UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Implicit Models: Theories and Applications

Permalink
https://escholarship.org/uc/item/01k4770q9

Author
Gu, Fangda

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/01k4770q
https://escholarship.org
http://www.cdlib.org/

Implicit Models: Theories and Applications

by

Fangda Gu

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Laurent El Ghaoui, Chair
Professor Somayeh Sojoudi
Professor Murat Arcak
Professor Wenwu Zhu

Fall 2021

Implicit Models: Theories and Applications

Copyright 2021
by
Fangda Gu

Abstract
Implicit Models: Theories and Applications
by
Fangda Gu
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Deep implicit models are very recent developments on deep learning. Traditionally, deep
learning methods rely on explicit forward feeding structures. Super deep structures are pro-
posed to give better performance in various domains. Such approaches have posed difficulty
in theoretical analysis and under perform shallower models in some domains. By introducing
a recursive structure involving solution to an equilibrium equation in the forward feeding,
implicit deep models capture the idea of infinitely deep neural networks while preserving
simplicity in model representation, allowing theoretical analysis and better connection to
previous efforts in math and control communities. Recent works on implicit models have
demonstrated state-of-the-art empirical performances.

Despite great ambition, implicit models are very new and see theoretical and empirical
challenges. From the theoretical aspect, efficient and effective training and evaluation of
implicit models are still open problems. The naive training methods for implicit models
are highly inefficient. Trivial initialization easily violates the validity conditions for implicit
models. Robustness of implicit models are not well studied. From the empirical aspect, there
are still a limited number of works on applying implicit models to solve real world problems.
Such works also have not demonstrated significant performance boost over deep learning in
general. Applications of implicit models in most areas are mostly unexplored even though
implicit models fit in the deep learning framework easily.

In the dissertation, we introduce our theoretical and empirical contributions on deep implicit
models. The presentation of the dissertation is split into two parts. The first part focuses on
theoretical foundations for deep implicit models where we research the evaluation, training,
and other topics for implicit deep learning and deep learning in general. The second part
then explores the applications of deep implicit models and corresponding theories on real
world machine learning applications. We show that implicit models can out-perform existing
deep learning techniques in a set of tasks, thanks to the implicit structure which resembles
infinitely deep neural networks.

To My Family

Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Design of Deep Learning Models
1.2 Implicit Architectures in Machine Learning
1.3 Thesis Contributions and Organization

Theoretical Foundations for Deep Implicit Models

Implicit Deep Learning

2.1 Imtroduction
2.2 Related Work
2.3 Well-Posedness and Composition
2.4 TImplicit Models of Deep Neural Networks
2.5 Robustness
2.6 Sparsity and Model Compression
2.7 Training Implicit Models oo
2.8 Numerical Experiments
2.9 Summary .. o.o. ..o

Fenchel Lifted Networks

3.1 Imtroduction
3.2 Related Work
3.3 Background and Notation
3.4 Fenchel Lifted Networks
3.5 Numerical Experiments oL

3.6 Summary

T DN =

II Applications of Deep Implicit Models

4 Implicit Graph Neural Networks
4.1 Introduction
4.2 Related Work
4.3 Preliminaries e
4.4 TImplicit Graph Neural Networks
4.5 Numerical Experiment
4.6 Summary . . o. ...

5 Stable Controllers Synthesis for Partially Observed Systems
5.1 Imtroduction
5.2 Related Work
5.3 Partially Observed Linear Systems
5.4 Partially Observed Nonlinear Systems with Uncertainty
5.5 Numerical Experiment o0
5.6 Summary e

6 Conclusion and Future Research

Bibliography

il

66

67
67
68
69
70
82
89

91
91
93
94
101
105
110

111

113

List of Figures

1.1

1.2

1.3

1.4

2.1
2.2
2.3

24
2.5

2.6
2.7
2.8

2.9

2.10

2.11

A residual block in ResNet [79]. Usually, the input and output share the same
shape.
Part of ResNet-34 [79]. We see there are a lot of repetition of residual blocks in
purple and green. L L
A graph convolution step aggregates neighbour information through a neural
network to obtain new representation for the orange node.
An example graph with nodes represented by circles and edges represented by
arrows. Successful graph methods will capture contribution from the yellow node
in the green node representation. L.

A block-diagram view of an implicit model. 0oL
Cascade connection of two implicit models.
A max-pooling operation: the smaller image contains the maximal pixel values
of each colored area.
Building block of residual networks.
The matrix A for a 20-layer residual network. Nonzero elements are colored in

Implicit prediction y(u) comparison with f(u)
RMSE across projected gradient iterations for the (A, B) block update
Performance comparison on a synthetic dataset generated from a neural network.
Average best accuracy, implicit: 0.85, neural network: 0.76. The curves are
generated from 5 the different runs with the lines marked as mean and region
marked as the standard deviation o000
Performance comparison on a synthetic dataset generated from an implicit model.
Average best accuracy, implicit: 0.85, neural networks: 0.74. The curves are
generated from 5 different runs with the lines marked as mean and region marked
as the standard deviation over the runs.
Performance comparison on MNIST. Average best accuracy, implicit: 0.976, neu-
ral networks: 0.972. The curves are generated from 5 different runs with the lines
marked as mean and region marked as the standard deviation over the runs.

Performance comparison on GTSRB. Average best accuracy, implicit: 0.874, neu-
ral networks: 0.859. The curves are generated from 5 different runs with the lines
marked as mean and region marked as the standard deviation over the runs.

v

10
20

24
25

25
39
39

40

40

41

41

2.12

2.13

2.14
2.15
2.16

3.1

3.2

3.3

3.4

4.1

4.2
4.3

4.4
4.5

5.1
5.2
5.3
5.4

Left: sensitivity values of a feed-forward network for the class “digit 0” in MNIST.
Right: sensitivity values of a ResNet-20 model for the class “airplane” in CIFAR-
10. Brighter colors correspond to higher sensitivity when perturbed. 42
Top: adversarial samples from MNIST. On the left are dense attacks with small
perturbations and on the right are sparse attacks with random perturbations
(perturbed pixels are marked as red). Bottom: example sparse attack on CIFAR-
10. The left ones are cleaned images, the middle ones are perturbed images, and
the right ones mark the perturbed pixels in red for higher visibility. 44
Example attack on CIFAR dataset. Top: clean data. Bottom: perturbed data. . 45
Example attack on MNIST dataset. Left: non-sparse attack. Right: sparse attack. 45
Some cousins of implicit models: LTI systems (bottom left) and uncertain systems
(bottom right). 46

Test set performance of different lifted methods with a 784-300-10 network archi-
tecture on MNIST with a MSE loss. Final test set performances: Taylor et al.
0.834, Lau et al. 0.914, Askari et al. 0.863, Neural Network 0.957, This
work 0.961. 60
Test set performance of Fenchel lifted networks and fully connected networks
trained using Adam and SGD on a 784-300-10 network architecture on MNIST
with cross entropy loss. Total training time was 10 epochs. Final test set perfor-
mances: SGD 0.943, Adam 0.976, This work 0.976.. 61
Test set performance of Fenchel lifted networks and LeNet-5 trained using Adam
and SGD on MNIST with a cross entropy loss. Total training time was 20 epochs.
Final test set performances: SGD 0.986, Adam 0.989, This work 0.990. . .. 61
Test set performance of Fenchel lifted networks and LeNet-5 trained using Adam
and SGD on CIFAR-10 with a cross entropy loss. Total training time was 80
epochs. Final test set performance: SGD 0.565, Adam 0.625, This work 0.606 62

Plots of = (red plot) and ReLU(wza + u) = ReLU(z + 1) with w =a=u =1
(blue plot). The two plots will intersect at some point whenever a solution exists.
However in this case the two plots have no intersections, meaning that there is

no solution to equation (4.11). Lo 74
Micro-Fy (%) performance with respect to the length of the chains. 83
Micro/Macro-Fy (%) performance on the multi-label node classification task with

Amazon product co-purchasing network data set. 84
Chains with [= 9. Traditional methods fail even with more iterations. 87
Micro-F; (%) performance with respect to the length of the chains. 89
Feedback system of plant G and RNN controller mg 92
RNN as an interconnection of Py and ¢ L. 92
tanh € sector [0, 1], Leaky ReLU € sector [a,1] 94

Loop transformation. If ¢ € sector [ay, B4, then é € sector [~ Lngxts Lngxa). - - . 94

9.5
0.6
5.7

5.8
5.9

Tlustration of Algorithm 3. The set of all the stabilizing 0 is given in blue. . . .
Uncertain plant and its corresponding constrained extended system
(a) Vehicle [1]; (b) Frequency Regulation on IEEE 39-bus New England Power System
(1] . .
Four communication topologies for IEEE 39-bus power system [58].
(a) Inverted Pendulum (linear); (b) Inverted Pendulum (nonlinear); (c) Cartpole;
(d) Pendubot; (e) Vehicle lateral control; (f) IEEE 39-bus New England Power
System frequency regulation. The error bars of reward plots characterize standard
deviation across 3 runs with different seeds. For (a) and (b), the left figures are
from our method and right figures from policy gradient. Converging trajectories
are rendered in green while diverging ones in red. For (c), (d), (e), trajectories
from our method are given in blue while those from policy gradient are in orange.
For (f), top figure is given by our method and bottom one by policy gradient.

vi

106

vil

List of Tables

2.1 Experimental results of attack success rate against percentage of perturbed inputs

on MNIST and CIFAR-10 (10000 samples from test set). 43
4.1 Multi-label node classification Micro-F; (%) performance on PPI data set. . . . 83
4.2 Graph classification accuracy (%). Results are averaged (and std are computed)

on the outer 10 folds. 85
4.3 Node classification Micro/Macro-F; (%) performance on heterogeneous network

data sets. e 85
4.4 The overview of data set statistics in node classification tasks. 87

4.5 Statistics of the data sets for heterogeneous graphs [134]. The node attributes are
bag-of-words of text. Num. labeled data denotes the number of nodes involved
during training. L L L 88

viii

Acknowledgments

I would like to express the greatest gratitude to my advisor, Professor Laurent El Ghaoui. I
met Professor El Ghaoui when I was interning at Berkeley in my undergraduate. Since then,
I have been deeply attracted by his genius and passion. It is such a privilege to join Professor
El Ghaoui’s lab. He pays a lot of attention to my growth and is always patient. Throughout
my PhD research, he gives me a lot of freedom in choosing my desired research and has been
very supportive all the time. His guidance has always been to the point and highly effective
even when the subjects are out of his expertise. I have enjoyed every second I spend with
Professor El Ghaoui in exploring interesting ideas. Outside of research, Professor El Ghaoui
is very approachable, the leisure talk and hike with him has fueled my research and my life.

I would like to thank Professor Somayeh Sojoudi for the insightful discussions on implicit
graph models and power grids. I would also like to thank her for her gracious support
in serving as my master thesis co-signer, prelim exam member, qual committee chair and
dissertation committee member. I would like to thank Professor Murat Arcak for his guidance
on robust control and support in serving as my prelim exam chair, qual committee and
dissertation committee member. I would like to thank Professor Wenwu Zhu for support
both in graph neural network research and in serving as my qual committee and dissertation
committee member. Thanks to Professor Tomlin Claire for laying a solid control background
for me through her instructions and her support in serving as my prelim exam member.

I would like to thank other researchers and friends who have collaborated with me or
helped me during my PhD study, without whom the work would not have been possible.
Thanks to Armin Askari for the guidance in academic writing and for the discussions on
implicit models and Fenchel lifted models. Thanks to Bertrand Travacca and Alicia Tsai
for the discussions on implicit models. Thanks to Galaxy Yin, Professor Peter Seiler and
Professor Ming Jin for their decisive support and guidance on building stabilizing controllers.
Thanks to Heng Chang for his major contributions on implicit graph neural networks re-
search. Thanks to Elisabeth Glista and Guillaume Darmet for discussions on power grids.
Thanks to Forest Yang, Gaven Ma, and James Li for working together on academic studies
of various optimization topics and happy time in leisure meals. Thanks to friends from Pro-
fessor El Ghaoui’s Lab, Armin Askari, Geoffrey Negiar, Forest Yang, and Alicia Tsai. I have
enjoyed the discussions on optimization and our BBQs and dinners. Thanks to friends from
1771 Highland Place, Kaichen Dong, Jiachen Li, and Tiancheng Zhang. I have enjoyed the
games and traveling with you. I would like to give special thanks to Shirley Salanio for her
consistent support to push forward the logistics for my graduate study.

I would like to acknowledge organizations that provided financial support directly for
me in my graduate study: Department of Electrical Engineering and Computer Sciences,
UC Berkeley; Berkeley Al Research Lab; Haas School of Business, UC Berkeley; EDF Inc.;
Alphabet Inc.

Finally I want to thank my family, Jingchun Cha, Nanzhou Gu for their love and support.

Chapter 1

Introduction

The advances in computation in both hardware and software have enabled the development
of deep learning. Starting from AlexNet [95], a deep learning algorithm on computer vision
classification, a completely different level of applications has emerged. Over the past few
years, we have seen advanced computer vision (CV) applications such as object detection,
segmentation, and image generation. In natural language processing (NLP), we also see
dramatic improvements in tasks like documentation comprehension, machine translation,
and knowledge graph learning. Apart from CV and NLP, most other computation areas
including robotics perception and planning, reinforcement learning, graph representation
learning, and biochemistry have seen unprecedented breakthroughs. All of these are made
possible because of the development of deep learning software on deep neural network models
and the computation hardware supporting efficient matrix algebra calculations.

Compared with the mind-blowing empirical glory of deep learning, we have seen limited
theoretical results in support for it. This is due to the complexity introduced by deep neural
networks where the model usually sees a huge number of layers, each of which contains
nonlinear operations. This flexibility has enabled the empirical development of deep learning
but also limited the theoretical analysis of it. Another observation on the field reveals the
conflicts between researcher’s intention on proposing deeper and deeper neural networks in
search for better empirical performance and the ever-existing limitation by the finite nature
of explicit deep models. In order to restore a simple mathematical representation for deep
learning and capture the unlimited depth researchers are heading to, we propose implicit deep
learning where the model prediction rule is as simple as a linear operation over the states
that are generated from solution to an equilibrium equation. With appropriate training and
inference, the model represents an infinitely deep neural network and covers most existing
deep learning structures.

CHAPTER 1. INTRODUCTION 2

1.1 Design of Deep Learning Models

Although implicit models exceed the limitation of finite layers and bring mathematical sim-
plicity, the design is actually largely originated from the current deep learning models. The
designs for deep learning are highly diverse because the paradigm of feed forward evaluation
and gradient back propagation applies almost no limitation other than that the forward and
backward calculations are defined (not even need to be differentiable, e.g. ReLU). This
enables high flexibility. It will be impossible to cover all structures here. So, we will go
through two deep learning models which we find informative on the intuition of implicit

models, residual networks and graph neural networks.

X

4

weight layer
F(x) [reiv y =B __
weight layer identity '

Figure 1.2: Part of ResNet-34 [79].

We see there are a lot of repetition of
residual blocks in purple and green.

Figure 1.1: A residual block in ResNet [79]. Usually,
the input and output share the same shape.

Residual network, or ResNet [79] is a major milestone on the performance of deep learn-
ing. Before the invention of ResNet, representative deep learning models including AlexNet
[95], VGG [155], InceptionNet [162], have tens of layers and deeper models at the time that
are created using combinations of the original convolution structures suffer from performance
degradation and under performed these representative models. ResNet has introduced the
so-called residual connection between layers to provide a shortcut data passage to make the
layers learn the residual mapping instead of some desired underlying mapping. By applying
the residual connection, the models are deepened to include hundreds and even thousands of
layers. This has empirically improved the performance of deep CV models by a significant
amount such that ResNet becomes the new representative deep learning model in CV. The
ResNet is built from repetitive blocks of layers, where each block contains two convolution
layers and a shortcut connection from the input to the output, see Figure 1.1. The depth of

CHAPTER 1. INTRODUCTION 3

ResNet comes from numerous repeating residual blocks, see Figure 1.2. To some extent, the
larger the number of repetition, the higher the performance (see performance of ResNet-34,
ResNet-50, ResNet-101, ResNet-152 in [79]). From such observation, it is natural to think
of models that repeats such structure indefinitely.

o

° .

Figure 1.3: A graph convolution step aggre-
gates neighbour information through a neu-
ral network to obtain new representation for
the orange node.

Figure 1.4: An example graph with nodes
represented by circles and edges represented
by arrows. Successful graph methods will
capture contribution from the yellow node
in the green node representation.

Graph neural networks, or GNNs are models developed to operate on graph-structured
data, a more general and less structural type of data involving nodes and edges between
nodes, see Figure 1.4. This type of model relies on the key message passing step between
nodes, see Figure 1.3. The message passing step can be seen as a layer in deep learning
and popular models contain a finite number of such steps. This is different from traditional
graph algorithms like Pagerank [131] where some equilibrium state is sought and information
passage steps are iterated to convergence. Numerous efforts are proposed to increase the
number of layers for GNNs but, unlike ResNet, they have seen limited performance benefits
and sometimes even under perform shallower models. One of the notable differences between
GNNs and CV models is the fact that the forward iterations in GNNs can go in loops when
there are loops in the graph. This departure from the low performance of deep GNNs and

CHAPTER 1. INTRODUCTION 4

the success of traditional graph algorithms signals the potential for infinitely deep GNNs
and the need for theories for it to ensure higher performance.

1.2 Implicit Architectures in Machine Learning

Implicit architectures have a long history. In the 80s, Almeida [2] and Pineda [139] introduced
perceptron networks with feedback or recurrent structures, which are the early forms of
implicit models. In the early works, the idea of having a feedback structure in the design
of neural networks is introduced and the gradient calculation via implicit function theorem
[94] is demonstrated. This is later referred to as recurrent back propagation in [111] and
implicit gradients in [55] and [15]. Despite the long history, these early implicit models have
not received too much attention mainly due to the lack of theoretical support for stability in
training and evaluation, and low empirical performance compared with explicit feed forward
models.

Recently, implicit models and frameworks have received new attention from the machine
learning community. Pioneered by [55] and [15] in 2019, the implicit models are reintroduced
to the context of deep learning. By introducing a notationally simple but highly expressive
form of implicit models, [55] answers the key question of when implicit models are well-posed
(i.e. admit unique prediction outputs), explores the generalization of implicit models to
cover modern deep learning models, and extends the robustness analysis as a demonstration
of mathematical analysis made possible by the simple notations. The notation by [55] has
great similarity to LTI systems and uncertain systems which are widely studied in the control
community. It also fits into the analysis framework for recent control advances like [187] and
[73].

Following the introduction of implicit models, [15, 72, 172, 17] have explored variants of
implicit models and tested their empirical performance in language modeling, graph neural
networks, object detection, and image classification settings. The empirical test perfor-
mance on-par or better than state-of-the-art deep learning models are demonstrated. In
these works, implicit models offer higher representation capability than explicit feed forward
models and /or use fewer parameters when the test performance is on-par with the baselines.
At the same time, [143, 177] study different well-posedness conditions under different as-
sumptions. Recently, we also see study on the training of implicit models with a focus on
efficient and stable implicit gradient calculation [25, 18, 135]. On the other side of the train-
ing, we also see Fenchel types of methods which solves convex sub-problems via introduced
Fenchel divergence instead of calculating gradients [71, 166, 167].

Prior to the implicit models, implicit methods are used in model design. These methods
focus on designing layers where the outputs cannot be given as a closed form solution of the
inputs and model parameters. Compared with the implicit models, the designs are limited to
specific domains and applications (e.g. logical structures [173], model predictive control [4],
physical engines [13]). The methods are mostly trained using stochastic gradient methods
with gradients obtained from implicit function theorem [94]. Other efforts on providing novel

CHAPTER 1. INTRODUCTION d

new structures or plug-ins for deep learning framework using implicit designs [3, 50] have
also inspired the development of implicit models.

