the effective overparameterization.

Remark 3. We know that for “benign overfitting” [10] of additive noise to occur in regression
problems, we need to have sufficiently many (growing super-linearly in n) “unimportant”
directions, corresponding to the lower level of eigenvalues. The choice of parameters p > 1
and r < 1 ensures that the number of such “unimportant” directions is equal to (d − s) =
(np − nr) ≫ n, and so the bi-level ensemble as defined does not admit the regime of harmful
overfitting of noise for any choice of parameters (p, q, r). This allows us to isolate signal
shrinkage as the principal reason for large regression error, and also study the ramifications
of such shrinkage for binary classification error.

3.2 A Fourier perspective on regression vs binary
classification

In Chapter 2, the Fourier features on regularly spaced training data was studied as an
“ultra-toy”, or caricature model to highlight the consequences of overparameterization in
linear regression on noisy data. The ramifications of ℓ2-minimization are clearly illustrated
through this model, as an explicit connection can be made to the classical phenomenon
of aliasing that is involved to understand the under-sampling of continuous time signals.
Using this signal-processing perspective, survival and contamination are natural quantities
of interest, as illustrated in Figure 2.4(a) for the 1-sparse case. In Figure 2.4(b), we see
how these concepts would qualitatively manifest more generally when the underlying signal
is hard-sparse.

As we illustrate in this section, appropriate weightings of these features under this “ultra-
toy” model also helped us conjecture all of the main results of this chapter. The Fourier

2In particular, avoiding signal shrinkage, as also shown in [10].



CHAPTER 3. REGRESSION VS BINARY CLASSIFICATION 48

ensemble is defined below and is an extension of Example 4 where we now have weighted
features.

Definition 8 (Weighted Fourier features in real form on regularly spaced data). We con-
sider n (odd) regularly spaced training points from (−π,+π) — specifically the sequence
(−π+ π

n
,−π+ 3π

n
, . . . ,−2π

n
, 0,+2π

n
, . . . ,+π− π

n
), a test distribution of X drawn uniformly at

random from (−π,+π), and the d (odd multiple of n) features chosen to be the standard real
orthonormal Fourier features:

1√
2π

,
1√
π
sin(x),

1√
π
cos(x), . . . ,

1√
π
sin

(
d− 1

2
x

)
,

1√
π
cos

(
d− 1

2
x

)
.

For doing minimum-norm interpolation using weighted features as in (2.15), we define the

weights corresponding to sines and cosines of frequency j by {λj}
(d−1)

2
j=0 . Following the conven-

tion of the rest of the chapter, we take the weights {λj} to be a decreasing, strictly positive
sequence.

Exact aliases are defined as distinct features that agree with each other (possibly up to a
constant multiple) on all the sampled points. The Fourier featurization allows exact aliases
to exist. There are three different groups of these exact aliases:

• The initial constant feature is essentially aliased by the cosines at every multiple3 of n.

• Each cosine feature in the first n features (namely corresponding to a frequency j ∈
{1, 2, . . . , n−1

2
}) picks up ( d

n
− 1) cosine aliases with frequencies (n− j), (n+ j), (2n−

j), (2n + j), . . .. This is because cosine is an even function and the training samples
are symmetrically distributed about 0.

• Similarly, each sine feature in the first n features (corresponding to a frequency j ∈
{1, 2, . . . , n−1

2
}) picks up ( d

n
− 1) sine aliases with frequencies (n − j), (n + j), (2n −

j), (2n+j), . . .. However, because sine is an odd function, these aliases have their signs
alternating with the (kn−j) ones being multiplied by (−1) and the (kn+j) ones being
exact aliases.

Regression vs binary classification

To see a Fourier counterpart of Theorem 2 from Section 3.4, which compares binary classi-
fication and regression test error of interpolating solutions, we consider the underlying true
function to be cos(X). At training time, we get actual real-valued outputs Zi = cos(Xi)
corresponding to the n regularly spaced points {Xi}.

3For ease of exposition, the minor issue of the constant feature having a slightly different scaling vis-a-vis
its aliases is going to be ignored in this treatment, but this is simply a matter of keeping track of notation.
Alternatively, we could eliminate this by using complex Fourier features. We will finesse this issue here by
simply not allowing the true signal to have a constant term in it.
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Figure 3.1: An illustration of the bi-level model for the Fourier features.

We consider a bi-level covariance model as in Definition 7 (illustrated in Figure 3.1) where
we scale the parameters (s, λH , d) with n in a coordinated way. Recall that the number of
prioritized features is given by s := nr for r ∈ [0, 1), and the number of features d = n+ np

for p > 1. (We added an extra term of n to make it easier to count the aliases. This has
no asymptotic effect when p > 1 and n → ∞.) The λH represents how much we favor the
special features and in keeping with the scaling in Definition 7, we set λH = np−r−q for some
q ∈ [0, p− r].

The minimum-ℓ2-norm interpolation of real-valued output using the weighted features
leads to the following coefficients on the d underlying unweighted Fourier features just as in
Section 2.4 from Chapter 2:

α̂ = argmin
α

(
1

λH

s−1∑

j=0

α2
j

)
+

d−1∑

j=s

α2
j

s.t. Φtrainα = ztrain. (3.10)

Because of the known orthogonality of the sine and cosine features on n regularly spaced
points, the first n columns of Φtrain are orthogonal. This means that the solution α̂ will only
have nonzero entries in the positions that correspond to the d

n
= 1+np−1 different columns of

Φtrain that are copies of the column corresponding to the feature cos(x). Since s < n, exactly
one of these will be favored and so the optimization problem in Equation (3.10) turns into
the much simpler problem:

min
a,b

∣∣a+np−1b=1

a2

np−r−q
+ np−1b2 (3.11)

where a represents the recovered coefficient corresponding to the true underlying feature
cos(x) and b represents the coefficients on all of its exact aliases.
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The calculation in Section 2.4 from Chapter 2 shows that Equation (3.11) is solved by:

a =
λH

λH +
(
d
n
− 1
) =

1

1 + nq−(1−r) and (3.12a)

b =
1

λH +
(
d
n
− 1
) =

1

np−r−q + np−1
. (3.12b)

Here, a represents the survival of the true signal as in (2.10). For large enough n, this is
approximated4 by

a ≈

{
1 if q < 1− r

n−(q−(1−r)) if q > 1− r
. (3.13)

Equation (3.13) is the Fourier-feature counterpart of the upper and lower bounds on survival
in Lemmas 9 (binary labels) and 10 (real-valued output) that we will see in Section 3.7.
Now, taking n → ∞, we get

a∞ =

{
1 if q < (1− r)

0 if q > (1− r)
(3.14)

which shows that the signal only fully survives if q < (1− r).
Let us now measure the contaminating effect of falsely discovered features. Following

Equation (3.21), we denote B(X) as the random variable that represents the contribution
of all of the aliases to the predictions. Each of the Fourier features of non-zero frequency is
zero-mean and has variance 1. From the orthonormality (in expectation over test data) of
the aliases, we get

Var[B(X)] = np−1b2

=

(
1

n
p
2
+ 1

2
−r−q + n

(p−1)
2

)2

, (3.15)

where in the last step, we substituted Equation (3.12b). Notice that (p−1)
2

> p
2
+ 1

2
− r − q

whenever q > (1− r), and so asymptotically we get

CN = σCN ≈

{
n−( p+1

2
−(q+r)) if q < (1− r)

n− (p−1)
2 if q > (1− r)

(3.16)

This expression is the Fourier-feature counterpart of the lower bound on contamination
established for Gaussian features in Lemma 13 in Section 3.7.

Thus, provided that q < (1−r), the expression in Equation (3.16) always decays to zero as
n → ∞, regardless of which case we are in. The combination of Equations (3.16) and (3.14)
tells us that regression in this problem can work to get mean-square-error approaching zero
as long as q < (1− r). On the other hand, when q > (1− r), signal does not asymptotically
survive and regression MSE approaches the null risk.

4In the style of the Bode Plot of a one-pole low pass filter.
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Figure 3.2. Illustration of how contamination can flip the sign of the prediction at a test
point. The survival relative to the standard deviation of the contamination, CN, is what
matters — if the latter is much smaller than the former, then the probability of binary
classification error is low.

Implications for binary classification: existence of the separating regime

First, let us assume we have access to real valued outputs Zi = cos(Xi) even for the binary
classification task. For binary classification, we only care about predicting sgn(cos(X))
correctly with high probability when X ∼ Unif [−π, π]. Clearly, binary classification also
works under the conditions for which regression works (i.e. q < (1 − r)), but, as we we
will see in Theorem 2, can work even in the absence of these conditions. Recall that when
q > (1 − r), the survival factor a → 0 as n → ∞. However, if the contamination is small
enough, i.e. σCN ≪ a, the probability of binary classification error is extremely low, as
illustrated in Figure 3.2. We observe from Equations (3.16) and (3.13) that σCN ≪ a if
q < (1− r) + (p−1)

2
. When that happens, binary classification will asymptotically work.

To see this more formally, we can upper bound the expression of binary classification
error and show that it goes to zero as n → ∞ under these conditions5. We use a union
bound together with Chebyshev’s inequality in a manner reminiscent of typicality proofs in
information theory [36].

Let ϵ = (p−1)
2

− (q − (1 − r)) be the difference between the relevant two exponents of
n corresponding to the ratio a/σCN . Define the events A := {X | | cos(X)| < 2n− ϵ

2} and
B := {X | |B(X)| > n− ϵ

2n−(q−(1−r))}. The event A corresponds to having an atypically
weak signal in the true feature, and the event B corresponds to having an atypically large
contamination term. Observe that if neither event A nor event B holds, we can substitute

5The exact Gaussian-feature expression for binary classification error in Proposition 1 depends solely
on the ratio a/σCN . Characterizing the exact expression for Fourier features is more challenging because
the contamination does not have a clean distribution, but we can upper bound the probability of binary
classification error using the standard deviation alone.
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Equation (3.13) to get |a cos(X)| ≥ 2|B(X)|, and this implies that a binary classification
error will not occur. Therefore, the probability of binary classification error is upper bounded
by P [A ∪ B], and by the union bound it suffices to upper bound the probability of each
of these events individually. We start with the “weak signal” event A. Because cos(X) is
a function that is always differentiable in the neighborhood where cos(X) = 0, this means
that cos(X) as a random variable has a density6 in the neighborhood of 0. Consequently,

we have P [A] =
∫ +n− ϵ

2

−n− ϵ
2

1

π
√

1−y2
dy = 2

π
sin−1(n− ϵ

2 ) which goes to zero as n → ∞. We now

turn to the “unusually large contamination” event B. Because q < (1 − r) + (p−1)
2

, we have
P [B] = P

[
|B(X)| > n− ϵ

2n−(q−(1−r))] ≤ P
[
|B(X)| > n

ϵ
2σCN

]
. By Chebyshev’s inequality, we

have P [B] ≤ n−ϵ, which goes to zero as n → ∞.
Since the probabilities of both events A and B have been shown to go to 0 as n → ∞,

the limiting binary classification error will also be zero when q < (1− r) + (p−1)
2

. Finally, it
is worth noting that the above calculation only upper bounds the binary classification error.
Subsequent work [110] show that even when q > (1−r)+ (p−1)

2
the binary classification error

goes to zero because the contamination from the falsely discovered features is concentrated
around the training points due to Gibbs phenomenon and is low everywhere else; hence,
even though the overall level of contamination may be high, the contribution of the falsely
discovered features to prediction on a randomly drawn test point is low.

The above argument can be extended to the case of interpolation of binary labels by using
the Fourier series representation of the underlying true label function. Since there is now
misspecification induced by the sign operator, this requires understanding the approximation-
theoretic properties of the Fourier series by its first s terms as s → ∞. While analyzing this
case theoretically for Fourier features is a challenging task empirical results using Fourier
features illustrated in Figure 1.5 introduced in Section 1.3 and reproduced here shows that
interpolation of binary labels also admits three regimes including an intermediate regime
where binary classification works while regression does not. While the first two regimes dis-
play behavior that parallels the Gaussian-feature results in Theorem 2. Note that although
for the choice of parameters (in particular a finite value of n) it it appears as if binary classifi-
cation does not work in the third regime, [110] show that asymptotically binary classification
succeeds even in this regime.

6This is known as a shifted arc-sine distribution.
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Figure 1.5. The three qualitative regimes illustrated using Fourier features and regularly
spaced training points. The top corresponds to both regression and binary classification
succeeding, the middle one is the intermediate regime where only binary classification works,
and the bottom one is where neither works. Here n = 49, s = 7, d = 441. (repeated from
page 7)
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3.3 Comment on binary label interpolation vs SVM
In our work, we study binary classification via minimum-norm interpolation of binary la-
bels (3.4) while the more popular approach for performing binary classification is via the
hard-margin SVM (3.6). From the optimization objective and constraints defined in Equa-
tion (3.6), we can see that there is a continuum of margins, defined by Yi · ϕ(Xi)

⊤α, that
is possible for each training point. Thus, unlike in least-squares regression, even obtaining
an exact expression for the margin-maximizing SVM solution, α̂SVM, appears difficult in
the overparameterized regime. The heart of our approach is to study the minimum-ℓ2-norm
interpolation of binary labels and leverage the result in Theorem 11 from [104] (reproduced
below for convenience of reader) that shows that all the training data points usually become
support vectors in a sufficiently overparameterized regime. In such a setting the solution
obtained via binary label interpolation is identical to the one obtained via SVM and thus
by analyzing the behavior or the binary label interpolator we can understand what happens
when we use the SVM solution instead.

Theorem 1. (Theorem 11 in [104]) Let Φtrain follow the Gaussian featurization from Equa-
tion (3.8) with covariance matrix Σ, and let α̂SVM be the solution to the optimization problem
in Equation (3.6).

1. If Σ satisfies

||λ||1 ≥ 72
(
||λ||2 · n

√
lnn+ ||λ||∞ · n

√
n lnn+ 1

)
, (3.17)

the vector α̂SVM satisfies the binary label interpolation constraint (Equation (3.3a))
simultaneously for every Ytrain ∈ {±1}n with probability at least

(
1− 2

n

)
.

2. If Σ = Id (i.e., Φtrain follows the isotropic ensemble), and

d > 10n lnn+ n− 1, (3.18)

then the vector α̂SVM satisfies the binary label interpolation constraint (Equation (3.3a))
for any fixed Ytrain ∈ {±1}n with probability at least

(
1− 2

n

)
.

We now remark on this result for the bi-level ensemble. Plugging in the condition from
Equation (3.17) into the bi-level ensemble (Definition 7), the following conditions on (p, q, r)
are sufficient for all training points to become support vectors with high probability (see
Appendix C in [104] for a full calculation):

p > 2 and (3.19a)

q >

(
3

2
− r

)
. (3.19b)

There is an intuitive interpretation for each of these conditions in light of the second “effective
rank” condition that is sufficient for benign overfitting [10] of noise (although our proof
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technique is quite different). First, the condition p > 2 mandates an excessively large number
of unimportant directions, i.e. corresponding to lower-level (smaller) eigenvalues ((np − nr)
of them). Second, the condition q >

(
3
2
− r
)

mandates that the ratio between the important
directions, i.e. higher-level eigenvalues, and the unimportant directions, is sufficiently small
— thus, the unimportant directions are sufficiently weighted. This second condition appears
to be strictly stronger than what is required for benign overfitting of noise.

Equation (3.19) is quite strong as a sufficient condition, but nevertheless admits non-
trivial regimes for which binary classification can generalize well or poorly (see the text
accompanying Theorem 2 for a full discussion). Subsequent work to ours [62] tightened the
condition in Equation (3.17) by providing a new deterministic equivalent to the phenomenon
of all training points becoming support vectors. It suffices to have q+r > 1 and p > 1 for all
training points to become support vectors with high probability. In particular the condition
q + r > 3/2 was tightened to q + r > 1 and the condition p > 2 was tightened to p > 1.

3.4 Generalization analysis for interpolating solution
with Gaussian features

In this section, we attempt an approximate characterization of the ensuing classification error
of minimum-ℓ2-norm interpolation on binary labels, denoted by α̂2,binary. Our hope is that
we can leverage comprehensive analyses of minimum-ℓ2-norm interpolation for least-squares
regression [10, 105]. However, it turns out that direct plug-ins of these analyses do not work
for a number of reasons:

1. Even with clean data (i.e. zero label noise), the binary classification setup admits
misspecification noise of the form Yi−ϕ(Xi)

⊤α∗. The misspecification noise is clearly
non-zero mean, and is non-trivially correlated with the features. This resists a clean
decomposition of generalization error into the error arising from signal identifiability
(or lack thereof) + error arising from overfitting of noise, as in [10].

2. For a given interpolation α̂, the expression for binary classification error is distinctly
different from mean-square-error (we will see this explicitly in Theorem 1). In partic-
ular, we will see that characterizing this expression sharply requires novel analysis of
the individual recovered coefficients as a result of interpolation.

Our analysis is subsequently non-trivial to engage with both of these difficulties, and directly
addresses both of them by analyzing the minimum-ℓ2-norm interpolator of binary labels
from first principles. This is, roughly speaking, in two steps: first, by characterizing the
expected generalization error in terms of 0-1 classification loss for any solution (regardless of
whether it interpolates or not) as a function of survival and contamination factors; second,
by obtaining sharp characterizations of these factors for the minimum-ℓ2-norm interpolator
of binary labels.
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Setup and result

We state our main result for this section in the context of the bi-level ensemble (Definition 7).
We fix parameters p > 1 (which represents the extent of artificial overparameterization),
and r ∈ [0, 1) (which sets the number of preferred features), and q ∈ [0, p − r] (which
controls the weights on preferred features, thus effective overparameterization); and study
the evolution of regression and binary classification risk as a function of n. For the purpose
of this section, we denote the regression and binary classification test losses under the bi-level
ensemble as Ereg(α̂2,real;n) and Ebinary(α̂2,binary;n), to emphasize that these losses vary with
n.

In addition to this and the broad setup as described in Section 3.1 we make a 1-sparse
assumption on the unknown parameter vector α∗, as described below.

Assumption 1 (1-sparse linear model). Recall that the bi-level ensemble sets s := nr. For
some unknown7 τ ∈ {1, . . . , s}, we assume that α∗ = 1√

λτ
· eτ , i.e. the parameter vector α∗

is 1-sparse.

Assumption 1 is most useful to for us to derive clean expressions for regression and binary
classification error in terms of natural notions of “survival” and “contamination”, as detailed
subsequently in Section 3.4. While this assumption appears rather strong, it is actually
without loss of generality within the bi-level ensemble for analyzing the performance of
minimum-ℓ2-norm interpolation specifically. If the true parameter vector α∗ has support only
within the s favored directions, then we can choose another orthonormal coordinate system
in which this α∗ is only along the first direction. Because minimum-ℓ2-norm interpolation
does not care about orthonormal coordinate changes and such a change will not change the
underlying covariance matrix, we just assume 1-sparsity to capture the representability of
the true model by the favored features.

Under Assumption 1, we now show the existence of a regime, corresponding to choice
of (p, q, r) above, for which the regression test loss stays prohibitively high, but the binary
classification test loss goes to 0 as n → ∞. (We also derive non-asymptotic versions of these
results in Section 3.7, but only state the asymptotic results here for brevity.)

Theorem 2. Assume that the true data generating process is 1-sparse (Assumption 1). For
the bi-level covariance matrix model, the limiting binary classification and regression error of
the minimum-ℓ2-norm interpolation (of binary labels and real labels respectively) converge in
probability, over the randomness in the training data, as a function of the parameters (p, q, r)
in the following way:

7The intuition for this condition, also motivated in prior analyses of minimum-ℓ2-norm interpolation [105],
is that for any reasonable preservation of signal, the true feature needs to be sufficiently preferred, therefore
weighted highly.
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1. For 0 ≤ q < (1− r), we have

lim
n→∞

Ereg(α̂2,real;n) = 0,

lim
n→∞

Ebinary(α̂2,binary;n) = 0.

In this regime, both regression and binary classification generalize well.

2. For (1− r) < q < (1− r) + (p−1)
2

, we have

lim
n→∞

Ereg(α̂2,real;n) = 1,

lim
n→∞

Ebinary(α̂2,binary;n) = 0.

In this regime, binary classification generalizes well but regression does not.

3. For (1− r) + (p−1)
2

< q ≤ (p− r), we have

lim
n→∞

Ereg(α̂2,real;n) = 1,

lim
n→∞

Ebinary(α̂2,binary;n) =
1

2
.

In this regime, the generalization is poor for both binary classification and regression.

Note that the presence of label noise ν∗ does not affect these asymptotic scalings (since
ν∗ < 0.5).

Figure 3.3(a) shows the evolution of binary classification and regression error as a function
of the parameter q, fixing p = 3/2 and r = 1/2. The binary classification error is plotted
for both the SVM and the minimum-ℓ2-norm interpolation — as we expect from Theorem 1,
these are remarkably similar. Figure 3.3(b) shows that the empirical quantities converge to
the limiting quantities from Theorem 2. Figure 3.4, visualizes the three asymptotic regimes
from Theorem 2 for different fixed values of q. The new regime of principal interest that we
have identified is values of q ∈ (1− r, 1− r+ p−1

2
) for which binary classification generalizes,

but regression does not. The entire proof of Theorem 2 is deferred to Sections 3.6 and 3.7,
but we briefly illustrate the intuition for this discrepancy between binary classification and
regression tasks in Section 3.4. In particular, we will see that good generalization for binary
classification requires a far less stringent condition on coefficient recovery than regression.

We now provide some intuition for the scalings described in Theorem 2 for the bi-level
ensemble.

Remark 4. Observe that in this ensemble, regression tasks generalize well iff we have q <
(1−r), which is a condition directly related to signal preservation. Recall that for fixed values
of (p, r), the parameter q controls the relative ratio of the larger eigenvalues to the smaller
eigenvalues (corresponding to unimportant directions). The higher the value of q, the smaller
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(a) Test loss vs q (b) Test loss vs number of training points
Figure 3.3. Comparison of test binary classification and regression error on solutions
obtained by minimizing different choices of training loss on the bi-level ensemble. For both
figures, parameters (p = 3/2, r = 1/2) are fixed. On the left, n = 529, d = 12167 are
fixed. Here, the dashed green curve corresponds to α̂2,real (Equation 3.3b), the orange curve
corresponds to α̂2,binary (Equation 3.3a), the solid blue curve corresponds to α̂SVM (Equation
3.6), and the black lines demarcate the regimes from Theorem 2. On the right, d varies as
n

3
2 .

this ratio, and the harder it is to preserve signal. The results on “benign overfitting” [10]
upper bound the contribution of (bounded ℓ2-norm) pure signal to regression error. This
upper bound can also be verified to decay with n iff we have q ≤ (1− r). Furthermore, as we
already remarked on Definition 7, the bi-level ensemble is designed to always avoid harmful
noise overfitting. (We will, however, see in the next remark that the rate of effective noise
absorption is important.)

Remark 5. The regime that we have identified that is of principal interest is intermediate
values of q, i.e. (1 − r) < q < (1 − r) + (p−1)

2
. This highlights a fascinating role that over-

parameterization, in the form of the parameter p, plays in allowing the good generalization
of interpolating solutions in binary classification tasks. Recall that the larger the value of p,
the larger the total number of features d = np. Thus, there are several “unimportant direc-
tions” in the bi-level ensemble all corresponding to the smaller eigenvalue — which helps in
harmless absorption of effective noise. In the proof of Theorem 2, we will identify an explicit
mechanism by which having many unimportant directions helps in good generalization for
binary classification, even though the signal is not preserved. At a high level, this mechanism
constitutes the spreading out of attenuated signal across several features in a relatively “harm-
less” way, to exhibit minimal influence on classification performance. In fact, this influence
is quantified by a notion of “contamination” by falsely discovered features (as we have seen
in the previous chapters) that can be directly linked to the contribution of noise overfitting to
regression error.
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(a) q = 0.75

(b) q = 0.95

Figure 3.4. Visualization of the three asymptotic regimes from Theorem 2. In the green
region both regression and binary classification generalize well and in the red region neither
regression nor binary classification generalize well. There is an intermediate region shown
in orange where binary classification generalizes even though regression does not.

Finally, we remark that Theorem 2 provides a connection between binary classification
and regression test error when both tasks are solved using the minimum-ℓ2-norm interpo-
lation, i.e. minimizing the square loss on training data. Since we explicitly linked the
minimum-ℓ2-norm interpolation and the SVM in the preceding Section 3.3, it is natural to
ask whether the generalization results in Theorem 2 help us directly compare the SVM for
binary classification tasks and the minimum-ℓ2-norm interpolation for regression tasks. We
can indeed do this in a slightly more restricted regime of the bi-level ensemble, described
below.

Corollary 1. Assume that the true data generating process is 1-sparse (Assumption 1).
Consider the bi-level ensemble with p > 2. Then, the classification error of the SVM (on
binary labels), and the regression error of the minimum-ℓ2-norm interpolation (on real labels),
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converge in probability as follows:

1. For
(
3
2
− r
)
< q < (1− r) + (p−1)

2
, we have

lim
n→∞

Ereg(α̂2,real;n) = 1,

lim
n→∞

Ebinary(α̂SVM;n) = 0.

2. For (1− r) + (p−1)
2

< q ≤ (p− r), we have

lim
n→∞

Ereg(α̂2,real;n) = 1,

lim
n→∞

Ebinary(α̂SVM;n) =
1

2
.

Observe that Corollary 1 directly follows from plugging in the condition required in the
bi-level ensemble for all training points usually becoming support vectors (Equation (3.19)),
and noting that for p > 2, we have

(1− r) +
(p− 1)

2
> (1− r) +

1

2
=

(
3

2
− r

)
.

Importantly, we have identified that even highly overparameterized regimes, in which all
training points become support vectors, can yield good generalization for binary classifica-
tion tasks when the hard-margin SVM is used. Interestingly, we are able to prove good
generalization for binary classification even though margin-based generalization bounds are
uninformative in sufficiently overparameterized settings (See Section 6 in [104] for more on
this).

Path to analysis: Binary classification vs regression test error

The first step to proving Theorem 2 is obtaining clean expressions for both binary classi-
fication and regression test error. The 1-sparsity assumption that we have made on the
unknown signal enables us to do this as a function of natural quantities corresponding to the
preservation of the true feature (survival) and the pollution due to false features (contami-
nation). If we assume that the real labels are generated by the τ th feature, α∗

τ , then we can
define these quantities for any solution α̂. First, as classically observed in statistical signal
processing, the estimated coefficient corresponding to the true feature α∗

τ will experience
shrinkage and be attenuated by a factor that we denote as survival. From Assumption 1, we
defined α∗ := 1√

λt
· eτ , and so we have

SU(α̂, τ) =
α̂τ

α∗
τ

=
√

λτ α̂τ (3.20)
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Second, we have the false discovery of features. We measure the effect of this false discovery
for prediction on a test point X by a contamination term:

B =
d∑

j=1,j ̸=τ

α̂jϕj(X). (3.21)

Recall that X is random, and the features ϕ(X) are zero-mean. Therefore, B is a zero-mean
random variable. Accordingly, we can define the standard deviation of the contamination
term on a test point as below:

CN(α̂, τ) =
√
E [B2]

=

√√√√
d∑

j=1,j ̸=τ

λjα̂2
j . (3.22)

where the last step follows from the orthogonality of the d features. The ideas of survival and
contamination can be related to the classical signal-processing concept of aliasing ; Figure 1.3
in Section 2.2 provides an illustration.

We state and prove the following proposition, which directly expresses regression and
binary classification test loss in terms of these terms.

Proposition 1. Under the 1-sparse noiseless linear model, the regression test loss (excess
MSE) is given by:

Ereg(α̂) = (1− SU(α̂, τ))2 + CN2(α̂, τ). (3.23)

and the binary classification test loss (excess classification error) is given by:

Ebinary(α̂) =
1

2
− 1

π
tan−1

(
SU(α̂, τ)

CN(α̂, τ)

)
. (3.24)

We can think of the quantity SU(α̂, τ)/CN(α̂, τ) as the effective “signal-to-noise ratio” for
binary classification problems.