1.3 Thesis Contributions and Organization

This dissertation is broken apart into two parts on theoretical and empirical sides of deep
implicit models. The first part focuses on the theoretical foundations of implicit models and
the second part discusses the empirical applications of deep implicit models.

Part I: Theoretical Foundations for Deep Implicit Models

Since the proposals of the early implicit models [139, 2], there are a lot of fundamental
theoretical glitches with implicit models. Even when the implicit models start receiving new
perspectives from the deep learning community in 2019, the key questions on the validity or
well-posedness of implicit models (i.e. Is the implicit model giving a unique prediction?)
is not well discussed. On the training side, only gradient methods based on the implicit
function theorem are explored. But we have seen little discussions on the existence of such
gradients.

The first half of the dissertation aims to lay a theoretical ground for deep implicit mod-
els through the introduction of a novel implicit deep learning framework and discovery of
Fenchel divergence in reformulating training problems in deep learning. We show that the
novel implicit deep learning framework is notationally simple and at the same time covers
a wide range of deep learning architectures. Through the lenses of the simple notation,
we perform a multitude of theoretical analysis including the discussion of well-posedness,
robustness, sparsity, and training. The discovery of Fenchel divergence enables new alter-
native minimizing training methods for deep learning, which gives on-par performance to
gradient methods without computing gradients. Both venues together inspire new empirical
and theoretical advances on implicit models.

Chapter 2: Implicit Deep Learning

This chapter presents our pioneering effort on building a general and powerful implicit deep
learning framework. Implicit deep learning prediction rules generalize the recursive rules of
feedforward neural networks. Such rules are based on the solution of a fixed-point equation
involving a single vector of hidden features, which is thus only implicitly defined. Through
introduction of a greatly simplified notation highly similar to LTI systems and uncertainty
systems in control, the new framework uses Perron-Frobenius theory to characterize the well-
posedness of implicit models and extends a range of analysis in training through implicit gra-
dients, Fenchel reformulation and robustness design through sensitivity matrix. Numerical
experiments in synthetic datasets and real world datasets including hand-written charac-
ter classification and traffic sign identification are conducted. On-par performance against

CHAPTER 1. INTRODUCTION 6

feedforward neural networks is demonstrated. The framework also opens up possibilities in
terms of novel architectures and algorithms, robustness analysis and design, interpretability,
sparsity, and network architecture optimization.

The content of the chapter is based on a paper, Implicit Deep Learning, released online
in 2019 and later published in 2021 on SIAM Journal on Mathematics of Data Science [55].

Chapter 3: Fenchel Lifted Networks

To give a different training methods for implicit models and deep learning in general, we
study the key invention of Fenchel divergence on lifted problems which converts the training
problems into multiple convex sub-problems and enables training without gradients. Despite
the recent successes of deep neural networks, the corresponding training problem remains
highly non-convex and difficult to optimize. Classes of models have been proposed that
introduce greater structure to the objective function at the cost of lifting the dimension
of the problem. However, these lifted methods sometimes perform poorly compared to
traditional gradient based training methods. We introduce a new class of lifted models,
Fenchel lifted networks, that enjoy the same benefits as previous lifted models, without
suffering a degradation in performance over classical gradient methods. Our model uses
Fenchel divergence to represent activation functions as equivalent biconvex constraints and
uses Lagrange multipliers to arrive at a rigorous lower bound of the traditional neural network
training problem. This model is efficiently trained using block-coordinate descent and is
parallelizable across data points and/or layers. We compare our model against standard
fully connected and convolutional networks and show that we are able to match or beat
their performance.

The content of the chapter is based on a paper, Fenchel Lifted Networks: A Lagrange
Relaxation of Neural Network Training, published in 2020 on International Conference on
Artificial Intelligence and Statistics [71].

Part 1I: Applications of Deep Implicit Models

The empirical applications of implicit models are parallelly important as the theoretical foun-
dations. Unless the implicit models are competent with explicit feed forward deep learning
models, the development of implicit models will remain niche. In the second half of the
dissertation, we present our efforts on pushing implicit models to give high empirical per-
formances in two different important settings, graph neural networks and stable controller
synthesis. In the graph neural networks settings, we use implicit models to perform an in-
finite message passing process in graphs and obtain highly informative representation that
captures long-range dependencies missed out by previous state-of-the-art graph neural net-
work methods. On the stable controller synthesis side, we leverage the great simplicity of
implicit deep learning framework to capture a recurrent neural network structure and for-
mulate a controller synthesis method with stability guarantee. These two applications of
implicit models signify the empirical prospects of implicit models in deep learning.

CHAPTER 1. INTRODUCTION 7

Chapter 4: Implicit Graph Neural Networks

In an exploration of infinite depth in deep learning, representation learning in graph-structured
data comes naturally. Graph Neural Networks (GNNs) are widely used deep learning models
that learn meaningful representations from graph-structured data. Due to the finite nature
of the underlying recurrent structure, current GNN methods may struggle to capture long-
range dependencies in underlying graphs. To overcome this difficulty, we propose a graph
learning framework, called Implicit Graph Neural Networks (IGNNs), where we employ an
implicit prediction rule based on the solution of a fixed-point equilibrium equation involving
implicitly defined ”state” vectors. We use the Perron-Frobenius theory to derive sufficient
conditions that ensure well-posedness of the framework. Leveraging implicit differentiation,
we derive a tractable projected gradient descent method to train the framework. Experi-
ments on a comprehensive range of tasks show that IGNNs consistently capture long-range
dependencies and outperform the state-of-the-art GNN models.

The content of the chapter is based on a paper, Implicit Graph Neural Networks, pub-
lished in 2020 on Advances in Neural Information Processing Systems [72].

Chapter 5: Stable Controller Synthesis for Partially Observed Systems

The simple notations from implicit deep learning framework fits in the control analysis
in a straightforward manner. We use the implicit deep learning framework to capture a
recurrent neural network controller and follow up with stability analysis to synthesize stable
neural network controllers in partially observed systems. Neural network controllers have
become popular in control tasks thanks to their flexibility and expressivity. Stability is a
crucial property for safety-critical dynamical systems, while stabilization of partially observed
systems, in many cases, requires controllers to retain and process long-term memories of the
past. We consider the important class of recurrent neural networks (RNNs) as dynamic
controllers for nonlinear uncertain partially-observed systems, and derive convex stability
conditions based on integral quadratic constraints, S-lemma and sequential convexification.
To ensure stability during the learning and control process, we propose a projected policy
gradient method that iteratively enforces the stability conditions in the reparameterized
space taking advantage of mild additional information on system dynamics. Numerical
experiments show that our method learns stabilizing controllers while using fewer samples
and achieving higher final performance compared with policy gradient.
The content of the chapter is based on a work released on Arxiv in 2021 [73].

Chapter 6: Conclusion and Future Research

The chapter concludes the dissertation on the theoretical and empirical contributions to deep
implicit models. Implicit models are still in its early stage in the context of deep learning
where we see numerous innovative applications. Most of them, we believe, will benefit
from the implicit models either in reduced parameter memory usage or in higher empirical
performance. On the theoretical front, we see potential new developments following better

CHAPTER 1. INTRODUCTION 8

well-posedness conditions, more efficient training and inference, and new results on deep
learning in general.

Part 1

Theoretical Foundations for Deep
Implicit Models

10

Chapter 2

Implicit Deep Learning

Implicit deep learning is an important implicit model framework which also pivots this
dissertation. At the time when we initially put forward this work in 2019, implicit models
were not popular and many details are unclear. We would like to bring more popularity to
the field by coming up with a general and complete framework which not only is flexible
to connect to deep learning methods but also links to the vast literature of the control
community. As a result, we have proposed this framework that is notationally simple but also
powerful enough to capture a range of deep learning models. We have done a few numerical
experiments to compare against deep learning in a direct manner. And later in Chapter 4, we
extend this framework to graph neural networks and show it enjoys unparalleled performance.
In Chapter 5, we use the notation to capture recurrent neural network controllers which are
iteratively synthesized to stabilize non-linear plants.

2.1 Introduction

4
-

. C D
() ~— —

Figure 2.1: A block-diagram view of an implicit model.

CHAPTER 2. IMPLICIT DEEP LEARNING 11

Implicit prediction rules

In this chapter, we consider a new class of deep learning models that are based on implicit
prediction rules. Such rules are not obtained via a recursive procedure through several layers,
as in current neural networks. Instead, they are based on solving a fixed-point equation in
some single “state” vector x € R". Precisely, for a given input vector u, the predicted vector
is

y(u) = Cz + Du (prediction equation) (2.1a)
r = ¢(Ax + Bu) (equilibrium equation) (2.1b)

where ¢ : R" — R™ is a nonlinear vector map (the “activation” map), and matrices A, B, C, D
contain model parameters. Figure 2.1 provides a block-diagram view of an implicit model,
to be read from right to left, so as to be consistent with matrix-vector multiplication rules.

We can think of the vector z € R" as a “state” corresponding to n “hidden” features
that are extracted from the inputs, based on the so-called equilibrium equation (2.1b). In
general, that equation cannot be solved in closed-form, and the model above provides z
only wmplicitly. This equation is not necessarily well-posed, in the sense that it may not
admit a solution, let alone a unique one; we discuss this important issue of well-posedness
in Section 2.3.

For notational simplicity only, our rule does not contain any bias terms; we can easily
account for those by considering the vector (u, 1) instead of u, thereby increasing the column
dimension of B by one.

Perhaps surprisingly, as seen in Section 2.4, the implicit framework includes most current
neural network architectures as special cases. Implicit models are a much wider class: they
present much more capacity, as measured by the number of parameters for a given dimension
of the hidden features; also, they allow for cycles in the network, which is not permitted under
the current paradigm of deep networks.

Implicit rules open up the possibility of using novel architectures and prediction rules for
deep learning, which are not based on any notion of “network” or “layers”, as is classically
understood. In addition, they allow one to consider rigorous approaches to challenging
problems in deep learning, ranging from robustness analysis, sparsity and interpretability,
and feature selection.

Contributions and chapter outline
Our contributions in this chapter, and its outline, are as follows.

e Well-posedness and composition (2.3): In contrast with standard deep networks, im-
plicit models may not be well-posed, in the sense that the equilibrium equation may
have no or multiple solutions. We establish rigorous and numerically tractable condi-
tions for implicit rules to be well-posed. These conditions are then used in the training
problem, guaranteeing the well-posedness of the learned prediction rule. We also dis-
cuss the composition of implicit models, via cascade connections for example.

CHAPTER 2. IMPLICIT DEEP LEARNING 12

o Implicit models of neural networks (2.4): We provide details on how to represent a
wide variety of neural networks as implicit models, building on the composition rules
of Section 2.3.

e Robustness analysis (2.5): We describe how to analyze the robustness properties of
a given implicit model, deriving bounds on the state under input perturbations, and
generating adversarial attacks. We also discuss which penalties to include into the
training problem so as to encourage robustness of the learned rule.

o Interpretability, sparsity, compression and deep feature selection (2.6): Here we focus
on finding appropriate penalties to use in order to improve properties such as model
sparsity, or obtain feature selection. We also discuss the impact of model errors.

e Training problem: formulations and algorithms (2.7): Informed by our previous find-
ings, we finally discuss the corresponding training problem. Following the work of
[71] and [108], we represent activation functions using so-called Fenchel divergences, in
order to relax the training problem into a more tractable form. We discuss several al-
gorithms, including stochastic projected gradients, Frank-Wolfe, and block-coordinate
descent.

Finally, Section 2.8 provides a few experiments supporting the theory put forth in this
chapter. Our Section 2.2 is devoted to prior work and references.

Notation

For a matrix U, |U| (resp. U,) denotes the matrix with the absolute values (resp. positive
part) of the entries of U. For a vector v, we denote by diag(v) the diagonal matrix formed
with the entries of v; for a square matrix V', diag(V) is the vector formed with the diagonal
elements of V. The notation 1 refers to the vector of ones, with size inferred from context.
The Hadamard (componentwise) product between two n-vectors z,y is denoted z ® y. We
use Si(z) to denote the sum of the largest k entries of a vector z. For a matrix A, and
integers p, ¢ > 1, we define the induced norm

||A||p—>q = m?X HAqu : Hf”p <1l

The case when p = ¢ = oo corresponds to the [,-induced norm of A, also known as its
MazT-row-sum norm:
1 Allo0 := max Y | Ayl.
J

We denote the set {1,---, L} compactly as [L]. For a n-vector partitioned into L blocks,
z = (21,...,21), with 2z, € R™, [€ [L], with n; + ...+ ny = n, we denote by n(z) the
L-vector of norms:

n(2) = (lzallprs - leellps) (2:2)

CHAPTER 2. IMPLICIT DEEP LEARNING 13

Finally, any square, non-negative matrix M admits a real eigenvalue that is larger than
the modulus of any other eigenvalue; this non-negative eigenvalue is the so-called Perron-
Frobenius eigenvalue [121], and is denoted Ape(M).

2.2 Related Work

In implicit deep learning

Recent works have considered versions of implicit models, and demonstrated their potential
in deep learning. In the pioneering work by Bai and collaborators [16, 93, 17, 72] the
authors demonstrated empirical success of an entirely implicit framework, which they call
Deep Equilibrium Models. They present a general form of implicit model based on an implicit
equation of the form 4 '
A4 = fo(eihunr), 20 =0

where 7 is the layer index; zﬁT is the hidden sequence of length T at layer ¢; uy.pr =
[uy, -+ ,ur| € RT*P is the input sequence, where u; € R? and T' € N; and fj is some non-
linear transformation. This formulation represents the class of weight-tied sequence models,
where the same transformation fy is used for all layers, reminiscent of recurrent neural net-
works. The authors show that any deep network can be represented by this weight-tied
representation, akin to the reformulation in Section 2.4.

The models are then trained using quasi-Newton methods and gradients are computed
using the implicit function theorem. The main difference with our approach lies in the
fact that the above-mentioned work focuses on obtaining empirical results in the context
of natural language processing and computer vision, where our work focuses on theoretical
foundations such as well-posedness and robustness.

In the more recent work [177], the authors use the same structure as ours (2.1b), and
do provide results pertaining to well-posedness. The difference with our approach there
lies in the assumptions made on the activation function ¢. Instead of the BLIP (blockwise
Lipschitz) assumption, the authors propose that the activation should be a proximal operator
for some convex function g, of the form

1
d(x) = argmin o [lz — 2" + 9(=).

Note that the ReLU activation can be represented as a proximal operator with g(z) = I(z >
0), where [is the indicator function. The authors then observe that under this assumption
on ¢, a condition for well-posedness is

A+ AT

(1—=m)l = 5

(2.3)

with m > 0. This condition is different from ours, but the two are not equivalent. As an
example, we can choose ¢ to be the ReLU and A = —21. A does not satisfy our condition of

CHAPTER 2. IMPLICIT DEEP LEARNING 14

well-posedness, since A\pr(A) = 2, but does satisty (2.3) for m = 1. Conversely, for the choice

0.5 0
A= {2 —0.5}

we have Ape(A) = 0.5 < 1, but the eigenvalues of (A4 AT) are {:I:‘/Tg}, therefore (2.3) is not
satisfied. The authors then show how to compute a solution to the equilibrium equation using
splitting techniques for monotone operators, mainly the forward-backward and Peaceman-
Rachford algorithms, which serves a similar purpose to the Picard iterations we propose.
Finally, the authors also use a form of implicit differentiation using these algorithms to learn
the parameters of the model.

Prior to the implicit frameworks, some authors have used implicit types of methods in
model design. [39] uses implicit methods to solve and construct a general class of models
known as neural ordinary differential equations, while [13] uses implicit models to construct a
differentiable physics engine that enables gradient-based learning and high sample efficiency.
Furthermore, many papers explore the concept of integrating implicit models with modern
deep learning methods in a variety of ways. For example, [173] show promise in integrating
logical structures into deep learning by incorporating a semidefinite programming (SDP)
layer into a network in order to solve a (relaxed) MAXSAT problem; see also [173]. In [4]
the authors propose to include a model predictive control as a differentiable policy class for
deep reinforcement learning, which can be seen as a kind of implicit architecture. In [3]
the authors introduced implicit layers where the activation is the solution of some quadratic
programming problem; in [50], the authors incorporate stochastic optimization formulation
for end-to-end learning task, in which the model is trained by differentiating the solution of
a stochastic programming problem.

In robust control

Our approach is rooted in the field of robust control analysis and design. The idea of ana-
lyzing (linear) dynamical systems subject to uncertainty via optimization-based approaches
has a long history; most relevant to our approach are the landmark references [45, 86|, which
delineate an approach, based on linear programming, that focuses on the so-called [.-to-l
gain of a dynamical system; it employs a technique that embeds non-linearities in so-called
sector bounds, and uses corresponding relaxations. Our results pertaining to sensitivity ma-
trices are in direct line of that kind of analysis. Also relevant is the more recent work [186,
187], which analyzes stability of a system controlled by a neural network, and obtain the re-
gion of attraction for such system using a “state-space” representation for the neural network
similar to ours.

In lifted models

In implicit learning, there is usually no way to express the state variable in closed-form, which
makes the task of computing gradients with respect to model parameters challenging. Thus,

CHAPTER 2. IMPLICIT DEEP LEARNING 15

a natural idea in implicit learning is to keep the state vector as a variable in the training
problem, resulting in a higher-dimensional (or, “lifted”) expression of the training problem.
The idea of lifting the dimension of the training problem in (non-implicit) deep learning by
introducing “state” variables has been studied in a variety of works [164, 9, 71, 64, 190, 194,
31, 108]. Lifted models are trained using block coordinate descent methods, Alternating
Direction Method of Multipliers (ADMM) or iterative, non-gradient based methods. In
this work, we introduce a novel aspect of lifted models, namely the possibility of defining a
prediction rule implicitly.

In robustness analysis of neural networks

The issue of robustness in deep learning is generating quite a bit of attention, due to the
fact that many deep learning models suffer from the lack of robustness. Prior relevant work
have demonstrated that deep learning models are vulnerable to adversarial attacks [68, 97,
133, 98]. The work [140] explores SDP relaxations to the attack problem. The vulnerability
issue of deep learning models have motivated the study of corresponding defense strategies
(117, 132, 140, 70, 150, 178, 44]. However, many of the defense strategies are later shown to
be ineffective [10, 30], suggesting the needs for the theoretical understanding of robustness
evaluations for deep learning model. In this work, we formalize the robustness analysis of
deep learning via the lens of the implicit model. A large number of deep learning architectures
can be modeled using implicit prediction rules, making our robustness evaluation a versatile
analysis tool.

In sparsity, compression and deep feature selection

Sparsity and compression, which are well understood in classical settings, have found their
place in deep learning and are an active branch of research. Early work in pruning dates
back to as early as the 90s [101, 78] and has since gained interest. In [156], the authors
showed that by randomly dropping units (i.e. increasing the sparsity level of the network or
compressing the network) reduces overfitting and improved the generalization performance
of networks. Recently, more sophisticated ways of pruning networks have been proposed,
in an effort to reduce the overall size of the model, while retaining or accepting a modest
decrease in accuracy: a non-extensive list of works include [202, 126, 76, 149, 6, 100, 36, 114,
56).

2.3 Well-Posedness and Composition

Assumptions on the activation map

We restrict our attention to activation maps ¢ that obey a “Blockwise LIPschitz” (BLIP)
continuity condition. This condition is satisfied for most popular activation maps, and arises

CHAPTER 2. IMPLICIT DEEP LEARNING 16

naturally when “composing” implicit models (see Section 2.3). Precisely, we assume that:

1. Blockwise: the map ¢ acts in a block-wise fashion, that is, there exist a partition of
n: n = ny + ...+ ng such that for every vector partitioned into the corresponding
blocks: z = (z1,...,21) with z; € R™, [€ [L], we have ¢(z) = (¢1(21), ..., ¢r(z1)) for
appropriate maps ¢, : R™ — R™ [€ [L].

2. Lipschitz: For every [€ [L], the maps ¢, are Lipschitz-continuous with constant ~; > 0
with respect to the [,-norm for some integer p; > 1:

Vu,0 e R™ - |[on(w) = du(0)llp < mllw = vl

In the remainder of the chapter, we refer to such maps with the acronym BLIP, omitting the
dependence on the underlying structure information (integers ny;, p;, v, | € [L]). We shall
consider a special case, referred to a COmponentwise Non-Expansive (CONE) maps, when
n,=1,v =1,1 € [L]. Such CONE maps satisfy

Vu,vo e R" : |o(u) — ¢(v)] < |Ju—1|, (2.4)

with inequality and absolute value taken componentwise. Examples of CONE maps include
the ReLU (defined as ¢(-) = max(0,-)) and its “leaky” variants, tanh, sigmoid, each applied
componentwise to a vector input. Our model also allows for maps that do not operate
componentwise, such as the softmax function, which operates on a n-vector z as:

e”
z — SoftMax(z) := (, (2.5)
Zi €%) i€[n]

The softmax map is 1-Lipschitz-continuous with respect to the /;-norm [65].

Well-posed matrices

We consider the prediction rule (2.1a) with input point u € R? and predicted output vector
y(u) € R9. The equilibrium equation (2.1b) does not necessarily have a well-defined, unique
solution z. In order to ensure this, we assume that the n x n matrix A satisfies the following
well-posedness property.

Definition 2.3.1 (Well-posedness property). The n X n matriz A is said to be well-posed
for ¢ (in short, A € WP(¢)) if, for any n-vector b, the equation in x € R™:

r = ¢(Azx +b) (2.6)
has a unique solution.

There are many classes of matrices that satisfy the well-posedness property. As seen
next, strictly upper-triangular matrices are well-posed with respect to any activation map
that acts componentwise; such a class arises when modeling feedforward neural networks as
implicit models, as seen in Section 2.4.

CHAPTER 2. IMPLICIT DEEP LEARNING 17

Tractable sufficient conditions for well-posedness

Our goal now is to understand how we can constrain A to have the well-posedness property,
in a numerically tractable way.

We assume that ¢ is a BLIP map, as defined in Section 2.3. We partition the A matrix
according to the tuple (nq,...,nz), into blocks A;; € R™*™ 1 <4, j < L, and define a
L x L matrix of induced norms N(A,v) € RZ** with elements for [, h € [L] given by

(N (A 7))ij = 7ill Asgllp,pe = i max [Ai€llp, i€l < 1. (2.7)

In the case of CONE maps, the vector v is all ones, and we have simply N(A,~) = |A|.
The sufficient condition stated next is based on the contraction mapping theorem [145,
p.83].

Theorem 2.3.1 (PF sufficient condition for well-posedness for BLIP activation). Assume
that ¢ satisfies the BLIP condition, as defined in Section 2.3. Then, A is well-posed with
respect to ¢ if

AN (A7) < 1, (2.5)

where N(A,~) is the matriz of induced norms defined in (2.7). Then, for any n-vector b,
the solution to the equation (2.6) can be computed via the fized-point iteration

2(0) =0, z(t+1)=¢(Az(t)+0b), t=0,1,2,.... (2.9)
When ¢ is a CONE map, the PF condition (2.8) reduces to A\py(|A]) < 1.

Proof. Let b € R™. Our first step is to establish that for the Picard iteration (2.9), we have,
for every t > 1:

n(w(t+1) —2(t)) < N(A,y)n((t) — =t - 1))
Here, 7 is a vector of norms, as defined in (2.2). For every [€ [L], t > 0:

[zt +1) — ()] = | ¢i([Ax(t) + bl) — ¢ ([Aw(t — 1) + b))l [using (2.9)]

< ll[A () — 2t = D)illp, =l Y Am(x(t) = x(t = 1)ull,,
he[L]
<UD Al llzn(t) = za(t = D, = [N(A,)n(x(t) — ot — 1)),
he[L]

which establishes the desired bound, where M := N(A,~).

Assume now that Ap(M) < 1, as posited in the Theorem. Then, from the Perron-
Frobenius theorem, I — M is non-singular and all the other (possibly complex) eigenvalues A
of N(A,~) satisfy || < Ape(IN(A,7)) < 1. We prove existence of a solution to the equilibrium
equation by showing that the sequence of Picard iterates is Cauchy: for every t, 7 > 0,

t+7 T
n(a(t+7) - <ZMk) —2(0) < M"Y Mrn(x(1) — 2(0)) < M'w,
k=0

CHAPTER 2. IMPLICIT DEEP LEARNING 18

where w € RZ defined by,

w =y M(z(1) = 2(0) = (I - M) 'n(a(1) - 2(0)).

As M" converges to 0 irrespective of 7, Picard iterates is Cauchy and therefore the sequence
{z(t)} converges to x € R" and x = ¢(Ax+b). The above proves the existence of a solution.

To prove unicity, consider z*, z? € R’} two solutions to the equation. Using the hypotheses
in the theorem, we have, for any £ > 1:

n(z! —a?) < Mn(z' —a?) < MPp(z' —a?).
The fact that M* — 0 as k — +oo then establishes unicity. m

Remark 2.3.1. The fized-point iteration (2.9) has linear convergence; each iteration is a
matriz-vector product, hence the complexity of solving the equilibrium equation is comparable
to that of a forward pass through a network of similar size.

Remark 2.3.2. The PF condition A\y(N(A,7)) < 1 is not conver in A, but the convex
condition ||N(A,7)|lw < 1, is sufficient, in light of the bound || M|l > Ap(|M]), valid for
any square matriz M.

Remark 2.3.3. The PF condition of Theorem 2.5.1 is conservative. For example, a triangu-
lar matriz A is well-posed with respect to the ReLU and if only if diag(A) < 1, a consequence
of the upcoming Theorem 2.3.2. The corresponding equilibrium equation can then be solved
via the backward recursion

T = (bn)+ T =
" 1_A’4nn7 ' 1_Au

(bi+ZAij$j)+; i:n—l,...,l.

§>i

Such a matriz does not necessarily satisfy the PF condition; we can have in particular Ay <
—1, which implies \f(|A|) > 1.

Remark 2.3.4. The well-posedness property is invariant under row and column permutation,
provided ¢ acts componentwise. Precisely, if A is well-posed with respect to a componentwise
CONE map ¢, then for any n x n permutation matriz P, PAPT is well-posed with respect
to ¢. The PF sufficient condition is also invariant under row and column permutations. A
similar statement can be made for the more general BLIP case.

Composition of implicit models

Implicit models can be easily composed via matrix algebra. Sometimes, the connection
preserves well-posedness, thanks to the following result.

CHAPTER 2. IMPLICIT DEEP LEARNING 19

Theorem 2.3.2 (Well-posedness of block-triangular matrices, componentwise activation).
Assume that the activation map ¢ acts componentwise. The upper block-triangular matrix

(A A
A (e
with A;; € R™*™ 4 = 1,2, is well-posed with respect to ¢ if and only if its the diagonal blocks
AH, A22 are.

Proof. Express the equation x = ¢(Ax + b) as
z1 = ¢(Anz + AT + b1), 79 = ¢(Agexa + bo),

where b = (by,b2), © = (21,22), with b; € R™, x; € R™, i = 1,2. Here, since ¢ acts
componentwise, we use the same notation ¢ in the two equations.

Now assume that A;; and Ass are well-posed with respect to ¢. Since Ags is well-posed for
¢, the second equation has a unique solution z3; plugging x5 = x5 into the second equation,
and using the well-posedness of A1, we see that the first equation has a unique solution in
x1, hence A is well-posed.

To prove the converse direction, assume that A is well-posed. The second equation above
must have a unique solution z3, irrespective to the choice of by, hence Asy must be well-posed.
To prove that A;; must be well-posed too, set by = 0, by arbitrary, leading to the system

1 = ¢(Anzy + Apra +b1), 2 = ¢(Agaxs).

Since Ago is well-posed for ¢, there is a unique solution x5 to the second equation; the first
equation then reads z7 = ¢(Aj121 + by + Ajox3). It must have a unique solution for any b,
hence A;; is well-posed. m

This result establishes the fact stated previously, that when ¢ is the ReLLU, an upper-
triangular matrix A € WP(¢) if and only if diag(A) < 1. A similar result holds with the

lower block-triangular matrix
A= ,
<A21 A22)

where A5 € R™*™ is arbitrary. It is possible to extend this result to activation maps ¢ that
satisfy the block Lipschitz continuity (BLIP) condition, in which case we need to assume
that the partition of A into blocks is consistent with that of ¢. As seen later, this feature
arises naturally when composing implicit models from well-posed blocks.

Theorem 2.3.3 (Well-posedness of block-triangular matrices, blockwise activation). As-
sume that the matriz A can be written as

_ (A An
A (e
with A; € R™ ™ ¢ = 1,2, and ¢ acts blockwise accordingly, in the sense that there exist

two maps ¢1, Pg such that ¢((z1, 22)) = (P1(21), P2(22)) for every z; € R i =1,2. Then A
is well-posed with respect to ¢ if and only if fori = 1,2, Ay is well-posed with respect to ¢;.

CHAPTER 2. IMPLICIT DEEP LEARNING 20

Y

A\

P2 b1

zZ2

X2 Z1
Ay By . Ay By
Cy Dy Uz = U1 (ul) Ci1 D

@2(u1> <] < l—— Uy

g

A
A

Figure 2.2: Cascade connection of two implicit models.

Using the above results, we can preserve well-posedness of implicit models via composi-
tion. For example, given two models with matrix parameters (A;, B;, C;, D;) and activation
functions ¢;, i = 1,2, we can consider a “cascaded” prediction rule:

].72 = CQQZ'Q -+ D2u2 where Ug = Z)l = 01.771 -+ Dlul, where €Tr; = ¢2<Azxz —+ Bzuz), 1= 1, 2.

The above rule can be represented as (2.1a), with = (29, 1), ¢((22, 21)) = (d2(22), $1(21))

and
Al B A2 BQCl Bng
(18- (551
Co DyCh ‘ Dy Dy
Due to Theorem 2.3.3, the cascaded rule is well-posed for the componentwise map with
values ¢(z1, z2) = (¢1(21), P2(22)) if and only if each rule is.

A similar result holds if we put two or more well-posed models in parallel, and do a
(weighted) sum the outputs. With the above notation, setting §(u1,us) = §1(u1) + 92(usg)
leads to a new implicit model that is also well-posed. Other possible connections include
concatenation: y(u) = (91(u),y2(u)), and affine transformations (a special case of cascade
connection where one of the systems has no activation). We leave the details to the reader.

In both cascade and parallel connections, the triangular structure of the matrix A of the
composed system ensures that the PF sufficient condition for well-posedness is satisfied for
the composed system if and only if it holds for each sub-system.

Multiplicative connections are in general are not Lipschitz-continuous, unless the inputs
are bounded. Precisely, consider two activation maps ¢; that are Lipschitz-continuous with
constant y; and are bounded, with |¢;(v)| < ¢; for every v, i = 1,2; then, the multiplicative
map

(u1, uz) € R? = d(u) = ¢ ()2 (uz)

is Lipschitz-continuous with respect to the l;-norm, with constant v := max{csv1, 172}
Such connections arise in the context of attention units in neural networks, which use
(bounded) activation maps such as tanh.

Finally, feedback connections are also possible. Consider two well-posed implicit systems:

yi = Ciwi + Divg, @ = ¢i(Aiw; + Buy), i=1,2.

CHAPTER 2. IMPLICIT DEEP LEARNING 21

Now let us connect them in a feedback connection: the combined system is described by
the implicit rule (2.1), where u; = u + yo, us = 3y = y. The feedback system is also an
implicit model of the form (2.1), with appropriate matrices (A, B, C, D), and activation map
acting blockwise: ¢(z1, 22) = (¢1(21), P2(22)) and state (x1,z2). In the simplified case when
Dy = Dy = 0, the feedback connection has the model matrix

Al BlcQ Bl
(<3) — [By A |0
Ct 0 |0

Note that the connection is not necessarily well-posed, even if both sub-systems are.

Scaling implicit models

Assume that the activation map ¢ is componentwise non-expansive (CONE) and positively
homogeneous, as is the ReLU, or its leaky version. Consider an implicit model of the
form (2.1), and assume it satisfies the PF sufficient condition for well-posedness of The-
orem 2.3.1: A\ye(JA]) < K, where 0 < k < 1 is given. Then, there is another implicit model
with the same activation map ¢, matrices (A’, B’, C’, D'), which has the same prediction rule
(i.e. 9'(u) = g(u),Yu), and satisfies ||A’]|o < 1.

This result is a direct consequence of the following expression of the PF eigenvalue as an
optimally scaled [.-norm, known as the Collatz-Wielandt formula, see [121, p. 666]:

Apt(|Al) = in 1S7HA|So : S =diag(s), s> 0. (2.10)

The above expression implies that the condition Ap¢(|A|) < 1 guarantees the existence of a
diagonal state scaling operator S such that ||S™'|A|S|s < 1; in fact such a scaling can be
obtained via fixed-point iterations, based on the formula s = (I —|A|)~*1. The new model
matrices are then A’ = S™1AS, B'= S™'B, ' =CS, D' = D.

In a training problem, this result allows us to consider the convex constraint || Al < 1
in lieu of its Perron-Frobenius eigenvalue counterpart. This result also allows us to rescale
any given implicit model, such as one derived from deep neural networks, so that the norm
condition is satisfied; we will exploit this in our robustness analyses in Section 2.5.

2.4 Implicit Models of Deep Neural Networks

A large number of deep neural networks can be modeled as implicit models, including con-
volutional and recurrent networks; attention units; residual connections; etc. Our goal here
is to show how to build a well-posed implicit model for a given neural network, assuming the
activation map satisfies the componentwise non-expansiveness (CONE), or the more gen-
eral block Lipschitz-continuity (BLIP) condition, as detailed in Section 2.3. Thanks to the

CHAPTER 2. IMPLICIT DEEP LEARNING 22

composition rules of Section 2.3 it suffices to model individual layers, since a neural net-
work is just a cascade connection of such layers. The block Lipschitz structure then emerges
naturally as the result of composing the layers.

We will find that the resulting models always have a strictly (block) upper triangular ma-
trix A, which automatically implies that these models are well-posed; in fact the equilibrium
equation can be simply solved via backwards substitution. In turn, models with strictly up-
per triangular structure also naturally satisfy the PF sufficient condition for well-posedness:
for example, in the case of a componentwise non-expansive map ¢, the matrix |A| arising in
Theorem 2.3.1 is also strictly upper triangular, and therefore all of its eigenvalues are zero.
A similar result also holds for the case when ¢ is block Lipschitz continuous, as defined in
Section 2.3.

Well-posedness

Thanks to the composition rules of Section 2.3, it suffices to model individual layers, since
a neural network is just a cascade connection of such layers. The block-Lipschitz structure
of the activation map, and the strictly triangular structure of the matrix A, then emerge
naturally as the result of composing the layers in a “cascade” fashion. This implies that the
implicit models we obtain are well-posed, as the corresponding Perron-Frobenius eigenvalue
of the matrix N(A,~) defined in (2.7) is zero, since N(A,~) is then strictly triangular.

We may always assume that the resulting implicit model satisfies the stronger norm
condition for well-posedness mentioned in Remark 2.3.2. For example, in the case of a
CONE map ¢, the stronger condition [|A||.c < 1 can always be obtained by appropriately
scaling the weight matrices of the network’s layers, and using a scaled version for the state
vector .

Basic operations

Activation at the output It is common to have an activation at the output level, as in
the rule
J(u) = ¢o(Cx + Du), x = ¢(Azx + Bu), (2.11)

with ¢, the output activation function. We can represent this rule as in (2.1), by introducing
a new state variable: with ¢ := (¢,, ¢),

r) 0 A) \x p)t) Y=~
The rule is well-posed with respect to ¢ if and only if the matrix A is, with respect to ¢.

Bias terms and affine rules The affine rule

y=Cx+Du+d, ==0¢(Ax+ Bu+b),

CHAPTER 2. IMPLICIT DEEP LEARNING 23

where d € R?, b € R", is handled by simply appending a 1 at the end of the input vector wu.
A related transformation is useful with activation functions ¢, such as the sigmoid, that
do not satisfy ¢(0) = 0. Consider the rule

y=Cx+ Du, x = ¢(Azx + Bu).

Defining ¢(-) := ¢(-) — ¢(0) and using the state vector Z := x 4 ¢(0), we may represent the
above rule as

u

- . Ty oA u
y=Ci+ (D —Cg¢(0)) (1) , T=¢(AT+ (B —A$(0)) (1))
Again, the rule is well-posed if and only if the matrix A is.

Batch normalization Batch normalization consists in including in the prediction rule a
normalization step using some estimates of input mean @ and variance o > 0 that are based
on a batch of training data. The parameters u, o are given at test time. This step is a simple
affine rule:

y = Du + d, where [D,d] := diag(c) ™[I, —4].

Fully connected feedforward neural networks

Consider the following prediction rule, with L > 1 fully connected layers:

y(u) = Wrrp, r = d(Wia), o= u. (2.12)
Here W; € R™+1*™ and ¢; : R™+1 — R™+1 | = 1,... L, are given weight matrices and
activation maps, respectively. We can express the above rule as (2.1a), with z = (zp, ..., 1),
and
0 Wiy ... 0 0
0 e :
A|B
(%W) = ow| o | (2.13)
0 | Wa
Wy 0 ... 010

and with an appropriately defined blockwise activation function ¢, defined as operating on an
n-vector z = (zr,...,21) as ¢(z) = (¢r(21), ..., ¢1(z1)). Due to the strictly upper triangular
structure of A, the system is well-posed, irrespective of A; in fact the equilibrium equation
x = ¢(Ax + Bu) is easily solved via backward block substitution, which corresponds to a
simple forward pass through the network.

CHAPTER 2. IMPLICIT DEEP LEARNING 24

Convolutional layers and max-pooling

A single convolutional layer can be represented as a linear map: y = Du, where u is the
input, D is a matrix that represents the (linear) convolution operator, with a “constant-
along-diagonals”, Toeplitz-like structure. For example a 2D convolution with a 2D kernel K
takes a 3 x 3 matrix U and produces a 2 x 2 matrix Y. With

Uy Uz U3
_ (k1 ke
U=|w us usg |, K= ;
ks ky
U7 Ug Ug

the convolution can be represented as y = Du, with y, u vectors formed by stacking the rows
of U,Y together, and

ki ke 0 ks k4 O O 0 O
0 ki ka O ks kg 0O 0 O
0 0 O ki ke O kg kg O
0 0 0 0 ki k 0 k3 ky

D:

Often, a convolutional layer is combined with a max-pooling operation. The latter forms a

12 (20 | 30 [O

8 [12] 2 | 0 | 2x2MaxPool |20]30

34 [70 | 37 | 4 112 37

112 (100 | 25 | 12

Figure 2.3: A max-pooling operation: the smaller image contains the maximal pixel values
of each colored area.

down-sample of an image, which is a smaller image that contains the largest pixel values of
specific sub-areas of the original image. Such an operation can be represented as

y; = max (Bju)i, J € lg]
In the above, p = ¢h, and the matrices B; € R"*?, j € [q], are used to select specific
sub-areas of the original image. In the example of Figure 2.3, the number of pixels selected
in each area is h = 4, the output dimension is ¢ = 4, that of the input is p = gh = 16;
vectorizing images row by row:

B ILb 0 0 0
By T 16x16 ._ 0 0 I 0 8x38
B, = diag(M, M) € R M= L 0 0 € R™%,
B, 0 0 0 Iy

CHAPTER 2. IMPLICIT DEEP LEARNING 25

input U —
|
weight W x .
|
activation ¢y ()
|
weight Wa x .