Proof. We first prove Equation (3.23). Recall that for any estimator α̂, the excess MSE is
given by

Ereg(α̂) : = E[(⟨ϕ(X), α∗ − α̂⟩)2]

=
d∑

j=1

λj(α
∗
j − α̂j)

2,

and then substituting in the 1-sparse Assumption 1 gives us Equation (3.23).
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Next, we prove Equation (3.24). Since ϕ(X) = Σ1/2W for W = (W1, . . . ,Wd) ∼
N (0, Id), we can write ϕ(X)⊤α∗ = Wτ and ϕ(X)⊤α̂ =

∑d
j=1

√
λjWjα̂j. Thus, the ex-

cess binary classification error of α̂ is given by

Ebinary(α̂) = P
(
ϕ(X)⊤α̂ϕ(X)⊤α∗ ≤ 0

)
= P

(
√

λτ α̂τW
2
τ +Wτ ·

∑

j ̸=τ

√
λjα̂jWj ≤ 0

)
.

Now, the random sum
∑

j ̸=τ
√

λjα̂jWj has a Gaussian distribution with mean zero and
variance CN(α̂, τ)2. Since the {Wj}dj=1 are independent, the binary classification test error
of α̂ is the probability of the following event:

SU(α̂, τ)U2 + U · CN(α̂, τ)V ≤ 0,

where U and V are independent standard Gaussian random variables. This event is equiva-
lently written as

V

U
≤ −SU(α̂, τ)

CN(α̂, τ)
.

Since V/U follows the standard Cauchy distribution with cumulative distribution function
F (t) = 1

2
+ 1

π
tan−1 (t), the claim follows.

Equations (3.23) and (3.24) give us an initial clue as to why binary classification test error
can be easier to minimize than regression test error. For the right hand side of Equation (3.23)
to be small, we need SU → 1 to avoid shrinkage, as well as CN → 0 to avoid contamination.
However, for the right hand side of Equation (3.24) to be small, we only require the ratio
of contamination to survival to be small (i.e. CN/SU → 0). Clearly, the former condition
directly implies the latter, showing that binary classification is “easier” than regression8.
Theorem 2 is proved fully in Sections 3.6 and 3.7 in the following series of steps:

1. Matching (non-asymptotic) upper and lower bounds are proved on both survival and
contamination for interpolation of both real and binary labels. The full statements for
these bounds are contained in Theorems 3 and 4 in Section 3.6.

2. These bounds are substituted into the bi-level ensemble to get asymptotic scalings for
binary classification and regression test error (Section 3.7).

The bulk of the technical work is involved in proving the matching bounds on survival and
contamination, i.e. Theorems 3 and 4. Although these results are inspired by the calculations
provided in Section 3.2 for the Fourier case, we build on the techniques provided in [10] for
Gaussian features, particularly making use of fundamental concentration bounds that were
proved on “leave-one-out” matrices in that work. We build on these techniques to sharply

8Our decomposition of binary classification error is reminiscent of the decomposition by [50] into the
ratio of terms depending on the variance (like contamination) and bias (like survival) respectively. Because
our data is Gaussian, Proposition 1 allows an exact decomposition.
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bound both the “survival” and “contamination” terms, and thus obtain matching upper
and lower bounds for the binary classification test error. Crucially, our analysis needs to
circumvent issues that stem from effective misspecification in the linear model that arise
from the sign operator. While we do not provide a generic analysis of “misspecification
noise,” we exploit the special misspecification induced by the sign operator in a number of
technical equivalents of the aforementioned random matrix concentration results.

We essentially show that this induced misspecification makes no difference, asymptoti-
cally, to classification error arising from interpolation from binary labels, and the behavior
is essentially the same as though we had instead interpolated the real output. This is an-
other interesting consequence of requiring only the ratio CN

SU
→ 0, as opposed to the stronger

requirements for regression, CN → 0 and SU → 1. We will see in Section 3.7 that in the
asymptotic limit n → ∞, interpolation of binary noiseless labels attenuates the signal by a
factor exactly equal to

√
2
π
. This also corresponds to the attenuation factor of signal that has

been traditionally been observed as a result of 1-bit quantization applied before a matched
filter9 [142, 24]. Since this factor is strictly positive, it does not affect the asymptotic binary
classification error.

In fact, the non-asymptotic scalings of survival and contamination terms are unaffected
even by non-zero label noise on binary classification training data, provided that the label
noise still preserves non-trivial information about the signal. The survival is further attenu-
ated by a non-zero factor of (1−2ν∗), which is strictly positive as long as ν∗ < 1/2. Observe
that this is equivalent to a hypothetical scenario where the binary labels take on “shrunk”
values {−(1− 2ν∗), (1− 2ν∗)} instead of the usual {−1, 1}. As long as ν∗ < 1/2, the mag-
nitude of the labels is strictly non-zero and so the labels still provide useful information for
binary classification.

Finally, it is natural to ask how fundamental our assumptions of Gaussianity on data and
bi-level covariance structure are to our main generalization result (Theorem 2). We chose
the bi-level ensemble to illustrate the separation between binary classification and regres-
sion in the cleanest possible way. However, Theorems 3 and 4 do provide non-asymptotic
expressions for survival and contamination for arbitrary covariance matrices. In principle,
these expressions can be plugged into Proposition 1 to get upper and lower bounds on bi-
nary classification error for arbitrary covariance matrices. Further, the analysis of benign
overfitting in linear regression [10, 105] extends to sub-Gaussian features. In the same spirit,
we can show that the results — including the existence of the intermediate regime, in which
binary classification works but regression does not — extend to a weaker assumption of inde-
pendence and sub-Gaussianity on the underlying features. This extension uses an argument
similar to the Fourier-case argument given in Section 3.2 but requires a more direct treat-
ment of the approximation error arising from misspecification. Our results do not extend to
kernel settings, where there can be complex dependencies among the (infinite-dimensional)
features. This is an important direction for future work.

9Recall that [105] naturally connected matched filtering to minimum-ℓ2-norm interpolation.
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3.5 Appendix: Additional notation for proofs
We consider zero-mean Gaussian featurization, i.e. ϕ(Xi) = N (0,Σ). For ease of exposition,
we consider Σ to be diagonal10. Corresponding to a given index τ ∈ {1, . . . , d}, we define
the “leave-one-out” matrix Σ−τ whose eigenvalues are given by: µj(Σ−τ ) = λ̃j for j ∈
{1, . . . , d− 1}. The relation between the spectrum {λ̃j}d−1

j=1 and {λj}dj=1 is given by

λ̃j =

{
λj, j < τ

λj+1, j ≥ τ
. (3.25)

Consider {zj}dj=1 i.i.d. with zj ∼ N (0, In). Observe that we can write effective Gram
matrices corresponding to the full as well as the “leave-one-out” spectrum of the covariance
matrix:

A =
d∑

j=1

λjzjz
⊤
j = ΦtrainΦ

⊤
train, A−τ =

d∑

j=1,j ̸=τ

λjzjz
⊤
j . (3.26)

Using Equation (3.25), we can also express the “leave-one-out” Gram matrix A−τ as follows:

A−τ =
d−1∑

j=1

λ̃jzjz
⊤
j . (3.27)

We will use both of the above expressions for the leave-one-out matrix A−τ in our analysis.

3.6 Appendix: Proof of Theorem 2-Bounds on survival
and contamination

In this section, we obtain a general, non-asymptotic characterization of binary classifica-
tion (and regression) error by bounding survival and contamination terms. As described in
Section 3.4, this is then plugged into the expressions in Proposition 1 to prove Theorem 2.

First, we define shorthand notation that is useful for this section, in addition to the
notation already defined in Section 3.5. For ease of notation, we denote the survival and
contamination factors under the 1-sparse model for the case where we interpolate binary
labels as

SUb(τ) = SU(α̂2,binary, τ), CNb(τ) = CN(α̂2,binary, τ),

and for the case where we interpolate real output as

SUr(τ) = SU(α̂2,real, τ), CNr(τ) = CN(α̂2,real, τ).

10This is without loss of generality: if Σ were not diagonal, we could first do a coordinate transformation
to the basis of the eigenvectors of Σ.
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Finally, for a given index τ ∈ {1, . . . , d}, we denote as shorthand zτ := Ztrain. It is easy to
verify that zτ ∼ N (0, In) under the 1-sparse Assumption 1. We also denote yτ := Ytrain.
Recall that we consider the possibility of label noise probability equal to ν∗: from the
generative model defined in Equation (3.1), we have

yτ,i =

{
sgn(zτ,i) with probability (1− ν∗)

−sgn(zτ,i) with probability ν∗.
(3.28)

for every i ∈ {1, . . . , n}. Finally, for a given positive semi-definite matrix M ∈ Rd×d and a
given index
k ∈ {0, . . . , (d− 1)}, we define the effective rank

rk(M) :=

∑
ℓ>k µℓ(M)

µk+1(M)
.

Recall that this is the precisely the definition of the first effective rank in [10], which dictates
the contribution of pure signal to regression test error incurred by the minimum-ℓ2-norm
interpolation.

Bounds on survival and contamination

The notions of survival and contamination were first introduced in [105], and characterized
there with equality for Fourier featurization on regularly spaced training data. Here, we
characterize these quantities for Gaussian features. We state our upper and lower bounds on
survival and contamination respectively for two cases — when the output being interpolated
is binary, and when the output being interpolated is real. We start with upper and lower
bounds on the survival factor.

Theorem 3 (Upper and lower bounds on survival). There exist universal positive
constants (b, b2, c, c3, c4) (that do not depend on parameters (n, d, k,Σ)) such that if rk(Σ) ≥
bn and rk(Σ−τ ) ≥ b2n, we have the following characterizations of the survival factor for any
k ≥ τ :

1. Interpolation of binary labels: The minimum-ℓ2-norm interpolation of binary la-
bels, i.e. α̂2,binary, satisfies each of

SUb(τ) ≥
√

2

π
· (1− 2ν∗) ·

λτ

(
(n−k)

cλ̃k+1rk(Σ−τ )
− c3n3/4

λk+1rk(Σ)

)

1 + λτ

(
cn

λ̃k+1rk(Σ−τ )
+ c4n3/4

λk+1rk(Σ)

) , and (3.29a)

SUb(τ) ≤
√

2

π
· (1− 2ν∗) ·

λτ

(
cn

λ̃k+1rk(Σ−τ )
+ c3n3/4

λk+1rk(Σ)

)

1 + λτ

(
(n−k)

cλ̃k+1rk(Σ−τ )
− c4n3/4

λk+1rk(Σ)

) (3.29b)

with probability at least (1 − 3e−
√
n − 2e−

n
c ) over the randomness in the training data

{Xi, Yi}ni=1.
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2. Interpolation of real output: The minimum-ℓ2-norm interpolation of real output,
i.e. α̂2,real, satisfies each of

SUr(τ) ≥
1

1 + 1

λτ

(
(n−k)

cλ̃k+1rk(Σ−τ )
− c4n

3
4

λk+1rk((Σ)

) , and (3.30a)

SUr(τ) ≤
1

1 + 1

λτ

(
cn

λ̃k+1rk(Σ−τ )
+

c4n
3
4

λk+1rk((Σ)

) (3.30b)

with probability at least (1 − 2e−
√
n − 2e−

n
c ) over the randomness in the training data

{Xi, Yi}ni=1.

We will see subsequently (in Section 3.7) that the survival bounds, whether binary labels
or real output are interpolated, are matching in their dependence on n up to constants. We
now state our characterization of the contamination factor.

Theorem 4 (Upper and lower bounds on contamination). There exist universal
positive constants b2, c5, c6, c7, c8, c9 (that do not depend on parameters (n, d, k,Σ)) such that
if 0 ≤ k ≤ n/c5 and rk(Σ−τ ) ≥ b2, the following characterizations of the contamination
factor hold for any choice of ℓ ≤ k:

1. Interpolation of binary labels: Provided that n ≥ c6 , the minimum-ℓ2-norm inter-
polation of binary labels, i.e. α̂2,binary, satisfies each of

CNb(τ) ≤ c7 ·

√√√√√√


 ℓ

n
+ n ·

∑
j>ℓ λ̃

2
j(∑

j>k λ̃j

)2


 · lnn · (1 + SUb(τ)2), and (3.31a)

CNb(τ) ≥
√
n ·

√
rk (Σ2

−τ ) · λ̃2
k+1

c9

(
d∑
j=1

λj + λ1n

) (3.31b)

almost surely for any realization of the random quantity SUb(τ), and with probability
at least

(
1− 3

n

)
and (1− 2e

− n
c8 ) respectively over the randomness in the training data

{Xi, Yi}ni=1.

2. Interpolation of real output: Provided that n ≥ c6, the minimum-ℓ2-norm interpo-
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lation of real output, i.e. α̂2,real, satisfies each of

CNr(τ) ≤ c7 |1− SUr(τ)| ·

√√√√√√


 l

n
+ n ·

∑
j>l λ̃

2
j(∑

j>k λ̃j

)2


 · lnn, and (3.32a)

CNr(τ) ≥
√
n(1− δ) ·

√
rk (Σ2

−τ ) · λ̃2
k+1

c9

(
d∑
j=1

λj + λ1n

) (3.32b)

almost surely for any realization of the random quantity SUb(τ), and with probability at
least

(
1− 2

n

)
and (1− 2e

− n
c8 − e−nδ

2
) respectively over the randomness in the training

data {Xi, Yi}ni=1.

Observe that the high-probability characterizations of contamination in Theorem 4 them-
selves hold almost surely for every realization of the respective survival factors for binary and
real interpolation, which are random variables. In Section 3.7, these expressions will be used
together (with a simple union bound) with the matching high-probability characterization
of survival factor in Theorem 3. Unlike for the case of survival, the upper and lower bounds
for contamination are not necessarily matching — however, as we will see in Section 3.7,
they turn out to match for all parameterizations of the bi-level ensemble.

As a final remark, in both theorem statements, the only randomness over which all
probabilities are taken is solely in the training data {Xi, Yi}ni=1. Further, all universal positive
constants are taken to be independent of the parameters (n, d, k,Σ), which entirely describe
the problem. In the proofs of Theorems 3 and 4, we will follow these conventions unless
specified otherwise.

Background lemmas

We begin our proofs of Theorems 3 and 4 by stating lemmas that serve as background for
our analysis. The first lemma is from [10].

Lemma 1. Concentration of eigenvalues, Lemmas 9 and 10 in [10] There exist
universal positive constants (b, c) such that:

1. For any k ≥ 0 such that rk(Σ) ≥ bn, we have

1

c
λk+1rk(Σ) ≤ µn (A) ≤ µ1 (A) ≤ c

(
d∑

j=1

λj + λ1n

)
and (3.33)

µk+1(A) ≤ cλk+1rk(Σ) (3.34)

with probability at least (1− 2e−
n
c ) over the random matrix A.
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2. For any k ≥ τ such that rk(Σ) ≥ bn, we have

1

c
λk+1rk(Σ) ≤ µn (A−τ ) ≤ µ1 (A−τ ) ≤ c

(
d∑

j=1

λj + λ1n

)
(3.35)

with probability at least (1− 2e−
n
c ) over the random matrix A−τ .

Further, as corollaries to the above, we have the following statements:

1. For any k ≥ 0 such that rk(Σ) ≥ bn, we have

1

c

(
d∑
j=1

λj + λ1n

) ≤ µn
(
A−1

)
≤ µ1

(
A−1

)
≤ c

λk+1rk(Σ)
(3.36)

with probability at least (1− 2e−
n
c ) over the random matrix A.

2. For any k ≥ τ such that rk(Σ) ≥ bn, we have

1

c

(
d∑
j=1

λj + λ1n

) ≤ µn
(
A−1

−τ
)
≤ µ1

(
A−1

−τ
)
≤ c

λk+1rk(Σ)
(3.37)

with probability at least (1− 2e−
n
c ) over the random matrix A−τ .

Note that using Equation (3.27) to express A−τ , we can rewrite the bounds in the above
lemma in terms of the quantities Σ−τ and λ̃j. In particular, it follows that each of

1

c
λ̃k+1rk(Σ−τ ) ≤ µn (A−τ ) ≤ µ1 (A−τ ) ≤ c

(
d−1∑

j=1

λ̃j + λ̃1n

)
and (3.38a)

1

c

(
d−1∑
j=1

λ̃j + λ̃1n

) ≤ µn
(
A−1

−τ
)
≤ µ1

(
A−1

−τ
)
≤ c

λ̃k+1rk(Σ−τ )
. (3.38b)

holds with probability at least (1 − 2e−
n
c ). We will also apply Equation (3.34) with A−τ

instead of A, and use the corresponding condition rk(Σ) ≥ b2n.
The next lemma is the Hanson-Wright inequality, which shows that the quadratic form of a
(sub)-Gaussian random vector concentrates around its expectation.



CHAPTER 3. REGRESSION VS BINARY CLASSIFICATION 69

Lemma 2. Hanson-Wright inequality [124] Let z be a random vector composed of
i.i.d. random variables that are zero mean and sub-Gaussian with parameter at most 1.
Then, there exists universal constant c > 0 such that for any positive semi-definite matrix
M and for every t ≥ 0, we have

P
[
|z⊤Mz− E[z⊤Mz]| > τ

]
≤ 2 exp

{
−cmin

{
t2

||M||2F
,

t

||M||op

}}
.

We will apply this inequality in two ways. First, we will note that ||M||2F ≤ n||M||2op and
substitute t := c1||M||op · n3/4 (where c21 =

1
c
) to get

|z⊤Mz− E[z⊤Mz]| ≤ c1||M||op · n3/4 (3.39)

with probability at least (1 − 2e−
√
n). Second, we will note that ||M||op ≤ tr(M) and

moreover, ||M||2F = tr(M2) ≤ (tr(M))2. Then, substituting t := 1
c
· tr(M) · (lnn), we get

z⊤Mz ≤ E[z⊤Mz] +
1

c
· tr(M) · (lnn) ≤

(
1 +

1

c

)
· tr(M) · (lnn) (3.40)

with probability at least (1− 1
n
). Finally, note that all probabilities are only over the random

vector z. We will frequently apply Lemma 2 as a high-probability statement conditioned on
the realization of a random, almost surely positive semi-definite matrix M which is indepen-
dent of z.

Finally, the following lemma bounds the squared norm of a Gaussian random vector by a
standard tail bound on chi-squared random variables for e.g. see Chapter 2 of [144], stated
for completeness.

Lemma 3. Let z ∼ N (0, In). Then, for any δ ∈ (0, 1), we have

n(1− δ) ≤ ∥z∥22 ≤ n(1 + δ) (3.41)

with probability at least (1− 2e−nδ
2
).

Proof of Theorem 3

We first prove Theorem 3, i.e. upper and lower bounds on survival when binary labels or
real output are interpolated. We start with the slightly more difficult case of interpolation
of binary labels (Equations (3.29a) and (3.29b)).
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Interpolation of binary labels

Recall that, by Assumption 1, we have α∗
t = 1√

λτ
. A standard argument based on Moore-

Penrose pseudoinverse calculations shows that α̂2,binary = Φ⊤
train(ΦtrainΦ

⊤
train)

−1Ytrain. We get

SUb(τ) =
α̂τ,2,binary

α∗
τ

=
√

λτ α̂τ,2,binary

=
√

λτe
⊤
τ Φ

⊤
train(ΦtrainΦ

⊤
train)

−1Ytrain

= λτz
⊤
τ A

−1yτ ,

where zτ ,yτ are as defined at the beginning of Section 3.6, and A = ΦtrainΦ
⊤
train =

d∑
j=1

λjzjz
⊤
j

is the Gram matrix defined in Section 3.5. Next, we use the fact that,

A−τ =
d∑

j=1,j ̸=τ

λjzjz
⊤
j

along with the Sherman-Morrison-Woodbury identity to get

A−1 = (λτzτz
⊤
τ +A−τ )

−1

= A−1
−τ −

λτA
−1
−τzτz

⊤
τ A

−1
−τ

1 + λτz⊤τ A
−1
−τzτ

, (3.42)

Substituting this into the expression for SUb(τ), we obtain

SUb(τ) = λτz
⊤
τ A

−1yτ

= λτz
⊤
τ

(
A−1

−τ −
λτA

−1
−τzτz

⊤
τ A

−1
−τ

1 + λτz⊤τ A
−1
−τzτ

)
yτ

=
λτz

⊤
τ A

−1
−τyτ (1 + λτz

⊤
τ A

−1
−τzτ )− λτzτλτA

−1
−τzτz

⊤
τ A

−1
−τyτ

1 + λτz⊤τ A
−1
−τzτ

=
λτz

⊤
τ A

−1
−τyτ

1 + λτz⊤τ A
−1
−τzτ

. (3.43)

Adding and subtracting terms to the numerator, we get

z⊤τ A
−1
−τyτ =

1

4

(
(zτ + yτ )

⊤A−1
−τ (zτ + yτ )− (zτ − yτ )

⊤A−1
−τ (zτ − yτ )

)
.

Because of the “leave-one-out” property, note that A−1
−τ is independent of {zτ ,yτ}. Also note

that A−1
−τ is almost surely positive semidefinite. Thus, we can upper and lower bound the
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numerator of Equation (3.43) around its expectation using the Hanson-Wright inequality.
First, we calculate the conditional expectation:

E
[
z⊤τ A

−1
−τyτ

∣∣∣A−1
−τ

]
= E

[
tr(A−1

−τyτz
⊤
τ )
∣∣∣A−1

−τ

]

= tr
(
A−1

−τ · E
[
yτz

⊤
τ

])
.

Recalling the expression for yτ from Equation (3.28), a simple calculation yields that

E
[
yτz

⊤
τ

]
= E

[
yτ,1z

⊤
τ,1

]
· In

=
(
(1− ν∗)E

[
sgn(zτ,1)z

⊤
τ,1

]
+ ν∗E

[
−sgn(zτ,1)z

⊤
τ,1

])
· In

= (1− 2ν∗)E
[
sgn(zτ,1)z

⊤
τ,1

]
· In

= (1− 2ν∗) ·
√

2

π
· In,

where the last step follows because zτ,1 ∼ N (0, 1).
Now, we apply Equation (3.39) (the Hanson-Wright inequality) almost surely for every

realization of the random matrix A−1
−τ , and simultaneously to the quadratic forms (zτ +

yτ )
⊤A−1

−τ (zτ + yτ ) and (zτ − yτ )
⊤A−1

−τ (zτ − yτ ). Thus, we have each of

z⊤τ A
−1
−τyτ ≥

(
(1− 2ν∗)

√
2

π
tr(A−1

−τ )− 2c1||A−1
−τ ||op · n3/4

)
and

z⊤τ A
−1
−τyτ ≤

(
(1− 2ν∗)

√
2

π
tr(A−1

−τ ) + 2c1||A−1
−τ ||op · n3/4

)

with probability at least (1 − 2e−
√
n) over the randomness in {zτ ,yτ}. Similarly, to bound

the the denominator, we have each of

z⊤τ A
−1
−τzτ ≥ tr(A−1

−τ )− c1||A−1
−τ ||op · n3/4 and (3.44a)

z⊤τ A
−1
−τzτ ≤ tr(A−1

−τ ) + c1||A−1
−τ ||op · n3/4 (3.44b)

with probability at least (1 − e−
√
n) over the randomness in {zτ ,yτ}. Substituting these

bounds into Equation (3.43), we get each of

SUb(τ) ≥
λτ ·

(√
2
π
(1− 2ν∗)tr(A−1

−τ )− 2c1||A−1
−τ ||op · n3/4

)

1 + λτ
(
tr(A−1

−τ ) + c1||A−1
−τ ||op · n3/4

) and

SUb(τ) ≤
λτ ·

(√
2
π
(1− 2ν∗)tr(A−1

−τ ) + 2c1||A−1
−τ ||op · n3/4

)

1 + λτ
(
tr(A−1

−τ )− c1||A−1
−τ ||op · n3/4

) ,

with probability at least (1− 3e−
√
n) over the randomness in {zτ ,yτ}. It remains to obtain

high-probability bounds on the random quantities tr(A−1
−τ ) and ||A−1

−τ ||op. Note that we need
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both lower bounds and upper bounds on the quantity tr(A−1
−τ ), but we only need an upper

bound on the quantity ||A−1
−τ ||op.

We assume that we can choose k ≥ τ such that rk(Σ) ≥ bn and rk(Σ−τ ) ≥ b2n for universal
positive constants (b, b2). Consider any such choice of k (which in general could depend on
(n, d)). First, we use Equation (3.37) from Lemma 1 to upper bound the quantity ||A−1

−τ ||op
as

||A−1
−τ ||op = µ1(A

−1
−τ ) ≤

c

λk+1rk(Σ)
(3.45)

with probability at least (1−e−
n
c ) over the random matrix A. Next, we turn to the quantity

tr(A−1
−τ ). To lower bound this quantity, we notice that

tr(A−1
−τ ) =

n∑

j=1

1

µj(A−τ )

≥
n∑

j=k

1

µj(A−τ )

≥ (n− k)

µk+1(A−τ )
.

Now, from Equation (3.34) in Lemma 1 applied with A−τ , we have

µk+1(A−τ ) ≤ cλ̃k+1rk(Σ−τ )

with probability at least (1− e−
n
c ) provided that rk(Σ−τ ) ≥ b2n. This gives us:

tr(A−1
−τ ) ≥

(n− k)

cλ̃k+1rk(Σ−τ )
. (3.46)

with probability at least (1−e−
n
c ). On the other hand, the upper bound on the trace follows

simply by

tr(A−1
−τ ) ≤

n

µn(A−τ )

≤ cn

λ̃k+1rk(Σ−τ )
, (3.47)

where the last inequality substitutes Equation (3.38a), which again holds with probability
at least (1 − e−

n
c ). Noting that the upper bound on SUb(τ) is monotonically increasing in

both tr(A−1
−τ ) and ||A−1

−τ ||op, and the lower bound on SUb(τ) is monotonically increasing in
tr(A−1

−τ ) but decreasing in ||A−1
−τ ||op, we can substitute the above bounds on these quantities.

This completes our characterization of survival when binary labels are interpolated, with
the probability of this characterization lower bounded by taking a union bound over the
complement of all the above events. After taking this union bound, the probability of each
of the lower bound (Equation (3.29a)) and upper bound (Equation (3.29b)) holding is at
least (1− 3e−

√
n − 2e−

n
c ).
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Interpolation of real output

For completeness, we also include the proof of Theorem 3 for the simpler case of interpo-
lation of real-valued output (Equations (3.30a) and (3.30b)). By the same standard ar-
gument, we can characterize the minimum-ℓ2-norm interpolator of real output as α̂2,real =
Φ⊤

train(ΦtrainΦ
⊤
train)

−1Ztrain. By a similar argument to the case of binary labels, we have

SUr(τ) =
√

λτ α̂τ

=
√

λτe
⊤
τ Φ

⊤
train(ΦtrainΦ

⊤
train)

−1Ztrain

= λτz
⊤
τ A

−1zτ .

Again, using the Sherman-Morrison-Woodbury identity, we have

A−1 = A−1
−τ −

λτA
−1
−τzτz

⊤
τ A

−1
−τ

1 + λτz⊤τ A
−1
−τzτ

,

which gives us

SUr(τ) =
λτz

⊤
τ A

−1
−τzτ

1 + λτz⊤τ A
−1
−τzτ

=
1

1 + 1
λτz⊤τ A−1

−τzτ

. (3.48)

From Equations (3.44a) and (3.44b) above, the following statements each hold with
probability at least (1 − e−

√
n) over the randomness in zτ and for every realization of the

random matrix A−1
−τ :

z⊤τ A
−1
−τzτ ≥ tr(A−1

−τ )− c2||A−1
−τ ||op · n3/4 and

z⊤τ A
−1
−τzτ ≤ tr(A−1

−τ ) + c2||A−1
−τ ||op · n3/4.

Here, c2 is a universal positive constant.
Observe that the right hand side of Equation (3.48) is increasing in the quantity z⊤τ A

−1
−τzτ .

Thus, substituting the lower bound for tr(A−1
−τ ) from Equation (3.46) and the upper bound

for ||A−1
−τ ||op from Equation (3.45) lower bounds the quantity z⊤τ A

−1
−τzτ , yielding the lower

bound for SUr(τ). Similarly, substituting the upper bound for tr(A−1
−τ ) from Equation (3.47)

and the upper bound for ||A−1
−τ ||op from Equation (3.45) upper bounds the quantity z⊤τ A

−1
−τzτ ,

yielding the upper bound for SUr(τ). This completes the proof of Theorem 3. Again, a simple
application of the union bound shows that each of the lower bound (Equation (3.30a)) and
the upper bound (Equation (3.30b)) hold with probability at least (1− 2e−

√
n − 2e−

n
c ).