)
add @ «—

I @ = SoftMax
D & = RelU

!
activation (bg (R)
!

output Y

Figure 2.4: Building block of residual net- Figure 2.5: The matrix A for a 20-layer resid-
works. ual network. Nonzero elements are colored in

blue.

where [5 is the 2 x 2 identity matrix.

Define the mapping ¢ : R™ — R", where n = p, as follows. For a p-vector z decomposed
in g blocks (21, ..., 2,), we set ¢(z1,...,2,) = (max(z1),...,max(z,),0,...,0). (The padded
zeroes are necessary in order to make sure the input and output dimensions of ¢ are the
same). We obtain the implicit model

y = C¢o(Bu) = Czx, where x := ¢(Bu).
Here C' is used to select the top ¢ elements,
C=(, 0 ..0), B:=(B] ... B]).
The Lipschitz constant of the max-pooling activation map ¢, with respect to the [,-norm,

is 1, hence it verifies the BLIP condition of Section 2.3.

Residual nets

A building block in residual networks involves the relationship illustrated in Figure 2.4.
Mathematically, a residual block combines two linear operations, with non-linearities in the
middle and the end, and adds the input to the resulting output:

y = ¢2(u + Wao (Whu)),

where Wy, Wy are weight matrices of appropriate size. The above is a special case of the
implicit model (2.1): defining the blockwise map ¢ (22, 21) = (p2(22), P1(21)),

()= (6 9) () ()) v

CHAPTER 2. IMPLICIT DEEP LEARNING 26

Figure 2.5 displays the model matrix A for a 20-layer residual network. Convolutional
layers appear as matrix blocks with Toeplitz (constant along diagonal) structure; residual
unit correspond to the straight lines on top of the blocks. The network only uses the ReLU
map, except for the last layer, which uses a softmax map.

Recurrent units

Recurrent neural nets (RNNs) can be represented in an “unrolled” form as shown in [85],
which is the perspective we will consider here. The input to an RNN block is a sequence of
vectors {uy, -+ ,ur}, where for every t € [T], u; € RP. At each time step, the network takes
in a input u; and the previous hidden state h;_; to produce the next hidden state h;; the
hidden state h; defines the state space or “memory” of the network. The rule can be written
as,

ht = QSH(WHht—l + qut)7 Y = ¢O(W0ht)7 = 17 cee 7T7 (214)
Then, equations (2.14) can be expressed as an implicit model (2.11), with
x=(hp,...,ho), u= (ur,...,u;), and weight matrices
0O Wy --- 0 o W, --- 0 0
A|BY 0 0 Wy : : 0o W; :
o) = g SRR (2.15)
0 WH 0 WI
Wo O -~ 0 00 -~ - 0

where A, B are strictly upper block triangular and share the same block diagonal sub-
matrices, Wy and W; respectively, shared across all hidden states and inputs.

Note that the above approach leads to matrices A, B, C, D with a special structure; during
training and test time, it is possible to exploit that structure in order to avoid “unrolling”
the recurrent layers.

Multiplicative units: LSTM, attention mechanisms and variants

Some deep learning network architectures use multiplicative units. As mentioned in Sec-
tion 2.3, multiplication between variables in not Lipschitz-continuous in general, unless
the inputs are bounded. Luckily, most of the multiplicative units used in practice involve
bounded inputs.

In the case of Long Short-Term Memory (LSTM) [189] or gated recurrent units (GRUs)
[41], a basic building block involves the product of two input variables after each one passes
through a bounded non-linearity. Precisely, the output takes the form

y = o(u) = ¢1(u1)da(uz),

CHAPTER 2. IMPLICIT DEEP LEARNING 27

where uy,uy € R, and ¢4, ¢2 are both bounded (scalar) non-linearities.
Attention models [14] use componentwise vector multiplication, usually involving a soft-
max operation (2.5):
y = o(u) = ¢1(u1) © SoftMax(us),

where ¢; is a bounded, componentwise Lipschitz-continuous activation map, such as the
sigmoid; and W is a matrix of weights. The map ¢ is then Lipschitz-continuous with respect
to the [;-norm. As shown in Section 2.3, we can formulate these multiplicative units as
well-posed implicit models.

2.5 Robustness

In this section, our goal is to analyze the robustness properties of a given implicit model (2.1a).
We seek to bound the state, output and loss function, under unknown-but-bounded inputs.
This robustness analysis task is of interest in itself for diagnosis or for generating adversarial
attacks. It will also inform our choice of appropriate penalties or constraints in the training
problem. We assume that the activation map is BLIP, and that the matrix A of the implicit
model satisfies the sufficient conditions for well-posedness outlined in Theorem 2.3.1.

Input uncertainty models

We assume that the input vector is uncertain, and only known to belong to a given set
U C RP. Our results apply to a wide variety of sets U; we will focus on the following two
cases.

A first case corresponds to a box:

U ={ueR : lu—u’|<a,}. (2.16)

Here, the p-vector o, > 0 is a measure of componentwise uncertainty affecting each data
point, while u° corresponds to a vector of “nominal” inputs. The following variant limits the
number of changes in the vector u:

U ={ueR : lu—u’| <o, Card(u—u’) <k}, (2.17)
where Card denotes the cardinality (number of non-zero components) in its vector argument,

and k < p is a given integer.

Box bounds on the state vector

Assume first that ¢ is a CONE map, and that the input is only known to belong to the box
set UP* (2.16). We seek to find componentwise bounds on the state vector z, of the form

CHAPTER 2. IMPLICIT DEEP LEARNING 28
|z — 2°| < o,, with z and 2° the unique solution to £ = ¢(AE + Bu) and & = ¢(AE + BuP)
respectively, and o, > 0. We have
|z — 2% = |¢(Az + Bu) — ¢(Az" + Bu’)| < [Allx — 2°| + |B(u — u”)],
which shows in particular that
Iz = 2%lloo < [|Allsollz — 2%loo + 1B (u — u)l|oc,

hence, provided ||A|l < 1, we have:

[1Blow]lo
l — 2% < . (2.18)
1— HAHOO
With the cardinality constrained uncertainty set 4 (2.17), we obtain
o
_ 40 < 7 i To.
|z —2°||oo < Al J: max sk(ow © |B| " e), (2.19)

with e; the i-th unit vector in R"™, and s, the sum of the top k entries in a vector.

We may refine the analysis above, with a “box” (componentwise) bound. When ¢ is
block-Lipschitz (BLIP) map, our result involves the matrix of norms N (A,) defined in (2.7),
as well as a similar matrix defined for the input matrix B: decomposing B into blocks
B = (Bu)ieip)iclp), with By, € R™, [€ [L], we define the L x p matrix of norms

N(B,7) = ’Vl(||Bli||pl)le[L},ie[p]- (2.20)

Theorem 2.5.1 (Box bound on the vector norms of the state, BLIP map). Assuming that
¢ 1s BLIP, and the corresponding sufficient well-posedness condition of Theorem 2.3.1 is
satisfied. Then, I — N(A,~) is invertible, and

n(z —2%) < (I = N(A,7)) "' N(B, 7)o, (2.21)
where the vector of norms function (") is defined in (2.2).
Proof. For every [€ [L]:
[n(z —2%)i < [[[p(A(z — 2°) + B(u — u®)b)ll,
<l Z Az = 2%)nllp, + 7l Z Bui(u = 1)l

hel[L] i€(p]
<M Z | Aunlp—pi (2 — xo)h + % Z | Buill pi | w — UO’@
he[L)] i€lp]

< [N(A,)n(z — 2 + [N(B,7)|u — u°[],

which establishes the desired bound.
]

CHAPTER 2. IMPLICIT DEEP LEARNING 29

Note that the box bound can be computed via fixed-point iterations. For example when
¢ is a CONE map, we solve (I —|A|)o, = | B|oy, as the limit point of the fixed-point iteration

0.(0) =0, o,(t+1)=|A|o.(t)+ |Blow, t=0,1,2,...,

which converges since Ae(|A]) < 1.

Bounds on the output and the sensitivity matrix

The above allows us to analyze the effect of effect of input noise on the output vector y.
Let us assume that the function ¢ satisfies the CONE (componentwise non-expansiveness)
condition (2.4). In addition, we assume that the stronger condition for well-posedness,
|Alloo < 1, is satisfied. (As noted in Section 2.3, we can always rescale the model so as to
ensure that property, provided Ap¢(]A|) < 1.) For the implicit prediction rule (2.1), we then
have

1Bl €l
1 —[Allos
The above shows that the prediction rule is Lipschitz-continuous, with a constant bounded

above by p. This result motivates the use of the || - ||« norm as a penalty on model matrices
A, B,C, D, for example via a convex penalty that bounds the Lipschitz constant above:

) LIBI +IC3
~ 2 1Al

Y’ o [[(u) = §(u) e < pllu — v, where p o= + [Dlloo-

+ || D] so- (2.22)

We can refine this analysis with the following theorem, applicable to the case when
¢ is block Lipschitz (BLIP). Decomposing C' into column blocks C' = (C4,...,Cr), with
C, e R™*™ | € [L], we define the matrix of (dual) norms

N(C) = (ICallp; ez, iela)s

where pf :=1/(1 —1/p;), | € [L]. Also recall the corresponding matrix of norms related to
Ain (2.7) and B in (2.20).

Theorem 2.5.2 (Box bound on the output, BLIP map). Assuming that ¢ is a BLIP map,
and that the sufficient condition for well-posedness Ap(N(A,7)) < 1 is satisfied. Then,
I — N(A,~) is invertible, and

Vu,u® o [g(u) = g(u’)| < Slu—ul, (2.23)
where the (non-negative) q X p matrix
S:= N(C)(I = N(A,7))"'N(B,7) + |D|

1s a “sensitivity matriz” of the implicit model with a BLIP map. In the case of a CONE
map, the sensitivity matrix is given by

S=|C|(I = [A)[B]+|D|.

CHAPTER 2. IMPLICIT DEEP LEARNING 30

Proof. For given i € [q], we have

[9(uw) =5 (u°)];

<IY - Calz —a®)| + (IDlJu—u")i < Y [|Ca

lelL] le[L]

p(x — 2% + (|DJu — u°));.

The sensitivity matrix can be computed via fixed-point iterations that are guaranteed to
converge, thanks to well-posedness assumption in the theorem. In the case of CONE maps,
the iterations involve finding the limit point X, of

X(t+1)=|A|X(#) +|B|, t=0,1,2,...,

and setting S = |C| Xy + |D|. Our refined analysis suggests a “natural” penalty to use
during the training phase in order to improve robustness, namely ||.S]|.

Linear Programming (LP) relaxation for CONE maps

The previous bounds does not provide a direct way to generate an adversarial attack, that
is, a feasible point u € U that has maximum impact on the state. In some cases it may be
possible to refine our previous box bounds via an LP relaxation, which has the advantage
of suggesting a specific adversarial attack. Here we restrict our attention to the ReLU
activation: ¢(z) = max(z,0) = z;, which is a CONE map.

We consider the problem

O p— . . . frd frd — 0
p' = max Z filx;) + v =24, z2=Ax+ Bu, |v—2°| <oy, (2.24)
i€[n]
where f;’s are arbitrary functions. Setting f;(&) = (¢ — 29)?, i € [n], leads to the problem of
finding the largest discrepancy (measured in lo-norm) between z and z°; setting fi(§) = —¢,
i € [n], finds the minimum /;-norm state. By construction, our bound can only improve on
the previous state bound, in the sense that
p' < max f;(2) + ao,;).

Our result is expressed for general sets U, based on the support function g;; with values for
b € RP given by

o T
ou(b) == max b u. (2.25)

Note that this function depends only on the convex hull of the set &. In the case of the box
set U given in (2.16), there is a convenient closed-form expression:

oypox (b) = b u’ + o |b].

CHAPTER 2. IMPLICIT DEEP LEARNING 31

Likewise for the cardinality-constrained set ¢ defined in (2.17), we have

1. (D) = max b'u=0b"u’+ s(c, © b)),
ueucard

where s, is the sum of the top k entries of its vector argument — a convex function.
The only coupling constraint in (2.24) is the affine equation, which suggests the following
relaxation.

Theorem 2.5.3 (LP bound on the state). An upper bound on the objective of problem (2.24)
s given by
p 1_9 1’1 JU(BT/\ + Zgz iy AT}‘))

1€[n]

where sy is the support function defined in (2.25), and g;, i € [n], are the convex functions

9+ (a,B) eR* = gi(a, B) == max fi(¢y) —aC + B¢y, i€ [n]

¢: |C+7m?|§0'z,i

If the functions g;, i € [n] are closed, we have the bidual expression

Pi= — (A B
:pmu%}é{ g{:gz T+ Bu);, 7;),

where gF is the conjuguate of g;, i € [n].

Proof. We have

pr<p : m;ngaéx Zf" J+AN (Az+Bu—2) : x=24, |z —2"| <o,
i€[n]
= m}%n max A Bu + Z:‘zfl_aiglgax GX{:}(fz(Zj) + (ATN)iz = Niz)
: T
= B
i (g 7] ¢ 2 X

which establishes the first part of the theorem. If we further assume that the functions g;,
i € [n] are closed, strong duality holds, so that

_ T TATY _ N 1) — _
P = min max AN Bu+z (A A u)+§:]gl(/\z,uZ = max ;gz (Az 4+ Bu);, x;)

where g7 is the conjugate of g;, i € [n]. m

In the case whenf;(§) = ¢&, i@ € [n], where ¢ € R" is given, it turns out that our
relaxation, when expressed in bidual form, has a natural look:

p < p—ngécT:v o >Ax+Bu, >0, |z —2° <o,
T, Uu

CHAPTER 2. IMPLICIT DEEP LEARNING 32

When the cardinality of changes in the input is constrained in the set Z/°*, the bound takes
the form

p* < P=maxc'x : x> Ar+Bu, >0, |z—2° <o,
o | diag(c,) (u —uO)||; <k, |u—u’| <o,

2.6 Sparsity and Model Compression

In this section, we examine the role of sparsity and low-rank structure in implicit deep
learning, specifically in the model parameter matrix

A B
e (48
We assume that the activation map ¢ is a CONE map; most of our results can be generalized
to BLIP maps.

Since a CONE map acts componentwise, the prediction rule (2.1a) is invariant under
permutations of the state vector, in the sense that, for any n x n permutation matrix, the
matrix diag(P, [)M diag(P", I) represents the same prediction rule as M given above.

Various kinds of sparsity of M can be encouraged in the training problem, with appro-
priate penalties. For example, we can use penalties that encourage many elements in M to
be zero; the advantage of such “element-wise” sparsity is, of course, computational, since
sparsity in matrices A, B, C, D will allow for computational speedups at test time. Another
interesting kind of sparsity is rank sparsity, which refers to the case when model matrices
are low-rank.

Next, we examine the benefits of row- (or, column-) sparsity, which refers to the fact that
entire rows (or, columns) of a matrix are zero. Note that column sparsity in a matrix N can
be encouraged with a penalty in the training problem, of the form

P(N) = [INeila
where a > 1. Row sparsity can be handled via P(N).

Feature selection

We may use the implicit model to select features. Any zero column in the matrix (B", DT)T"
means that the corresponding element in an input vector does not play any role in the
prediction rule. We may thus use a column-norm penalty in the training problem, in order
to encourage such a sparsity pattern:
B
(5)

p

P(B,D)=>_

=1

: (2.26)

07

with o > 1.

CHAPTER 2. IMPLICIT DEEP LEARNING 33

Dimension reduction via row- and column-sparsity

Assume that the matrix A is row-sparse. Without loss of generality, using permutation
invariance, we can assume that M writes

All A12 Bl
M=(0 0o BJ,
C, C, D

where Ay is square of order ny < n. We can then decompose = accordingly, as x = (x1, x3)
with 21 € R™, and the above implies x5 = ¢(Bsu). The prediction rule for an input u € R?
then writes

gj(u) = lelfl + DU, Ir = ¢(A11$1 -+ A12¢(BQU) + Blu)

The rule only involves x; as a true hidden feature vector. In fact, the row sparsity of A
allows for a computational speedup, as we simply need to solve a fixed-point equation for
the vector with reduced dimensions, x;.

Further assume that (A, B) is row-sparse. Again without loss of generality we may put
M in the above form, with By = 0. Then the prediction rule can be written

§(u) = Crzy + Du, x1 = ¢(Anz1 + Bru).

This means that the dimension of the state variable can be fully reduced, to n; < n. Thus,
row sparsity of (A4, B) allows for a reduction in the dimension of the prediction rule.

When (A, B) is column-sparse, we obtain similar speedups: we only need to solve for 1,
and x5 can be directly expressed as closed-form function of x;. We leave the details to the
reader.

Now assume that (AT, CT)7 is column-sparse. Again, the prediction rule does not need
xo at all, so that the computation of the latter vector can be entirely avoided. This means
that the dimension of the state variable can be fully reduced, to n; < n. Thus, column
sparsity of (AT,CT)T allows for a reduction in the dimension of the prediction rule.

To summarize, row or column sparsity of A allows for a computational speedup; if the
corresponding rows of B (resp. columns of C') are zero, then the prediction rule involves only
a vector of reduced dimensions.

Rank sparsity

Assume that the matrix A is rank & < n, and that a corresponding factorization is known:
A = LR, with L, R € R™*. In this case, for any p-vector u, the equilibrium equation
r = ¢(Az + Bu) can be written as x = ¢(Lz + Bu), where z := R"x. Hence, we can obtain
a prediction for a given input w via the solution of a low-dimensional fixed-point equation
in z € R*:

z = R"¢(Lz + Bu).

CHAPTER 2. IMPLICIT DEEP LEARNING 34

It can be shown that, when ¢ is a CONE map, the above rule is well-posed if Ap¢(|R|T|L|) < 1.
Once a solution z is found, we simply set the prediction to be y(u) = Co(Lz + Bu) + Du.

At test time, if we use fixed-point iterations to obtain our predictions, then the compu-
tational savings brought about by the low-rank representation of A can be substantial, with
a per-iteration cost going from O(n?), to O(kn) if we use the above.

Model error analysis

The above suggests to replace a given model matrix A with a low-rank or sparse approx-
imation, denoted A°. The resulting state error can be then bounded, as follows. Assume
that |[A — A°| < E, where E > 0 is a known upper bound on the componentwise error in A.
The following theorem provides relative error bounds on the state, provided the perturbed
system satisfies the well-posedness condition A\p¢(]A|) < 1. As before, we denote by z°, 2 the
(unique) solutions to the unperturbed and perturbed equilibrium equations £ = ¢(A°¢ + Bu)
and & = ¢(A& + Bu), respectively.

Theorem 2.6.1 (Effect of errors in A). Assuming that ¢ is a CONE map, and that A(]A°+
E|) < 1. Then:
|z — 2% < (I — (|A° + E|)) ' Ex. (2.27)

Proof. We have
|z —2° < |Az — A2°| = |A%(2 — 2°) + E(x — 2°) + BE2®| < |A° + El||lz — 2% + | E||2°|.

Applying a technique similar to that employed in the proof of Theorem 2.5.1, we obtain
the desired relative error bounds. m

2.7 Training Implicit Models

Setup

We are now given an input data matrix U = [ug,...,u,] € RP*™ and response matrix
Y =[y1,...,Ym] € R™ and seek to fit a model of the form (2.1a), with A well-posed with
respect to ¢, which we assume to be a BLIP map. We note that the rule (2.1a), when applied
to a collection of inputs (u;)1<i<m, can be written in matrix form, as

Y(U)=CX + DU, where X = ¢(AX + BU).

where U = [uy, ..., tum] € R*™ and Y (U) = [§(u1), - . ., §(um)] € R*™.
We consider a training problem of the form

nin L(Y,CX + DU)+P(A,B,C,D) : X = g(AX + BU), A€ WP(g). (2.28)

CHAPTER 2. IMPLICIT DEEP LEARNING 35

In the above, L is a loss function, assumed to be convex in its second argument, and P is a
convex penalty function, which can be used to enforce a given (linear) structure (such as, A
strictly upper block triangular) on the parameters, and/or encourage their sparsity.

In practice, we replace the well-posedness condition by the sufficient PF condition of
Theorem 2.3.1. As argued in Section 2.3, the latter can be further replaced without loss of
generality with an easier-to-handle (convex) norm constraint; in the case of CONE maps,
this condition is ||Al| < K, where k € (0,1) is a hyper-parameter. In the more general
case of BLIP maps, we can use a similar norm constraint |[N(A,)|« < &, where N(A,~)
is defined in (2.7).

Examples of loss functions For regression tasks, we may use the squared Euclidean loss:
for Y)Y € R™*™,

. 1 .
LYV,Y) = Y = V3

For multi-class classification, a popular loss is a combination of negative cross-entropy with
the soft-max: for two g-vectors y, ¢, with y > 0, y'1 = 1, we define

L(y,5) = —y ' log (Zq) log Zey’

We can extend the definition to matrices, by summing the contribution to all columns, each
corresponding to a data point: for Y, Z € R?*"™,

= ilog (i: e?”) — Z ZY;JY = log(1Texp(Y))1 - Tr Y'Y, (2.29)

where both the log and the exponential functions apply componentwise.

Examples of penalty functions Beyond well-posedness, the penalty can be used to en-
courage desired properties of the model. For robustness, the convex penalty (2.22) can be
used. We may also use an [,.-norm penalty on the sensitivity matrices S appearing in Theo-
rem 2.5.2. For feature selection, an appropriate penalty may involve the block norms (2.26);
sparsity of the model matrices can be similarly handled with ordinary /;-norm penalties on
the elements of the model matrices (A, B, C, D).

Gradient Methods

Assuming that ¢ is a CONE map for simplicity, we consider the problem

L min L(Y.CX +DU)+P(A,B,C,D) + X =¢(AX + BU), [[Allx <5, (2.30)

where £ < 1 is given. We assume that the map ¢ is differentiable. We can solve (2.30) using
(stochastic) projected gradient descent, by differentiating through the equilibrium equation.

CHAPTER 2. IMPLICIT DEEP LEARNING 36

It turns out that this differentiation requires solving an equilibrium equation involving a
matrix variable, which, thanks to well-posedness, can be very efficiently solved via fixed-
point iterations.

Computing gradients Considering a mini-batch of size 1 first, we define y = Cx + Du,

z = Az + Bu. We have
VAL VL\ (V.L\ (z\'
VC,L1 VD,C - V@ﬁ u ’

where VL is easy to compute, and V. L is obtained via implicit differentiation:

.
Vzﬁz(aﬁ 8:5) oL 9L O(Cx+ Du)

dr 9z or 9y dr
Or 0¢(z) 0¢p(Ax+ Bu) Ovr _1
9. 0s oz .&_U_QA) ¢
where ¢ := ag—(;) is a diagonal matrix. Since ¢ is a CONE map, we have ||®||o < 1; since the

current matrix A satisfies the norm condition || A|| < 1, the inverse of the matrix (I — ®A)
exists. The gradient of the loss function V;£ can be easily computed, and we have

V.L= (C(I—dA)'®) VL. (2.31)

Thanks to well-posedness, the gradient V,L is the unique solution to the following equilib-
rium equation in vector v:

v==0(ATv+CTVL). (2.32)

Turning to the case of a mini-batch of size say b, the main effort in computing the gradient
consists in solving matrix equations in a n X b matrix V:

V=006 AV+0'q),

where the columns of G contains the gradients of the loss with respect to ¢, and W is a
matrix whose columns contain the derivatives of the activation map, both evaluated at a
specific training point, and ® represents element-wise multiplication. Due to the fact that A
satisfies the PF sufficient condition for well-posedness with respect to ¢, the equation above
has a unique solution; the matrix V' can be computed as the limit point of the convergent
fixed-point iterations

V(it+1)=voe (ATV(E)+CTL), t=0,1,2,.... (2.33)

Projection step In order to handle the well-posedness constraint || A/, < &, the projected
gradient method requires a projection at each step. This step corresponds to a sub-problem
of the form:

m{}n 1A= A°F : |A]lee < K, (2.34)

CHAPTER 2. IMPLICIT DEEP LEARNING 37

with matrix A° given. The above problem is decomposable across rows, leading to n sub-
problems of the form

o1
min =lla —alll3 : [lallh < &,
a 2

which @? € R the i-th row of A°. The problem cannot be solved in closed form, but a
bisection method can be applied to the dual:

p = Ig\lzag{ —KA + < }SZ()\),

where, for A > 0 given:
i) 5= min (€ —)2+ Nel, 7 € [
A subgradient of the objective is
gi(N) == —k+ Y _max([af| — \,0), i€ [n].
i€[n]

Observe that p* > 0, hence at optimum:

1 max _ L
0< A< = Zs()\,a?) SN = %H@?\B

1€[n]

The bisection can be initialized with the interval A € [0, A™**].

Returning to the original problem (2.34), we see that all the iterations can be expressed
in a “vectorized” form, where updates for the different rows of A are done in parallel. The
dual variables corresponding to each row are collected in a vector A € R". We initialize the
bisection with a vector interval [\, A,], with ' = 0, ¥ = {|a?||3/~, i € [n]. We update the
current vector interval as follows:

1. Set A = (A + A\u)/2.

2. Form a vector ¢g(\) containing the sub-gradients corresponding to each row, evaluated
at \i, @ € [n]:
g(\) = —k1+ (JA°] — x17) 1.

3. For every i € [n], reset A% = \; if g;(\) > 0, Al = \; if g;(\) < 0.

Block-coordinate descent methods

Block-coordinate descent methods use cyclic updates, optimizing one matrix variable at a
time, fixing all the other variables. Such methods are easier to apply to a so-called Fenchel
formulation of the problem, which is equivalent to problem (2.28):

uin L(Y.CX + DU) +P(A,B,C,D) : Fy(X,AX + BU) <0, |N(47)ll= < ,

CHAPTER 2. IMPLICIT DEEP LEARNING 38

where F} is the so-called Fenchel divergence adapted to ¢ [71] (also see Chapter 3), applied
column-wise to matrix inputs. In the case of the ReLLU activation, for two given vectors x, z
of the same size, we have

1 1
Fy(x,z) == §x®x+§z+®z+—x®zifx20, (2.35)

with ® the componentwise multiplication. We can then define Fjy(X,Z) with X, Z two
matrix inputs having the same number of columns, by summing over these columns. As seen
in [71], a large number of popular activation maps can be expressed similarly.

The BCD methods are particularly interesting when the updates require solving convex
problems. For instance, considering the training problem (2.30), given X, the problem is
convex in the model matrices A, B, C, D. Then, given the model matrices, finding X consists
in a feasibility problem that can be solved with fixed-point iterations.

We may also consider a relaxed form of the problem:

A’£7%7X LY,CX+DU)+P(AB,C,D)+ A Fy(X,AX + BU), [[N(A4,7)]e <&,
where A > 0 is a n X m matrix parameter. Here, all the updates involve solving convex
problems, as shown in [71], since the Fenchel divergence, for most of activation maps, is
bi-convex in its two arguments—meaning that given the first argument fixed, it is convex
in the second and vice-versa. We refer to [71, 167] for more on Fenchel divergences in the
context of implicit deep learning and neural networks.

2.8 Numerical Experiments

Learning real nonlinear functions via regression

We start by illustrating the ability of the gradient method, as presented in Section 2.7, to
learn the parameters of the implicit model, with well-posedness enforced via a max-row-sum
norm constraint, ||A||. < 0.5. We aim at learning a real function, as an example we focus
on

) = scostra) exp ().

We select the input u;, i € {1,--- ,m} uniformly at random between —5 and 5 with m = 200;
we add a random noise to the output, y(u) = f(u) + w with w taken uniformly at random
between —1 and 1, hence the standard deviation for y(u) is 1/v/3 ~ 0.57. We consider
an implicit model of order n = 75. We learn the parameters of the model by doing only
two successive block updates: first, we update (A, B) using stochastic projected gradient
descent, the gradient being obtained with the implicit chain rule described in Section 2.7.
The RMSE across iterations for this block-update is shown in Figure 2.7. After this first
update we achieve a RMSE of 1.77. Second, we update (C, D) using linear regression. After

CHAPTER 2. IMPLICIT DEEP LEARNING 39

@ 3
y(u), implicit prediction
« data

2.5+
<3|
o
~
=
[t

2

-4 . - 0 1 2
-5 0 5 10 10 10
u log(iter)

Figure 2.6: Implicit prediction y(u) compari- Figure 2.7: RMSE across projected gradient
son with f(u) iterations for the (A, B) block update

this update we achieve a RMSE of 0.56. For comparison purposes, we also train a neural
network with 3 hidden layers of width n/3 = 25 using ADAM, mini-batches, and a tuned
learning rate. We run Adam until convergence. We get a RMSE = 0.65, which is slightly
above that of our implicit model. This first simple experiment shows the ability to fit
nonlinear functions with implicit models as illustrated in Figure 2.6.

Comparison with neural networks

In this section we compare the performance of implicit models with that of neural networks.
Experiments on both synthetic datasets and real datasets are conducted. The experiment
results show that implicit model has the potential of matching or exceeding the performance
of neural networks in various settings. To simplify the experiments, we do not apply any
specific network structure or regularization during training. When it comes to training neural
networks we will always use ADAM with a grid-search tuned step-size. Similarly, we will
always use stochastic projected gradient descent as detailed in Section 2.7. The choice of the
number of hidden features n for implicit models is always aligned with the neural network
architecture for fair comparison as explained in Section 2.4.

Synthetic datasets

We consider two synthetic classification datasets: one generated from a neural network and
another from an implicit model. For each dataset, we then aim at fitting both an implicit
model and a neural network. Each data point in the datasets contains an input u € R
and output y € R2. The model architectures and data generation details are deferred to the
supplementary materials.

We find that the implicit model outperforms neural networks in both synthetic exper-
iments. This may be explained by the increased modeling capacity of the implicit model,

CHAPTER 2. IMPLICIT DEEP LEARNING

1.0 2.0
—— implicit model test accuracy - implicit model test loss
neural network test accuracy neural network test loss | 1.8

0.8 1 L16
rl4

ri2

o©
o

accuracy
loss

r1.o

I
IS

r0.8

0.24 r0.6

r0.4

0.0 T T T T T — 0.2

epochs

Figure 2.8: Performance comparison on a
synthetic dataset generated from a neural
network. Average best accuracy, implicit:
0.85, neural network: 0.76. The curves are
generated from 5 the different runs with the
lines marked as mean and region marked as
the standard deviation

40

—— implicit model test accuracy =~ - implicit model test loss
neural network test accuracy neural network test loss | 1.8

0.8 16
14

1.2

=]
o

accuracy
loss

1.0

I
>

0.8

0.2 0.6

0.4

0.0 T T T T T T 0.2

epochs

Figure 2.9: Performance comparison on a
synthetic dataset generated from an implicit
model. Average best accuracy, implicit:
0.85, neural networks: 0.74. The curves are
generated from 5 different runs with the lines
marked as mean and region marked as the
standard deviation over the runs.

given similar parameter size, with respect to its neural network counterpart as mentioned in
Section 2.1.

Experimental details: synthetic datasets. The dataset for experiment in Section 2.8
is generated as follows: we chose the input datapoints u; € R® ii.d. by sampling each
entry independently uniformly between —1 and 1. The output data 3; € R? is the one-hot
representation of the argmax of the output from the generating model, whose parameters
are chosen uniformly at random between —1 and 1.

e For a neural network generating model, we us a fully connected 3-layer (5-5-5-2) feed-
forward neural network with ReLU activation.

e For an implicit model, we consider an implicit model with n = 10 to match the number
of hidden nodes in the neural network model. To ensure well-posedness, after sampling
matrix the A, we proceed with a projection on the unit-sized infinity norm ball, as
detailed in Section 2.7.

For each dataset, we consider 20 training and test datapoints. The size of datasets are
kept small to maintain the over-parameterized regime, where the number of parameters is
larger than the number of data points, as is the case in many deep learning architectures [20].
We run 5 separate experiments for both the neural network and implicit model generated
dataset with the training model having the same hyperparameters and initialization as the
generating models.

CHAPTER 2. IMPLICIT DEEP LEARNING 41

Real-world datasets

We continue to compare the performance of the implicit model with that of neural networks
in real-world settings. For the purpose, we pick two real-world datasets, the hand-written
digit classification dataset MNIST, and the German Traffic Sign Recognition Benchmark
(GTSRB) dataset. The performance is given in Figure 2.10 and 2.11. Similar to what
we observed with synthetic datasets, the implicit model is capable of matching and even
outperform classical neural networks.

0.30 2.0
—+ implicit model test accuracy implicit model test loss
- neural network test accuracy neural network test loss

—— implicit model test accuracy
0.98 1" neural network test accuracy

implicit model test loss
neural network test loss 0.9

0.97 1 r1.6

o
©

e
©
=

”
t12 g

o
<

accuracy
loss
accuracy

o
©
«a

ro0.8
0.6

B ¥ |
0.94 - A *‘*"’“‘é‘i"*ﬁﬁws&@w i |)
| TN b e
0.93 0.5 0‘ 7 i : : o 0.4
epochs epochs
Figure 2.10: Performance comparison on Figure 2.11: Performance comparison on

MNIST. Average best accuracy, implicit:
0.976, neural networks: 0.972. The curves
are generated from 5 different runs with the
lines marked as mean and region marked as
the standard deviation over the runs.

GTSRB. Average best accuracy, implicit:
0.874, neural networks: 0.859. The curves
are generated from 5 different runs with the
lines marked as mean and region marked as
the standard deviation over the runs.

Experimental details: MNIST dataset. In the digit classification dataset MNIST,
the input data points are 28 x 28 pixels images of hand written digits, the output is the
corresponding digit label. For training purposes, each image is reshaped into 784 dimensional
vectors and normalized before training. There are 5 x 10 training data points and 10* testing
data points.

The architecture we use for the neural network as a reference is a three-layer feedforward
neural network (784-60-40-10) with ReLU activation. For the implicit model, we set n = 100.
We choose a batchsize of 100 for both algorithms. The accuracy with respect to iterations
is shown in Figure 2.10. We observe that the accuracy of the implicit model matches that
of its neural network counterpart.

CHAPTER 2. IMPLICIT DEEP LEARNING 42

Experimental details: German Traffic Sign Recognition benchmark. In the Ger-
man Traffic Sign Recognition Benchmark (GTSRB) [157], the input data points are 32 x 32
images with rgb channels of traffic signs consisting of 43 classes. Each image is turned into
gray-scale before being reshaped into a 1024 dimensional vector and re-scaled to be between
0 and 1. There are 34799 training data points and 12630 testing data points.

For reference, we use a (1024-300-100-43) feedforward neural network with ReLU acti-
vations. We choose n = 400 for the implicit model and a batchsize of 100 for both models.
The accuracy with respect to iterations is shown in Figure 2.11.

Adversarial attack
Visualization of sensitivity matrix

Figure 2.12 shows the sensitivity values for a particular class on MNIST and CIFAR-10
dataset. The sensitivity values are obtain from the implicit representation of the feed-forward
network and ResNet-20. The 784 and 3072 input dimensions are arranged to correspond to
the 28 x 28 (grey scale) and 32 x 32 (color) image pixel alignment. Brighter colors correspond
to features with a higher impact on the output when perturbed. As a result, the sensitivity
matrix can be used to generate adversarial attacks.

-o0ss
08

-0s0
07
08 075
[H

070
04
03 - oes
02

050
o1

Figure 2.12: Left: sensitivity values of a feed-forward network for the class “digit 0” in
MNIST. Right: sensitivity values of a ResNet-20 model for the class “airplane” in CIFAR-
10. Brighter colors correspond to higher sensitivity when perturbed.

Attack via the sensitivity matrix

Our analysis above highlights the use of sensitivity matriz as a measure for robustness. In
this section, we show how sensitivity matrix can be used to generate effective attacks on two
public datasets, MNIST and CIFAR-10. Examples of sensitivity matrix are shown in the
supplementary material. We compare our method against commonly used gradient-based
attacks [68, 133]. In this experiment, we consider two models: 1) feed-forward network

CHAPTER 2. IMPLICIT DEEP LEARNING 43

trained on the MNIST dataset (98% clean accuracy) and 2) ResNet-20 [79] trained on the
CIFAR-10 dataset (92% clean accuracy).

We compare our method with commonly used gradient-based attacks. Precisely, for a
given function F' (prediction rule) learned by a deep neural network, a benign sample u € R?
and the target y associated with u, we compute the gradient of the function F' with respect
to the given sample u, V,F(u,y). We then take the absolute value of the gradient as an
indication of which input features an adversary should perturb, similar to the saliency map
technique [154, 133]. The absolute value of the gradient can be seen as a “local” version of
the sensitivity matrix; however, unlike the gradient, the sensitivity matrix does not depend
on the input data, making it a more general measurement of robustness for any given model.

Table 2.1 presents the experimental results of an adversarial attack using the sensitivity
matrix and the absolute value of gradient on MNIST and CIFAR-10. For sensitivity matrix
attack, we start from perturbing the input features that have the highest values according to
the sensitivity matrix. For gradient-based attack, we do the same according to the absolute
value of the gradient. We perturb the input features into small random values. Our exper-
iments show that the sensitivity matrix attack is as effective as the gradient-based attack,
while being very simple to implement.

Interestingly, our attack does not rely on any input samples that the gradient-based attack
needs. An adversary with the model parameters could easily craft adversarial samples using
the sensitivity matrix. In the absence of access to the model parameters, an adversary
can rely on the principle of tranferrability [113] and train a surrogate model to obtain the
sensitivity matrix. Figure 2.13 displays adversarial images generated using the sensitivity
matrix. An interesting case is to use the sensitivity matrix to generate a sparse attack as
seen in Figure 2.13.

Table 2.1: Experimental results of attack success rate against percentage of perturbed inputs
on MNIST and CIFAR-10 (10000 samples from test set).