Proof of Theorem 4

We next prove Theorem 4, i.e. upper and lower bounds on contamination, for the cases of
interpolating binary labels and real output. Since the contamination factor is intricately
related to the contribution of additive noise to regression test error, the proof primarily
consists of refinements of the arguments in [10].
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Interpolation of binary labels

We start with a useful set of expressions for the contamination factor in the following lemma.
The proof of this lemma is contained in Section 3.8.

Lemma 4. The contamination of the minimum-ℓ2-norm interpolation of binary labels, de-
noted by α̂2,binary, can be written in the following two forms:

CNb(τ) =
√
y⊤
τ Cyτ , (3.49a)

=

√
ỹτ

⊤C̃ỹτ , (3.49b)

where we denote

ỹτ := yτ − SUb(τ)zτ ,

C := A−1

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1 , and

C̃ := A−1
−τ

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1

−τ .

We will use the expression in Equation (3.49b) to prove an upper bound on contamination,
and the expression in Equation (3.49a) for the lower bound.

Upper bound on CNb(τ)

We start with the proof for the upper bound on contamination for interpolation of binary
labels (Equation (3.31a)). From Equation (3.49b) in Lemma 4, we have CN2

b(τ) = ỹτ
⊤C̃ỹτ .

Note that by construction, C̃ has no dependence on {zτ ,yτ} and thus C̃ ⊥ ỹτ . The next
lemma upper bounds the term ỹτ

⊤C̃ỹτ in terms of tr(C̃) and is proved in Section 3.8.

Lemma 5. There exists universal positive constant c6 such that when n ≥ c6, we have

ỹτ
⊤C̃ỹτ ≤ 2

(
1 +

1

c

)
· (1 + SUb(τ)

2) · tr(C̃) · lnn

almost surely for every realization of the random matrix C̃, and with probability at least(
1− 2

n

)
over the randomness in ỹτ .

Applying Lemma 5, we get

CN2
b(τ) ≤ 2

(
1 +

1

c

)
· tr(C̃) · lnn (3.50)

almost surely for every realization of the random matrix C̃, and with probability at least(
1− 2

n

)
over the randomness in ỹτ . The next lemma, which is taken from [10], provides a

high-probability upper bound on the quantity tr(C̃).
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Lemma 6. (From Lemma 11 in [10]) There exist universal constants (b2, c5, c10 ≥ 1) such
that whenever 0 ≤ k ≤ n/c5 and rk(Σ−τ ) ≥ b2n, we have

tr(C̃) ≤ c10 ·


 l

n
+ n ·

∑
j>l λ̃

2
j(∑

j>k λ̃j

)2




for any choice of l ≤ k, with probability at least (1− 6e
− n

c5 ) over the randomness in C̃.

Substituting the upper bound from Lemmas 6 and into Equation (3.50), and taking the
square root on both sides, we have

CNb(τ) ≤

√√√√√√2

(
1 +

1

c

)
· c10 ·


 l

n
+ n ·

∑
j>l λ̃

2
j(∑

j>k λ̃j

)2


 · (1 + SUb(τ)2) · lnn.

with probability at least
(
1− 2

n
− 6e

− n
c2

)
over the training data. Taking c7 =

√
2
(
1 + 1

c

)
c10,

the upper bound on CNb(τ) in Equation (3.31a) follows. Noting that
(
1− 2

n
− 6e

− n
c2

)
≥

(
1− 3

n

)
for large enough n, this completes the proof of the upper bound.

Lower bound on CNb(τ)

Now we move on to the proof for the lower bound on contamination for interpolation of
binary labels (Equation (3.31b)). Using Equation (3.49a) from Lemma 4, we get

CN2
b(τ) = y⊤

τ Cyτ

≥ µn(C)∥yτ∥22 = nµn(C).

The next lemma lower bounds the minimum eigenvalue of C and is proved in Section 3.8.

Lemma 7. Let k ≥ 0 and rk
(
Σ2

−τ
)
≥ b4n. Then, we have

µn(C) ≥
rk
(
Σ2

−τ
)
· λ̃2

k+1

c11 · c2 ·

(
d∑
j=1

λj + λ1n

)2

with probability at least (1− e−
n
c − e

− n
c11 ).= over the randomness in C. Here, (b4, c, c11) are

universal positive constants.
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A direct substitution of the above gives us

CNb(τ) ≥
√
n ·

√
rk (Σ2

−τ ) · λ̃2
k+1

c · √c11 ·

(
d∑
j=1

λj + λ1n

)

with probability at least (1− e−
n
c − e

− n
c11 ) over the training data. Taking c9 = c

√
c11 and c8

such that 1
c8

= min(1
c
, 1
c11

) holds, the lower bound in Equation (3.31b) follows. This completes
the characterization of the contamination factor when we interpolate binary labels.

Interpolation of real output

For completeness, we also provide the proof of Theorem 4 for the simpler case of interpolation
of real output. We start with a useful set of expressions for the contamination factor in the
following lemma. The proof of this lemma is contained in Section 3.8.

Lemma 8. The contamination of the minimum-ℓ2-norm interpolator of binary labels, de-
noted by α̂2,real, can be written in the following two forms:

CNr(τ) =
√

z⊤τ Czτ , (3.51a)

= |1− SUr(τ)|
√

z⊤τ C̃zτ , (3.51b)

where we denote

C = A−1

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1 , and

C̃ = A−1
−τ

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1

−τ .

We will use the form in Equation (3.51b) to prove an upper bound on contamination and
the form in Equation (3.51a) for the lower bound.

Upper bound on CNr(τ)

We start with the proof for the upper bound on contamination for interpolation of real
output (Equation (3.32a). From Equation (3.51a) in Lemma 8, we get

CN2
r(τ) = (1− SUr(τ))

2z⊤τ C̃zτ . (3.52)
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From Equation (3.68) in Section 3.8 (proof of Lemma 5), we can upper bound the quadratic
form z⊤τ C̃zτ as

z⊤τ C̃zτ ≤ 7tr(C̃) lnn

with probability at least
(
1− 1

n

)
over the randomness in zτ . Then, substituting the upper

bound on tr(C̃) from Lemma 6 directly gives us the expression for the upper bound on
CNr(τ). Noting again that

(
1− 1

n
− 6e

− n
c2

)
≥
(
1− 2

n

)
for large enough n, this completes

the proof for the upper bound.

Lower bound

We conclude this section by proving the lower bound on contamination for interpolation of
real output (Equation (3.32b)). We directly apply Equation (3.51a) (from Lemma 8) to get

CN2
r(τ) = z⊤τ Czτ

≥ µn(C)∥zτ∥22
(i)

≥ n(1− δ)µn(C)

with probability at least (1 − e−nδ
2
) over the randomness in zτ for any δ ∈ (0, 1). Here,

inequality (i) follows from the lower bound in Lemma 3. Finally, substituting the lower
bound for µn(C) from Lemma 7 gives us the desired expression for the lower bound on
CNr(τ). Note that by the union bound, this expression will hold with probability at least
(1 − e−nδ

2 − e−
n
c − e

− n
c11 ) = (1 − 2e

− n
c8 − e−nδ

2
) over the randomness in the training data.

This completes the proof of Theorem 4.

3.7 Appendix: Proof of Theorem 2-Implications for
bi-level covariance

In this section, we follow the path to analysis described in Section 3.4 and prove Theorem 2
for the bi-level ensemble (Definition 7) in the following series of steps:

1. We substitute the spectrum of the bi-level ensemble into Theorems 3 and 4 to get
asymptotic expressions for survival and contamination.

2. We substitute these expressions into the expressions for regression and binary classifi-
cation test loss (Proposition 1) to characterize the regimes for good generalization of
binary classification and regression.

For convenience of notation, we consider τ = 1. (Note, however, that the analysis holds
for any 1 ≤ τ ≤ s since the first s eigenvalues of Σ are equal.) Further, to emphasize that
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the survival and contamination quantities depend on n, in this section we refer to them
as SUb(1;n),CNb(1;n), SUr(1;n), and CNr(1;n) for interpolators of binary and real output
respectively.

First, we characterize some useful quantities for the bi-level ensemble. Recall that the
bi-level ensemble is parameterized by p > 1, 0 < q ≤ (p−r) and 0 < r ≤ 1. We first compute
the effective ranks rk(Σ) and rk(Σ−τ ) for two choices of k. First, we have

rs(Σ) =
1

(1−a)d
d−s

.
(1− a)d

d− s
.(d− s) = d− s.

Substituting d = np and s = nr, we have, for sufficiently large n,

rs(Σ) ≍ np ≫ n. (3.53)

Similarly because 1 ≤ τ ≤ s, we have, for sufficiently large n,

rs(Σ−τ ) = d− s− 1 ≍ np ≫ n. (3.54)

Moreover, we get

r0(Σ) =
1
ad
s

· d =
s

a
= nq+r ≫ n iff (q + r) > 1. (3.55)

and by a similar argument, provided that r > 0, we can show that (for large enough n),

r0(Σ−τ ) =
1
ad
s

·
(
d− ad

s

)
=

s

a
− 1 = nq+r − 1 ≫ n iff (q + r) > 1. (3.56)

We will apply Equations (3.53) and (3.54) for bounding survival in general, as well as con-
tamination when we have q ≤ (1 − r), and Equations (3.55) and (3.56) for bounding con-
tamination when we have q > (1 − r). Now, we state and prove our matching upper and
lower bounds for survival for the bi-level ensemble.

Lemma 9 (Survival for interpolation of binary labels). There exist universal positive con-
stants (L1, U1, L2, U2) such that for sufficiently large n, we have

SULb (n) ≤ SUb(1;n) ≤ SUUb (n),

with probability at least (1− 10e−
√
n) over the training data {Xi, Yi}ni=1, where we denote

SULb (n) :=





√
2
π
(1− 2ν∗)

(
1 + L1n

q−(1−r))−1
, q < (1− r)√

2
π
(1− 2ν∗) · L2n

(1−r)−q, q > (1− r)
, (3.57a)

SUUb (n) :=





√
2
π
(1− 2ν∗)

(
1 + U1n

q−(1−r))−1
, q < (1− r)√

2
π
(1− 2ν∗) · U2n

(1−r)−q, q > (1− r)
. (3.57b)
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Proof. Note that Equations (3.53) and (3.54) imply that the conditions rs(Σ) ≥ bn and
rs(Σ−τ ) ≥ b2n are clearly satisfied for large enough n. Thus, we can apply Equation (3.29a)
of Theorem 3 setting k = s to get

SUb(1;n) ≥
√

2

π
(1− 2ν∗)

λ1

(
(n−s)

c̃λs+1rs(Σ−1)
− c3n3/4

λs+1rs(Σ)

)

1 + λ1

(
cn

λ̃s+1rs(Σ−1)
+ c4n3/4

λs+1rs(Σ)

)

with probability at least (1−5e−
√
n) over the training data. Substituting s = nr and a = n−q,

note that

λs+1rs(Σ)

λ1

=
λ̃s+1rs(Σ−1)

λ1

≍
(1−γ)d
d−s np

γd
s

≍ np+r

np−q
≍ nq+r.

Substituting this above yields

SUb(1;n) ≥
√

2

π
(1− 2ν∗)

(
(n−nr)
cnq+r − c3n3/4

nq+r

1 + cn
nq+r +

c4n3/4

nq+r

)

=

√
2

π
(1− 2ν∗)

(
1
c
· (n(1−r)−q − n−q)− c3 · n(3/4−r)−q

1 + cn(1−r)−q + c4 · n(3/4−r)−q

)
.

Thus, there are two cases:

1. 0 < q ≤ (1−r), in which case the terms corresponding to nq−(1−r) dominate, and there
exists universal constant L1 such that

SUb(1;n) ≥
√

2

π
(1− 2ν∗)

(
1 + L1n

q−(1−r))−1
.

2. q > (1 − r), in which case the numerator goes to 0 but the denominator goes to 1 as
n → ∞, and so there exists universal constant L2 such that

SUb(1;n) ≥
√

2

π
(1− 2ν∗) · L2n

(1−r)−q.

This completes the proof of the lower bound. An almost identical argument gives the proof
of the upper bound, so we omit it here.

Observe that for q > (1 − r), the true signal does not survive at all, i.e. SUr(1;n) → 0
as n → ∞. Interestingly, for q ≤ (1− r), there is also non-trivial attenuation of signal when
binary labels are interpolated, i.e. SUr(1;n) →

√
2
π
· (1 − 2ν∗) < 1 as n → ∞. At a high

level, this is a consequence of effective misspecification induced by the sign operator on real
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output. As mentioned in the discussion in Section 3.4, this is also spiritually related to the
attenuation factor of signal that has been traditionally been observed as a result of 1-bit
quantization applied to a matched filter [142, 24].

As we will see in the following lemma, the corresponding case leads to zero attenuation
of signal when real output is interpolated., i.e. SUr(1;n) → 1.

Lemma 10 (Survival for interpolation of real output). There exist universal positive con-
stants (L1, U1, L2, U2, L1, U1, L2, U2) such that for sufficiently large n, we have

SULr (n) ≤ SUr(1;n) ≤ SUUr (n),

with probability at least (1 − 8e−
√
n) over the randomness in the training data {Xi, Yi}ni=1,

where we denote

SULr (n) :=

{(
1 + L1n

q−(1−r))−1
, q < (1− r)

L2n
(1−r)−q, q > (1− r)

, (3.58a)

SUUr (n) :=

{(
1 + U1n

q−(1−r))−1
, q < (1− r)

U2n
(1−r)−q, q > (1− r)

. (3.58b)

Equivalently, we can write

SUr
L(n) ≤ 1− SUr(1;n) ≤ SUr

U(n),

where we denote

SUr
L(n) :=

{
L1n

q−(1−r), q < (1− r)(
1 + L2n

(1−r)−q)−1
, q > (1− r)

, (3.59a)

SUr
U(n) :=

{
U1n

q−(1−r), q < (1− r)(
1 + U2n

(1−r)−q)−1
, q > (1− r)

(3.59b)

Proof. The proof follows by substituting the spectrum of the bi-level covariance model into
the upper and lower bounds of survival from Equations (3.30b) and (3.30a). This is essentially
an identical argument to the proof of Lemma 9, and so we omit it here.

Observe that for the case of interpolation of real output, we have additionally computed
bounds on the quantity (1−SUr(1;n)), which will subsequently be useful for the computation
of bounds on contamination. We have not stated this here to avoid complicating the proof,
but it is interesting to note that if the real-valued output had a non-zero level of independent
additive zero-mean Gaussian noise, then this would not matter for the scaling of the survival
results asymptotically — this is a consequence of the range of parameter choices that we have
chosen for our bi-level ensemble. Such label noise would effectively be completely absorbed
by the excess features.

We now state an upper bound on contamination for the bi-level ensemble.
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Lemma 11 (Contamination for interpolation of binary labels). There are universal positive
constants (U3, U4 and U5) such that for large enough n, we have CNb(1;n) ≤ CNUb (n) with
probability at least

(
1− 4

n

)
over the randomness in the training data {Xi, Yi}ni=1, where we

denote

CNUb (n) =

{
U3n

−min{(p−1),(1−r)}
2 ·

√
lnn if q < (1− r)

U4n
−min{(p−1),(2q+r−1)}

2 ·
√
lnn if q > (1− r)

(3.60)

Proof. We start by proving the statement for the case q ≤ (1 − r). From Equations (3.53)
and (3.54), we showed that for large enough n, we have rs(Σ−1) ≍ np ≫ n. Substituting
k = l = s in Equation (3.31a) from Theorem 4, we have

CNb(1;n) ≤ c7 ·

√√√√√√


 s

n
+ n ·

∑
j>s λ̃

2
j(∑

j>s λ̃j

)2


 · lnn · (1 + SUb(1;n)2) (3.61)

almost surely for every realization of SU with probability at least
(
1− 3

n

)
over the training

data. We first evaluate the term

T1 :=
s

n
+ n ·

∑
j>s λ̃

2
j(∑

j>s λ̃j

)2 .

First, note that

∑

j>s

λ̃2
j = (d− s− 1)

(
(1− γ)d

d− s

)2

≍ d = np and

(∑

j>s

λ̃j

)2

=

(
(d− s− 1)

(1− γ)d

d− s

)2

≍ n2p.

Using this, we obtain

T1 ≍ n(r−1) + n(1−p) ≍ n−min{(p−1),(1−r)}. (3.62)

Now, from Equation (3.57b), we get (for large enough n)

SUb(1;n) ≤ 1q≤(1−r)

√
2

π

(
1 + U1n

q−(1−r))−1
+ 1q>(1−r)U2n

(1−r)−q ≤ max

{
U2,

√
2

π

}
(3.63)

with probability at least (1− 4e−p1n) over the training data. Substituting Equations (3.62)
and (3.63) in Equation (3.61), we have

CNb(1;n) ≤ U3n
−min{(p−1),(1−r)}

2 ·
√
lnn
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with probability at least
(
1− 4

n

)
for appropriately defined positive constant U3. This com-

pletes the proof for the first case.
Now, we move on to the second case, i.e. q > (1 − r). From Equations (3.55) and (3.56),
we saw that in this case, we have r0(Σ−1) ≍ nq+r ≫ n. Substituting k = l = 0 in Equa-
tion (3.31a) from Theorem 4, we have

CNb(1;n) ≤ c7 ·

√√√√√√


n ·

∑
j>0 λ̃

2
j(∑

j>0 λ̃j

)2


 · lnn · (1 + SUb(1;n)2)

with probability at least
(
1− 3

n

)
over the training data. As before, we evaluate the term

T1 := n ·
∑

j>0 λ̃
2
j

(
∑

j>0 λ̃j)
2

By a calculation very similar to the one in Appendix C.2 of [104], we get
∑

j>0

λ̃2
j = (s− 1) · a

2d2

s2
+ (d− s− 1) · (1− a)2d2

(d− s)2
≍ n2p+2q−r + np.

Moreover, we get (
∑

j>0 λ̃j)
2 = (d− ad

s
)2 = (np−np−(r+q))2 ≍ n2p since (q+r) > 0. Therefore,

we get

T1 ≍ n(1−p) + n(1+2q−r) ≍ n−min{(p−1),(2q+r−1)}.

The other steps proceed as for the first case, and substituting this expression for the term
T1 completes the proof for the second case.

For some parameterizations of the bi-level ensemble, we can get a slightly more sophis-
ticated upper bound on contamination when the labels interpolated are real, as detailed in
the following lemma.

Lemma 12 (Contamination for interpolation of real output). For universal positive con-
stants (U3, U4, U5) and large enough n, we have CNr(1;n) ≤ CNUr (n) with probability at least(
1− 3

n

)
over the randomness in the training data {Xi, Yi}ni=1, where we denote

CNUr (n) =

{
U3n

q−(1−r)−min{(p−1),(1−r)}
2 ·

√
lnn, q < (1− r),

U4n
−min{(p−1),(2q+r−1)}

2 ·
√
lnn, q > (1− r)

. (3.64)

Proof. We follow an identical approach as in the proof of Lemma 11 to bound the term
T1. Substituting this along with the upper bound on the quantity (1 − SUr(1;n)) from
Equation (3.59b) (Lemma 10) in Equation (3.32a), and using the fact that SUr(1;n) ≤ 1,
Equation (3.64) follows for appropriately defined positive constants (U3, U4). This completes
the proof.
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Finally, we state and prove our lower bounds on contamination together for interpolation
of binary labels as well as real output.

Lemma 13 (Lower bounds on contamination). There are universal positive constants (L3, L4, p2)
such that for large enough n, we have CNb(1;n),CNr(1;n) ≥ CNL(n) with probability at least
(1− 2e−p2n) over the randomness in the training data {Xi, Yi}ni=1, where we define

CNL(n) :=

{
L3n

q−(1−r)− p−1
2 , q < (1− r)

L4n
− (p−1)

2 , q > (1− r)
. (3.65)

Proof. Using Equation (3.54) we have, for large enough n, rs
(
Σ2

−1

)
≍ np ≫ n. Taking k = s

in Equation (3.31b) from Theorem 4, for universal constants c8, c9, with probability at least
(1− 2e

− n
c8 ), we have

CNb(1;n) ≥
√
n.

√
rs
(
Σ2

−1

)
λ̃2
s+1

c9

(
d∑
j=1

λj + λ1n

)

≍ n
1
2 ·

√
np
(

(1−γ)d
d−s

)2

d+ nγd
s

≍ n− (p−1)
2

1 + n(1−r)−q ,

≍

{
nq−(1−r)− (p−1)

2 , q < (1− r)

n− (p−1)
2 , q > (1− r)

.

Thus Equation (3.60) follows by choosing appropriate constants p2, L3 and L4, completing
the proof.

Comparing the upper bound (Equation (3.64)) and lower bound (Equation (3.65)) for
the case of interpolating real output, we observe that these bounds would be matching up to
constant factors iff (p−1) ≤ (1−r). In addition to the above condition, the upper bound for
interpolation of binary labels (Equation (3.61)) will match the lower bound iff q > (1− r).

Finally, we compute bounds on the ratio of survival to contamination,
SUb(1;n)/CNb(1;n), for the interpolation of binary labels. A directly substitution of the
upper and lower bounds for SUb(1;n) and CNb(1;n) from Equations (3.57a), (3.57b) in
Lemma 9, Equations (3.60) in Lemma 11 and Equation (3.65) in Lemma 13, gives us (for
large enough n)

SNRL(n) ≤ SUb(1;n)

CNb(1;n)
≤ SNRU(n), (3.66)
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with probability at least
(
1− 16

n

)
over the training data, where we denote

SNRL(n) :=

{
L5 · n

min{(p−1),(1−r)}
2 · (lnn)− 1

2 , 0 < q < (1− r)

L6 · n
min{(p−1),(2q+r−1)}

2
+(1−r)−q · (lnn)− 1

2 , q > (1− r)
. (3.67a)

SNRU(n) = U5 · n
p−1
2

+(1−r)−q. (3.67b)

Proof of Theorem 2

We are now ready to complete the proof of Theorem 2. First we compute a lower bound on
regression test loss. From Equations (3.23), (3.59a) and (3.65), we have (for large enough n)

Ereg(α̂2,real;n) = (1− SUr(1;n))
2 + (CNr(1;n))

2

≥ (SUr
L(n))2 + (CNLr (n))

2

=

{
L1

2n2(q−(1−r)) + L2
3n

−2(1−r)−(p−1)+2q, q < (1− r)(
1 + L2n

(1−r)−q)−2
+ L2

4n
−(p−1), q > (1− r)

with probability at least (1− 2e−
√
n − 2e−p2n). Thus, we have

lim inf
n→∞

Ereg(α̂2,real;n) ≥

{
0, q < (1− r)

1, q > (1− r)

with probability equal to 1. Next, we compute an upper bound on regression test loss. From
Equations (3.23), (3.59b) and (3.64), we have (for large enough n)

Ereg(α̂2,real;n) ≤ (SUr
U(n))2 + (CNUr (n))

2

=

{
U1

2n2(q−(1−r)) + U2
3n

−2(1−r)−min{(p−1),(1−r)}+2q lnn, q < (1− r)(
1 + U2n

(1−r)−q)−2
+ U2

4n
−(p−1) lnn, q > (1− r)

with probability at least
(
1− 2e−

√
n − 3

n

)
. Thus, we have

lim supn Ereg(α̂2,real;n) ≤

{
0, q < (1− r)

1, q > (1− r)

with probability equal to 1. By the sandwich theorem, we get

lim
n→∞

Ereg(α̂2,real;n) =

{
0, q < (1− r)

1, q > (1− r)

with probability 1, completing our characterization of regression.
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We now move on to our final characterization of binary classification test loss, starting with
the upper bound. By Proposition 1, we have

Ebinary(α̂2,binary;n) =
1

2
− 1

π
tan−1

(
SUb(1;n)

CNb(1;n)

)
.

From Equation (3.66), we get

1

2
− 1

π
tan−1

(
SNRU(n)

)
≤ Ebinary(α̂2,binary;n) ≤

1

2
− 1

π
tan−1

(
SNRL(n)

)
.

Taking the limit as n → ∞ in Equation (3.67a), we have

lim infn→∞SNRL(n) =

{
∞, q < min{(p−1),(2q+r−1)}

2
+ (1− r)

0, q > min{(p−1),(2q+r−1)}
2

+ (1− r)
.

with probability 1. Thus, we have

lim supn Ebinary(α̂2,binary;n) ≤

{
0, q < min{(p−1),(2q+r−1)}

2
+ (1− r)

1
2
, q > min{(p−1),(2q+r−1)}

2
+ (1− r)

.

with probability 1. To simplify further, consider the case for which (2q + r − 1) < (p − 1).
Then, the condition becomes q < q + (r−1)

2
+ (1− r) = (1−r)

2
=⇒ (1−r)

2
> 0, which is always

true under the bi-level ensemble (as r < 1). Thus, we can effectively ignore this argument,
and simply write

lim supn Ebinary(α̂2,binary;n) ≤

{
0, q < (p−1)

2
+ (1− r)

1
2
, q > (p−1)

2
+ (1− r)

.

On the other hand, we can also compute the limiting upper bound on SNR:

lim supn SNR
U(n) =

{
∞, 0 < q < (p−1)

2
+ (1− r)

0, q > (p−1)
2

+ (1− r).

and so the binary classification test loss is lower bounded by:

lim infn Ebinary(α̂2,binary;n) ≥

{
0, 0 < q < (p−1)

2
+ (1− r)

1
2
, q > (p−1)

2
+ (1− r).

Putting these together, we get

lim
n→∞

Ebinary(α̂2,binary;n) =

{
0, 0 < q < (p−1)

2
+ (1− r)

1
2
, q > (p−1)

2
+ (1− r).

This completes the proof.
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3.8 Appendix: Technical lemmas

Proof of Lemma 4

In this subsection, we prove Lemma 4, i.e. equivalent quadratic form expressions for the
contamination factor when binary labels are interpolated. As argued in Section 3.6, for any
j ∈ {1, . . . , d}, the coefficient α̂j is given by

α̂j = e⊤j ΦtrainA
−1Ytrain =

√
λjz

⊤
j A

−1yτ .

From the Sherman-Morrison-Woodbury identity, we have

A−1 = A−1
−τ −

λτA
−1
−τzτz

⊤
τ A

−1
−τ

1 + λτz⊤τ A
−1
−τzτ

.

Using this, we can rewrite α̂j as

α̂j =
√

λjz
⊤
j

(
A−1

−τ −
λτA

−1
−τzτz

⊤
τ A

−1
−τ

1 + λτz⊤τ A
−1
−τzτ

)
yτ

=
√

λj ·
(
1− 1

1 + λτz⊤τ A
−1
−τzτ

)
· z⊤j A−1

−τyτ

=
√
λj · z⊤j A−1

−τ (yτ − SUb(τ)zτ )

where the last equality follows from Equation (3.43).
Using the definition of contamination (Equation (3.22)) and the above expressions, we get

CN2
b(τ) =

d∑

j=1,j ̸=τ

λjα̂
2
j =

d∑

j=1,j ̸=τ

λ2
jy

⊤
τ A

−1zjz
⊤
j A

−1yτ

= y⊤
τ A

−1

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1yτ

= y⊤
τ Cyτ .

Now, we denote ỹτ := yτ − SUb(τ)zτ . To prove the second form of contamination, we use
the following sequence of equalities:

CN2
b(τ) =

d∑

j=1,j ̸=τ

λjα̂
2
j =

d∑

j=1,j ̸=τ

λj

(√
λjz

⊤
j A

−1
−τ ỹτ

)2

=
d∑

j=1,j ̸=τ

λ2
j ỹτ

⊤A−1
−τzjz

⊤
j A

−1
−τ ỹτ

= ỹτ
⊤A−1

−τ

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1

−τ ỹτ

= ỹτ
⊤C̃ỹτ .
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This completes the proof of Lemma 4.

Proof of Lemma 5

In this subsection, we prove Lemma 5, i.e. a high-probability upper bound on the quadratic
forms ỹτ

⊤C̃ỹτ and z⊤τ C̃zτ over only the randomness in {zτ ,yτ}. Recall that we defined the
random variables {zτ ,yτ} in Section 3.6. Note that C̃ is almost surely positive definite and
{zτ , ỹτ} are both pairwise independent of C̃. Further, note that

ỹτ
⊤C̃ỹτ = (yτ − SUb(τ)zτ )

⊤C̃(yτ − SUb(τ)zτ )

≤ (yτ − SUb(τ)zτ )
⊤C̃(yτ − SUb(τ)zτ ) + (yτ + SUb(τ)zτ )

⊤C̃(yτ + SUb(τ)zτ )

= 2y⊤
τ C̃yτ + 2SUb(τ)

2z⊤τ C̃zτ .