Sensitivity matrix attack Gradient-based attack

% of perturbed inputs MNIST CIFAR-10 MNIST CIFAR-10
0.1% 1.01% 3.04% 2.42% 1.75%
1% 13.41% 10.16% 26.92% 6.66%
10% 70.67% 36.21% 74.90% 33.18%
20% 89.82% 57.01% 87.10% 52.57%
30% 90.22% 67.45% 89.82% 66.59%

Attack with LP relaxation for CONE maps

Although one can use sensitivity matrix to generate an effective adversarial example, one
may wish to perform a more sophisticated attack by exploiting the weakness of an individual
data point. This can be done by considering the LP relaxation (Theorem 2.5.3), which has
the advantage of generating a specific adversarial example for a given input data. The

CHAPTER 2. IMPLICIT DEEP LEARNING 44

perturbed Images Perturbed Images (Changed Pixels Marked in Red)

correct label: 0, wrong label: 1, # pixels changed: 4

correct label: 6, wrong label: 5, # pixels changed: 5

Figure 2.13: Top: adversarial samples from MNIST. On the left are dense attacks with small
perturbations and on the right are sparse attacks with random perturbations (perturbed
pixels are marked as red). Bottom: example sparse attack on CIFAR-10. The left ones are
cleaned images, the middle ones are perturbed images, and the right ones mark the perturbed
pixels in red for higher visibility.

experiment in this section is again on MNIST and CIFAR-10 images. Here, the problem
outlined in (2.24) is solved by LP relaxation, with the function f;(¢) = (£ — 29)?. The
optimization problem then finds a perturbed image that leads to the largest discrepancy
between the perturbed state x and the nominal state 2°. Figure 2.14 shows five example
images. The perturbed images generated by the LP relaxation, appear quite similar to
the original images; however, the model fails to predict these otherwise correctly predicted
images.

Our framework also allows for sparse adversarial attack by adding a cardinality constraint.
Figure 2.15 shows three examples of perturbed images under non-sparse and sparse attack.
Images on the left are the results of non-sparse attack and those on the right are the results
of sparse attack. The model fails to predict the label correctly under both conditions.
These results illustrate how the implicit prediction rules can be used to generate powerful
adversarial attacks. It is also useful for adversarial training as a large amount of adversarial
examples can be generated using the technique and be added back to the training data.

CHAPTER 2. IMPLICIT DEEP LEARNING 45

XL

Figure 2.14: Example attack on CIFAR dataset. Top: clean data. Bottom: perturbed data.

5
s

&
o]

Figure 2.15: Example attack on MNIST dataset. Left: non-sparse attack. Right: sparse
attack.

CHAPTER 2. IMPLICIT DEEP LEARNING 46

2.9 Summary

We summarize with a few perspectives for future research on implicit models.

Cousins of implicit models

.
z X

(¢5)

Ju) +— [e— v

1 Implicit deep learning \

/ A

z A B * : A B *
c D c D

LTI systems Uncertain systems

fe—— U

Figure 2.16: Some cousins of implicit models: LTI systems (bottom left) and uncertain
systems (bottom right).

Implicit models rely on a representation of the prediction rule where the linear operations
are clearly separated from the (parameter-free) nonlinear ones, leading to the block-diagram
in Figure 2.1.

This idea is strongly reminiscent of earlier representations arising in systems and con-
trol theory. Perhaps the most famous example lies with linear time-invariant (LTT) sys-
tems, where the idea is essentially equivalent to the state-space representation of transfer
functions [7]. In that context, the block-diagram representation involves an integrator (in
continuous or discrete time) in place of the static nonlinear map ¢. The idea is also con-
nected to the linear-fractional representation (or, transformation, LFT) arising in uncertain
systems [54], where now the linear operations actually represent a dynamic system (that is,
the matrix M is an LTT system itself), and the map ¢ is replaced by an uncertain matrix of
parameters or LTI system.

These connections raise the prospect of a unified theory tackling deep networks inside
the loop of a dynamical system, where such networks can be composed (via feedback connec-
tions) with LTI or more generally uncertain systems. With the machinery of Linear Matrix
Inequalities or the more general Integral Quadratic Constraints framework [120], one can
develop rigorous analyses performed on systems with deep networks in the loop, so that
bounds on, say, stability margins, can be computed. This connection is already explored
in [186, 187].

47

Chapter 3

Fenchel Lifted Networks

Lifted methods are another branch of training methods for deep learning. By introduc-
ing auxiliary variables, it decomposes the training problem into multiple sub problems and
solves them iteratively without using gradients. However, existing methods greatly under
perform traditional gradient based methods. We find careful conversion of the layer feed
forward constraints into bi-convex terms using Fenchel divergence (3.4) bumps the empirical
performance to competitive level. This opens up practical discussion of lifted methods in
deep learning training. In Chapter 2, a lifted training approach for implicit deep learning
is discussed in Section 2.7 where Fenchel divergence (2.35) is a key step to the formulation.
However this method is still not highly popular in the deep learning community because
gradient methods are highly flexible and easy to use. But we believe lifted methods will
outperform gradient methods in tasks where gradient updates are not very effective.

3.1 Introduction

Deep neural networks (DNNs) have become the preferred model for supervised learning tasks
after their success in various fields of research. However, due to their highly non-convex
nature, DNNs pose a difficult problem during training time; the optimization landscape
consists of many saddle points and local minima which make the trained model generalize
poorly [37, 48]. This has motivated regularization schemes such as weight decay [96], batch
normalization [81], and dropout [156] so that the solutions generalize better to the test data.

In spite of this, backprop used along with stochastic gradient descent (SGD) or similar
variants like Adam [90] suffer from a variety of problems. One of the most notable problems
is the vanishing gradient problem which slows down gradient-based methods during training
time. Several approaches have been proposed to deal with the problem; for example, the
introduction of rectified linear units (ReL.U). However, the problem persists. For a discussion
on the limitations of backprop and SGD, we direct the reader to Section 2.1 of [164].

One approach to deal with this problem is to introduce auxiliary variables that increase
the dimension of the problem. In doing so, the training problem decomposes into multiple,

CHAPTER 3. FENCHEL LIFTED NETWORKS 48

local sub-problems which can be solved efficiently without using SGD or Adam; in particular,
the methods of choice have been block coordinate descent (BCD) [8, 99, 195, 31] and the
alternating direction method of multipliers (ADMM) [164, 196]. By lifting the dimension
of the problem, these models avoid many of the problems DNNs face during training time.
They also offer new avenues towards interpretability and robustness of networks by allowing
for the penalization of the additional variables.

While these methods, which we refer to as “lifted” models for the remainder of the
chapter, offer an alternative to the original problem with some added benefits, they have
their limitations. Most notably, traditional DNNs are still able to outperform these methods
in spite of the difficult optimization landscape. As well, most of the methods are unable to
operate in an online manner or adapt to continually changing data sets which is prevalent in
most reinforcement learning settings [161]. Finally, by introducing auxiliary variables, the
dimensionality of the problem greatly increases, making these methods very difficult to train
with limited computational resources.

Chapter contribution

To address the problems listed above, we propose Fenchel lifted networks, a biconvex for-
mulation for deep learning based on Fenchel’s duality theorem that can be optimized using
BCD. We show that our method is a rigorous lower bound for the learning problem and
admits a natural batching scheme to adapt to changing data sets and settings with limited
computational power. We compare our method against other lifted models and against tra-
ditional fully connected and convolutional neural networks. We show that we are able to
outperform the former and that we can compete with or even outperform the latter.

Chapter outline. In Section 3.2, we give a brief overview of related works on lifted models.
In Section 3.3 we introduce the notation for the remainder of the chapter. Section 3.4 intro-
duces Fenchel lifted networks, their variants and discusses how to train these models using
BCD. Section 3.5 compares the proposed method against fully connected and convolutional
networks on MNIST and CIFAR-10.

3.2 Related Work

Lifted methods Related works that lift the dimension of the training problem are primar-
ily optimized using BCD or ADMM. These methods have experienced recent success due to
their ability to exploit the structure of the problem by first converting the constrained opti-
mization problem into an unconstrained one and then solving the resulting sub-problems in
parallel. They do this by relaxing the network constraints and introducing penalties into the
objective function. The two main ways of introducing penalties into the objective function
are either using quadratic penalties [158, 164, 99] or using equivalent representations of the
activation functions [8, 195].

CHAPTER 3. FENCHEL LIFTED NETWORKS 49

As a result, these formulations have many advantages over the traditional training prob-
lem, giving superior performance in some specific network structures [31, 195]. These meth-
ods also enjoy great potential for parallelization as shown by [164]; the authors parallelize
training over different cores and show a linear scaling between reduction in training time and
the number of cores used. However, there has been little evidence showing that these meth-
ods can compete with traditional DNNs which shadows the nice structure these formulations
bring about.

An early example of auxiliary variables being introduced into the training problem is the
method of auxiliary coordinates (MAC) by [31] which uses quadratic penalties to enforce
network constraints. They test their method on auto encoders and show that their method
is able to outperform SGD. Followup work by [32, 164] demonstrate the huge potential for
parallelizing these methods. [99] gives some convergence guarantee on a modified problem.

Another class of models that lift the dimension of the problem do so by representing
activation functions in equivalent formulations. [127, 8, 195, 108] explore the structure of
activation functions and use arg min maps to represent activation functions. In particular,
[8] show how a strictly monotone activation function can be seen as the arg min of a specific
optimization problem. Just as with quadratic penalties, this formulation of the problem still
performs poorly compared to traditional neural networks. In an independent and concurrent
work by [108], the authors arrive at a lifted formulation of the training problem via the use
of proximal operators. While the approach in aforementioned work appears unrelated to the
work presented here, they are in fact deeply related (for a more complete discussion, see a
note at the end of the chapter).

3.3 Background and Notation

Feedforward neural networks. We are given an input data matrix of m data points
X = [x1,22, ..., Tp] € R™™ and a response matrix Y € RP*™. We consider the supervised
learning problem involving a neural network with L > 1 hidden layers. The neural network
produces a prediction Y € RP*™ with the feed forward recursion Y = Wy Xy + b 17 given
below

X =W X, +017), 1=0,...,L—1. (3.1)

where ¢;,l = 0,..., L are the activation functions that act column-wise on a matrix
input, 1 € R™ is a vector of ones, and W, € RP+1*Pl and b, € RP+! are the weight matrices
and bias vectors respectively. Here p; is the number of output values for a single data point
(i.e., hidden nodes) at layer [with py = n and py,1 = p. Without loss of generality, we can
remove b1 by adding an extra column to W; and a row of ones to X;. Then (3.1) simplifies
to

Xipr = d(WiX)), 1=0,...,L—1. (3.2)

CHAPTER 3. FENCHEL LIFTED NETWORKS 50

In the case of fully connected networks, ¢; is typically sigmoidal activation functions or
ReLUs. In the case of Convolutional Neural Networks (CNNs), the recursion can accommo-
date convolutions and pooling operations in conjunction with an activation. For classification
tasks, we typically apply a softmax function after applying an affine transformation to Xy.

The initial value for the recursion is Xg = X and X; € RP**™ [=0,..., L. We refer to
the collections (W;)~, and (X)), as the W and X-variables respectively.

The weights are obtained by solving the following constrained optimization problem

L
min LY, W X))+ Z o (W)
1=0

(Wl)lL:ov(Xl)lel
s.t. Xl+1 = gbl(I/Vle), [l = 0, ey L—-1
Xo=X (3.3)

Here, £ is a loss function, p €]Rfrl is a hyper-parameter vector, and m;’s are penalty
functions used for regularizing weights, controlling network structures, etc. In (3.3), optimiz-
ing over the X-variables is trivial; we simply apply the recursion (3.2) and solve the resulting
unconstrained problem using SGD or Adam. After optimizing over the weights and biases,
we obtain a prediction Y for the test data X by passing X through the recursion (3.2) one
layer at a time.

Our model. We develop a family of models where we approximate the recursion con-
straints (3.2) via penalties. We use the argmin maps from [8] to create a biconvex for-
mulation that can be trained efficiently using BCD and show that our model is a lower
bound of (3.3). Furthermore, we show how our method can naturally be batched to ease
computational requirements and improve the performance.

3.4 Fenchel Lifted Networks

In this section, we introduce Fenchel lifted networks. We begin by showing that for a certain
class of activation functions, we can equivalently represent them as biconvex constraints. We
then dualize these constraints and construct a lower bound for the original training problem.
We show how our lower bound can naturally be batched and how it can be trained efficiently
using BCD.

Activations as bi-convex constraints

In this section, we show how to convert the equality constraints of (3.3) into inequalities
which we dualize to arrive at a relazation (lower bound) of the problem. In particular,
this lower bound is biconvex in the W-variables and X-variables. We make the following
assumption on the activation functions ¢.

CHAPTER 3. FENCHEL LIFTED NETWORKS o1

BC Condition The activation function ¢ : R? — R? satisfies the BC condition
if there exists a biconver function By : RP x RP — R, such that

v = ¢(u) <= By(v,u) <0.

We now state and prove a result that is at the crux of Fenchel lifted networks.

Theorem 3.4.1. Assume ¢ : R — R is continuous, strictly monotone and that 0 € range(9)
or 0 € domain(¢). Then ¢ satisfies the BC' condition.

Proof. Without loss of generality, ¢ is strictly increasing. Thus it is invertible and there
exists ¢! such that u = ¢~(v) for v € range(¢) which implies v = ¢(u). Now, define
F:RF - R as

F(o) = / o) de

where 2 € range(¢) and is either 0 or satisfies ¢'(z) = 0. Then we have

F*(u) = ' d
w= [o
B(v,u) = F(v) + F*(u) — uv (3.4)

where F™* is the Fenchel conjugate of F', and the bi-convex function B(v,u) is also called
Fenchel divergence. By the Fenchel-Young inequality, B(v,u) > 0 with equality if and only
if

v* =argmax uwv — F(v) : v € range(¢)

By construction, v* = ¢(u). Note furthermore since ¢ is continuous and strictly increas-
ing, so is ¢! on its domain, and thus F, F* are convex. It follows that B(v,u) is a biconvex
function of (u,v). Discussion on learning with similar loss terms can be found in [23, 24].

We simply need to prove that F*(u) above is indeed the Fenchel conjugate of F'. By
definition of the Fenchel conjugate we have that

F*(u) = max uv — F(v) : v € range(¢)
It is easy to see that v* = ¢(u). Thus
F*(u) = ug(u) — F(o(u))
é(u)
—uotw) - [o) de

@ (u) d .
_ / 5607 (6) de

- / 6(n) dn
¢~ (=)

CHAPTER 3. FENCHEL LIFTED NETWORKS 52

where the third equality is a consequence of integration by parts, and the fourth equality we
make the subsitution n = ¢~ 1(¢) m

Note that Theorem 3.4.1 implies that activation functions such as sigmoid and tanh can be
equivalently written as a biconvex constraint. Although the ReLU is not strictly monotone,
we can simply restrict the inverse to the domain R ; specifically, for ¢(z) = max(0, x) define

1,y) Hoo if 2 <0,
¢ (Z)_{z if 2 >0,

Then, we can rewrite the ReLLU function as the equivalent set of biconvex constraint

12 12 <0
v =max(0,u) < { 2" Tous Tuws
v >0

where vy = max(0,w). This implies

L, 1, .
By(v,u) = 51} +§u+—uv ifv>0 (3.5)
400 otherwise

Despite the non-smoothness of u,, for fixed u or fixed v, (3.5) belongs in C* — that is,
it has continuous first derivative and can be optimized using first order methods. We can
trivially extend the result of Theorem 3.4.1 for matrix inputs: for matrices U,V € RP*?, we

have

By(V,U) =Y By(Viy, Uyy).

0,

Lifted Fenchel model

Assuming the activation functions of (3.3) satisfy the hypothesis of Theorem 3.4.1, we can
reformulate the learning problem equivalently as

L

min LY, W Xp) + pm(Wi)
(Wl)leof(Xl)lel (; (

S.t. Bl<Xl+1; VVIXZ) S O, l = 0, ey L—-1
X = X, (3.6)

CHAPTER 3. FENCHEL LIFTED NETWORKS 53

where B is the short-hand notation of By,. We now dualize the inequality constraints and
obtain the lower bound of the standard problem (3.3) via Lagrange relaxation

L
G(N) = min LY W, X))+ (W,
(A) - (Y, WLXp) ZZ;M (W)
L-1
+ > NBI(Xip1, WiX))
=0
st Xo = X, (3.7)

where \; > 0 are the Lagrange multipliers. The maximum lower bound can be achieved by
solving the dual problem
>d = A .

P2 d =nmaxG(}) (38)
where p* is the optimal value of (3.3). Note if all our activation functions are ReLUs, we
must also include the constraint X; > 0 in the training problem as a consequence of (3.5).
Although the new model introduces L new parameters (the Lagrange multipliers), we can
show that using variable scaling we can reduce this to only one hyperparameter (for details,
see the Variable Scaling paragraph below).The learning problem then becomes

L
G\ := min LY, W X.)+ (W,
() ot (Y, W Xp) ;PZ (W)
L—-1
+AD) Bi(Xipr, WiX))
=0
st Xo = X. (3.9)

In a regression setting where the data is generated by a one layer network, we are able
to provide global convergence guarantees of the above model (for details, see the One-layer
Regression Formulation paragraph below).

Variable Scaling. Note that the new model (3.9) has introduced L+ 1 more hyperparam-
eters. We can use variable scaling and the dual formulation to show how to effectively reduce
this to only one hyperparameter. Consider the model with ReLLU activations, that is, the
biconvex function as in (3.5) and regularization functions m(W;) = ||W;||% for I =0, ..., L.
Note that By is homogeneous of degree 2, that is for any U,V and v we have

VBy(V.U) = By(v7V,vU)
Define A_; = 1 and the scalings

Xl =V)\llely V_Vl = _I/I/ly

CHAPTER 3. FENCHEL LIFTED NETWORKS o4

Then (3.9) becomes

st. Xo=X, X,>0,1=0,...,L (3.10)

Al
Using the fact m(W;) = |[|[W;]|% and defining p; = pl/\— we have
!

G()\) = min ﬁ(Y)\L(WLXL))

(Wl)ZLo Xyt
L—-1
+ szHWzIIF + 3 Bi(Xpy1, Wi X))
=0 =0
st. Xo=X, X;>0,1=0,...,L (3.11)

where G(\) is now only a function of one variable A;, as opposed to L variables. Note
that this argument for variable scaling still works when we use average pooling or convo-
lution operations in conjunction with a ReLU activation since they are linear operations.
Note furthermore that the same scaling argument works in place of any norm due to the
homogeneity of norms — the only thing that would change is how p is scaled by \;_; and \;.
Another way to show that we only require one hyperparameter \ is to note the equivalence

Bi(v,u) <0 V] <~ ZBl(v,u) <0
I

Then we may replace the L biconvex constraints in (3.6) by the equivalent constraint
> Bi(v,u) < 0. Since this is only one constraint, when we dualize we only introduce
one Lagrange multiplier .

One-layer Regression Formulation. In this section, we show that for a one layer net-
work we are able to convert a non-convex optimization problem into a convex one by using
the BC condition described in the main text.

Consider a regression setting where Y = ¢(W*X) for some fixed W* € RP*™ and a given
data matrix X € R™™. Given a training set (X,Y’) we can solve for W by solving the
following non-convex problem

min Y — 6(W X)) (3.12)

We could also solve the following relaxation of (3.12) based on the BC condition

CHAPTER 3. FENCHEL LIFTED NETWORKS 55

min By(Y. WX) (3.13)

Note (3.13) is trivially convex in W by definition of By(-, -). Furthermore, by construction
B,(Y,WX) >0 and By(Y,WX) =0 if and only if Y = ¢(WWX). Since Y = ¢(W*X), it
follows W* (which is the minimizer of (3.12)) is a global minimizer of the convex program
(3.13). Therefore, we can solve the original non-convex problem (3.12) to global optimality
by instead solving the convex problem presented in (3.13).

Comparison with other methods. For ReLU activations, B(v, u) as in (3.5) differs from
the penalty terms introduced in previous works. In [8, 195] they set B(v,u) = ||v — u||3 and
in [164, 31] they set B(v,u) = |[v — uy||3. Note that B(v,u) in the latter is not biconvex.
While the B(v,u) in the former is biconvex, it does not perform well at test time. [108] set
B(v,u) based on a proximal operator that is similar to the BC condition.

Convolutional model. Our model can naturally accommodate average pooling and con-
volution operations found in CNNs, since they are linear operations. We can rewrite W, X,
as W, x X; where % denotes the convolution operator and write Pool(X) to denote the av-
erage pooling operator on X. Then, for example, the sequence Conv — Activation can be
represented via the constraint

Bl(Xl—i-la VVZ * Xl> S O, (314)
while the sequence Pool — Conv — Activation can be represented as
By(Xi41, W * Pool(X;)) < 0. (3.15)

Note that the pooling operation changes the dimension of the matrix.

Prediction rule.

In previous works that reinterpret activation functions as arg min maps [8, 195], the predic-
tion at test time is defined as the solution to the optimization problem below

L—1
§=argmin L{y, Wias) + A3 Bi(wi, Wia)
v 1=0
s.t. o = x, (3.16)
where 1z is test data point, ¢ is the predicted value, and z;, l = 1, ..., L are the intermediate

representations we optimize over. Note if £ is a mean squared error, applying the traditional
feed-forward rule gives an optimal solution to (3.16). We find empirically that applying the
standard feed-forward rule works well, even with a cross-entropy loss.

CHAPTER 3. FENCHEL LIFTED NETWORKS 56

Batched model

The models discussed in the introduction usually require the entire data set to be loaded into
memory which may be infeasible for very large data sets or for data sets that are continually
changing. We can circumvent this issue by batching the model. By sequentially loading a
part of the data set into memory and optimizing the network parameters, we are able to
train the network with limited computational resources. Formally, the batched model is

L
min ﬁ(Y, WLXL) + Z pm(Wl)
=0

(Wl)f:()v(xl)lL:1

L-1 L
A BUWX, Xiar) + >l W = WY1
=0 =0

st Xo =X, (3.17)

where X contains only a batch of data points instead of the complete data set. The
additional term in the objective v ||W; — WP||%, 1 =0,..., L is introduced to moderate the
change of the TW-variables between subsequent batches; here W} represents the optimal W
variables from the previous batch and v € Rf“l is a hyperparameter vector. The X-variables
are reinitialized each batch by feeding the new batch forward through the equivalent standard
neural network.

Block-coordinate descent algorithm

The model (3.9) satisfies the following properties:

e For fixed W-variables, and fixed variables (X);., the problem is convex in X;, and is
decomposable across data points.

e For fixed X-variables, the problem is convex in the W-variables, and is decomposable
across layers, and data points.

The non-batched and batched Fenchel lifted network are trained using block coordinate
descent algorithms highlighted in Algorithms 1 and 2. By exploiting the biconvexity of
the problem, we can alternate over updating the X-variables and W-variables to train the
network.

Note Algorithm 2 is different from Algorithm 1 in three ways. First, re-initialization
is required for the X-variables each time a new batch of data points are loaded. Second,
the sub-problems for updating W-variables are different as shown in Section 3.4. Lastly, an
additional parameter K is introduced to specify the number of training alternations for each
batch. Typically, we set K = 1.

CHAPTER 3. FENCHEL LIFTED NETWORKS 57

Algorithm 1 Non-batched BCD Algorithm
1: Initialize (W))E,.
2: Initialize Xy with input matrix X.
3: Initialize X1, ..., X with neural network feed forward rule.
4: repeat

5: X arg miny E(Y, WLZ) +)\BL_l(Z, X2_1)

6: for(=L—-1,...,1do

T X < argminy Bl(Xl-i-la I/VZZ) -+ Bl_l(Z, Xl(ll)
8: end for

9: Wy, < argminy L(Y,WX,)+ pym(W)

10: fori=L-1,...,0do

11: W, < argminy AB)(X;11, WX)) + pym(W)
12: end for

13: until convergence

Algorithm 2 Batched BCD Algorithm
1: Initialize (W))E,.
2: repeat

3 (WP)izo < (W)

4: Re-initialize X, with a batch sampled from input matrix X.

5: Re-initialize X1, ..., X with neural network feed forward rule.
6: for alternation=1,..., K do

7 XL < arg mingy L:(Y, WLZ) +)\BL_l(Z, Xg—l)

8: for(=L—-1,...,1do

9: X < argminy ABl(Xl—&-l, VV[Z) +)\Bl_l(Z, Xl(],l)

10: end for

11: Wy, < argminy L(Y,WXy) + prrr(W) +y||[W — W%
12: for(=L—-1,...,0do

13: W, « argminy ABy(X;41, WXi) + pym (W) + y|[W — WP
14: end for

15: end for

16: until convergence

Updating X-variables

For fixed W-variables, the problem of updating X-variables can be solved by cyclically
optimizing X;, [=1,..., L, with (Xj),» fixed. We initialize our X-variables by feeding
forward through the equivalent neural network and update the X;’s backward from X to
X in the spirit of backpropagation.

CHAPTER 3. FENCHEL LIFTED NETWORKS o8

We can derive the sub-problem for X;, [=1,...,L — 1 with (Xj);4 fixed from (3.6).
The sub-problem writes

X = arg min By(Xi1, WiZ) + Bia(Z, X7) (3.18)

where Xlo_1 := W;_1X,_1. By construction, the sub-problem (3.18) is convex and paral-
lelizable across data points. Note in particular when our activation is a ReLLU, the objective
function in (3.18) is in fact strongly convex and has a continuous first derivative.

For the last layer (i.e., [= L), the sub-problem derived from (3.6) writes differently

X =arg min L(Y, W Z) + AB1(Z, X?) (3.19)

where ngl := Wr_1X_1. For common losses such as mean square error (MSE) and
cross-entropy, the subproblem is convex and parallelizable across data points. Specifically,
when the loss is MSE and we use a ReLLU activation at the layer before the output layer,
(3.19) becomes

_ A\
Xif = argmin ||V = Wi Z|[7 + 5112 = X0 |I%

where X? | := Wy ;X ; and we use the fact that X? | is a constant to equivalently
replace By_; as in (3.5) by a squared Frobenius term. The sub-problem is a non-negative
least squares for which specialized methods exist [87].

For a cross-entropy loss and when the second-to-last layer is a ReLU activation, the
sub-problem for the last layer takes the convex form

X} =arg min —Tr Y T log s(W2Z)+
N
X1z xR, (3:20

where s(-) : R" — R™ is the softmax function and log is the element-wise logarithm. [§]
show how to solve the above problem using bisection.

Updating IW-variables

With fixed X-variables, the problem of updating the W-variables can be solved in parallel

across layers.

Sub-problems for non-batched model. The problem of updating W, at intermediate
layers becomes

VV[= arg HI}‘i/H)\Bl(Xl-i-la WX[) + pl’/Tl(W). (321)

CHAPTER 3. FENCHEL LIFTED NETWORKS 59

Again, by construction, the sub-problem (3.21) is convex and parallelizable across data
points. Also, since there is no coupling in the W-variables between layers, the sub-problem
(3.21) is parallelizable across layers.

For the last layer, the sub-problem becomes

Wy = arg mv[i/n LY, WXp)+ prrp(W). (3.22)

Sub-problems for batched model. As shown in Section 3.4, the introduction of regular-
ization terms between W and values from a previous batch require the sub-problems (3.21,
3.22) be modified. (3.21) now becomes

W, = arg mwi/n AB/(X111, WX)) + pym (W)
+lW = W%, (3.23)
while (3.22) becomes
W = argmin LY, WXr)+ prmr(W)
LW = W% (3.24)

Note that these sub-problems in the case of a ReLU activation are strongly convex and
parallelizable across layers.

3.5 Numerical Experiments

In this section, we compare Fenchel lifted networks against other lifted models discussed
in the introduction and against traditional neural networks. In particular, we compare
our model against the models proposed by [164], [99] and [8] on MNIST. Then we com-
pare Fenchel lifted networks against a fully connected neural network and LeNet-5 [102] on
MNIST. Finally, we compare Fenchel lifted networks against LeNet-5 on CIFAR-10.

Fenchel lifted networks vs. lifted models

Here, we compare the non-batched Fenchel lifted network against the models proposed by
[164]", [99]? and [8]. The former model is trained using ADMM and the latter ones using
the BCD algorithms proposed in the respective papers. In Figure 3.1, we compare these
models on MNIST with a 784-300-10 architecture (inspired by [102]) using a mean square
error (MSE) loss.

After multiple iterations of hyperparameter search with little improvement over the base
model, we chose to keep the hyperparameters for [164] and [99] as given in the code. The

LCode available in https://github.com/PotatoThanh/ADMM-NeuralNetworks
2Code available in https://github.com/deeplearning-math/bcd_dnn

CHAPTER 3. FENCHEL LIFTED NETWORKS 60

Accuracy
[=]
~

—— Taylor et al.
0.6 Lau et al.

— Askari et al.
0.5 —— This work

—— Neural Network
O'40 20 40 60 80 100

Epoch

Figure 3.1: Test set performance of different lifted methods with a 784-300-10 network
architecture on MNIST with a MSE loss. Final test set performances: Taylor et al. 0.834,
Lau et al. 0.914, Askari et al. 0.863, Neural Network 0.957, This work 0.961.

hyperparameters for [8] were tuned using cross validation on a hold-out set during training.
Our model used these same parameters and cross validated the remaining hyperparameters.
The neural network model was trained using SGD. The resulting curve of the neural network
is smoothed in Figure 3.1 for visual clarity. From Figure 3.1 it is clear that Fenchel lifted
networks vastly outperform other lifted models and achieve a test set accuracy on par with
traditional networks.

Fenchel lifted networks vs. neural networks on MNIST

For the same 784-300-10 architecture as the previous section, we compare the batched Fenchel
lifted networks against traditional neural networks trained using first order methods. We use
a cross entropy loss in the final layer for both models. The hyperparameters for our model
are tuned using cross validation. Figure 3.2 shows the results.

As shown in Figure 3.2, Fenchel lifted networks learn faster than traditional networks as
shown by the red curve being consistently above the blue and green curve. Although not
shown, between batch 600 and 1000, the accuracy on a training batch would consistently hit
100% accuracy. The advantage of the Fenchel lifted networks is clear in the early stages of
training, while towards the end the test set accuracy and the accuracy of an Adam-trained
network converge to the same values.

We also compare Fenchel lifted networks against a LeNet-5 convolutional neural network
on MNIST. The network architecture is 2 convolutional layers followed by 3 fully-connected
layers and a cross entropy loss on the last layer. We use ReLLU activations and average pooling
in our implementation. Figure 3.3 plots the test set accuracy for the different models.

In Figure 3.3, our method is able to nearly converge to its final test set accuracy after

CHAPTER 3. FENCHEL LIFTED NETWORKS 61

1.00

0.95F

o
o
S

Accuracy
(=]
oo
W

0.80

—— ADAM
0.75 — SGD

—— This work
0'700 200 400 600 800 1000

Batch

Figure 3.2: Test set performance of Fenchel lifted networks and fully connected networks
trained using Adam and SGD on a 784-300-10 network architecture on MNIST with cross
entropy loss. Total training time was 10 epochs. Final test set performances: SGD 0.943,
Adam 0.976, This work 0.976.

1.000

0.975f

0.950

Accuracy
e o @
o N} Nel
~ (=3 [3S]
wn (=] wn

0.850f — ADAM

— SGD
0825 —— This work
0.800

0 250 500 750 1000 1250 1500 1750 2000
Batch

Figure 3.3: Test set performance of Fenchel lifted networks and LeNet-5 trained using Adam
and SGD on MNIST with a cross entropy loss. Total training time was 20 epochs. Final
test set performances: SGD 0.986, Adam 0.989, This work 0.990.

only 2 epochs while Adam and SGD need the full 20 epochs to converge. Furthermore, after
the first few batches, our model is attaining over 90% accuracy on the test set while the
other methods are only at 80%, indicating that our model is doing something different (in
a positive way) compared to traditional networks, giving them a clear advantage in test set
accuracy.

CHAPTER 3. FENCHEL LIFTED NETWORKS 62

Fenchel lifted networks vs CNN on CIFAR-10

In this section, we compare the LeNet-5 architechture and with Fenchel lifted networks on
CIFAR-10. Figure 3.4 compares the accuracies of the different models.

>
Q
s
=}
Q
Q
<
0.2
I —— ADAM
0.1 —— SGD
—— This work
0.0

0 1000 2000 3000 4000 5000 6000 7000 8000
Batch

Figure 3.4: Test set performance of Fenchel lifted networks and LeNet-5 trained using Adam
and SGD on CIFAR-10 with a cross entropy loss. Total training time was 80 epochs. Final
test set performance: SGD 0.565, Adam 0.625, This work 0.606

In this case, the Fenchel lifted network still outperforms the SGD trained network and
only slightly under performs compared to the Adam trained network. The larger variability in
the accuracy per batch for our model can be attributed to the fact that in this experiment,
when updating the W-variables, we would only take one gradient step instead of solving
(3.23) and (3.24) to completion. We did this because we found empirically solving those
respective sub-problems to completion would lead to poor performance at test time.

Hyperparamters for Experiments

For all experiments that used batching, the batch size was fixed at 500 and K = 1. We ob-
served empirically that larger batch sizes improved the performance of the lifted models. To
speed up computations, we set K = 1 and empirically find this does not affect final test set
performance. For batched models, we do not use m(+) since we explicitly regularize through
batching (see (3.17)) while for the non-batched models we set m;(W;) = ||W;||% for all [. For
models trained using Adam, the learning rate was set to n = 1072 and for models trained
using SGD, the learning rate was set to n = 1072. The learning rates were a hyperparamter
that we picked from {1071,1072,1073,107*} to give the best final test performance for both
Adam and SGD.

For the network architechtures described in the experimental results, we used the follow-
ing hyperparamters:

CHAPTER 3. FENCHEL LIFTED NETWORKS 63

e Fenchel Lifted Network for LeNet-5 architecture

1l.pp=le—4,)\ =5
2. ppo=le—2, =5
3. p3=1, A3 =1
4. py =1, A =1
5. ps =1

e Fenchel Lifted Network for 784-300-10 architecture (batched)

1. P1 :17)\1201
2. ps = 100

e Fenchel Lifted Network for 784-300-10 architecture (non-batched)

1. ,01:16—2,)\1201

For all weights the initialization is done through Xavier initialization implemented in
TensorFlow. The p variables are chosen to balance the change of variables across layers in
iterations. Although we use a vector of A for convenience in tuning, the theory in Section 3.4
on variable scaling states we can collapse all A hyperparameters into a single hyperparameter.
We also stress that the hyperparamter search over the p’s were very coarse and a variety of
p values worked well in practice; for simplicity we only present the ones we used to produce
the plots in the experimental results.

3.6 Summary

In this chapter we propose Fenchel lifted networks, a family of models that provide a rigorous
lower bound of the traditional neural network training problem. Fenchel lifted networks
are similar to other methods that lift the dimension of the training problem, and thus
exhibit many desirable properties in terms of scalability and the parallel structure of its sub-
problems. As a result, we show that our family of models can be trained efficiently using block
coordinate descent where the sub-problems can be parallelized across data points and/or
layers. Unlike other similar lifted methods, Fenchel lifted networks are able to compete with
traditional fully connected and convolutional neural networks on standard classification data
sets, and in some cases are able to outperform them.

Future work will look at extending the ideas presented here to Recurrent Neural Networks,
as well as exploring how to use the class of models described in the chapter to train deeper
networks.

CHAPTER 3. FENCHEL LIFTED NETWORKS 64

Fenchel Conjugates and Proximal Operators

Here we discuss the similarities between [108] and the approach of this work (for simplicity,
we only concern ourselves with the ReLU activation since it is convex). In what follows,
when we refer to equation numbers, they are the equation numbers in [108]. First we derive
an elementary result relating conjugate functions and proximal operators.

Lemma 3.6.1. Let A > 0 and let f(x) be a closed, convex and proper function. Define
f@) = Af(z) + 5l|z|3 and let f*(y) be the fenchel conjugate of f(x). Furthermore, define

the prozimal operator as proz,,(r) = argmin, f(y) + 55llz — yl3 and for a given z, let
y*(z) = argmaxa Ty — f(y). Then proz, ((z) = y*(r).
Proof.

. 1 _ 1 1 1
argmin f(y) + o+lly - |3 = argmin f(y) + ﬁHxHi — XfrTy + ﬁHyH%

) 1
= argmin (Af(y) + 5 vl3) =7y
= argmaxz'y — f(y)
y
The left hand side is exactly prox,;(z) and the right hand side is exactly y*(z). Note

furthermore that the problem defining prox, ;(z) is strongly convex and hence there is only
one unique global optima and similarly for the problem defining y*(z). m

The above lemma shows the natural connection between proximal operators and fenchel
conjugates. We now highlight this in the case of the ReLLU function ¢(z) = max(0,z) and
make the connection explicit. Below we consider the scalar case, and the multivariate case
is a simple generalization of the argument below.

As in [108], if we set f(z) = [; ¢ '(2) — z dz as defined below (11) and set g(z) =
Jy #(2) — z dz as defined below (18) in the aforementioned reference and, we then have

fa)= [0 - = =0
g(x) = /Ox ¢(2) — zdz = %max(x, 0)* — %xQ

where we use the fact that ¢~1(z) = z for z € [0,00) and set ¢~(z) = +oo otherwise.
Modulo hyperparameters in their objective function, the term inside the summand in (18)

CHAPTER 3. FENCHEL LIFTED NETWORKS 65

(in the scalar case), reduces to

1 i i—1.i— i—1,i—
f($1)+§(z_wz 1:8 1)2+g(w 1 1)
:0 + l(xz o wi_ll’i_l)2 4 l(wi—l i—1)2 l(wi—l i—1)2
2 2 + 9
1 .)) . 1 . .
_5(1.1)2 <’LUZ_1.TZ_1, .Q?Z) + i(wz—lxz—l)i
:B¢(Q3i, wiflxifl)

Hence
1 2
By(v,u) = f(v) + 5w — ull3 + g(u)

As a result, the term in the summand the authors use in (18) is equivalent to the fenchel
lifted formulation.

66

Part 11

Applications of Deep Implicit Models

67

Chapter 4

Implicit Graph Neural Networks

After the introduction of the implicit deep learning framework, we are actively searching for
applications of implicit models that enjoy unprecedented advantages compared with explicit
deep learning methods and greatly outperforms them. Finding such an example will surely
boost our confidence and popularize deep implicit models to the greater community. The
idea of applying such a framework to graph neural networks is sparked when the author
was reviewing a demonstration for information propagation process in graph neural network
methods. The repeated information passage matches the design of implicit models. We then
extend the implicit deep learning framework from Chapter 2 to work on graph-structured
data. We find the resulting model captures long-range dependencies in graphs which are
missed out by existing methods and therefore outperforms existing methods.

4.1 Introduction

Graph neural networks (GNNs) [200, 197] have been widely used on graph-structured data
to obtain a meaningful representation of nodes in the graph. By iteratively aggregating
information from neighboring nodes, GNN models encode graph-relational information into
the representation, which then benefits a wide range of tasks, including biochemical structure
discovery [67, 171], computer vision [84], and recommender systems [188]. Recently, newer
convolutional GNN structures [181] have drastically improved the performance of GNNs by
employing various techniques, including renormalization [91], attention [170], and simpler
activation [180].

The aforemetioned modern convolutional GNN models capture relation information up
to T-hops away by performing 7T iterations of graph convolutional aggregation. Such infor-
mation gathering procedure is similar to forward-feeding schemes in popular deep learning
models, such as multi-layer perceptron and convolutional neural networks. However, despite
their simplicity, these computation strategies cannot discover the dependency with a range
longer than T-hops away from any given node.