From Equation (3.40), we have

z⊤τ C̃zτ ≤ tr(C̃)

(
1 +

1

c

)
· (lnn)

almost surely for every realization of the random matrix C̃, and with probability at least(
1− 1

n

)
over the randomness in zτ . By an identical argument (noting that y2τ,i = 1 almost

surely, and that E [yτ,iyτ,j] = 0 for any i ̸= j), we can show that

z⊤τ C̃zτ ≤ tr(C̃)

(
1 +

1

c

)
· (lnn) (3.68)

Substituting these inequalities in the expression for ỹτ
⊤C̃ỹτ completes the proof.

Proof of Lemma 7

In this subsection, we prove Lemma 7, i.e. a high-probability lower bound on the minimum
eigenvalue of the random (almost surely positive semidefinite) matrix C. Recall that we
defined

C := A−1

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1,

= A−1

(
d−1∑

j=1

λ̃2
jzjz

⊤
j

)
A−1.

Using the mathematical fact from Section 3.9, we have

µn(C) ≥ (µn(A
−1))2µn

(
d−1∑

j=1

λ̃2
jzjz

⊤
j

)
.
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Now, Equations (3.37) and (3.38a) from Lemma 1 can be used to lower bound the terms
(µn(A

−1))2 and µn

(∑d−1
j=1 λ̃

2
jzjz

⊤
j

)
respectively. Substituting these lower bounds into the

above bound completes the proof.

Proof of Lemma 8

In this subsection, we prove Lemma 8, i.e. equivalent quadratic form expressions for the
contamination factor when real output is interpolated. This proof closely mirrors the proof
of Lemma 4.
Let α̂j denote the jth component of α̂2,real. As argued in Section 3.6, for any j ∈ {1, . . . , d},
the coefficient α̂j is given by

α̂j = e⊤j ΦtrainA
−1Ztrain =

√
λjz

⊤
j A

−1zτ . (3.69)

By the Sherman-Morrison-Woodbury Identity, we have

A−1 = A−1
−τ −

λτA
−1
−τzτz

⊤
τ A

−1
−τ

1 + λτz⊤τ A
−1
−τzτ

.

Using this, we can rewrite α̂j as

α̂j =
√

λj

(
1− λτz

⊤
τ A

−1
−τzτ

1 + λτz⊤τ A
−1
−τzτ

)
z⊤j A

−1
−τzτ

=
√

λj(1− SUr(τ))z
⊤
j A

−1
−τzτ , (3.70)

where the last equality follows from Equation (3.48).
Finally, using the definition of contamination (Equation (3.22)) together with Equation (3.69)
gives us

CN2
r(τ) =

d∑

j=1,j ̸=τ

λjα̂
2
j =

d∑

j=1,j ̸=τ

λ2
jz

⊤
τ A

−1zjz
⊤
j A

−1zτ

= z⊤τ A
−1

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1zτ

= z⊤τ Czτ .
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Similarly, applying Equation (3.70) gives us

CN2
r(τ) =

d∑

j=1,j ̸=τ

λjα̂
2
j =

d∑

j=1,j ̸=τ

λj

(√
λj(1− SUr(τ))z

⊤
j A

−1
−τzτ

)2

= (1− SUr(τ))
2

d∑

j=1,j ̸=τ

λ2
jz

⊤
τ A

−1
−τzjz

⊤
j A

−1
−τzτ

= (1− SUr(τ))
2z⊤τ A

−1
−τ

(
d∑

j=1,j ̸=τ

λ2
jzjz

⊤
j

)
A−1

−τzτ

= (1− SUr(τ))
2z⊤τ C̃zτ .

This completes the proof.

3.9 Appendix: Mathematical facts

Upper bound on maximum eigenvalue of product of positive
definite matrices

Let A,B ∈ Rn×n be symmetric positive definite matrices and let C = AB. It is a well
known fact that for positive definite matrix M, µ1(M) = ∥M∥2, i.e the largest eigenvalue is
the operator norm. Using this,

µ1(C) = ∥C∥2 = ∥AB∥2 ≤ ∥A∥2∥B∥2 = µ1(A)µ1(B),

where the inequality follows from the sub-multiplicativity of operator norm.

Lower bound on minimum eigenvalue of product of positive definite
matrices

Let A,B ∈ Rn×n be symmetric positive definite matrices and let C = AB. Note that since
inverses exist for positive definite matrices we can write,

µn(C) =
1

µ1(C−1)
≥ 1

µ1(A−1)µ1(B−1)
= µn(A)µn(B),

where the inequality follows by applying the upper bound for eigenvalue of product of two
positive definite matrices from Section 3.9.
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Chapter 4

Multiclass classification

In the last chapter, we analyzed binary classification and contrasted it to regression. How-
ever, most practical real-world applications like image classification, object detection and
tracking for autonomous systems, and recommendation algorithms for movies, songs, etc.
are multiclass classification problems. Contemporary machine learning systems have shown
tremendous success at these problems by use of gigantic models with a vast number of pa-
rameters that are trained on enormous datasets with a huge number of classes. Can we
theoretically analyze the generalization performance for multiclass classification?

In this chapter we perform an asymptotic analysis of the error of the minimum-norm
interpolating classifier for the multiclass classification problem with Gaussian features. We
consider a bi-level ensemble model where the number of features, classes, favored features,
and the feature weights themselves all scale with the number of training points. Under this
model, Theorem 5 provides sufficient conditions for good generalization in the form of a
region in which as the number of training points increase, the number of classes grows slowly
enough, the total number of features (i.e. level of overparameterization) grows fast enough,
the number of favored features grows slowly enough, and the amount of favoring of those
favored features is sufficient to allow for asymptotic generalization.

To prove our main result, Theorem 5, we present a novel typicality-style argument featur-
ing the feature margin (gap between the largest and second-largest feature) for computing
sufficient conditions for correct classification utilizing the signal-processing inspired concepts
of survival and contamination from Chapters 2 and 3 and leveraging the random-matrix
analysis tools sharpened in [10].

The key is analyzing what happens with multiclass training data where there are relatively
fewer positive examples of each class, and where the training data for a particular class is
not independent of the features corresponding to other classes. The analysis shows that as a
result of having fewer positive exemplars for a class relative to the total size of the training
data, the survival drops by a factor of k (the number of classes), while the contamination
only drops by a factor of

√
k. As in binary classification, the ratio of the relevant survival

to contamination terms plays the role of the effective signal-to-noise ratio and shows up as a
key quantity in our error analysis (Equation (4.15) from Section 4.2). When this ratio grows
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asymptotically to ∞, multiclass classification generalizes well.

4.1 Problem setup
We consider the multiclass classification problem with k classes. The training data consists of
n pairs {ϕ(Xi), ℓi}ni=1 where ϕ(Xi) ∈ Rd are i.i.d Gaussian vectors drawn from distribution1

ϕ(Xi) ∼ N (0,Σ).

Here, we assume without loss of generality (due to symmetry of the covariance matrix and the
spectral theorem) that Σ is a diagonal matrix and its spectrum is given by λ :=

[
λ1 . . . λd

]
,

where the eigenvalues are sorted in descending order, i.e. we have λ1 ≥ λ2 ≥ . . . ≥ λd > 0.
We make the following assumption on how the labels ℓi ∈ [k] are generated.

Assumption 2. 1-sparse orthogonal means model

ℓi = argmax
m∈[k]

µ⊤
mϕ(Xi). (4.1)

Further we consider the simplified case where µm are 1-sparse and orthogonal

µm =
1√
λm

em,

where em is the unit vector with 1 at index m.

We define shorthand notation for the training data: let

Φtrain :=
[
ϕ(X1) ϕ(X2) · · · ϕ(Xn)

]⊤ ∈ Rn×d

denote the data (feature) matrix;
We use a one-hot encoding for representing the labels as the matrix Yoh ∈ Rn×k,

Yoh =
[
yoh1 . . . yohm . . . yohk

]
, (4.2)

where,

yohm [i] =

{
1, if ℓi = m

0, otherwise
. (4.3)

A zero-mean variant of the encoding where we subtract the mean 1
k

from each entry is
denoted:

ym = yohm − 1

k
1. (4.4)

1In the paper [133] an equivalent model where the Gaussian vectors have an identity covariance matrix
but an explicit weighting is applied before performing interpolation is considered.



CHAPTER 4. MULTICLASS CLASSIFICATION 92

Our classifier consists of k coefficient vectors α̂m for m ∈ [k] that are learned by minimum-
norm interpolation of the zero-mean one-hot variants. 2

α̂m = argmin
α

∥α∥2 (4.5)

s.t. Φtrainα = ym. (4.6)

We can express these coefficients in closed form as,

α̂m = (Φtrain)
⊤ (Φtrain(Φtrain)

⊤)−1
ym. (4.7)

On a test point ϕ(X) ∼ N (0,Σ) we predict the class label by computing k scalar “scores”
and predict the class based on the largest score as follows:

ℓ̂ = argmax
1≤m≤k

α̂⊤
mϕ(X). (4.8)

The true label of the test point is ℓtest = argmax1≤m≤k µ
⊤
mϕ(X). A misclassification event

Eerr occurs iff

argmax
1≤m≤k

µ⊤
mϕ(X) ̸= argmax

1≤m≤k
α̂⊤
mϕ(X).

In our work we determine sufficient conditions under which the probability of misclassification
(computed over the randomness in both the training data and test point) goes to zero in
an asymptotic regime where the number of training points, number of features, number of
classes and feature weights scale according to the bi-level ensemble model similar to what we
had in Definition 7. Note that this would imply that the more commonly computed quantity
of test error, Emulti(α̂) = P(Eerr) computed only over the randomness in the test point, also
goes to 0.

Definition 9 (Bi-level ensemble(n, p, q, r, t)). The bi-level ensemble is parameterized by
n, p, q, r, t, where3 p > 1, 0 ≤ r < 1 and 0 < q < (p − r). Here, parameter p controls
the extent of artificial overparameterization), r sets the number of preferred features, q con-
trols the weights on preferred features and thus effective overparameterization, and t controls
the number of classes. In particular, this ensemble sets parameters

d := ⌊np⌋
s = ⌊nr⌋
a = n−q and
k = ck⌊nt⌋. (4.9)

2The classifier learned via this method is equivalent to those obtained by other natural training methods
under sufficient overparameterization [146].

3We restrict (p, q, r) to this range to ensure that a) the regime is truly overparameterized (choice of p),
b) the eigenvalues of the ensuing covariance matrix are always positive and ordered correctly (choice of q),
c) the number of “high-energy” directions is sub-linear in n (choice of r).
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The covariance matrix of the Gaussian features Σ(p, q, r) is the diagonal matrix, whose
entries are given by:

λj =

{
ad
s
, 1 ≤ j ≤ s

(1−a)d
d−s , otherwise.

(4.10)

Note that under this bi-level ensemble model the true labels ℓi are simply generated as,

ℓi = argmax
1≤m≤k

ϕ(Xi)[m],

where we use the notation ϕ(Xi)[m] to refer to the mth element of vector ϕ(Xi). Thus, a
misclassfication event, Eerr, occurs iff,

argmax
1≤m≤k

ϕ(X)[m] ̸= argmax
1≤m≤k

α̂⊤
mϕ(X).

4.2 Main result
Theorem 5. (Asymptotic classification region in the bi-level model): Under the bi-
level ensemble model 9, when the true data generating process is from a 1-sparse orthogonal
means model (Assumption 2), the probability of misclassification P(Eerr) → 0 as n → ∞ if
the following conditions hold:

t < min (r, 1− r, p+ 1− 2(q + r), p− 2, 2q + r − 2)

q + r > 1.

Note that from Theorem 2 in Chapter 3, the condition q+r > 1 corresponds to the regime
where the corresponding regression problem4 does not generalize well and thus our result
shows that multiclass classification can generalize in regimes where the regression problem
does not. Figure 4.1 visualizes the regimes by considering slices of the four dimensional
scaling parameter space of p, q, r and t. (1a) and (2a) fix the value of q to 0.75 and 0.95
respectively and contrast the multiclass problem with a fixed finite number of classes (t = 0)
to the binary classification and regression problems. From these plots we observe that if
we fix p, q, t and increase r, i.e. increasing how many features are favored (and thereby
favoring each of them less), we transition from the regime where both regression and binary
classification work, into the regime where binary classification works but regression does not,
then the regime where this paper can prove multiclass classification works and finally to the
regime where neither regression nor binary classification works.

In Figure 4.1, subplots (1b),(1c),(2b) and (2c) each visualize a slice along the r and t
(class scaling) dimensions with fixed p and q. The x axis itself in these plots corresponds

4The corresponding regression problem is one where the true real number to be predicted is defined by
a linear combination of favored features.
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Figure 4.1. Visualization of the bi-level regimes in four dimensions p, q, r, t. (1a) and (2a)
contrast multiclass classification with finite classes to binary classification and regression.
The horizontal lines p = 2.3 and p = 3.7 correspond to the slices visualized in (1b), (1c),
(2b) and (2c). The conjectured regimes are visualized in (1d), (1e), (1f), (2d), (2e) and (2f).

to a fixed finite classes setting. From (1b) we observe that the right-hand boundary of the
region where multiclass classification generalizes well contains two slopes. These slopes arise
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from the two conditions t < 1− r and t < p+ 1− 2(q + r) in Theorem 5 and are a result of
either contamination from favored (but not true) features dominating or contamination from
the unfavored features dominating. In (1c) we are in the regime where binary classification
works for all values of r < 1. However, as we increase t, eventually multiclass classification
stops working.5

When we go from the binary problem to a multiclass problem with k classes, the sur-
vival drops by a factor of k as a consequence of having only 1

k
fraction of positive training

examples per class. This is because the one-hot labels we interpolate while training have
fewer large values close to 1 that are able to positively correlate with the true feature vector.
Having fewer positive exemplars also reduces the total energy in the training vector by a
factor of k, and because of the square-root relationship of the standard deviation to the en-
ergy, the contamination only shrinks by a factor of

√
k. The overall survival/contamination

ratio decreases by a factor of
√
k making the multiclass classification task more difficult.6

An interesting observation here is the amount of favoring required for good generalization is
linked to the number of positive training examples per class. Indeed, if we consider a setting
where the binary classification problem generalizes well, and we switch to the k class multi-
class problem, then by increasing the number of training samples k fold (and thus matching
the number of positive training examples per class in the multiclass case to the binary case)
and keeping the number of features and feature weights constant we can generalize well for
multiclass classification. (Section 4.5 elaborates on this phenomenon, as well as why it is
somewhat surprising.)

Next, we present a brief overview of our proof that utilizes the survival/contamination
analysis framework from Chapters 2 and 3 along with a typicality-inspired argument where
the feature margin (difference between largest and second largest feature) on the test point
plays a key role. The complete proof is provided in Sections 4.8, 4.9, 4.10, and 4.11.

Proof sketch

Assume without loss of generality that for the test point ϕ(X) ∼ N (0,Σ), the true class is
τ for some τ ∈ [k].

5To be precise, what the region actually illustrates is that our proof approach stops being able to show
that multiclass classification works. In the Conclusion section, we conjecture where we believe that multiclass
classification actually stops working. The conjectured regions are illustrated in (1e),(1f),(2e) and (2f).

6This is also responsible for contamination due to favored features being able to cause errors. For binary
classification, because the true feature survival is constant (depending only on the level of label noise), the
survival can always asymptotically overcome any contamination from other favored features (See Section 3.7
from Chapter 3).



CHAPTER 4. MULTICLASS CLASSIFICATION 96

A necessary and sufficient condition for classification error is that for some ζ ̸= τ, ζ ∈ [k],

α̂τ [τ ]ϕ(X)[τ ] + α̂τ [ζ]ϕ(X)[ζ] +
∑

j /∈{τ,ζ}

α̂τ [j]ϕ(X)[j] < α̂ζ [τ ]ϕ(X)[τ ]

+ α̂ζ [ζ]ϕ(X)[ζ] +
∑

j /∈{τ,ζ}

α̂ζ [j]ϕ(X)[j]

=⇒ (α̂τ [τ ]− α̂ζ [τ ])ϕ(X)[τ ]− (α̂ζ [ζ]− α̂τ [ζ])ϕ(X)[ζ] <
∑

j /∈{τ,ζ}

(α̂ζ [j]− α̂τ [j])ϕ(X)[j].

Note that
∑

j /∈τ,ζ refers to the sum over all feature indices 1 to d excluding τ and ζ.
Next note that ϕ(X) = Σ

1
2Z for Z ∼ N (0, Id) (Recall that Σ is a diagonal matrix with

entries λ1, λ2, . . . , λd). Thus, since τ is the true class for the test point X, under our 1-sparse
orthogonal means model (Assumption 2) we have Z[τ ] = max1≤m≤k Z[m]. The necessary
and sufficient condition for error can then be rewritten as:

λτ ĥτ,ζ [τ ]Z[τ ]− λζ ĥζ,τ [ζ]Z[ζ] <
∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j],

where we introduce the short-hand notation,

ĥτ,ζ [j] = λ
−1/2
j (α̂τ [j]− α̂ζ [j]) (4.11)

(4.12)

ĥζ,τ [j] = λ
−1/2
j (α̂ζ [j]− α̂τ [j])..

Since both τ and ζ are favored feature indices, by leveraging the definition of the bi-level
model and denoting λτ = λζ = λ, we get

λ
(
ĥτ,ζ [τ ]Z[τ ]− ĥζ,τ [ζ]Z[ζ]

)
<
∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j].

Next, we perform some algebraic manipulations,

λ
(
ĥτ,ζ [τ ]Z[τ ]− ĥζ,τ [ζ]Z[ζ]

)
<
∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j]

=⇒ λĥτ,ζ [τ ](Z[τ ]− Z[ζ]) + λZ[ζ](ĥτ,ζ [τ ]− ĥζ,τ [ζ]) <
∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j]

=⇒ λĥτ,ζ [τ ]

(
(Z[τ ]− Z[ζ]) + Z[ζ]

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]

)
<
∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j]. (4.13)



CHAPTER 4. MULTICLASS CLASSIFICATION 97

We divide both sides by the quantity CNτ,ζ defined as,

CNτ,ζ =

√√√√√


 ∑

j /∈{τ,ζ}

λ2
j(ĥζ,τ [j])

2


.

This normalizes the RHS of (4.13) to have a standard normal distribution.
Thus, the necessary and sufficient condition for a misclassification error is for some ζ ̸=

τ, ζ ∈ [k],

λĥτ,ζ [τ ]

CNτ,ζ

(
(Z[τ ]− Z[ζ]) + Z[ζ]

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]

)
<

1

CNτ,ζ

∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j]. (4.14)

A sufficient condition for correct classification can then be obtained by ensuring that the
smallest potential value of the LHS is still greater than the value of the RHS for all values
of ζ. Thus, we obtain a sufficient condition for correct classification by appropriately mini-
mizing or maximizing quantities over competing feature indices ζ ̸= τ, ζ ∈ [k] (for notational
convenience we simply denote this as minζ or maxζ).

minζ λĥτ,ζ [τ ]

maxζ CNτ,ζ︸ ︷︷ ︸
SU/CN ratio


min

ζ
(Z[τ ]− Z[ζ])

︸ ︷︷ ︸
closest feature margin

− max
ζ

|Z[ζ]|
︸ ︷︷ ︸

largest competing feature

·max
ζ

∣∣∣∣∣
ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]

∣∣∣∣∣
︸ ︷︷ ︸

survival variation




> max
ζ

1

CNτ,ζ


 ∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j]




︸ ︷︷ ︸
normalized contamination

. (4.15)

We will show that under the conditions specified in Theorem 5, with sufficiently high
probability, the relevant survival to contamination SU/CN ratio grows at a polynomial rate
nv for some v > 0, the closest feature margin shrinks at a less-than-polynomial rate 1/

√
lnnk,

and the survival variation decays at a polynomial rate n−u for some u > 0. Further, the
magnitudes of the largest competing feature and the normalized contamination are no more
than 2

√
ln(nk). Here, we leverage the idea of typicality-style proofs in information theory

[36] to avoid unnecessarily loose union bounds that end up being dominated by the atypical
behavior of quantities. In our case, by pulling the feature margin out explicitly, we can
just deal with its typical behavior. Similarly, the typical behavior of the largest competing
feature and the true feature is all that matters.

4.3 Discussion
In this chapter, we compute sufficient conditions for good generalization of multiclass clas-
sification in a bi-level overparameterized linear model with Gaussian features. We observed
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that multiclass classification can generalize even when the regression problem does not gen-
eralize (for q + r > 1). Further, the multiclass problem is “harder” than the binary problem
because we have fewer positive training examples per class. The nature of the training data
complicates our analysis in the multiclass setting since the true class labels are generated by
comparing k features and thus we no longer have independence of the encoded class label y
with any of these features. This becomes relevant when we compute bounds on the survival
and contamination quantities since the Hanson-Wright inequality [124] is no longer applica-
ble directly on the quantities of interest as was the case for the binary classification problem
in Chapter 3. As a consequence of working around this non-independence we believe that
our sufficient conditions for good generalization in the regime q + r > 1 are loose.

Even though in our work we focus on the regime where regression does not work, q+r > 1,
we can extend the analysis to the regime where q+r < 1 by grinding through the expressions
for survival and contamination in this regime. Even in this regime, for multiclass training
data, survival is of the order 1

k
while contamination scales similarly to the regime q + r > 1.

Thus, while it is true that for binary classification or a fixed number of classes, the regime
where regression works is a regime where classification also works, this need not be true if
there are too many classes.

We conjecture that the following is a set of necessary and sufficient conditions for asymp-
totically good generalization (We elaborate on this in Section 4.4):

Conjecture 6. (Conjectured bi-level regions): Under the bi-level ensemble model 9,
when the true data generating process is a 1-sparse orthogonal means model (Assumption 2),
as n → ∞, the probability of misclassification event P(Eerr) behaves as follows:

P(Eerr) →

{
0, if t < min (r, 1− r, p+ 1− 2 ·max(1, q + r))

1, if t > min (r, 1− r, p+ 1− 2 ·max(1, q + r))
. (4.16)

The conjectured regions are visualized in (1d),(1e),(1f),(2d),(2e) and (2f) in Figure 4.1.
Subfigures (1d) and (2d) illustrate that we believe multiclass classification with finitely many
classes works if binary classification works. Further, comparing (1e) to (2e) when we increase
q, the conjectured parameter region where multiclass classification works shrinks since we
decrease the amount of favoring of true features. Interestingly, the nature of the looseness
in our approach is such that our proof technique is able to recover a larger fraction of the
conjectured region for larger q which intuitively is a result of less favoring leading to stronger
concentration of certain random quantities. Tightening the potential looseness in our analysis
and proving the converse result by computing sufficient conditions for poor generalization of
multiclass classification are interesting avenues of future work.

Recent work from [146] provides an analysis of the generalization error of the minimum-
norm interpolation of one-hot labels for multiclass classification with Gaussian features.
While our work has many similarities with [146] in terms of model and problem setting,
there are some key differences.

The first key difference is in how the training data is generated. In our work, we assume
the true label of a point is generated based on which of the first k dimensions is the largest,
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while [146] consider a Gaussian mixture model and a multinomial logistic model where the
true labels have some randomness even conditioned on the first k dimensions. Like us,
however, they also consider the case of orthogonal classes.

Second, we consider the asymptotic case where the number of classes, k, scales with the
number of training points as k = cnt for some positive integer c and non-negative real t.
The work in [146] considers only the fixed finite classes setting i.e. t = 0 in our model.
The error analysis technique employed by us here in the form of a typicality-style argument
featuring the feature margin (difference between the largest and second largest feature) is
much tighter than the method employed in [146] and allows us to compute regimes where
multiclass classification succeeds even when t > 0. A straight substitution into the analysis
from [146] does not work since that analysis is too loose for this setting. Furthermore, in
our expressions for survival and contamination (Lemmas 17 and 18) we compute an exact
dependence on k.7 The expressions from [146] don’t compute this exact dependence because
it is not required for their purposes. By using our novel analysis technique we are able to
elucidate the challenges posed by fewer positive training examples per class in the multiclass
setting and provide sufficient conditions for generalization when number of classes scales
with the number of training points.

An equivalence between the solution obtained by minimum-ℓ2-norm interpolation on the
adjusted zero-mean one-hot encoded labels that we perform in our approach (4.6) and the
solution obtained by other training methods has been established in [146]. In particular
the minimum-norm interpolating solution is typically identical to the solution obtained via
one-vs-all SVM and multi-class SVM (and thus gradient descent on cross-entropy loss due
to its implicit bias [68, 131], under sufficient overparameterization. From [146], the sufficient
conditions for the equivalence of solutions are,

∑n
j=1 λj

λ1

> C1k
2n ln(kn),

(
∑n

j=1 λj)
2

∑n
j=1 λ

2
j

> C2(ln(kn) + n),

where C1, C2 are positive constants. Under our bi-level model (Definition 9) these conditions
translate to:

q + r > 2t+ 1,

2p−max(2p− 2q − r, p) > 1,

7In particular, our analysis here brings out the fact that multiclass training data becomes less informative
per training sample as the number of classes increases. This results in a 1

k scaling term in survival and a
1√
k

scaling in contamination. It is this effect that makes it possible in some regimes for the contamination
from other favored features to dominate — whereas in the case of binary classification, it is always the
contamination from unfavored features that dominates.
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which can be rearranged to give us the condition

0 < t <
q + r − 1

2
.

Figure 4.2 illustrates this regime, as well as how it relates to our results.

Figure 4.2: Visualization of regime where SVM solution is identical to MNI solution.

Notice the overlap. Thus our result is not limited only to the minimum-norm interpolator,
but in fact holds for other training methods when the problem is sufficiently overparameter-
ized. In this sense, the results in [146] and the present paper can be read together to tell
a more full story of overparameterized multiclass classification. The behavior of the SVM
solution in the conjectured region where εmulti → 1, but where it is not known whether
SVM = MNI, is left for future work.

Further, although the present analysis focuses on solutions that exactly interpolate the
training data, we can extend our results to account for additional ridge regularization by
viewing ridge regularization as minimum-norm interpolation using augmented contamination-
free features as in the Appendix of [105] and computing bounds leveraging tools from [141].
Our assumption of the strict bi-level weighting model is largely to simplify the calculations
and by substituting terms appropriately in our lemmas from Section 4.8, it should be possible
to compute results for other weighting models.

Finally, exploring the new phenomena that can be encountered as we go beyond the 1-
sparse orthogonal means model is an exciting direction for future work. Here a possible first
line of inquiry is whether multi-class classification can succeed when the number of classes
k, exceeds

√
n where n is the number of training points and the classes are determined by

features that are almost orthogonal, i.e we are operating close to the 1-sparse orthogonal
means model.

The next section discusses the potential looseness in our analysis and describes how we
obtained Conjecture 6.
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4.4 Conjectured looseness of bound
In (4.48) in the proof of Lemma 23, we upper bound z⊤j ∆Ainv∆y using the Cauchy-Schwarz
inequality as

|z⊤j ∆Ainv∆y| ≤ ∥zj∥2∥∆Ainv∆y∥2 (4.17)
≤ ∥∆Ainv∥op∥zj∥2∥∆y∥2 (4.18)
≤ ∆µ∥zj∥2∥∆y∥2. (4.19)

This results in a high-probability bound of the order ∆µn/
√
k. Essentially this bound fears

that ∆Ainv can, in worst case, align zj and ∆y to be in the same direction. However, since
there is only a weak dependence between ∆Ainv and zj and ∆y this bound is likely overly
cautious. We conjecture that this bound is loose by a factor

√
n. Why do we conjecture this?

If we ignored the dependency of ∆Ainv on zj and ∆y and blindly applied the Hanson-Wright
inequality (with the M matrix introduced as in Section 4.10 to leverage the fact that ∆y is
mostly zeros) then we would obtain a high-probability upper bound of the form ∆µ

√
n/k

(ignoring the logarithmic factors).
Assuming this tighter conjectured bound holds and similarly assuming an analogously

tighter bound for
∣∣z⊤τ ∆Ainv∆y

∣∣ in Section 4.10 and following through with the rest of our
analysis, we obtain the conjectured sufficient conditions for good generalization as in Equa-
tion (4.16) from Conjecture 6 for the regime q + r > 1.

It turns out that whenever the survival/contamination ratio grows at a polynomial rate
nv for v > 0 then the survival variation term also shrinks at a polynomial rate n−u for u > 0.
Thus ensuring the survival/contamination ratio is large enough (i.e. the number of classes is
not too large relative to the level of favoring of potentially true features) is key to obtaining
good generalization.

Although we focus on the regime q + r > 1 in our work, our proof technique is also
applicable to the regime q + r < 1, i.e where regression works and by grinding through the
math for this setting we should be able to get sufficient conditions for good generalization
here as well. The survival in the multi-class setting in the regime q+r < 1 will scale roughly
as 1/k due to the fewer positive training examples per class instead of behaving like the
constant

√
2/π as was the case for binary classification (Lemma 9, Chapter 3). Moreover,

Lemma 11 from Chapter 3 shows that for the binary classification setting the contamination
scales as n−min(p−1,1−r)/2 when q+ r ≤ 1. In the multiclass setting the contamination will be
lower by a factor of

√
k and substituting this in our error analysis we obtain Conjecture 6

for the regime q + r < 1.
Finally, we believe that we can adapt our analysis from the Proof of Theorem 5 in Section

4.8 to write a set of sufficient conditions for poor generalization. The primary condition for
this would be for the relevant survival/contamination ratio to go to zero. We conjecture that
computing conditions on p, q, r, t under which this occurs results in the converse result in the
form of sufficient conditions for poor generalization present in Conjecture 6. Intuitively, if
the survival/contamination ratio goes to zero, then the contamination can with significant
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probability flip the sign of a comparison involving the score that should be winning — this
parallels the way that the converse is proved in Chapter 3 for binary classification.

The next section elaborates on the effect of fewer number of positive training examples per
class in the multiclass setting and investigates an alternative setting where the total number
of positive training examples per class is kept constant while we increase the number of
classes.

4.5 Scaling parameters with the number of positive
training examples per class

From our results in Figure 4.1 we observed that as the number of classes k increases (i.e. larger
values of t), the region where multiclass classification generalizes well shrinks. A justification
for this is when the number of classes k increases while the number of training points n stays
constant, we have fewer positive training examples from each class, and this makes the task
harder.

To see if the reduced number of positive training examples is indeed the dominant effect,
we can explore what happens if we increase the number of total training points to compensate
for this effect? Instead of scaling all parameters with the total number of training points,
what happens if we scale them with the number of positive training examples per class?

Let N = nb be the new number of training points for some b > 1, while rest of the
parameters in the bi-level model scale as before. We have,

N = nb

d = np = Np/b

s = nr = N r/b

a = n−q = N−q/b

k = ckn
−t = ckN

−t/b.

We can interpret this as our standard setup, albeit parameterized by N , rather than n. To
keep the model well-defined we require the following:

• b < p, to ensure we are still overparameterized;

• r < b, to ensure the number of favored features does not exceed the total number of
training points;

• q < p− r to ensure we are actually favoring the first s features.
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For this setup, Theorem 5 states that the probability of misclassification tends to zero if

t

b
< min

(
r

b
, 1− r

b
,
p

b
+ 1− 2

(q
r
+

r

b

)
,
p

b
− 2,

2q

b
+

r

b
− 2

)

q

b
+

r

b
> 1.

Rearranging, we obtain the condition

t < min(r, b− r, p+ b− 2(q + r), p− 2b, 2q + r − 2b)

q + r > b.

To hold the number of training samples per class fixed we can set b = t + 1, so the
ratio N/k becomes constant. Doing so, we obtain the following sufficient conditions for good
generalization:

t < min

(
r,
p− 2

3
,
2q + r − 2

3

)

0 < 1− r

0 < p+ 1− 2(q + r)

t < q + r − 1.

Additionally for the model to be well defined we require t < p − 1. (The other conditions
r < t+ 1 and q < p− r for model to be well defined are automatically satisfied if the above
conditions for good generalization are satisfied).

If we assume Conjecture 6 then a set of sufficient conditions for good generalization is:

0 ≤ p+ 1− 2(q + r)

r < 1

t < r

t < p− 1.

The first two conditions must be satisfied for binary classification problem to generalize well
and thus for multi-class classification to succeed in this setting we need to ensure binary
classification succeeds. The condition t < r arises because if we don’t favor the features used
in the comparison while assigning class labels then we have no hope of succeeding in overpa-
rameterized settings. The condition t < p−1 ensures that the problem is overparameterized.
If any of these conditions is not met then the probability of classification error will tend to
1.

Figure 4.3 visualizes the conjectured regimes for this alternative setup where the number
of positive training examples per class is held fixed as we vary the number of classes for
fixed values of p and q. In the white region, our model is not well defined. Note that in
subfigure (a), the limiting factor to the model being well defined is the inequality r < 1 + t
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Figure 4.3. Visualization of the conjectured bi-level classification regimes when we scale
everything with the number of positive training examples per class, instead of with the total
number of training points.
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(we must have more training examples than favored features) while in subfigure (b), the
limiting factor for the model being well defined in the right-hand boundary is the inequality
r < p− q (we must put a larger weight on the features we favor as compared to those that
we do not favor). In subfigure(b) we see that the top boundary for the model being well
defined is the inequality t < p−1 which is necessary for the problem to be overparameterized
and support the existence of interpolating solutions. Further, the right-hand bound for good
generalization in subfigure (a) corresponds to the inequality r < 1 while in subfigure (b) it
corresponds to p + 1 > 2(q + r). The left-hand boundary for good generalization in both
figures is the inequality t < r, which reflects the fact that for MNI-based classification to
succeed, all the features defining the classes must be favored.

It is interesting to note that when we add more training points so as to increase the
number of positive examples, we are effectively decreasing the level of overparameterization
in the problem. We know from [109] that adding training data in a way that reduces
overparameterization can sometimes make performance worse instead of better. However,
in the deeply overparameterized setting of the bi-level models explored here, this effect is
counteracted by the survival benefits of having more positive examples — in effect, reducing
the overall level of overparameterization reduces the shrinkage induced by the regularizing
effect of overparameterization. This reduction in shrinkage compensates for the 1

k
hit to

survival induced by the larger number of classes.
The next section complements the theoretical and asymptotic proofs in this chapter with

an empirical evaluation of relevant quantities using simulated data for finite values of , the
number of training points. We chose a regime where we are conjecturing results so that it
is possible to see the very close match between our conjectured predictions for how these
quantities should scale and how they actually do in experiments.

4.6 Experimental results
Theorem 5 is proved rigorously and so we know that the asymptotic result is true. Underlying
the result is the analysis of survival (how strongly is the true feature underlying this class
represented in the learned score) and contamination (what is the standard deviation of the
contamination in predictions that comes from learning nonzero coefficients to features that
have nothing to do with this class). Multiclass classification asymptotically succeeds when
the survival dominates the contamination.

In Figure 4.4, we plot experimental results using the bi-level ensemble model (Definition 9)
for a setting where regression does not work but multiclass classification is conjectured to
work. We plot quantities from Equation (4.15) in our error analysis. From subfigures (a),(b)
and (c) we observe that while both survival and contamination are decreasing as we increase
n, the survival/contamination ratio increases. The survival/contamination ratio growing
with n is important for correct classification. The trend is very clear from the experimental
results and indicates that continuing to grow n (together with the number of classes k, the
number of features d, the number of favored features s, and the level of favoring as per our
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bi-level idealized model) would result in ever improving performance. Furthermore, we see
that the empirical slope of these quantities on a log-log plot (and thus the power-law scaling
of these quantities with respect to n) agree with the theoretical slopes calculated based on
our conjecture.

Figure 4.4. Experimental results using the bi-level ensemble model with p = 1.5, q =
0.55, r = 0.5, t = 0.2. Here, the number of training samples n varies from 300 to 3000 and
the number of classes is computed as k = ⌊3nt⌋ and varies from 9 to 14. We calculated the
classification errors over a batch size of 10000, and ran 10 trials. The plots show the mean
plotted with error bars corresponding to the 10th, 90th percentile values. We also plot the
theoretical slopes for survival, contamination and the survival/contamination ratio based on
our conjecture and notice that it closely matches the empirical slope of the quantities when
plotted on a log-log scale. Notice that jaggedness in the plots is often due to integer effects
as k grows or does not grow with n.

Subfigure (d) plots the binary classification error when only trying to distinguish between
the true class and one other particular class. (In this experiment, the true class was deter-
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mined by feature 1. We calculate the binary error as the probability of misclassifiying a point
from class 1 as belong to class 2 when we only compare the scores for class 1 and class 2.) We
see that this error clearly decreases as we increase n. One way of thinking about successful
multiclass classification is that the true class must win such pairwise competitions against
all competing classes. Finally, subfigure (e) plots the total multiclass misclassification error
overlaid with the number of classes. Here too we see a downward trend in classification error
as n increases, even though we would have to go to significantly larger n than our compute
could handle to see this error probability drop to very low values. Notice the integer effects
arising from the number of classes k sometimes not growing with n that result in small
upward spikes in the classification error.

To estimate how large n must be to see the probability of misclassification get close to
zero for the settings as in the experiment from Figure 4.4, we perform a heuristic calculation
where the scores used to predict the class on a test point (actually generated by min-norm
interpolation process) are instead determined as sum of the scaled version of the feature
(down-scaled by the survival) and and independent zero mean Gaussian with standard de-
viation equal to contamination. Using the curves from subfigures(a) and (b) of Figure 4.4
we can extrapolate the survival and contamination quantities as:

SU = 0.32 · n−0.25, CN =
1.13√

2
· n−0.4, (4.20)

where we down-scaled contamination by
√
2 since Figure 4.4 plots corresponds to contami-

nation from two features (the competing feature and the true feature).
Figure 4.5 plots the classification error as well as the “Top-5” error (the probability

that the predicted class corresponds to one of the five largest features) obtained by our
heuristic calculation as well as our experiment. We see that for n where we were able to
computationally run the experiment the error values are close to the heuristic calculation.
The power of the heuristic calculation (and of our theory to enable such heuristic calculations)
is that we can predict what happens for very large n. For instance, we need n ≈ 1018 for
the classification error to drop below 0.01. If we look at the Top-5 error however then
n ≈ 107 is sufficient for error to go below 0.01. This corresponds to 1010 parameters (since
d = n1.5) and while this is clearly too large for us to run on our local machines, dedicated
GPU clusters given sufficient time are capable of running this. To conclude, even though
for the parameter settings we considered above, the classification error doesn’t drop close
to zero until n becomes very large, we see the power of our theoretical result in enabling
heuristic calculations to predict the evolution of classification error with the number of
training samples.

The next section plots the difference between the singular values (and hence estimated
eigenstructure) of the empirical feature matrix and the eigenstructure of the underlying
features themselves. While this behavior is well known in the literature, the plots illustrate
the underlying challenge provided by the regime in which regression does not generalize —
namely that the empirical eigenstructure does not reveal the true nature of the underlying
features.
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(a) Classification error vs number of training points

(b) Top-5 error and classification error vs number of training points
Figure 4.5. Heuristic calculation of multiclass classification error for p = 1.5, q = 0.55, r =
0.5, t = 0.2. Here, the number of training samples n varies from 102 to 1018 and the number
of classes is computed as k = ⌊3nt⌋ and varies from 7 to 11943. We compute the heuristic
classification error and Top-5 error over a batch size of 10000, and ran 10 trials. The plots
show the mean plotted with error bars corresponding to the 10th, 90th percentile values.The
heuristic calculations are a close match for the experimental values from Figure 4.4. For
n > 1011, the heuristic calculation for Top-5 error is 0 since our batch size is not large
enough to detect errors smaller than 10−4.
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4.7 Comment on empirical eigenstructures of feature
matrices

It is well known (for instance Remark 1 from Chapter 3 that cites [147]) that for a spiked
covariance model when the ratio of the top to the bottom eigenvalues grows as Ω(d/n) , the
top s eigenvalues can be estimated reliably from samples, even when the number of training
samples n is less than the number of features d. The ratio of the top to the bottom eigenvalue
in our bi-level model scales as

ad
s

(1−a)d
d−s

= np−q−r, (4.21)

and when q + r < 1, this ratio is larger than d/n = np−1. Figure 4.6 shows empirical results
of estimating the eigenvalues via the singular value decomposition of the training feature
matrices. The visual distinction is quite striking. In the regime q + r > 1, the SVD of the
training features matrix (and thus the empirical covariance matrix’s eigenvalues) does not
reveal that there are actually s favored features in the data. By contrast, in the regime
q + r < 1, the SVD clearly shows an eigenvalue gap that reveals exactly what s is.

Theorem 5 shows that when q + r > 1 and there is not enough structure in the feature
matrix to reliably estimate the top eigenvalues of the feature covariance matrix features,
multiclass classification can still succeed for interpolating solutions as long as the number
of classes does not increase too fast. It is because we are in the regime q + r > 1 that new
techniques for analysis had to be developed in this chapter, and the gap between the regime
where we can prove the results and our conjectured results points interestingly to where
there is a need for even better technique.

The rest of the chapter is organized as follows. Section 4.8 provides an overall proof for
Theorem 5 by introducing some intermediate lemmas and assuming they hold. Section 4.9
introduces some key tools that we need and Section 4.10 leverages those tools to build towards
a proof of these intermediate lemmas by introducing some helper results that are needed to
deal with the key challenge posed by multiclass training data. Section 4.11 actually proves
the intermediate lemmas used in Section 4.8 and completes the proof.

Throughout, we will assume that n is large enough for asymptotic behavior to kick in.
We also will introduce various universal positive constants, indexed as ci. These constants
are all independent of n, and constants with the same index are to be treated as equal.

4.8 Appendix: Proof of Theorem 5
We restate Theorem 5, our main result, here for convenience:

Theorem 5. (Asymptotic classification region in the bi-level model): Under the bi-
level ensemble model 9, when the true data generating process is from a 1-sparse orthogonal
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(a) q = 0.15, q + r = 0.65.

(b) q = 0.65, q + r = 1.15.

Figure 4.6. Estimating the eigenvalues of the covariance matrix of features empirically.
Here n = 400 and the feature covariance structure follows the bi-level model with parameters
p = 1.5, r = 0.5. Thus d = 8001 and s = 21 for both (a) and (b). The difference between
(a) and (b) is in the level of favoring of favored features: with q = 0.15, (a) favors them
more than (b) does with q = 0.65. In the regime where regression works, q + r ≤ 1, we
are able to accurately estimate the top s eigenvalues. In the regime where regression fails,
q + r > 1, we are unable to estimate the top s eigenvalues accurately. The blue curve plots
the estimated eigenvalues and the shaded region corresponds to the 10-90 percentile of the
estimated values over 20 trials. Note, that there is only very small deviation across trials.

means model (Assumption 2), the probability of misclassification P(Eerr) → 0 as n → ∞ if
the following conditions hold:

t < min (r, 1− r, p+ 1− 2(q + r), p− 2, 2q + r − 2)

q + r > 1.

Before we proceed with the proof we remind the reader of a few important definitions.



CHAPTER 4. MULTICLASS CLASSIFICATION 111

Recall from (4.7) that our learned feature coefficients are

α̂m = (Φtrain)
⊤ (Φtrain(Φtrain)

⊤)−1
ym.

Let

A = Φtrain(Φtrain)
⊤.

We can express A as,

A =
d∑

j=1

λjzjz
⊤
j ,

where zj are i.i.d with zj ∼ N (0, In). The learned coefficients can then be written as

α̂m[j] =
√

λjz
⊤
j A

−1ym.

Let µ1(A) denote the largest eigenvalue and µn(A) denote the smallest eigenvalue of A
respectively, with µi(A) being the i-th largest eigenvalue of A.

Next, we state a useful lemma adapted from [10] that bounds the eigenvalues of A−1

and is a stronger version of Lemma 1 from Chapter 3. Subsequent lemmas will utilize these
eigenvalue bounds.

Lemma 14. (Eigenvalue bounds on A−1 adapted from [10]):
If Λ is such that ♢ ≪

∑
j λj, then with probability at least (1− 2e−n),

µ̄−∆µ ≤ µn(A
−1) ≤ µ1(A

−1) ≤ µ̄+∆µ,

where,

µ̄ =
1∑
j λj

(4.22)

♢ =
32

9


λ1(1 + ln 9)n+

√
(1 + ln 9)n

∑

j

λ2
j


 (4.23)

∆µ = µ̄


 ♢∑

j λj
+Θ

(
♢∑
j λj

)2

 . (4.24)

Further this implies that with probability at least (1− 2e−n),
∣∣µi(A−1 − µ̄In)

∣∣ ≤ ∆µ

for all i ∈ [n].
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The subsequent lemmas bound the feature margin, survival, contamination and survival
variation terms, utilizing tools from [10] and building on results from Chapter 3.

Lemma 15. (Lower bound on the closest feature margin as k → ∞): For any
constant ε > 0, there exists a constant θ such that, for sufficiently large k with probability at
least (1− ε),

min
ζ:1≤ζ ̸=τ≤k

(Z[τ ]− Z[ζ]) ≥ θ√
2 ln(k)

.

Here, τ is fixed and corresponds to the index of the true class — i.e. τ corresponds to the
index of the maximum feature among the first k features.

Lemma 16. (Lower bound on the closest feature margin when k is constant): If
k = ck for some fixed constant ck, for any constant ε > 0, there exists a constant ε′ > 0 such
that

P
(

min
ζ,γ:1≤ζ ̸=γ≤ck

|Z[ζ]− Z[γ]| ≥ ε′
)

≥ 1− ε.

Thus, with probability at least (1− ε),

min
ζ:1≤ζ ̸=τ≤k

(Z[τ ]− Z[ζ]) ≥ ε′.

Here, τ is fixed and corresponds to the index of the true class — i.e. τ corresponds to the
index of the maximum feature among the first k features.

Lemma 17. (Lower bound on relative survival of true feature): For any fixed ζ ∈ [k],
ζ ̸= τ , with λτ = λζ = λ we have with probability at least (1− 5/(nk)),

λĥτ,ζ [τ ] ≥ λ
(
c10µ̄

n

k

√
ln(k)− c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k)
)
,

for universal positive constants c9 and c10.

By substituting the asymptotic behavior of parameters from our bi-level ensemble model
we get the following corollary:

Corollary 2. Under the bi-level ensemble model 9, for any fixed ζ ∈ [k], ζ ̸= τ , λτ = λζ = λ
if t < 1/2, t < 2(q + r− 1) and 1 < q + r < (p+ 1)/2, with probability at least (1− 5/(nk)),

λĥτ,ζ [τ ] ≥ c12n
1−q−r−t

√
ln(k),

for universal positive constant c12.
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Lemma 18. (Upper bound on contamination): For any fixed ζ ∈ [k], ζ ̸= τ , with
probability at least (1− 7/(nk)),

CNτ,ζ ≤ c7

(
µ̄

√
n

k
·
√

ln(ndk) + ∆µ ·
n√
k

)
·
√∑

λ2
j ,

for universal positive constant c7.

As before, for our bi-level ensemble model we have the corollary:

Corollary 3. Under the bi-level model 9, in the regime 1 < q+r < (p+1)/2, with probability
at least (1− 7/(nk)),

CNτ,ζ ≤ c13n
(1−t−p)/2+max(0,3/2−q−r)+max(0,p/2−q−r/2)

√
ln(ndk),

for universal positive constant c13.

Lemma 19. (Upper bound on survival variance): For any fixed competing feature
ζ ∈ [k], ζ ̸= τ with λτ = λζ, we have with probability at least (1− 15/(nk)),

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]
≤

2c9(µ̄
√
n
√

ln(nk) + ∆µ · n/
√
k)

c10µ̄
n
k

√
ln(k)− c9(µ̄

√
n
√
ln(nk) + ∆µ · n/

√
k)

, (4.25)

for universal positive constants c9 and c10.

As before, we can also obtain the asymptotic bound:

Corollary 4. Under the bi-level ensemble model 9, for any fixed ζ ∈ [k], ζ ̸= τ , if t < 1/2,
t < 2(q + r − 1), and 1 < q + r < (p+ 1)/2, with probability at least (1− 15/(nk)),

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]
< n−u,

for large enough n for some fixed u > 0.

Substitute Corollaries 2, 3, and 4 into (4.15), applying them on all 1 ≤ ζ ̸= τ ≤ k. They
hold with probability at least 1−5/(nk), 1−7/(nk), and 1−15/(nk) respectively for a given
test point and choice of ζ. So by the union bound across the three bounds and all k − 1
choices of ζ, with probability at most 27/n, one of these corollaries will not hold for our test
point for some ζ. Let this failure event be denoted E1.

In the case when E1 does not occur, misclassification occurs only if

c12
√

ln(k)

c7
√

ln(ndk)
nv
(
min
ζ

(Z[τ ]− Z[ζ])−max
ζ

|Z[ζ]| · n−u
)

< max
ζ

G(ζ),
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where we define the exponent

v = 1− q − r − t− (1− t− p)/2−max

(
0,

3

2
− q − r

)
−max

(
0,

p

2
− q − q

2

)

=
p+ 1

2
− q − r − t

2
−max

(
0,

3

2
− q − r,

p

2
− q − r

2
,
3

2
− 2q − 3r

2

)
,

and

G(ζ) =
1

CNτ,ζ


 ∑

j /∈{τ,ζ}

λjĥζ,τ [j]Z[j]


 .

For each class ζ, observe that we have G(ζ) ∼ N (0, 1).8 Thus, by the Gaussian tail bound,
for each ζ with probability at least (1− 1/(nk)),

G(ζ) <
√
2 ln(nk). (4.26)

So by the union bound over all k classes ζ, with probability at least (1− 1/n),

max
ζ

G(ζ) <
√

2 ln(nk).

Let the failure event where this is not the case be E2.
An identical argument shows that with probability at least (1− 2/n), maxζ |Z[ζ]| ≤√
2 ln(nk). Let E3 be the failure event where this is not the case.
From Lemma 15, we know with probability 1− ε that, if t > 0, then for sufficiently large

n (and so sufficiently large k)

min
ζ

(Z[τ ]− Z[ζ]) >
θ√

2 ln(k)
.

If t = 0 and k = ck, then Lemma 16 states that, with probability 1− ε,

P
(

min
1≤ζ ̸=γ≤ck

|Z[ζ]− Z[γ]| ≥ ε′
)

≥ 1− ε,

for some constant ε′. Let the ε-probability event of the appropriate margin bound (depending
on whether t = 0 or t > 0) being violated be the error event E4.

Assuming E1, E2, E3, and E4 all do not take place, misclassification can only occur if

c12
√

ln(k)

c7
√

ln(ndk)
nv

(
min

(
1− ε,

θ√
2 ln(k)

)
−
√

2 ln(nk)n−u

)
<
√

2 ln(nk).

8To be precise, here we can think of fixing the training data and looking purely at the randomness arising
from the features in the test point. The resulting G(ζ) is a standard normal. Since we are using the union
bound in our proof finally, this is sufficient for our purposes.
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Clearly, if v > 0, then (for sufficiently large n) misclassification becomes asymptotically
impossible (except via the specified error events), since the LHS of the above grows asymp-
totically faster than the RHS.

The union bound shows that the probability of any of E1, E2, E3, E4 occurring tends to
ε as n → ∞ (since the probability of the first three tend to zero). So in the regime where

t <
1

2
t < 2(q + r − 1)

q + r > 1

p+ 1

2
> q + r +

t

2
+ max

(
0,

3

2
− q − r

)
+max

(
0,

p

2
− q − r

2

)
, (4.27)

the probability of misclassification tends to ε for sufficiently large n, for any ε > 0.
Consolidation of the above bounds produces the conditions 9

t < min (1− r, p+ 1− 2(q + r), p− 2, 2q + r − 2)

q + r > 1.

Finally, note that the condition t < r comes from the definition of the bi-level model (9).
This condition simply states that for good generalization we must favor all the features used
to determine classes. Since the analysis above holds for any ε, we see that within this regime
the probability of misclassification must approach zero in the limit. This completes the
proof. Note that while we show that probability of misclassification goes to zero, we do not
show it to do so at any particular rate, because the result from Lemma 15 does not specify
the rate of convergence.

4.9 Appendix: Useful results from elsewhere that we
need

This section collects results that are used in our proof, but which come from elsewhere or
are lightly adapted to our purposes.

9We can simplify (4.27) as follows:

p+ 1

2
> q + r +

t

2
=⇒ t < p+ 1− 2(q + r)

p+ 1

2
> q + r +

t

2
+

3

2
− q − r =⇒ t < p− 2

p+ 1

2
> q + r +

t

2
+

p

2
− q − r

2
=⇒ t < 1− r

p+ 1

2
> q + r +

t

2
+

3

2
− q − r +

p

2
− q − r

2
=⇒ t < 2q + r − 2.

Then we note that t < min(r, 1− r) =⇒ t < 1/2.
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The first result is the Hanson-Wright inequality that we saw previously as Lemma 2 in
Chapter 3. We restate a more general form here for convenience where the sub-Gaussian
norm of the random variables of interest is arbitrary.

Hanson-Wright inequality [124]: Let z be a random vector composed of i.i.d. random
variables that are zero mean and with sub-Gaussian norm at most K. The sub-Gaussian
norm ∥ξ∥ψ2 of a random variable ξ is defined as in [124],

∥ξ∥ψ2 = inf
K>0

K (4.28)

s.t. E exp
(
ξ2/K2

)
≤ 2. (4.29)

Then, there exists universal constant c > 0 such that for any positive semi-definite matrix
M and for every t ≥ 0, we have

P
[
|zTMz− E[zTMz]| > t

]
≤ 2 exp

{
−cmin

{
t2

K4||M ||2F
,

t

K2||M ||op

}}
. (4.30)

The next result bounds the eigenvalues of the n×n matrix A = ΦtrainΦ
⊤
train =

∑d
j=1 λjzjz

⊤
j ,

where zj are i.i.d. with zj ∼ N (0, In). Let µ1(A) denote the largest eigenvalue and µn(A)
denote the smallest eigenvalue of A respectively.

From [10]10, we have the following result which is a stronger version of the result from
Lemma 1 from Chapter 3:

Lemma 20. With probability at least (1− 2e−n), the eigenvalues of A satisfy:

∑

j

λj − ♢ ≤ µn(A) ≤ µ1(A) ≤
∑

j

λj + ♢, (4.31)

where,

♢ =
32

9


λ1(1 + ln 9)n+

√
(1 + ln 9)n

∑

j

λ2
j


 . (4.32)

Next, as stated previously in Lemma 14 we will use this result to obtain bounds on the
eigenvalues of A−1 assuming that λj are such that ♢ ≪

∑
j λj.

11

10More precisely this lemma appeared in the first version of this work at https://arxiv.org/pdf/1906.
11300v1.pdf. In subsequent versions the authors use a slightly weaker version of this result since it is
sufficient for their purpose.

11Note that in the regime q+ r < 1 (where regression works from 2 in Chapter 3), we do not have ♢ ≪ λj

and in such scenarios we cannot simply rely on eigenvalue bounds and need to use other techniques in the
proof.

https://arxiv.org/pdf/1906.11300v1.pdf
https://arxiv.org/pdf/1906.11300v1.pdf
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Lemma 14. (Eigenvalue bounds on A−1 adapted from [10]):
If Λ is such that ♢ ≪

∑
j λj, then with probability at least (1− 2e−n),

µ̄−∆µ ≤ µn(A
−1) ≤ µ1(A

−1) ≤ µ̄+∆µ,

where,

µ̄ =
1∑
j λj

(4.22)

♢ =
32

9


λ1(1 + ln 9)n+

√
(1 + ln 9)n

∑

j

λ2
j


 (4.23)

∆µ = µ̄


 ♢∑

j λj
+Θ

(
♢∑
j λj

)2

 . (4.24)

Further this implies that with probability at least (1− 2e−n),
∣∣µi(A−1 − µ̄In)

∣∣ ≤ ∆µ

for all i ∈ [n].

Proof. Let S =
∑

j λj.

1

S + ♢
=

1

S

(
1 +

♢
S

)−1

(4.33)

=
1

S

(
1− ♢

S
+Θ

(
♢
S

)2
)

(4.34)

= µ̄−∆µ, (4.35)

and analogously (S−♢)−1 = µ̄+∆µ. Taking reciprocals of everything in the inequality 4.31,
and since the eigenvalues of A and A−1 are reciprocals of each other, the desired result
follows.

As a Corollary of Lemma 14:

Corollary 5. (Asymptotic eigenvalue bounds on A−1) Considering the asymptotic scal-
ing of the model parameters from the bi-level model (Definition 9), in the regime 1 < q+ r <
(1 + p)/2,

µ̄ = n−p

∆µ ≤ c4n
1−p−q−r ≪ µ̄,

where µ̄ and ∆µ are defined as in Lemma 14, and c4 is a universal constant.
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Proof. From the asymptotic scaling of the λj from (4.9) and (4.10), we see that (from the
definition provided in Lemma 14)

µ̄ =
1∑
j λj

=
1

nrnp−q−r + (np − nr)(1− nq) · np/(np − nr))

=
1

np−q + np − np−q

= n−p.

Next, we have that

♢ =
32

9


λ1(1 + ln 9)n+

√
(1 + ln 9)n

∑

j

λ2
j




≤ c1n
1+p−q−r + c2

√
n(nrn2p−2q−2r + (np − nr))

≤ c1n
1+p−q−r + c2

√
n1+2p−2q−r + n1+p

for constants c1 and c2,
The second term is of the order nmax((1−r)/2+p−q,(1+p)/2). Thus, in the regime q + r <

(1+p)/2, and since r < 1 we have 1+p−q−r > (1−r)/2+p−q and 1+p−q−r > (1+p)/2
and the first term dominates.

Thus, ♢ ≤ c3n
1+p−q−r for some constant c3 and sufficiently large n.

Observe that since q+ r > 1, ♢ ≪
∑

j λj = np. Thus, we can substitute into our relation
for ∆µ from Lemma 14, to see that

∆µ = µ̄


 ♢∑

j λj
+Θ

(
♢∑
j λj

)2



≤ n−p ((c3n1+p−q−r)(n−p) + Θ((c3n
1+p−q−r)2(n−p)2)

)

= n−p(c3n
1−q−r +Θ(c3n

2(1−q−r))).

In the regime where q+ r > 1, the first term in the sum dominates the second, giving us,

∆µ ≤ c4n
1−p−q−r

for some constant c4 and sufficiently large n. This completes the proof.

Finally, in this section, we restate well-known bounds concerning Gaussian random vari-
ables.
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Lemma 21. Chi-squared tail bound:
Let z ∼ N (0, In). For any δ ∈ (0, 1), with probability at least (1− 2e−nδ

2
) we have:

n(1− δ) ≤ ∥z∥2 ≤ n(1 + δ). (4.36)

From bounds on the expectation of the maximum of k Gaussians:

Lemma 22. Let zτ = max1≤j≤k zj where zj ∼ N (0, 1). Then,

1√
π ln 2

·
√
ln k ≤ E[zτ ] ≤

√
2 ·

√
ln k. (4.37)

4.10 Appendix: Utility bounds
The big technical challenge in moving from binary classification (as was studied in Chapter 3
to multiclass classification has to do with the nature of the training data. Whereas for binary
classification one could change coordinates so that the binary labels only depended on a
single Gaussian random variable and were independent of all other directions of Gaussian
variation in the covariates, no such change of coordinates exists for multiclass labels. The
one-hot-style encoding of the labels fundamentally depends on the realizations of all k of the
Gaussian random variables representing each of the k classes. This means that we can no
longer simply leverage independence to simplify the analysis and certain clever approaches
used to invoke Hanson-Wright are no longer available to us. However, the need remains
to appropriately bound quadratic forms of the form

∣∣z⊤j A−1∆y
∣∣ both for the cases when j

represents a feature that is not dominant in the computation of ∆y as well as in cases where
j represents a feature that is dominant in ∆y. To be able to control such quantities in the
absence of the independence we could leverage in the binary case, this section derives two
lemmas which can be viewed as helper bounds. These bounds will later be used to bound
the various quantities from (4.15). Because our focus is on the asymptotic scaling, we will
use ci to denote the appropriate global constants.

In the subsequent lemmas, µ̄ and ∆µ are defined as in the bounds on the eigenvalues of
A−1 from Lemma 14. The following lemma is used to upper-bound the contamination term
CNτ,ζ in Lemma 18:

Lemma 23. Let ∆y = yτ − yζ. Let τ , ζ, and j be distinct. Then, with probability at least
(1− 7/(ndk)), we have,

∣∣z⊤j A−1∆y
∣∣ ≤ c7(µ̄

√
n

k
·
√

ln(ndk) + ∆µ · n/
√
k),

for some constant c7.

This next lemma is used to bound the numerator of the survival variation term from
(4.15):
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Lemma 24. Let ∆y = yτ − yζ. With probability at least (1− 5/(nk)), we have each of

z⊤τ A
−1∆y ≤ µ̄(E[z⊤τ yτ ]− E[z⊤τ yζ ]) + c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k) (4.38)

z⊤τ A
−1∆y ≥ µ̄(E[z⊤τ yτ ]− E[z⊤τ yζ ])− c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k), (4.39)

for some constant c9.

The following corollary of the above is used to lower-bound the relative survival ĥτ,ζ [τ ],
which in turn bounds the SU/CN ratio and the denominator of the survival variation term:

Corollary 6. Let ∆y = yτ − yζ. With probability at least (1− 5/(nk)), we have,

z⊤τ A
−1∆y ≥ c10µ̄

n

k

√
ln(k)− c9(µ̄

√
n
√
ln(nk) + ∆µ · n/

√
k),

for some constant c10.

Proof of Lemma 23

We will write A−1 = µ̄In +∆Ainv, and split up the expression z⊤j A
−1∆y into components

involving µ̄In, and components involving ∆Ainv. To bound the first term, we will use Hanson-
Wright, and to bound the second we will use Cauchy-Schwartz. Throughout the proof, we
rely on the concentration of the eigenvalues of A−1.

Next, we bound the first term (we set aside the constant µ̄ for now and deal with it later).

Bounds on zTj (yτ − yζ)

Throughout this section, let j be a feature index distinct from τ and ζ. Define the diagonal
matrix M ∈ Rn×n with diagonal entries given by:

Mii =

{
1, if ∆y[i] ̸= 0

0, otherwise
.

In other words, Mii is 1 only if training point i belongs to class τ or ζ and is 0 otherwise. Thus
for each i ∈ [n], Mii ∼ Bernoulli(2/k) and are independent of each other. We introduce
this matrix M to ensure that our bound reflects the fact that most of the entries of ∆y are
0. In particular ∆y[i] ̸= 0 only if point i belongs to class τ or ζ and only contains roughly
2n/k non-zero entries.12 Note that we have by definition,

zTj ∆y = zTj M∆y.

Our strategy is to bound z⊤j M∆y for every typical realization M of the random variable
M using the Hanson-Wright inequality. Subsequently, we will apply these bounds with high
probability over typical realizations of M that satisfy the Proposition below, which merely
asserts that with high probability, the number of 1s in ∆y is close to its expected value.

12An alternative bounding technique that first converted z⊤j ∆y to a quadratic form and applied Hanson-
Wright would be looser by a factor of

√
k if we did not introduce M.
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Proposition 2. For δ ∈ (0, 1), with probability at least (1 − 2e−
2nδ2

3k ), the trace of M is
bounded as:

(1− δ)
2n

k
≤ ∥∆y∥22 = tr(M) ≤ (1 + δ)

2n

k
. (4.40)

Proof. Note that tr(M) is the sum of n i.i.d Bernoulli random variables with mean 2/k. The
result follows by application of the Chernoff bound.

Note that once we fix the realization M, the distributions of zj and ∆y will now have to
be conditioned on this realization and we need to deal with the modified distributions while
applying the Hanson-Wright inequality. In particular, once we know that a feature was not
the winning feature, it is no longer zero-mean.

Now,

zTj M∆y =
∑

i

zj[i]Mii∆y[i]

=
∑

i:Mii=1

zj[i]∆y[i]

=
∑

i:Mii=1

(zj[i]− E[zj[i] | Mii = 1])∆y[i] +
∑

i:Mii=1

E[zj[i] | Mii = 1]∆y[i]

=
∑

i:Mii=1

z̃j,M[i]∆y[i] +
∑

i:Mii=1

E[zj[i] | Mii = 1]∆y[i], (4.41)

where z̃j,M[i] is now a zero-mean random variable conditioned on the realization M.
First, we bound the term

∑
i:Mii=1 z̃j,M[i]∆y[i]. We collect the elements corresponding

to indices where Mii = 1 into the vectors z′j,M and ∆y′M, which are both length tr(M)
(Figure 4.7 shows an example of collecting elements).




1
2
3
4
5




︸︷︷︸
z̃j,M

,




1
0
−1
1
0




︸ ︷︷ ︸
∆y

→



1
3
4




︸︷︷︸
z′j,M

,




1
−1
1




︸ ︷︷ ︸
∆y′M

Figure 4.7. An example of collecting elements at indices where Mii = 1 into smaller vectors
of length tr(M). Recall that ∆y[i] ̸= 0 iff Mii = 0.
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We can then express
∑

i:Mii=1

z̃j,M[i]∆y[i]

= (z′j,M)T∆y′M

=
1

4

(
(z′j,M +∆y′M)T Itr(M)(z

′
j,M +∆y′M)− (z′j,M −∆y′M)T Itr(M)(z

′
j,M −∆y′M)

)
,

(4.42)

where we added and subtracted terms in the last equality.
We prove via the subsequent propositions that conditioned on the realization M, the en-

tries of z′j,M±∆y′j,M are i.i.d. and sub-Gaussian with bounded norm. Thus, they satisfy the
requirements to apply the Hanson-Wright inequality from [124] to bound the two quadratic
forms in the above expression (4.42).

Proposition 3. Conditioned on the realization M, z′j,M[i′] has sub-Gaussian norm at most
6.

Proof. Let i be the original index from which z′j,M[i′] was sampled.
If j > k, then z′j,M[i′] = z̃j,M[i] = zj[i] irrespective of the realization M because feature

j is not used in the comparison to determine the class label and is independent to yτ and
yζ (and thus independent to M). Further, zj[i] is simply a Gaussian (and therefore sub-
Gaussian with sub-Gaussian norm ∥zj[i]∥ψ2 ≤ 2. Here we use the definition of sub-Gaussian
norm from (4.29) reproduced here for convenience:

The sub-Gaussian norm of a random variable ξ is given by,

∥ξ∥ψ2 = inf
K>0

K

s.t. E exp
(
ξ2/K2

)
≤ 2.

Otherwise, if j is one of the k features that define classes, since

z′j,M[i′] = z̃j,M[i]

= zj[i]− E[zj[i] | Mii = 1],

the triangle inequality states that

∥z̃j,M[i]∥ψ2 ≤ ∥zj[i]∥ψ2 + ∥E[zj[i] | Mii = 1]∥ψ2 .

Note that the distribution of zj[i] conditioned on realization M is equivalent to the distri-
bution obtained by conditioning on the event Mii = 1. So it is sufficient to compute these
sub-Gaussian norms conditioned on the event Mii = 1.

We will first bound ∥zj[i]∥ψ2 . Let Ej be the event that zj[i] is the maximum out of the
first k features, and let Ecj be the complementary event.
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First, without conditioning on Ej, we know by well-known results for the standard Gaus-
sian that

E exp(zj[i]
2/5) =

√
5

3
≤ 4

3
.

Using the law of iterated expectation we can relate this to the expectation conditioned
on the events Ej and Ecj , noting that P(Ej) = 1/k:

4

3
≥ E exp(zj[i]

2/5)

= P(Ej)E exp(zj[i]
2/5|Ej) + P(Ecj )E exp(zj[i]

2/5|Ecj )

=
1

k
E exp(zj[i]

2/5|Ej) +
k − 1

k
E exp(zj[i]

2/5|Ecj ).

Rearranging terms, we obtain,

k − 1

k
E exp(zj[i]

2/5|Ecj ) ≤
4

3
− 1

k
E exp(zj[i]

2/5|Ej)

=⇒ E exp(zj[i]
2/5|Ecj ) ≤

k

k − 1

(
4

3
− 1

k
E exp(zj[i]

2/5|Ej)
)

≤ k

k − 1
· 4
3

≤ 2,

where in the second to last inequality we used the non-negativity of E exp(zj[i]
2/5|Ej) and

in the last equality we assumed k ≥ 3. We then have

E exp(zj[i]
2/5|Ecj ) =

∑

m̸=j

E exp(zj[i]
2/5|Ecj ∩ Em)P(Em | Ecj )

=
1

k − 1

∑

m ̸=j

E exp(zj[i]
2/5|Ecj ∩ Em) (4.43)

where the last equality follows by symmetry. Further by symmetry, all the terms in the
above summation that we are averaging are equal, so we can express it as an average of just
the terms corresponding to m = τ and m = ζ, as follows:

(4.43) =
1

2
E exp(zj[i]

2/5|Ecj ∩ Eτ ) +
1

2
E exp(zj[i]

2/5|Ecj ∩ Eζ)

= P(Eτ | Ecj ∩ (Eτ ∪ Eζ))E exp(zj[i]
2/5|Ecj ∩ Eτ )

+ P(Eζ | Ecj ∩ (Eτ ∪ Eζ))E exp(zj[i]
2/5|Ecj ∩ Eζ), (4.44)
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again by symmetry. Since exactly one of Eτ and Eζ are true when conditioned on Ecj∩(Eτ∪Eζ),
we can rewrite the above as our desired expectation

(4.44) = E exp(zj[i]
2/5|Ecj ∩ (Eτ ∪ Eζ))

= E exp(zj[i]
2/5|Eτ ∪ Eζ)

= E exp(zj[i]
2/5|Mii = 1),

since Mii = 1 is equivalent to the event Eτ ∪ Eζ . Thus, conditioned on the event Mii = 1,
∥zj[i]∥ψ2 ≤

√
5.

Next we consider ∥E[zj[i] | Mii = 1]∥ψ2 . By a similar argument to above, we have that
E[zj[i] | Mii = 1] = E[zj[i] | Ecj ], so we will focus on the second quantity instead. Bounds on
the max of Gaussians (Lemma 22) state that:

0 < E[zj[i] | Ej] ≤
√

2 log(k)

=⇒ 0 > E[zj[i] | Ecj ] ≥ − 1

k − 1

√
2 log(k) ≥ −2

=⇒ exp

(E[zj[i] | Ecj ]2

32

)
< 2.

In the second last inequality we use the fact that the function f(k) =
∣∣√2 log k/(k − 1)

∣∣ is
monotonically decreasing in k and assumed k ≥ 3.

Thus, the (constant) random variable E[zj[i] | Mii = 1] is sub-Gaussian with parameter
3. So, by the triangle inequality, conditioned on Mii = 1

∥z̃j,m[i]∥ψ2 ≤ ∥zj[i]∥ψ2 + ∥E[z̃j,m∥ψ2

≤
√
5 + 3

≤ 6.

This completes the proof that conditioned on the realization M, z′j,M[i′] is sub-Gaussian
with norm at most 6.

We can now prove our target result:

Proposition 4. With probability at least (1− 6/(ndk)),

∣∣z⊤j ∆y
∣∣ ≤ c6

√
n

k
·
√

log(ndk).

for universal constant c6.

Proof. Our strategy will be to bound z⊤j ∆y = z⊤j M∆y for every typical realization M of
M that satisfies Proposition 2. Recall that for a given realization M we have,

zTj M∆y =
∑

i:Mii=1

z̃j,M[i]∆y[i] +
∑

i:Mii=1

E[zj[i] | Mii = 1]∆y[i]. (4.45)



CHAPTER 4. MULTICLASS CLASSIFICATION 125

We will use Hanson-Wright to bound the first term, which we previously expressed in (4.42)
as:
∑

i:Mii=1

z̃j,M[i]∆y[i]

=
1

4

(
(z′j,M +∆y′M)T Itr(M)(z

′
j,M +∆y′M)− (z′j,M −∆y′M)T Itr(M)(z

′
j,M −∆y′M)

)
.

By Proposition 3, the sub-Gaussian conditions for the entries of z′j,m are satisfied. Further,
∆y′M is bounded in [−1, 1], so ∥∆y′M∥ψ2 ≤ 2. Thus, by the triangle inequality, the sub-
Gaussian norm of the entries of z′j,M ±∆y′M is bounded by K ≤ 6 + 2 = 8. Also note that
conditioned on the realization M, z′j,M is zero-mean by construction and ∆y′M is zero-mean
by symmetry between τ and ζ, so we can now apply the Hanson-Wright inequality to both
terms.

We choose parameter

t =
K2

√
c

√
tr(M)

√
log(ndk).

where c is the constant from the Hanson-Wright result.
So

t2

K4∥Itr(M)∥2F
=

1

c
log(ndk)

t

K2∥Itr(M)∥op
=

1√
c

√
tr(M)

√
log(ndk) >

1

c
log(ndk).

The last inequality follows since with high probability tr(M) = Θ(
√

n/k), by Proposition
2,
√

tr(M)
√

log(ndk) = Θ(
√

n log(ndk)/k) grows faster than log(ndk).
Finally, note that:

E[(z′j,M)T∆y′M | M = M] =
∑

i:Mii=1

E[z̃j,M[i]∆y[i] | M = M]

=
∑

i:Mii=1

E[z̃j,M[i]∆y[i] | Mii = 1]

=
∑

i:Mii=1

1

2
E[z̃j,M[i] | ∆y[i] = 1]− 1

2
E[z̃j,M[i] | ∆y[i] = −1]

= 0,

where the last equation follows by symmetry. Knowing which of zτ [i] or zζ [i] was the maxi-
mum does not change the conditional expectation of z̃j,M[i].

So, applying Hanson-Wright, with probability at least (1− 4/(ndk)) we have

−K2

2
c5
√

tr(M)
√

log(ndk) = − t

2
≤ z̃Tj,m∆y ≤ t

2
=

K2

2
c5
√

tr(M)
√
log(ndk),
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where c5 =
1√
c
.

We next consider the second term
∑

i:Mii=1 E[zj[i] | Mii = 1]∆y[i] from (4.41) conditioned
on the realization M.

By an identical symmetry argument as for the previous term we have, 0 ≥ E[zj[i] | Ecj ] =
E[zj[i] | Mii = 1]. Then as a consequence of Lemma 22 and using the fact that Mii = 1

implies zj[i] is not the maximum of k Gaussians we have, E[zj[i] | Ecj ] ≥ −2
√
log(k)/(k− 1).

So we can bound
∣∣∣∣∣
∑

i:Mii=1

E[zj[i] | Mii = 1]∆y[i]

∣∣∣∣∣ ≤
2
√
log(k)

k − 1

∣∣∣∣∣
∑

i:Mii=1

∆yi

∣∣∣∣∣ ≤
2δ′
√

log(k)

k − 1
, (4.46)

with probability 1− 2e−δ
′2/(6·tr(M)), by application of the Chernoff bound and using the fact

that conditioned on Mii = 1, ∆y[i] takes value ±1 with probability half by symmetry among
features τ and ζ.

Next, we apply the high probability bounds above on typical realizations M. In particu-
lar, we substitute bounds on tr(M) from (4.40) from Proposition 2 with δ = 1/2 into (4.46),
and set δ′ =

√
6(1 + δ)(n/k) log(ndk). Then e−δ

′2/(6·tr(M)) ≤ 1/(ndk) and e−
2nδ2

3k < 1/(ndk),
so using the union bound we have with probability at least (1−4/(ndk)−1/(ndk)−1/(ndk)),

∣∣zTj ∆y
∣∣ ≤

∣∣∣∣∣
∑

i:Mii=1

z̃j,M[i]∆y[i]

∣∣∣∣∣+
∣∣∣∣∣
∑

i:Mii=1

E[zj[i] | Mii = 1]∆y[i]

∣∣∣∣∣

≤ K2

2
c5
√
1 + δ ·

√
2n

k
·
√
log(ndk) +

2
√

(1 + δ)(n/k) log(ndk)
√
log(k)

k − 1

≤ K2

2
c5
√
1 + δ ·

√
2n

k
·
√
log(ndk) +

2
√

(1 + δ)
√

log(k)

k − 1
·
√

n

k
·
√

log(ndk)

≤ c6

√
n

k
·
√
log(ndk), (4.47)

for a suitable choice of c6.

Bounds on z⊤j A
−1(yτ − yζ)

We can now prove bounds on our target quantity. We restate the lemma that we are trying
to prove below for convenience.

Lemma 23. Let ∆y = yτ − yζ. Let τ , ζ, and j be distinct. Then, with probability at least
(1− 7/(ndk)), we have,

∣∣z⊤j A−1∆y
∣∣ ≤ c7(µ̄

√
n

k
·
√

ln(ndk) + ∆µ · n/
√
k),

for some constant c7.
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Proof. We can rewrite

z⊤j A
−1∆y = z⊤j (µ̄In +∆Ainv)∆y

= µ̄z⊤j ∆y + z⊤j ∆Ainv∆y.

Next we can bound
∣∣z⊤j ∆Ainv∆y

∣∣ simply as

|z⊤j ∆Ainv∆y| ≤ ∥zj∥2∥∆Ainv∆y∥2 (4.48)
≤ ∥∆Ainv∥op∥zj∥2∥∆y∥2
≤ ∆µ∥zj∥2∥∆y∥2,

where we use the fact that ∆Ainv is a symmetric matrix and its 2-norm is its maximum
absolute eigenvalue. We obtain the eigenvalue bounds for ∆Ainv from Lemma 14, holding
with probability at least 1− 2e−n.

So, by the triangle inequality, we have with probability at least (1 − 6/(ndk) − 2e−n −
2e−

2nδ2

3k − 2e−nδ
2
)

∣∣z⊤j A−1∆y
∣∣ ≤ c6µ̄

√
n

k
·
√

ln(ndk) + ∆µ ·
√

(1 + δ)n ·
√

(1 + δ)
2n

k
.

The first term follows from Proposition 4, and the second from our bound on tr(M) = ∥∆y∥22
from Proposition 2, as well as an analogous application of the chi-squared bound (Lemma
21) on ∥zj∥2.

The proof follows by setting δ to any value in (0, 1), choosing an appropriate constant c7,
and noting that for large enough n, 1/(ndk) ≫ d1e

−d2n/k for any positive constants d1, d2.

Proof of Lemma 24

Next we use a similar technique as in Section 4.10 to bound z⊤τ A
−1∆y. We will write

A−1 = µ̄In +∆Ainv, and split up the expression z⊤τ A
−1∆y into components involving µ̄In,

and components involving ∆Ainv.

Proposition 5. Consider two arbitrary length-n zero-mean vectors y and z whose compo-
nents each has sub-Gaussian norm at most K. With probability at least 1− 4/(nk) we have
each of

z⊤y ≤ E[z⊤y] + 2c8
√
n ·
√

ln(nk)

z⊤y ≥ E[z⊤y]− 2c8
√
n ·
√

ln(nk),

for some universal constant c8.
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Proof. The upper-bound follows as

z⊤y =
1

4

(
(z+ y)⊤(z+ y)− (z− y)⊤(z− y)

)

≤ E[z⊤y] +
K2

2
√
c

√
n ·

√
lnnk,

with probability at least (1 − 4/(nk)), where we apply the Hanson-Wright inequality to
each of the quadratic terms with t = K2

√
c

√
n
√
ln(nk) and use the fact that, letting M = In,

∥M∥2F = n, ∥M∥op = 1. The lower-bound can be obtained analogously, and an appropriate
choice of c8 completes the proof.

From this, we can now prove Lemma 24, restated below for convenience:

Lemma 24. Let ∆y = yτ − yζ. With probability at least (1− 5/(nk)), we have each of

z⊤τ A
−1∆y ≤ µ̄(E[z⊤τ yτ ]− E[z⊤τ yζ ]) + c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k) (4.38)

z⊤τ A
−1∆y ≥ µ̄(E[z⊤τ yτ ]− E[z⊤τ yζ ])− c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k), (4.39)

for some constant c9.

Proof. We have

z⊤τ A
−1(yτ − yζ) = z⊤τ (µ̄In +∆Ainv) (yτ − yζ)

= µ̄z⊤τ (yτ − yζ) + z⊤τ ∆Ainv(yτ − yζ)

= µ̄z⊤τ (yτ − yζ) + z⊤τ ∆Ainv(y
oh
τ − yohζ ).

We again simply bound

|z⊤τ ∆Ainv∆y| ≤ ∥zj∥2∥∆Ainv∆y∥2
≤ ∥∆Ainv∥op∥zτ∥2∥∆y∥2
≤ ∆µ∥zτ∥2∥∆y∥2

≤ ∆µ ·
√

(1 + δ)n ·
√

(1 + δ)
2n

k

= ∆µ(1 + δ)
√
2
n√
k
,

with probability (1 − 2e−nδ
2 − 2e−

2nδ2

3k ), using chi-squared bounds for zτ (Lemma 21) and
Chernoff bounds for ∆y (Proposition 2).

With probability (1− 2e−nδ
2 − 2e−

2nδ2

3k ), we get each of

zTτA
−1(yτ − yζ) ≤ µ̄zTτ (yτ − yζ) + ∆µ(1 + δ)

√
2
n√
k

zTτA
−1(yτ − yζ) ≥ µ̄zTτ (yτ − yζ)−∆µ(1 + δ)

√
2
n√
k
.
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By applying Proposition 5 on the relevant terms, setting δ to be an arbitrary value in
(0, 1), and choosing an appropriate constant c9, we obtain with probability (1−5/(nk)) each
of

zTτA
−1(yτ − yζ) ≤ µ̄(E[zTτ yτ ]− E[zTτ yζ ]) + c9(µ̄

√
n
√
ln(nk) + ∆µn/

√
k)

zTτA
−1(yτ − yζ) ≥ µ̄(E[zTτ yτ ]− E[zTτ yζ ])− c9(µ̄

√
n
√
ln(nk) + ∆µn/

√
k).

The probability comes from the union bound (1− 2e−nδ
2 − 2e−

2nδ2

3k − 4/(nk)) ≥ 1− 5/(nk)
(for sufficiently large n).

Proof of Corollary 6

We claim the following bound:

Proposition 6. Bounds on E[z⊤τ yτ ].

1√
π ln 2

· n
k
·
√
ln k ≤ E[z⊤τ yτ ] ≤

√
2 · n

k
·
√
ln k (4.49)

Proof.

E[z⊤τ yτ ] = E[z⊤τ yohτ ]− E[z⊤τ
1

c
1]

= E[z⊤τ yohτ ]

= n
(
E[zτ,iyohτ,i|yohτ,i = 1]P(yohτ,i = 1) + E[zτ,iyohτ,i|yohτ,i = 0]P(yohτ,i = 0)

)

=
n

k
E[zτ,i|yohτ,i = 1].

So the desired bound follows from the bounds in Lemma 22.

We can obtain a similar bound for when ζ ̸= τ :

Proposition 7. Bounds on E[z⊤τ yζ ].

−
√
2 · n

k
· 1

k − 1
·
√
ln k ≤ E[z⊤τ yζ ] ≤ − 1√

π ln 2
· n
k
· 1

k − 1
·
√
ln k (4.50)
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Proof. Observe that,

E[z⊤τ yζ ] = E[z⊤τ yohζ ]− E[z⊤τ
1

k
1]

= E[z⊤τ yohζ ]− 1

k
E[zτ ]⊤1

= E[z⊤τ yohζ ]

=
∑

i

E[zτ,iyohζ,i]

= n
(
E[zτ,iyohζ,i|yohζ,i = 1]P(yohζ,i = 1) + E[zτ,iyohζ,i|yohζ,i = 0]P(yohζ,i = 1)

)

=
n

k
E[zτ,i|yohζ,i = 1] (4.51)

Now, observe that

E[zτ,i|yohτ,i = 0] =
∑

ζ ̸=τ

E[zτ,i|yohζ,i = 1]P(yζ,i = 1 | yohτ,i = 0)

=
1

k − 1

∑

ζ ̸=τ

E[zτ,i|yohζ,i = 1]

= E[zτ,i|yohζ,i = 1]

for a particular ζ, by symmetry over the possible ζ.
Next we bound E[zτ,i|yohτ,i = 0] as follows:

E[zτ,i|yohτ,i = 1]P(yohτ,i = 1)

+ E[zτ,i|yohτ,i = 0]P(yohτ,i = 0) = E[zτ,i] = 0

=⇒ E[zτ,i|yohτ,i = 0]
k − 1

k
= −E[zτ,i|yohτ,i = 1]

1

k

=⇒ E[zτ,i|yohτ,i = 0] = −E[zτ,i|yohτ,i = 1]
1

k − 1

Thus, substituting in the results from Lemma 22, and plugging back into (4.51), we obtain

−
√
2 · n

k
· 1

k − 1
·
√
ln k ≤ E[z⊤τ yζ ] ≤ − 1√

π ln 2
· n
k
· 1

k − 1
·
√
ln k, (4.52)

the desired result.

We can now prove Corollary 6, which we restate below for convenience:

Corollary 6. Let ∆y = yτ − yζ. With probability at least (1− 5/(nk)), we have,

z⊤τ A
−1∆y ≥ c10µ̄

n

k

√
ln(k)− c9(µ̄

√
n
√
ln(nk) + ∆µ · n/

√
k),

for some constant c10.
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Proof. This follows by substituting the lower bound from (4.49) in Proposition 6 and the
upper bound from (4.50) in Proposition 7 into (4.39) from Lemma 24, making an appropriate
choice for c10.

4.11 Appendix: Misclassification events: Proof of
Lemmas used in Theorem 5

With the previous section’s utility bounds that allow us to deal with multiclass training
data in hand, we are in a position to establish all the lemmas that we need to analyze
misclassification.

Proof of Lemma 15: Lower bound on minζ(Z[τ ]− Z[ζ])

With these bounds in hand, we can look at each misclassification event in turn. The first
event to consider is if the best competing feature is unusually close to the true (maximum)
feature.

Lemma 15. (Lower bound on the closest feature margin as k → ∞): For any
constant ε > 0, there exists a constant θ such that, for sufficiently large k with probability at
least (1− ε),

min
ζ:1≤ζ ̸=τ≤k

(Z[τ ]− Z[ζ]) ≥ θ√
2 ln(k)

.

Here, τ is fixed and corresponds to the index of the true class — i.e. τ corresponds to the
index of the maximum feature among the first k features.

Proof. The following result from [1] (reproduced in [133]) enables us to bound the closest
feature margin as:

P

(
min
ζ

(Z[τ ]− Z[ζ]) >
θ√

2 ln(k)

)
≥ c11e

−θ,

for some universal positive constant c11, for sufficiently large k. Thus, by selecting a constant
θ such that c11e−θ = 1− ε and choosing a sufficiently large k, we have that with probability
(1− ε):

min
ζ
(Z[τ ]− Z[ζ]) ≥ θ√

2 ln k
.
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Lemma 16. (Lower bound on the closest feature margin when k is constant): If
k = ck for some fixed constant ck, for any constant ε > 0, there exists a constant ε′ > 0 such
that

P
(

min
ζ,γ:1≤ζ ̸=γ≤ck

|Z[ζ]− Z[γ]| ≥ ε′
)

≥ 1− ε.

Thus, with probability at least (1− ε),

min
ζ:1≤ζ ̸=τ≤k

(Z[τ ]− Z[ζ]) ≥ ε′.

Here, τ is fixed and corresponds to the index of the true class — i.e. τ corresponds to the
index of the maximum feature among the first k features.

Proof. Observe that,

min
1≤ζ ̸=τ≤ck

(Z[τ ]− Z[ζ]) ≥ min
1≤ζ ̸=γ≤ck

|Z[γ]− Z[ζ]| .

In other words, rather than bounding the margin between the largest and second-largest
features, we will lower-bound the absolute difference between any pair of features.

Consider a particular (ζ, γ) tuple. Observe that Z[ζ]−Z[γ] ∼ N(0, 2), since each feature
is drawn independently from a standard Gaussian. For any ϵ′ > 0, we can upper-bound

P (|Z[ζ]− Z[γ]| ≤ ε′) ≤ ε′√
π

by taking the product of the maximum value of the Gaussian pdf and the width, 2ϵ′, of the
region we are interested in. Taking the union bound across all (ζ, γ) tuples, we find that

P
(

min
1≤ζ ̸=γ≤ck

|Z[ζ]− Z[γ]| ≤ ε′
)

≤ c2kε
′

√
π
.

So for any given ε > 0, we can choose ε′ = ε
√
π/c2k, and have that

P
(

min
1≤ζ ̸=γ≤ck

|Z[ζ]− Z[γ]| ≥ ε′
)

≥ 1− ε.

Lower bound on λĥτ,ζ [τ ]
maxζ CNτ,ζ

Next, we will find a lower bound for survival-contamination ratio within the regime with low
survival variance.
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Lemma 17. (Lower bound on relative survival of true feature): For any fixed ζ ∈ [k],
ζ ̸= τ , with λτ = λζ = λ we have with probability at least (1− 5/(nk)),

λĥτ,ζ [τ ] ≥ λ
(
c10µ̄

n

k

√
ln(k)− c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k)
)
,

for universal positive constants c9 and c10.

Proof. Using Corollary 6, we lower bound ĥτ,ζ [τ ] with probability at least (1− 5/(nk)) as

ĥτ,ζ [τ ] = λ−1/2
τ (α̂τ [τ ]− α̂ζ [τ ])

= z⊤τ A
−1yτ − z⊤τ A

−1yζ

≥ c10µ̄
n

k

√
ln(k)− c9(µ̄

√
n
√
ln(nk) + ∆µ · n/

√
k).

Multiplying through by λ gives the desired result.

From the above result, under the scalings of our bi-level model we obtain:

Corollary 2. Under the bi-level ensemble model 9, for any fixed ζ ∈ [k], ζ ̸= τ , λτ = λζ = λ
if t < 1/2, t < 2(q + r− 1) and 1 < q + r < (p+ 1)/2, with probability at least (1− 5/(nk)),

λĥτ,ζ [τ ] ≥ c12n
1−q−r−t

√
ln(k),

for universal positive constant c12.

Proof. Substituting our asymptotic scalings into the results from Lemma 17 and using the
decay rate of µ̄ ≍ n−p from Corollary 5 (which we can do since 1 < q + r < (p + 1)/2), we
find that

λĥτ,ζ [τ ] ≥ np−q−r
(
c10µ̄

n

k

√
ln(k)− c9(µ̄

√
n
√
ln(nk) + ∆µ · n/

√
k)
)

= c10n
1−q−r−t

√
ln(k)− c9n

1/2−q−r
√

ln(nk)− c9n
2−2q−2r−t/2

≥ c12n
max(1−q−r−t,2−2q−2r−t/2)

√
ln(k)

= c12n
1−q−r−t+max(0,1−q−r+t/2)

√
ln(k)

≥ c12n
1−q−r−t

√
ln(k),

for an appropriately chosen universal constant c12 and sufficiently large n.

Next we upper bound maxζ CNτ,ζ .

Lemma 18. (Upper bound on contamination): For any fixed ζ ∈ [k], ζ ̸= τ , with
probability at least (1− 7/(nk)),

CNτ,ζ ≤ c7

(
µ̄

√
n

k
·
√

ln(ndk) + ∆µ ·
n√
k

)
·
√∑

λ2
j ,

for universal positive constant c7.
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Proof. For each ζ we have,

CNτ,ζ =

√√√√√


 ∑

j /∈{τ,ζ}

λ2
j(ĥζ,τ [j])

2




For j /∈ {τ, ζ}, by Lemma 23,
∣∣∣ĥζ,τ [j]

∣∣∣ =
∣∣∣ĥτ,ζ [j]

∣∣∣
= |α̂j − ĝj|
=
∣∣z⊤j A−1yτ − z⊤j A

−1yζ
∣∣

=
∣∣z⊤j A−1(yτ − yζ)

∣∣

≤ c7

(
µ̄

√
n

k
·
√

ln(ndk) + ∆µ ·
n√
k

)
,

with probability 1− 7/(ndk).
So taking the union bound over all d− 2 terms in the expression for the contamination,

we can upper-bound it as

CNτ,ζ ≤ c7

(
µ̄

√
n

k
·
√

ln(ndk) + ∆µ ·
n√
k

)
·
√∑

λ2
j ,

with probability (1− 7/(nk)), the desired result.

Corollary 3. Under the bi-level model 9, in the regime 1 < q+r < (p+1)/2, with probability
at least (1− 7/(nk)),

CNτ,ζ ≤ c13n
(1−t−p)/2+max(0,3/2−q−r)+max(0,p/2−q−r/2)

√
ln(ndk),

for universal positive constant c13.

Proof. Since 1 < q + r < (p + 1)/2, we can apply Corollary 5 to the result from Lemma 18
and substitute in the known scalings of various terms, to obtain

CNτ,ζ ≤ c7(n
1/2−t/2−p

√
ln(ndk) + c4n

2−p−q−r−t/2)(np−q−r/2 + np/2)

≤ c13n
(1−t−p)/2+max(0,3/2−q−r)+max(0,p/2−q−r/2)

√
ln(ndk),

for an appropriately chosen universal positive constant c13.
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Proof of Lemma 19: Bounds on Survival Variance

Finally, we look at the error event where a competing feature has unusually high survival
relative to the true feature, so it is incorrectly selected.

Lemma 19. (Upper bound on survival variance): For any fixed competing feature
ζ ∈ [k], ζ ̸= τ with λτ = λζ, we have with probability at least (1− 15/(nk)),

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]
≤

2c9(µ̄
√
n
√

ln(nk) + ∆µ · n/
√
k)

c10µ̄
n
k

√
ln(k)− c9(µ̄

√
n
√
ln(nk) + ∆µ · n/

√
k)

, (4.25)

for universal positive constants c9 and c10.

Proof. We first consider the numerator of the LHS of (4.25). By Lemma 24, with probability
at least (1− 5/(nk)),

ĥτ,ζ [τ ] = λ−1/2
τ (α̂τ [τ ]− α̂ζ [τ ])

= z⊤τ A
−1yτ − z⊤τ A

−1yζ

≤ µ̄(E[z⊤τ yτ ]− E[z⊤τ yζ ]) + c9(µ̄
√
n
√

ln(nk) + ∆µ · n/
√
k).

Similarly, with probability at least (1− 5/(nk)),

ĥζ,τ [ζ] = λ
−1/2
ζ (α̂ζ [ζ]− α̂τ [ζ])

= z⊤ζ A
−1yζ − z⊤ζ A

−1yτ

≥ µ̄(E[z⊤ζ yζ ]− E[z⊤ζ yτ ])− c9(µ̄
√
n
√
ln(nk) + ∆µ · n/

√
k).

By symmetry,

E[z⊤ζ yζ ] = E[z⊤τ yτ ]
E[z⊤ζ yτ ] = E[z⊤τ yζ ].

Thus with probability at least (1− 10/(nk)),

ĥτ,ζ [τ ]− ĥζ,τ [ζ] ≤ 2c9(µ̄
√
n
√
ln(nk) + ∆µ · n/

√
k).

Using Corollary 6 to lower-bound the denominator of the LHS of (4.25), we obtain with
probability at least (1− 15/(nk))

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]
≤

2c9(µ̄
√
n
√
ln(nk) + ∆µ · n/

√
k)

c10µ̄
n
k

√
ln(k)− c9(µ̄

√
n
√

ln(nk) + ∆µ · n/
√
k)

.
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We can apply Corollary 5 to simplify our results from Lemma 19 in the asymptotic regime
for the bi-level model.

Corollary 4. Under the bi-level ensemble model 9, for any fixed ζ ∈ [k], ζ ̸= τ , if t < 1/2,
t < 2(q + r − 1), and 1 < q + r < (p+ 1)/2, with probability at least (1− 15/(nk)),

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]
< n−u,

for large enough n for some fixed u > 0.

Proof. Substituting, using Corollary 5, in the regime where 1 < q+r < (p+1)/2 and t < 1/2,
we find that

ĥτ,ζ [τ ]− ĥζ,τ [ζ]

ĥτ,ζ [τ ]
≤

2c9(n
1/2−p

√
ln(nk) + c4n

2−p−q−r−t/2)

c10n1−p−t
√
ln(k)− c9(n1/2−p

√
ln(nk) + c4n2−p−q−r−t/2)

≤ 2c9
c10

·
n1/2

√
ln(nk) + c4n

2−q−r−t/2

n1−t − (c9/c10)n1/2
√

ln(n) + (c9 · c4/c10)n2−q−r−t/2

≤ c14
n1/2

√
ln(nk) + n2−q−r−t/2

n1−t

≤ c14n
max(t−1/2,t/2+1−q−r)

√
ln(nk),

for sufficiently large n and an appropriate choice of positive constant c14. Thus, if max(t−
1/2, t/2 + 1 − q − r) < 0, our quantity of interest tends to zero at a polynomial rate as
n → ∞, completing the proof.
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Chapter 5

Learning control using neural networks

5.1 Introduction
In Chapters 2, 3 and 4 we saw via the analysis of overparameterized generalized linear models
that there is a distinction between what can be learned and what is actually learned, i.e.
even if the model has the capacity to learn the right solution, the implicit bias induced by the
model structure and training algorithm is critical for steering the model towards the right
solution. In the case of our work, the implicit bias was due to the covariance matrix of our
data favoring a few important directions and the use of gradient descent to learn minimum-
norm interpolating solutions. But is this principle restricted to only overparameterized linear
models or applicable more widely? To answer this question, in this chapter we investigate
empirically the importance of implicit bias when learning non-linear neural-network models.
We focus our attention on two control problems where purely linear solutions are known to
be sub-optimal and it is unclear what sort of features must be used for generalized linear
solutions. The first is the famous Witsenhausen counterexample, a 2-step finite horizon
control problem, and the second is an infinite horizon problem of stabilizing a control system
with multiplicative observation noise. In both these problems, we will see how intelligently
choosing an architecture and training method by leveraging knowledge about the problem
domain can help us more easily and robustly find good solutions.

5.2 Witsenhausen problem

Problem setup

The Witsenhausen problem is a a simple decentralized stochastic control problem with two
controllers as illustrated in Figure 1.8 in Section 1.3, reproduced here for the convenience
of reader. The first controller receives X0 as input where X0 is a zero-centered Gaussian
random variable with variance σ2

x. Observing X0 perfectly, the first controller determines
the control U1 and the state evolves to be X1 = X0+U1. The second controller then receives
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a noisy version of the state, Y2 = X1 + Z, where Z is a standard unit variance normal
random variable. Given Y2, the second controller determines the control U2 and the final
state evolves to be X2 = X1 −U2. The controllers are designed together to ideally minimize
the expected cost function k2E[∥U1∥2] + E[∥X2∥2]. The two parameters σ2

x (measure of the

Figure 1.8. The Witsenhausen problem. The objective is to minimize k2E[∥U1∥2] +
E[∥X2∥2]. (repeated from page 10)

uncertainty in the initial state) and k2 (how heavily we penalize the first controller’s control
input) define an instance of the Witsenhausen problem.

Challenges while designing controllers

First, we note that since E[∥X2∥2] = E[∥X1−U2∥2] and U2 is determined solely based on Y2,
the optimal control strategy for the second controller is to output the conditional expectation
of X1 given Y2, E[X1 | Y2]. However, the optimal control strategy for the first controller is
more challenging to determine since the choice of U1 influences the distribution of X1 (and
consequently the distribution of Y2, U2 and X2) and it is unclear what choice will minimize
the cost function, k2E[∥U1∥2] + E[∥X2∥2].

An interesting feature about the the Witsenhausen problem is that linear control strate-
gies are provably sub-optimal [150]. The community has performed numerical explorations
of non-linear strategies for the Witsenhausen problem [8] and in [55] it was observed that
these non-linear strategies that visually resembled “slopey quantizers”.

In our work, we investigate whether we can use neural-networks to learn non-linear control
strategies for the Witsenhausen problem. We leverage the contemporary development of
libraries and computational platforms designed to facilitate deep learning research [80] and
use PyTorch [115] to train our neural networks.

First, we tried to replicate the results obtained by [8] using the architecture they used in
2001. Here, the first controller has one hidden layer of 150 units with sigmoid activations and
the second controller has one hidden layer of 30 units with sigmoid activations. However,
our results were extremely sensitive to the random seed used to generate X0 and Z while
training as well as the initialization of the parameters of the networks. Subfigure (b) in
Figure 5.1 plots a histogram for the number of seeds that lead to a learned strategy with a
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particular loss when k2 = 0.04 and we see that only a small fraction of seeds achieve a low
loss (close to 0.2). Subfigure (c) plots a similar histogram for k2 = 0.15. It is a wonder that
Baglietto et al.[8] were able to learn a good strategy with the computation power available
in 2001 which was a minuscule fraction of what we have access to today.

Subfigure (d) visualizes the strategy for the first controller that led to the minimum loss
of 0.20 by plotting the relationship between X1 and X0 when using the controller. Subfigures
(e) and (f) visualize examples of strategies for the first controller that led to a higher loss
value. We believe that part of the difficulty in learning a good strategy comes from the
difficulty in escaping local minimas that exist due to the coupling between the first and
second controller.

Figure 5.1. (a) Architecture used by Baglietto et.al. where controller 1 has 150 units of
sigmoid activation and controller 2 has 30 units of sigmoid activation. (b) Histogram of
total losses of 100 seeds with k2 = 0.04, σX = 5, train batch size=10k, test batch size=10k,
iterations=100k, learning rate=0.2. (c) Histogram of total losses of 500 seeds with k2 = 0.15,
σX = 5, train batch size=128, test batch size=10k, iterations=30k, learning rate=0.02. (d)
Minimum loss strategy found using architecture described in Baglietto et.al: loss 0.2045
using parameter settings from (b). (e) Examples of X1 vs X0 strategies using parameter
settings from (c) that achieved a loss within range: 0.31 to 0.4658. (f) Examples of X1 vs
X0 strategies using parameter settings from (c) that achieved a loss within range: 0.8 to 1.

Our approach: Lattice layer to bias networks towards good
strategies

In an effort to make it easier to learn good control strategies we would like to bias the networks
to make it more likely that they learn slopey-quantization-like strategies that perform well.
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We achieve this by introducing a “lattice layer” at the beginning as illustrated in Fig-
ure 5.2. The lattice layer is parameterized by it width w, and takes an input X0 which it
splits it into two components, the bin-centre (Xc

0) and the offset in the bin (Xoff
0 ), where

Xc
0 =

⌊
X0

w

⌋
w +

w

2

Xoff
0 = X0 −Xc

0.

The idea is that the controller has binned the entire input space and will choose a control
based on the bin and the position of the input within the bin. This makes it easier to learn
slopey-quantization-like strategies as in subfigure(d) of Figure 5.1 since Xc

0 can be used to
determine which section we are in and Xoff

0 can be used to generate the slope for that
section.

The outputs of the lattice layer are differentiable almost everywhere with respect to the
width parameter w, and thus the width can be trained using gradient methods as well.

Throughout this training, we use an approximation to the conditional expectation as the
second controller. Because for a slopey quantizer with non-zero slope the X1 distribution
isn’t discrete, we cannot use an exact calculation for the conditional expectation. To get the
approximate conditional expectation in a differentiable form we do the following. First, we
note that the conditional expectation that we are interested in is:

E[X1 | Y2 = y2] =

∫

x1

x1p(x1 | y2)dx1

=

∫

x1

x1
p(y2 | x1)p(x1)

p(y2)
dx1

=

∫

x1

x1
p(y2 | x1)p(x1)∫

x1
p(y2 | x1)p(x1)dx1

dx1,

where we have used the Bayes rule to express p(x1 | y2) in terms of p(y2 | x1). Then we note
that since Y2 = X1 + Z and Z ∼ N (0, 1) we have,

p(y2 | x1) =
1√
2π

e(y2−x1)
2

.

Finally we approximate the integral
∫
x1
p(y2 | x1)p(x1)dx1 by the mean of p(y2 | x1) com-

puted over a batch size of 1000 and similarly we also approximate the integral
∫
x1
x1p(y2 |

x1)p(x1)/p(y2)dx1. The power of the automatic differentiation engine in PyTorch is that this
gives rise to a second controller through which gradients could flow to the first controller.

We use the Adam optimizer [72] to train our neural network. More details about the
training process are provided in Section III.C of [132].

Figure 5.2 visualizes our results. By looking at the histogram of losses for k2 = 0.04 in
subfigure (b) we see that now a majority of seeds achieve a low loss close to 0.2 as compared
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to what we saw in subfigure (b) in Figure 5.1 and thus the lattice layer allows us to more
robustly find a low loss strategy. Subfigure (c) plots the histogram of losses for k2 = 0.15 and
here too we notice that a majority of seeds achieve low loss below 0.5 when using the lattice
layer. Subfigure (d) visualizes the strategy for the first controller that led to minimum loss
of 0.18 when k2 = 0.04. Subfigure (e) and (f) show other strategies that achieved a loss of
0.19 and 0.40 respectively for k2 = 0.04.

Notice that the minimum loss of 0.18 achieved using our architecture with a lattice layer
is very similar to the minimum loss of 0.20 obtained while using the architecture from [8] and
this suggests that the reason the lattice layer helps us find a good strategy is not because
it increases model capacity or allows us to express some strategies not possible without the
lattice layer but it helps by biasing our network in such a manner that we can easily find
strategies that enable slopey quantization.

Figure 5.2. (a) Architecture for controller 1. Controller 2 uses approximate conditional
expectation; E[X|Y]. (b) Histogram of total losses of 100 seeds with k2 = 0.04, σX = 5. (c)
Histogram of total losses of 100 seeds with k2 = 0.15, σX = 5. (d) Minimum loss strategy
X1 vs. X0 that achieves loss = 0.18 using parameter settings in (b) . (e) Example X1 vs.
X0 strategy that achieves total loss=0.19 using parameter settings from (b). (f) Example
X1 vs. X0 strategy that achieves total loss=0.40 using parameter settings from (b).

Vector Witsenhausen problem

As pointed out in [55, 54], the Witsenhausen problem naturally extends to higher dimensions
by making X0 vector valued with m dimensions and an i.i.d. initial condition across those
dimensions, and the cost functions normalized by 1

m
. These can be thought of as m indepen-
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Figure 5.3. (Best) Final strategy for 2D Witsenhausen, with k2 = 0.04, σX = 5. Learned
using a regular hexagon lattice and the linear network architecture with 4 lattice layers at
input. We used a learning rate=0.01, batch size=128, and iterations=3 × 104. Depicted is
the best run out of 100 random initializations. XY-plane is the input to controller 1; Z-plane
is one dimension of the X1 state (left and right plots show the two different coordinates).
Loss Stage 1 = 0.1280 ; Loss Stage 2 = 0.0248; Total Loss = 0.1527. Loss is estimated using
2× 104 test data points.

dent parallel copies of the Witsenhausen counterexample but with the controllers allowed to
peek at what is going on in the parallel instantiations before committing to an action for
their particular copy. One of the main insights of [55, 54] is that just as vector quantization
can do better than scalar quantization in pure lossy source coding problems even for i.i.d.
sources, and just as error-correcting codes can do better with larger block-lengths even if
they face independent noise in each channel, so also performance can in principle improve in
vector versions of the Witsenhausen counterexample compared to the scalar version.

The relative success of this approach of introducing explicit lattice layers prompted us
to see if this could be done for higher dimensions as well. As is discussed in [54], the best
(in terms of packing/covering ratios) lattices in higher dimensions are not just replications
of the natural 1D lattice provided by the integers. For example, in two-dimensional space,
the natural lattice is that given by hexagons of side-length w. We implement a differentiable
hexagonal lattice layer in PyTorch.1 By using a slopey quantization strategy, the 2D loss can
be reduced somewhat, as Figure 5.3 illustrates where in the 2-dimensional vector problem
we achieved a minimum loss of 0.15 as compared to the minimum loss of 0.19 for the scalar
problem.

1Given a regular hexagonal lattice of width w and a point X0 the two-dimensional bin centers and and
the distance of the point X0 from the bin centers can be expressed in terms of w. Subsequently w is also
another parameter that can be learned by the network. In our work in addition to the width w we also allow
for these hexagon lattices to be rotated and learn the rotated angle as another parameter.



CHAPTER 5. LEARNING CONTROL USING NEURAL NETWORKS 143

Discussion

Thus, we conclude that the implicit bias of the network architecture plays an important
role not only in finding good strategies but also in how robustly/easily we can find such
strategies. For the Witsenhausen problem, the implicit bias came from the lattice layer and
was inspired by our knowledge about the problem domain and the insight that good strategies
resembled slopey-quantization. Can a similar idea of selecting an appropriate implicit bias
based on knowledge about problem domain be applied to learn control strategies for other
control problems? The rest of the chapter explores this question by studying one particular
control system, a linear system with multiplicative observation noise. While the resulting
architectures and training procedure turn out to be more complex as compared to that of
the Witsenhausen problem we will see that biasing our controller intelligently enables us to
learn better control strategies.

5.3 Multiplicative noise system: Problem setup
We consider the discrete time system Sa, with initial state X0 ∼ N (0, 1), with system
dynamics governed by:

Xn+1 = aXn − Un (5.1)
Yn = ZnXn. (5.2)

At timestep n, the system state is Xn. A controller observes this state over a multiplica-
tive channel, i.e., Yn = ZnXn. We think of Zn as multiplicative noise. The Zn’s are drawn
i.i.d. from a known distribution, however their realizations are unknown to the controller.
We focus on Zn ∼ N (0, 1) in this work, but the ideas generalize. The controller can de-
termine the control at timestep n, Un, as a function of the current and past observations,
Y0, Y1, . . . , Yn, i.e. Un = πn(Y0, Y1, . . . , Yn) where πn : Rn → R is the control strategy at
timestep n. We assume a ∈ R+ is fixed and known, and our goal is second-moment stability
as defined below.

Definition 10. The system Sa is stable in second-moment sense if supn E [|Xn|2] < ∞.

We are interested in the following questions: how can we learn control strategies πn that
enable us to stabilize the system? And, what is the largest a for which we can stabilize the
system in a second-moment sense?

It is notable that the optimal linear strategy for this system is one that outputs Un = 0
for all n, however non-linear strategies can significantly (and unboundedly) improve on the
performance of the linear strategy [42]. Can we use neural networks to learn non-linear
strategies like we did for the Witsenhausen problem (Section 5.2)?
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5.4 Challenges while using neural networks to learn
control strategies

Compared to the Witsenhausen problem we have some key additional challenges while learn-
ing a control strategy to stabilize the system in 5.1. First, our controller must be able to
output the control at any timestep n however large. Thus, we cannot train a different neural
network to output the control at each timestep. Second, practically, we can only train our
control strategy for a finite horizon N . However, our control strategy must generalize, i.e. it
should continue to decay the state of the system for timesteps beyond the training horizon.

To address these challenges, we utilize a periodic control structure and a greedy training
procedure coupled with input-output scaling across time that enables us to learn control
strategies that generalize well.

5.5 Our architecture and training procedure
Our control strategy is parameterized by memory, M , period P and greedy training hori-
zon G. We say that a strategy uses memory M if it uses the values of observations
Yn, Yn−1, . . . , Yn−M+1 to determine control action Un. So a memory-1 controller can use
only the current observation.

Next, we allow the system to periodically cycle through different neural networks as
controllers. The parameter P denotes the number of distinct controllers we can use. The
value of n (mod P ) is used to determine the controller that outputs control action at timestep
n. Figure 5.4 provides an illustration of a memory-2, period-2 controller where we use
a simple one hidden layer architecture for each network with 20 hidden units and ReLU
activation.

Figure 5.4. A memoryless (M = 1), 2-periodic controller. We alternate between the
networks C0 and C1 for even and odd timesteps respectively.

We break the training into stages of length G and greedily minimize the second moment
of the true state at the end of each stage. Figure 5.5 visualizes our greedy training procedure.
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Figure 5.5: Greedy training procedure. We minimize the second moment every G steps.

More details about the control structure and training procedure are provided in Section
5.7. In the rest of the sections we use the M-P-G terminology to name our neural-network-
based strategies; as an example M2-P2-G2 refers to a memory-2, period-2 controller that is
trained greedily in stages of length 2.

Our goal is to try and close the gap between the achievability and the converse observed
in [42] by determining what is the maximum growth factor a for which we can learn a control
strategy that stabilizes the system Sa in second moment sense.

For simplicity, we focus on the case where a = 1, and consider the related system S given
as:

Xn+1 = Xn − Un, (5.3)
Yn = ZnXn. (5.4)

Our training loss function is engineered to minimize E[X2
n] for this system. In Section 5.12

we show that how fast E[X2
n] decays for system S is related to maximum growth factors a for

which the system Sa can be stabilized. Faster rates of decay correspond to larger stabilizable
growth factors.

5.6 Main results
Next we present our two main results.

Neural-network strategies outperform hand-crafted strategies

Figure 5.6, which plots the second moment of the state vs the timestep, shows that neural-
network-based strategies can outperform the hand-crafted previously best known strategy
(PBS) [42]. The performance of the PBS plotted here comes from optimizing over the
parameters of the strategy from [42].

Further, the neural-network-based control strategies are robust across the samples from
the batch as can be seen from Figure 5.7 that plots the histogram of the absolute value of
state for different timesteps. We see that for larger timesteps the absolute value of state is
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(b) n = 200 timesteps
Figure 5.6. Average second moment vs timestep for neural-network-based control strategies
with memory 2, 3 and 4 and the previous best known strategy (PBS). The memory-2 strategy
M2-P2-G2 outperforms the PBS. As we increase M we can achieve faster decay. The gap in
the performance for memory-2 and memory-3 strategies is much larger than that between
memory-3 and memory-4 strategies.
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concentrated on smaller values. Further, the first moment of the state decreases with time
as well as shown in Figure 5.8.

We tabulate the maximum growth factor that can be stabilized for different strategies
in Table 5.1 by using the relationship between the decay rate of E[X2

n] in system S to the
maximum stabilizable growth rate for system Sa from Section 5.12. Restricting to memory-2
control strategies, M2-P2-G2 and can stabilize growth factors up to 1.097 while the PBS
from [42] (which also uses memory-2) only stabilizes up to growth factors of 1.032. Increas-
ing the memory of the control strategies further improves the performance of the neural-
network-trained controllers and our best strategy can stabilize growth factors up to 1.156.
However, there are diminishing returns to increasing memory and we elaborate more on this
in Section 5.9.

Table 5.1: Maximum Growth Factors
Strategy a∗

PBS 1.032
M1-P2-G4-FIT 1.025
M1-P2-G4 1.026
M1-P3-G6 1.026
M2-P2-G2-FIT 1.097
M2-P2-G2 1.097
M3-P2-G2 1.115
M3-P3-G3 1.137
M4-P4-G4 1.156

Neural-network strategies are well-structured and interpretable

Our choice of a periodic controller architecture and greedy training algorithm that enables
us to learn well-structured interpretable control strategies.

We are able to understand the control strategies M1-P2-G4 and M2-P2-G4 as a linear
combination of a few simple features as elaborate on in Section 5.8. For the memory-1
controller, M1-P2-G4 we do a piecewise linear fit while for the memory-2 controller, M2-P2-
G4 we use a slightly more complicated set of features.

Further, our control strategies have a “probe” and then “minimize” structure, where for
some timesteps we utilize a control that can increase the state magnitude, but at later
timestep the observations are reduce to decrease the state magnitude.. The system probing
suggests there is an element of “active” learning our learned control strategies.
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Figure 5.7. Histogram of the absolute value of state for various timesteps when using the
M2 − P2 − G2 control strategy. Notice the shape of the histogram is different for even
and odd timesteps since we use a different controller for odd and even timesteps. For larger
timesteps the absolute value is concentrated on smaller values since our control strategy
leads to decaying state.
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Figure 5.8. First moment of state vs timestep for strategies with different M,P,G values.
Comparing this plot to Figure 5.6 we see that strategies that perform better in minimizing
second moment also perform better in minimizing first moment.

5.7 Methods
In this section we describe our control structure and training procedure in detail.

Control structure

Each control strategy consists of a set of P networks. At timestep n the network corre-
sponding to n (mod P ) is used to generate the control Un based on the past M memory of
observations Yn, . . . Yn−M+1. The set of networks over the period P form the control strategy
that aims to minimize the second moment of the system state N timesteps in the future. We
use a simple one hidden layer architecture for each network with 20 hidden units and ReLU
activation as illustrated in Figure 5.4.

Since we periodically reuse the same network for control, it is important to consider
the inputs and outputs to the network carefully. A good control strategy will decrease the
magnitude of the state Xn and thus also the magnitude of the observations Yn and the
required Un. While an observation value of 0.5 might be typical for timestep 0, it would be
a very atypical observation at timestep 100, and hence must be treated differently by the
controller. To deal with this we scale inputs and outputs of the networks as described below.

We use an exponential scaling factor sn given as:

sn = α⌊ n
P
⌋.

Note that we use the floor, ⌊n/P ⌋ because our control minimizes the second moment of
state only every P steps as can be seen in Figure 5.6.
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At timestep n, we scale the observations Yn by sn to give Ỹn as:

Ỹi =
Yi
sn

i = n−M + 1, . . . , n.

Note that at timestep n, we scale both the current and previous observations by the
scaling factor corresponding to timestep n in order to preserve the relative order between
these observations. Similarly we scale down the network’s output Ũn to Un before applying
the control action to the system with Un = snŨn. Figure 5.9 illustrates the input-output
scaling.

Figure 5.9. Scaling to preserve scale of inputs and outputs across time. The inputs to
the network (i.e the observations Yn) are up-scaled while the outputs of the network Ũn are
down-scaled.

We identify the best α by a hyperparameter search and provide the values used in Sec-
tion 5.10. A value of α that is too high or too low leads to poor control strategies that do
not generalize. The optimal α is one that leads to approximately constant second moment
of the inputs to the neural networks after the rescaling.

Training procedure

To train the neural networks we break the training horizon N into stages of length G and
greedily minimize the second moment of the true state every G steps as illustrated in Fig-
ure 5.5. We use truncated backpropagation through time and prevent the flow of gradients
across stages [149].

We choose G = kP for some positive integer k. As an example for M = 2, P = 2, G = 2
the first stage involves minimizing E[X2

2 ] and the second stage involves minimizing E[X2
4 ].

During the second stage we treat Y2 and Y1 as fixed constants not dependent on the param-
eters of the neural networks.

Our control structure and training procedure resembles that of a stateless recurrent neural
network [128] with our scaling procedure and periodic control structure performing the role
of the state. The structure that we impose makes it easier to train our control strategies
as compared to training recurrent neural networks. Further, this approach allows us to
learn control strategies that generalize well by continuing to decrease the second moment for
timesteps beyond the training horizon as shown in Figure 5.10.
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Figure 5.10. The learned control strategy M2-P2-G2 generalizes and continues to decrease
the second moment for timesteps beyond the training horizon of 24.

We use a training batch size of 4000 and run rollouts of the system (5.3) for a total
training horizon of 24. We train our neural networks for 10000 iterations using the Adam
optimizer with a learning rate of 10−4.

Robustness

To test our controllers we run rollouts of the strategies for batches of 106. Note that though
this batch size is large, it is not large enough to see certain types of inputs. This might
make some strategies appear to be successful even though they should fail. For instance, the
probability that all noise realizations are positive for a rollout up to timestep 50 is roughly
9× 10−16 and we would require a batch size of around 1017 to consistently see such inputs.

However, we believe this is not an issue with our strategies since the rate of decrease of the
second moment is consistent across time since our controller does a minimization of second
moment every P steps. Our batch size is large enough that the empirical test performance
is an accurate indicator for the true test performance for each period length. Figure 5.11
shows the variation in the second moment of the state for the batch size of 106 compared to
a batch size of 104. We see that for the batch size of 106 the second moment metric is quite
robust and there is not much deviation across trials for small values of n up to 40.

5.8 Neural-network-based strategies
This section explores two successful control strategies in detail. We see that these strategies
can be understood as linear combination of a few simple features.

M1-P2-G4

This control strategy uses only the current observation to compute the control and has a
2-periodic structure. Since G = 4 we minimize the second moment in stages of length 4.
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Figure 5.11. Variation of second moment over 20 different test batches while using the
M1-P2-G4 controller. The orange vertical lines denote the error bars corresponding to the
10th and 90th percentiles. For a test batch size of 106, the second moment metric is robust
upto n = 40 and the error bars are small. Using a smaller batch size of 104 however leads
to larger error bars and more variation across test batches.

It uses two networks, one for even timesteps and one for odd timesteps, as described in
Sec. 5.7. Since the magnitude of states, observations, and controls for the system decay with
time, we need to scale them appropriately as described in detail in Sec. 5.7. The observations,
Yn, are scaled up to Ỹn/sn before being fed into the network. The output of the network,
Ũn, is scaled down to Un = snŨn before being applied to the system. The red curves in
Figure 5.12 show Ũn, the output of the neural network, as a function of Ỹn, the input of the
neural network, at even and odd timesteps.

A first observation about this strategy is that it mostly ignores the sign of Ỹn. This
makes sense, since the zero-mean multiplicative noise means there is no information in the
sign of Ỹn. Further, it flips sign at even and odd times and seems to have a “probe” and
then “minimize” structure, where at the even timestep it sends a test control that might
increase the state magnitude, but uses the observation from this to reduce the magnitude at
the following timestep. The system probing suggests there is an element of “active” learning
in the strategy.

Based on the shape of the plot, we choose to use a piecewise linear fit (M1-P2-G4-FIT)
for the function, and the best fit (using input range [−5, 5]) is shown via the green curves
in Figure 5.12. We use the following features for the fit: max(−Ỹn + hL, 0), max(−Ỹn, 0),
max(Ỹn, 0), max(Ỹn − hR, 0), and 1 (i.e. a bias term). The parameters hR and hL, where
our piecewise linear fit changes slope, as well as the weights were identified using non-linear
least-squares for both the even and odd time control strategies and are listed in Section 5.11.

We test the performance of M1-P2-G4-FIT on the actual system and find that it has
performance very close to that of the neural network based strategy (see Figure 5.13). We
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see that both strategies can stabilize similar growth factors, 1.025 vs 1.026 (Table 5.1).
For both the neural-network-based strategy and the fit strategy the effective function

that relates Yn to Un changes with timestep n due to our scaling operation. To check that
the scaled inputs Ỹn, continue to lie in the range that was used to fit the piecewise linear
strategy for different n, we plot the 95th percentile values of |Ỹn| in Figure 5.14. We see that
in around 30 timesteps the 95th percentile values stabilize to a consistent range depicted by
the shaded region in Figure 5.12 and the outer regions are used only for timesteps n < 30
and for outliers.

M2-P2-G2

Next we consider a memory-2 control strategy with period 2. The successfully trained neural
networks use the two most recent scaled observations, Ỹn and Ỹn−1, to output Ũn, and plots
for these functions are shown in Figure 5.15.

If we fix Ỹn−1 and look at the functional relationship between Ỹn and Ũn, we see similarities
to the memory-1 strategy. Ũn is largely indifferent to the sign of Ỹn and increases in the
magnitude based on the magnitude of Ỹn. However, the relationship between Ỹn and Ỹn−1

plays an important role in the control strategy now. If we look at the plane spanned by
Ỹn and Ỹn−1 then we can identify four lines in this plane (angles) where the behaviour of
the strategy changes. These lines correspond to the creases on the Ũn surface. Motivated
by this observation we fit the function (M2-P2-G2-FIT) using the following features: |Ỹn−1|

Figure 5.12. Visualizing the memory-1 neural network strategy, Ũn = f(Ỹn), for even and
odd timesteps. The fit strategy shown in green closely resembles the neural network strategy
shown in red. For n > 30, 95% of Ỹ ’s fed to the neural network lie in the shaded region.
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Figure 5.13. Performance comparison of the fit strategy, M1-P2-G4-FIT to neural network
strategy M1-P2-G4. Both strategies exhibit similar performance.

Figure 5.14. 95th percentile value of |Ỹn| (the dots) fed to the neural network with timestep
: There is a difference in the even and odd timesteps as expected for P = 2. What is notable
is that after about 30 timesteps the inputs stabilize to being in close ranges for both the
neural-network-trained controller and the piece-wise linear fit controller. This suggests that
good control strategies eventually stabilize the input distribution to the network (up to
scaling).

and |Ỹn|, as well as, | cos(θ1)Ỹn−1 − sin(θ1)Ỹn|, | cos(θ2)Ỹn−1 + sin(θ2)Ỹn| (i.e. oriented along
diagonal lines Yn = ± cot(θ)Yn−1) and 1 (for bias). We still lack a clean explanation for the
exact reason why this strategy works.

The strategy generated by the fit exhibits similar performance to the network as shown
in Figure 5.16, and can stabilize similar growth factors as provided in Table 5.1. Like the
M = 1 strategy, this M = 2 strategy exhibits the same zigzag behavior at even and odd
timesteps, and the range of scaled inputs also stabilizes after about n = 30 timesteps.
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Figure 5.15. Visualizing the memory-2 neural network strategy alongside the fit strategy.
This figure shows the value of Ũn at even (top row) and odd (bottom row) timesteps as
a function of Ỹn and Ỹn−1. We observe that the fit strategy visually resembles the neural
network strategy.

Figure 5.16. Performance comparison of the fit strategy to the memory-2 neural network
generated strategy. The performance of these strategies and the maximum growth factor
that these can stabilize are similar.
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5.9 Effects of the parameters M,P and G

From Figure 5.6 in Section 5.6 it is clear that increasing memory (M), controller period (P )
and planning horizon (G) improve performance. This section investigates the effects of these
parameters in more detail and Figure 5.17 summarizes the results.

0 10 20 30 40 50
Time(n)

10 4

10 3

10 2

10 1

100

[X
2 n
]

M1-P2-G4
M1-P3-G6
M2-P2-G2
M3-P2-G2
M3-P3-G3

(a) Short rollout up to n = 50

0 50 100 150 200
Time(n)

10 23

10 20

10 17

10 14

10 11

10 8

10 5

10 2

101

[X
2 n
]

M1-P2-G4
M1-P3-G6
M2-P2-G2
M3-P2-G2
M3-P3-G3

(b) Long rollout up to n = 200

Figure 5.17. Comparison of strategies with different M,P,G values. For memory-1 control
strategies P = 2 and P = 3 result in similar performance but how the strategy alternates
between probing and minimization step varies. Increasing M while keeping P,G constant
results in better performance but further improvement can be obtained by increasing P,G
as well.

We observe that both of the memory-1 strategies, M1-P2-G4 and M1-P3-G6 have similar
performance; and increasing the period P or the horizon G while keeping M constant does
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not seem to improve performance. We notice that when G is a multiple of P , the value of
P plays a role in the structure of the strategy. The last action during the period (i.e. when
n = −1 (mod P )) is always the minimizing control action, whereas earlier actions can be
thought of as probing actions.

For memory-1 strategies we observed that setting G = P results in overfitting while
training leading to poor test performance. Keeping M and P constant and increasing the
value of G does not lead to better performance during training but alleviates the problem
of overfitting by taking account of the fact that the same networks are being used across
multiple periods, while minimizing the cost function. Thus the strategy M1-P2-G4 performed
much better that M1-P2-G2 during testing.

We were unable to train the memory-1 control strategy to work with P = 1. Comparing
all the strategies M2-P2-G2, M3-P2-G2, M3-P3-G3, we see that the control structure with
the most information and degrees of freedom gave the best performance.

5.10 Values for scaling hyperparameter α

We list the alpha values for different strategies in Table. 5.2. We see that strategies that
perform better and lead to faster decay of rates correspond to smaller values α. For the fit
strategies we use the same values as the original neural-network-based strategy.

Table 5.2: α values
Strategy α

M1-P2-G4-FIT 0.955

M1-P2-G4 0.955

M1-P3-G6 0.933

M2-P2-G2-FIT 0.832

M2-P2-G2 0.832

M3-P2-G2 0.808

M3-P3-G3 0.685

M4-P4-G4 0.551
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5.11 Fit strategies

Fit strategy for M1-P2-G4

We can express the function that relates the scaled inputs Ỹn to the network to the output
of the network Ũn as,

M1− P2−G4− FIT = ffit(Ỹ ) = (m1 −m2)max(−Ỹ + hL, 0) +m2max(−Ỹ , 0)

+m3max(Ỹ , 0) + (m4 −m3)max(Ỹ − hR) + b.

The resultant values for the parameters hL, hR,m1,m2,m3,m4, and b for even and odd
timestep networks are provided in Table 5.3.

Fit Parameter Even time Odd time
hL 1.807 2.367
hR 1.808 2.429
m1 0.406 -0.512
m2 0.378 -0.561
m3 0.317 -0.568
m4 0.476 -0.486
b 0.542 -0.329

Table 5.3: Parameters for M1-P2-G4 fit strategy

Fit strategy for M2-P2-G2

Since this is a memory-2 strategy, we can express the function that relates the scaled inputs
Ỹn, Ỹn−1 to the output Ũn as,

M2− P2−G2− FIT = gfit

(
Ỹn, Ỹn−1

)
= k1

∣∣∣Ỹn−1

∣∣∣+ k2

∣∣∣Ỹn
∣∣∣+ k3

∣∣∣cos(θ1)Ỹn−1 − sin(θ1)Ỹn

∣∣∣

+ k4

∣∣∣cos(θ2)Ỹn−1 + sin(θ2)Ỹn

∣∣∣+ b.

The resultant values for the parameters k1, k2, k3, k4, θ1, θ2, and b for even and odd
timestep networks are provided in Table 5.4.

In the next section, we connect the minimum decay factor of system S to maximum
stabilizable growth factor for system Sa.
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Fit Parameter Even time Odd time
k1 -0.455 0.863
k2 -0.924 1.302
k3 0.271 -0.548
k4 0.279 -0.585
θ1 0.654 0.856
θ2 0.682 0.870
b -0.675 0.236

Table 5.4: Parameters for M2-P2-G2 fit strategy

5.12 Connecting minimum decay factor of system S to
maximum stabilizable growth factor for system Sa

Recall the dynamics of system S and Sa. For system S, we have:

Xn+1 = Xn − Un,

Yn = ZnXn.

For system Sa, we have:

Xn+1 = aXn − Un

Yn = ZnXn.

In both cases X0 ∼ N (0, 1) and Zn ∼ N (0, 1) are i.i.d.
For system S, we define the minimum decay factor as below.

Definition 11. The minimum decay factor of S is given as:

d∗ = lim sup
n→∞

inf
π0,π1,...,πn

(
E[|Xn|2]
E[|X0|2]

) 1
2n

.

The next theorem shows the relationship between the minimum decay factor for system
S and the maximum growth factor a∗ for which the system Sa can be stabilized.

Theorem 7. Let d∗ denote the minimum decay factor for the system S. The system Sa can
be stabilized for all a < a∗ and cannot be stabilized for any a > a∗ where a∗ = 1/d∗.

Proof. For the sake of the proof, let us label the states, observations, multiplicative noise
and control actions for the system Sa as Xa

n, Y
a
n , Z

a
n and Ua

n respectively. We will use the
notation Xn, Yn, Zn and Un for the system S. Consider a coupling of the two systems such
that X0 = Xa

0 and Za
n = Zn for all n.
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Suppose the control action at timestep n, Un, for system S is given by Un = πn(Y0, Y1, . . . , Yn).
Note that here πn : Rn → R is a deterministic function given the realizations of the obser-
vations. Then, we construct the following control actions for system Sa,

Ua
n = πan(Y

a
0 , Y

a
1 , . . . , Y

a
n ), (5.5)

where,

πan(Y
a
0 , Y

a
1 , . . . , Y

a
n ) := an+1πn

(
Y a
0 ,

Y a
1

a
, . . . ,

Y a
n

an

)
. (5.6)

We will prove by induction that under these sets of controls, the true state and observa-
tions for the two systems are related as,

Xa
n = anXn, Y a

n = anYn.

Note that by our assumption on the initial state and noise realizations the base case for
n = 0 is true. Now assume that the claim is true for n ≤ k. We have,

Xa
k+1 = aXa

k − Ua
k

= ak+1Xk − ak+1πk

(
Y a
0 ,

Y a
1

a
, . . . ,

Y a
k

ak

)

= ak+1Xk − ak+1πk (Y0, Y1, . . . , Yk)

= ak+1(Xk − Uk)

= ak+1Xk+1.

Further since the noise realizations are same we have

Y a
k+1 = Za

k+1X
a
k+1 = Zk+1a

k+1Xk+1 = ak+1Yk+1.

Thus the claim is true for n = k + 1 and this completes the inductive proof.
Next we will show that if the minimum decay factor for system Sa is d∗ then system Sa

can be stabilized for a < 1/d∗.

Suppose π∗
k minimizes

(
E[|Xk|2]
E[|X0|2]

) 1
2n for each 0 ≤ k ≤ n. Let π∗

n denote the minimizing
control action for system S at timestep n and consider (πan)∗ as the control action for system
Sa, where (πan)

∗ and π∗
n are related as in Equation (5.6).

From Definition 11 we have,

d∗ = lim sup
n→∞

(
E[|Xn|2]
E[|X0|2]

) 1
2n

.

Then by definition of lim sup we have for every ϵ > 0, there exists N such that for all n ≥ N ,

d∗ ≥
(
E[|Xn|2]
E[|X0|2]

) 1
2n

− ϵ.
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Thus,

(d∗ + ϵ)2n ≥
(
E[|Xn|2]
E[|X0|2]

)

=
1

a2n
E[|Xa

n|2],

since E[|X0|2] = 1. Any 0 < a < 1/d∗ can be written as a = (1− δ)(1/d∗) for some 0 < δ < 1.
Thus we have,

E[|Xa
n|2] ≤ a2n(d∗ + ϵ)2n

=

(
1− δ +

ϵ(1− δ)

d∗

)2n

.

Since this bound holds for any ϵ > 0, taking ϵ = δd∗

2(1−δ) > 0, there exists N such that for all
n ≥ N ,

E[|Xa
n|2] ≤

(
1− δ

2

)2n

< 1.

Further, because supn<N E[|Xa
n|2] is finite, we conclude that system Sa is stabilizable.

Next we will show that the system Sa cannot be stabilized for any a > 1
d∗

. Consider such
an a = 1

d∗
(1 + γ) for some γ > 0. Suppose for contradiction there exists a set of control

actions π̃a0 , π̃
a
1 , . . . , π̃

a
n such that supn E[|Xa

n|2] is finite. Thus there exists K < ∞ such that
for all n,

E[|Xa
n|2] ≤ K.

Further using the set of control actions π̃0, π̃1, . . . , π̃n where π̃an and π̃n are related as in
Equation (5.6) we have,

E[|Xa
n|2] ≤ K

=⇒ a2nE[|Xn|2] ≤ K

=⇒ a2n
E[|Xn|2]
E[|X0|2]

≤ K

=⇒
(
E[|Xn|2]
E[|X0|2]

) 1
2n

≤ (K)
1
2na−1 = (K)

1
2n

d∗

1 + γ
. (5.7)

Choose N such that for all n ≥ N ,

(K)
1
2n < (1 + γ).
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Note that such an N exists because K is finite and limn→∞(K)
1
2n = 1. Since the upper

bound in Equation (5.7) holds for all n, we have for n ≥ N ,

(
E[|Xn|2]
E[|X0|2]

) 1
2n

< d∗,

Thus, we have a set of control actions π̃0, π̃1, . . . , π̃n such that,

lim sup
n→∞

(
E[|Xn|2]
E[|X0|2]

) 1
2n

< d∗

which is a contradiction since we assumed that d∗ was the minimum decay factor. This
completes the proof.

5.13 Discussion
We find that by choosing the appropriate control structure and training procedure we can
learn neural-network-based control strategies that can stabilize a multiplicative observation
noise system and outperform hand-crafted strategies. Allowing strategies to use more mem-
ory improves performance but has diminishing returns. There is a structure and planning
aspect to the learned strategies that can be expressed in terms of simple features. However
there are many open questions. Can we exactly quantify how the memory and period of
the controllers affects their performance and is there an optimal memory and period to use?
How much better are the periodic controller architectures over other alternatives like recur-
rent neural networks or simple a feed-forward network that takes the current timestep as an
input?

Can we better understand the probe and minimize aspect of the controllers? Can this
provide insights into the fundamental communication bottlenecks imposed by multiplicative
noise in control systems, for example, is there some amount of “active” learning that must
be done in these systems by probing?



163

Chapter 6

Discussion and future directions

In this thesis, we discovered the importance of implicit bias of the architecture and learning
algorithm for learning models that generalize well. It is not sufficient to consider whether
we can learn a model that generalizes well (i.e. whether the model is rich enough to express
the true underlying reality) but it is important to study whether we will will learn a model
that generalizes well (i.e whether the training algorithm and architecture work in a manner
that steer us towards a good solution).

In Chapters 2,3 and 4 we theoretically studied generalization for overparameterized linear
models via a signal-processing-inspired perspective. Good generalization requires the true
signal to be contained in or at least well approximated by a few directions that are favored
while we perform the reconstruction. At the same time, there must be sufficiently many
unimportant directions that can dissipate the training noise harmlessly. In Chapter 3, we
proved the existence of a new asymptotic regime where good generalization is possible for the
binary classification task but is not possible for the regression task. Similarly, in Chapter 4,
we saw that multiclass classification too can succeed when regression fails as long as there
are not too many classes.

In Chapter 5, we empirically investigated the use of non-linear neural network models to
tackle two problems in control. First, for the 2-step Witsenhausen problem we observed that
the use of a lattice layer provides the right implicit bias towards slopey quantization strategies
that perform well. Second, for the infinite horizon problem of stabilizing the control system
with multiplicative noise a periodic controller structure and a greedy training procedure
along with input-output scaling enables us to learn control strategies that generalize well
beyond the finite training horizon. An interesting question is whether we can understand
how exactly the particular architectures and training procedures we used here shape the
loss landscape and consequently make it easier to find a good solution (control strategy).
Here, the challenge is in visualizing these high-dimensional loss functions. Understanding
how the loss landscape is shaped in these control problems and comparing it to how the
weighting of features in overparameterized linear model shapes the loss landscape can be an
avenue of research that helps bridge from linear models (where we have a firm theoretical
understanding) to non-linear neural network models where little is understood theoretically.
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In our work, we observed the phenomenon of classification being easier than regression
and saw the existence of regimes where classification works but regression does not. Does this
phenomenon also manifest in overparameterized deep neural networks? The community has
been working towards bridging the gap between theoretical understanding of linear models
and deep networks and we conclude by providing a brief overview of key works in this area.

The key question that must be answered before we study generalization behavior of neural
networks is what solution does an overparameterized neural network converge to based on
choice of training algorithm and architecture. One line of work [66, 43, 2, 4, 31, 161]
shows that wide neural networks, when initialized appropriately and trained using gradient
descent behave like linear models and their weights don’t change much from their initial
values through the course of training. In this kind of lazy training regime, gradient descent
learns the minimum-norm interpolator with respect to a particular kernel, namely the neural
tangent kernel or NTK for short. Several works study generalization and benign overfitting
for neural networks leveraging the NTK behavior[89, 102].

However, in practice can the weights of a network traverse far enough from their initial-
ization such that the NTK approximation no longer holds [47]. Another line of work uses
a statistical mechanics inspired mean-field approximation to study infinite-width networks
by connecting the trajectory of the weights of the neural network when trained by stochas-
tic gradient descent to the solution of a partial differential equation in a distribution space
[30, 130, 96, 28]. By solving this differential equation we can determine what the network
converges to.

How do networks behave in “rich” training regimes where they learn useful features during
the course of training? This setting is much harder to analyze. For classification problems,
the implicit bias of gradient descent on vanishing losses like logistic or cross-entropy loss
or exponential losses have been studied in linear networks [58, 67] and non-linear networks
[90, 106, 29] under various assumptions. In most settings the network converges to a max-
margin (or equivalently minimum-norm) solution in some appropriate space. This regime is
arguably more closely related to the performance of practical neural networks but, as [103]
show, reaching this regime requires unrealistically small loss values, even in toy problems.
The implicit bias of gradient-flow (gradient descent with infinitesimal step size) on networks
where weights from different layers are initialized at different scales is studied in [7] and
depending on the relative scales of initialization the implicit bias differs and one particular
case of a two-layer neural network where the solution can be characterized explicitly is
analyzed from a generalization perspective in [26].

Another well studied setting is the two layer neural network where only one layer is
trained and the other is fixed (typically sampled from a random distribution) and doesn’t
change while training. Either the first layer is fixed during training and consists of random
features [59, 88] or the second layer is fixed during training while the first layer is trained
[48, 49, 23].

Understanding the implicit bias in more realistic and practically relevant regimes remains
challenging in non-linear models with finite width where more than one layer is learned during
training.
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