One approach tackling this problem is to develop recurrent GNNs that iterate graph

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 68

convolutional aggregation until convergence, without any a prior: limitation on the number
of hops. This idea arises in many traditional graph metrics, including eigenvector central-
ity [129] and PageRank [131], where the metrics are implicitly defined by some fixed-point
equation. Intuitively, the long-range dependency can be better captured by iterating the
information passing procedure for an infinite number of times until convergence. Pioneered
by [69], new recurrent GNNs leverage partial training [63, 62] and approximation [47] to
improve performance. With shared weights, these methods avoid exploding memory issues
and achieve accuracies competitive with convolutional counterparts in certain cases.

While these methods offer an alternative to the popular convolutional GNN models with
added benefits for certain problems, there are still significant limitations in evaluation and
training for recurrent GNN models. Conservative convergence conditions and sophisticated
training procedures have limited the use of these methods in practice, and outweighed the
performance benefits of capturing the long-range dependency. In addition, most of these
methods cannot leverage multi-graph information or adapt to heterogeneous network set-
tings, as prevalent in social networks as well as bio-chemical graphs [171].

Chapter contributions. In this work, we present the Implicit Graph Neural Network
(IGNN) framework to address the problem of evaluation and training for recurrent GNNs.
We first analyze graph neural networks through a rigorous mathematical framework based
on the Perron-Frobenius theory [22], in order to establish general well-posedness conditions
for convergence. We show that most existing analyses are special cases of our result. As for
training, we propose a novel projected gradient method to efficiently train the IGNN, where
we leverage implicit differentiation methods to obtain the exact gradient, and use projection
on a tractable convex set to guarantee well-posedness. We show that previous gradient meth-
ods for recurrent graph neural networks can be interpreted as an approximation to IGNN.
Further, we extend IGNN to heterogeneous network settings. Finally, we conduct compre-
hensive comparisons with existing methods, and demonstrate that our method effectively
captures long-range dependencies and outperforms the state-of-the-art GNN models on a
wide range of tasks.

Chapter outline. In Section 4.2, we give an overview of related work on GNN and im-
plicit models. In Section 4.3, we introduce the background and notations for this chapter.
Section 4.4 discusses the IGNN framework together with its well-posedness and training un-
der both ordinary and heterogeneous settings. Section 4.5 empirically compares IGNN with
modern GNN methods.

4.2 Related Work

GNN models. Pioneered by [69], GNN models have gained influence for graph-related
tasks. Led by GCN [91], convolutional GNN models [170, 74, 180, 83, 35] involve a finite
number of modified aggregation steps with different weight parameters. On the other hand,

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 69

recurrent GNN models [69] use the same parameters for each aggregation step and poten-
tially enable infinite steps. [110] combines recurrent GNN with recurrent neural network
structures. Methods such as Fast and Deep Graph Neural Network (FDGNN) [63, 62] use
untrained recurrent GNN models with novel initialization to its aggregation step for graph
classification. While the Stochastic Steady-State Embedding (SSE) method [47] uses an
efficient approximated training and evaluation procedure for node classification. Recently,
global method Geom-GCN [137] employs additional embedding approaches to capture global
information. However, Geom-GCN [137] also belongs to convolutional-based GNNs, which
struggle to capture very long range dependency due to the finite iterations they take.

Implicit Models. Implicit models are emerging structures in deep learning where the out-
puts are determined implicitly by a solution of some underlying sub-problem. Recent works
[15] demonstrate the potential of implicit models in sequence modeling, physical engine [13]
and many others [40, 4].[55] proposes a general implicit framework with the prediction rule
based on the solution of a fixed-point equilibrium equation and discusses the well-posedness
of the implicit prediction rule.

Oversmoothing. To catch the long-range dependency, another intuitive approach is to
construct deeper convolutional GNNs by stacking more layers. However, [109] found that the
learned node embeddings become indistinguishable as the convolutional GNNs get deeper.
This phenomenon is called over-smoothing. Since then, a line of empirical [109, 38, 144] and
theoretical [130, 198] works follows on the over-smoothing phenomenon. Unlike convolutional
GNNs, IGNN adopts a different approach for long-range dependency based on recurrent
GNNs and doesn’t seem to suffer performance degradation as much even though it could be
viewed as an infinite-layer GNN. See Section 4.5 for details.

4.3 Preliminaries

Graph neural networks take input data in the form of graphs. A graph is represented by
G = (V, E) where V is the set of n := |V| nodes (or vertices) and E C V x V is the set of
edges. In practice, we construct an adjacency matrix A € R™™ to represent the graph G:
for any two nodes 4,j € V, if (i,5) € E, then A;; = 1; otherwise, A;; = 0. Some data sets
provide additional information about the nodes in the form of a feature matrix U € RP*"™,
in which the feature vector for node ¢ is given by u; € RP. When no additional feature
information from nodes is provided, the data sets would require learning a feature matrix U
separately in practice.

Given graph data, graph models produce a prediction Y to match the true label Y whose
shape depends on the task. GNN models are effective in graph-structured data because
they involve trainable aggregation steps that pass the information from each node to its
neighboring nodes and then apply nonlinear activation. The aggregation step at iteration ¢

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 70

can be written as follows:
XD = WO XOA 1+ QOU), (4.1)

where X ®) € R™*" stacks the state vectors of nodes in time step t into a matrix, in which the
state vector for node i is denoted as) € R™; W® and Q® are trainable weight matrices;
¢ is an activation function. The state vectors X(7) at final iteration can be used as the
representation for nodes that combine input features and graph spatial information. The
prediction from the GNN models is given by ¥ = fo(X™), where fg is some trainable
function parameterized by ©. In practice, a linear fg is often satisfactory.

Modern GNN approaches adopt different forms of graph convolution aggregation (4.1).
Convolutional GNNs [181] iterate (4.1) with Q = 0 and set X(® = U. Some works temper
with the adjacency matrix using renormalization [91] or attention [170]). While recurrent
GNNS5s use explicit input from features at each step with tied weights W and €2, some meth-
ods replace the term QU with QUA + QyU, in order to account for feature information
from neighboring nodes [47]. Our framework adopts a similar recurrent graph convolutional
aggregation idea.

A heterogeneous network is an extended type of graph that contains different types of
relations between nodes instead of only one type of edge. We continue to use G = (V,€) to
represent a heterogeneous network with the node set V' and the edge set £ C V x V x R,
where R is a set of N := |R| relation types. Similarly, we define the adjacency matrices A;,
where A; is the adjacency matrix for relation type i € R. Some heterogeneous networks also
have relation-specific feature matrices U;.

Notation. For a matrix V' € RP*? |V| denotes its absolute value (i.e. |V];; = |Vi;]).
The infinity norm, or the max-row-sum norm, writes ||V||». The 1-norm, or the max-column-
sum norm, is denoted as ||V||; = ||V |lw. The 2-norm is shown as ||V|| or [|V||o. We use ®
to represent the Kronecker product, (-,) to represent inner product and use ® to represent
component-wise multiplication between two matrices of the same shape. For a p x ¢ matrix
V, vec(V) € RP? represents the vectorized form of V', obtained by stacking its columns
(See a note on Kronecker product at the end of the chapter for details). According to the
Perron-Frobenius theory [22], every squared non-negative matrix M has a real non-negative
eigenvalue that gives the largest modulus among all eigenvalues of M. This non-negative
eigenvalue of M is called the Perron-Frobenius (PF) eigenvalue and denoted by Aps(M)
throughout the chapter.

4.4 Implicit Graph Neural Networks

We now introduce a framework for graph neural networks called Implicit Graph Neural
Networks (IGNN), which obtains a node representation through the fixed-point solution of

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 71

a non-linear “equilibrium” equation. The IGNN model is formally described by

Y = fo(X), (4.22)
X = ¢(WXA+bo(U)). (4.2b)

In equation (4.2), the input feature matrix U € RP*™ is passed through some affine transfor-
mation b () parametrized by € (i.e. a linear transformation possibly offset by some bias).
The representation, given as the “internal state” X € R™*™ in the rest of the chapter, is
obtained as the fixed-point solution of the equilibrium equation (4.2b), where ¢ preserves the
same shape of input and output. The prediction rule (4.2a) computes the prediction Y by
feeding the state X through the output function fg. In practice, a linear map fo(X) = ©X
may be satisfactory.

Unlike most existing methods that iterate (4.1) for a finite number of steps, an IGNN
seeks the fixed point of equation (4.2b) that is trained to give the desired representation
for the task. Evaluation of fixed point can be regarded as iterating (4.1) for an infinite
number of times to achieve a steady state. Thus, the final representation potentially contains
information from all neighbors in the graph. In practice, this gives a better performance over
the finite iterating variants by capturing the long-range dependency in the graph. Another
notable benefit of the framework is that it is memory-efficient in the sense that it only
maintains one current state X without other intermediate representations.

Despite its notational simplicity, the IGNN model covers a wide range of variants, in-
cluding their multi-layer formulations by stacking multiple equilibrium equations similar
to (4.2b). The SSE [47] and FDGNN [62] models also fit within the IGNN formulation.

Examples of IGNN

In this section we introduce some examples of the variation of IGNN.

Multi-layer Setup. It is straight forward to extend IGNN to a multi-layer setup with
several sets of W and () parameters for each layer. For conciseness, we use the ordinary
graph setting. By treating the fixed-point solution X;_; of the (I — 1)-th layer as the input
U, to the [-th layer of equilibrium equation, a multi-layer formulation of IGNN with a total
of L layers is created. R
Y = fo(XL),
X = oW XA+ b, (X1-1)),

X; = (Wi X1A + bo, (Xi-1)),

X1 = (W1 X1 A + bg, (U)),

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 72

where ¢1, ..., ¢ are activation functions. We usually assume that CONE property holds on
them. And (W, €2;) is the set of weights for the I-th layer. Thus the multi-layer formula-
tion (4.3) with parameters (W;,l =1,..., L, A) is well-posed (i.e. gives unique prediction
Y for any input U) when (W, A) is well-posed for ¢; for any layer [. This is true since
the well-posedness for a layer guarantees valid input for the next layer. Since all layers
are well-posed, the formulation will give unique final output for any input of compatible
shape. FDGNN [62] uses a similar multi-layer formulation for graph classification but is
only partially trained in practive.

In terms of the affine input function, bo(U) = QUA is a good choice. We show that
the multi-layer IGNN with such b is equivalent to a single layer IGNN (4.2) with higher
dimensions, the same A matrix and fg function. The new activation map is given by
¢ = (or,.--,P1,-..,01). Although ¢ is written in a block-wise form, they still operate on
entry level and remain non-expansive. Thus the well-posedness results still hold. The new
W and bg write,

W, Q 0
W= R L)= |ua (4.4)

. QQ 0

W1 Ql

Special Cases. Many existing GNN formulations including convolutional and recurrent
GNNs can be treated as special cases of IGNN. We start by showing that GCN [91], a typical
example of convolutional GNNs, is indeed an IGNN. We give the matrix representation of a
2-layer GCN as follows,
Y = WoX; A,
X, = (bl(WlUA)a

where A is the renormalized adjacency matrix; W7 and W5 are weight parameters; ¢ is a
CONE activation map for the first layer; and X is the hidden representation of first layer.
We show that GCN (4.5) is in fact a special case of IGNN by constructing an equivalent
single layer IGNN (4.2) with the same A matrix.

(4.5)

Y = f@(X)a (4.6&)
X = ¢(WXA+bo(U)). (4.6b)

The new state X = (X5, X;). The new activation map is given by ¢ = (¢1,1), where I
represents an identity map. And the new W, bg, and fo(X) are,

= (0 Wy ~ ([0 A AN

W= (0 ') () = (W) VA, folX) = <0> X (A7)
This reformulation of single layer IGNN also extends to multi-layer GCNs with more than 2
layers as well as other convolutional GNNs. Note that the new W for the equivalent single

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 73

layer IGNN is always strictly upper triangular. Thus |W| has only 0 eigenvalue. As a result,
At(JAT @ W) = A\pe(A)Ape(JW]) = 0 and the sufficient condition for well-posedness is always
satisfied.
Another interesting special case is SSE [47], an example of recurrent GNN, that is given

by)

Y = WX,

X - ¢(W1TW2XA -+ WluUA + Wl/uU),
which can be easily converted into a single layer IGNN with the same A matrix and CONE
activation ¢. The new W, bg, and fo(X) are,

W =Wy, Wy, bo(U) =Wy, UA+W[U fo(X)=W,X. (4.9)

(4.8)

IGNN models can generalize to heterogeneous networks with different adjacency matrices
A; and input features U; for different relations. In that case, we have the parameters W; and
Q); for each relation type i € R to capture the heterogenerity of the graph. A new equilibrium
equation (4.10) is used:

X=¢ (Z(WiXAi + bQi(Ui))> . (4.10)
In general, there may not exist a unique solution for the equilibrium equation (4.2b) and (4.10).
Thus, the notion of well-posedness comes into play.

Well-posedness of IGNNs

For the IGNN model to produce a valid representation, we need to obtain some unique
internal state X (U) given any input U from equation (4.2b) for ordinary graph settings or
equation (4.10) for heterogeneous network settings. However, the equilibrium equation (4.2b)
and (4.10) can have no well-defined solution X given some input U. We give a simple example
in the scalar setting below, where the solution to the equilibrium equation (4.2b) does not
even exist.

A Scalar Example
Consider the following scalar equilibrium equation (4.11),
r = ReLU(wza + u), (4.11)

where z,w, a,u € R and ReLU(+) = max(+,0) is the rectified linear unit. If we set w =a =1,
the equation (4.11) will have no solutions for any v > 0. See Figure 4.1 for the example with
u=1.

In order to ensure the existence and uniqueness of the solution to equation (4.2b) and (4.10),
we define the notion of well-posedness for equilibrium equations with activation ¢ for both
ordinary graphs and hetergeneous networks. This notion has been introduced in [55] for
ordinary implicit models.

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 74

Figure 4.1: Plots of z (red plot) and ReLU(wza+u) = ReLU(z+1) with w = a = v = 1 (blue
plot). The two plots will intersect at some point whenever a solution exists. However in this
case the two plots have no intersections, meaning that there is no solution to equation (4.11).

Definition 4.4.1 (Well-posedness on ordinary graphs). The tuple (W, A) of the weight ma-
trizc W € R™™ and the adjacency matriz A € R™" is said to be well-posed for ¢ if for any
B € R™ " the solution X € R™*" of the following equation

X =¢p(WXA+ B) (4.12)
exists and is unique.

Definition 4.4.2 (Well-posedness on heterogeneous networks).

The tuple (W;, Ajyi = 1,...,N) of the weight matrices W; € R™™ and the adjacency
matrices A; € R™™ is said to be well-posed for ¢ if for any B; € R™ ™, the solution
X € R™™ of the following equation

X=¢ (Z(WZXAZ- + Bi)> (4.13)

i=1
exists and 1s unique.

We first develop sufficient conditions for the well-posedness property to hold on ordinary
graph settings with a single edge type. The idea is to limit the structure of W and A together
to ensure well-posedness for a set of activation ¢.

In the following analysis, we assume that ¢ is component-wise non-expansive, which we
refer to as the component-wise non-expansive (CONE) property. Most activation functions
in deep learning satisfy the CONE property (e.g. Sigmoid, tanh, ReLLU, Leaky ReL.U, etc.).
For simplicity, we assume that ¢ is differentiable.

We can now establish the following sufficient condition on (W, A) for our model with
a CONE activation to be well-posed. Our result hinges on the notion of Perron-Frobenius

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 1)

(PF) eigenvalue A,¢(M) for a non-negative matrix M, as well as the notion of Kronecker
product A ® B € RP™*9" between two matrices A € R™*™ and B € RP*?. See a note on
Kronecker product at the end of the chapter for details.

Theorem 4.4.1 (PF sufficient condition for well-posedness on ordinary graphs). Assume
that ¢ is a component-wise non-expansive (CONE) activation map. Then, (W, A) is well-
posed for any such ¢ if \yy(|AT @ W|) < 1. Moreover, the solution X of equation (4.12) can
be obtained by iterating equation (4.12).

Proof. Recall that for any three matrices A, W, X of compatible sizes, we have (AT ®
W) vec(X) = vec(WXA) [146]. Showing equation (4.12) has an unique solution is equiva-
lent to showing that the following “vectorized” equation has a unique solution:

vec(X) = ¢(A" @ W vec(X) + vec(B))

It follows directly from Lemma 4.4.1 that if As(|AT @ W) = Ape(A)Ae(|W]) < 1, then the
above equation has unique solution that can be obtained by iterating the equation. m

Lemma 4.4.1. If ¢ is component-wise non-negative (CONE), M is some squared matriz
and v is any real vector of compatible shape, the equation x = ¢(Mx + v) has a unique
solution if \p(|M]) < 1. And the solution can be obtained by iterating the equation. Hence,
T = limy_,o 4.

Ty = o(Mzy+v), 2g=0,t=0,1,... (4.14)

Proof. For existence, since ¢ is component-wise and non-expansive, we have that for ¢ > 1
and the sequence xg, r1, Zs, ... generated from iteration (4.14),

o1 — e = [(Mzy +v) = (M +v)| < [M(2y — 21)| < [M[wy — 244]-

For n > m > 1, the following inequality follows,
n—m—1 00
[— @] < [M|™ Y IM[|y — o] < MM [M[|21 — o] < |M|™w, (4.15)
i=0 i=0

where
o

w =Y [M[|ay — zo| = (I = |M]) |21 — .
i=0

Because A\pe(|M|) < 1, the inverse of I — |M| exists. It also follows that lim; . |M|* = 0.
From inequality (4.15), we show that the sequence x¢, 1, 23, . .. is a Cauchy sequence because
0 < limy o0 [T — Ty < limy, oo [M|™w = 0. And thus the sequence converges to some
solution of z = ¢(Mz + v).

For uniqueness, suppose both z, and z, satisfy x = ¢(Mx + v), then the following
inequality holds,

0 < |2y — x| < | M|z — 13 < lim |M|*|zy — 2| = 0.
t—00

It follows that z, = x;, and there exists unique solution to z = ¢(Mz +v). =

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 76

We find Theorem 4.4.1 so general that many familiar and interesting results will follow
from it, as discussed in the following remarks.

Remark 4.4.1. For some non-negative adjacency matriz A, and arbitrary real parameter
matriz W, Ap(|AT @ W) = (AT @ [W]) = App(A) Ay [W]).

The final equality of the above remark follows from the fact that, the spectrum of the
Kronecker product of matrix A and B satisfies that A(A®B) = {u\ : p € A(A), A € A(B)},
where A(A) represents the spectrum of matrix A. And that, the left and right eigenvalues
of a matrix are the same.

Remark 4.4.2 (Contraction sufficient condition for well-posedness [69]). For any component-
wise non-expansive (CONE) ¢, if A(X) = ¢(WXA+ B) is a contraction of X (w.r.t. vec-
torized norms), then (W, A) is well-posed for ¢.

The above remark follows from the fact that the contraction condition for any CONE
activation map is equivalent to ||AT ® W|| < 1, which implies A\;(]AT @ W) < 1.

Remark 4.4.3 (Well-posedness for directed acyclic graph). For a directed acyclic graph
(DAG), let A be its adjacency matriz. For any real squared W, it holds that (W, A) is well-
posed for every CONE activation map. Note that A(X) = ¢(WXA + B) need not be a
contraction of X.

Note that for DAG, A is nilpotent (Ayr(A) = 0) and thus A (|AT@W) = Ape(A) Ape(|[W]) =
0.

Remark 4.4.4 (Sufficient well-posedness condition for k-regular graph [62]). For a k-reqular
graph, let A be its adjacency matriz. (W, A) is well-posed for every CONE activation map if

It follows from that for a k-regular graph, the PF eigenvalue of the adjacency matrix
Mof(A) = k. And A\pe(A)A\pe(|W]) < E[W||2 < 1 guarantees well-posedness.
A similar sufficient condition for well-posedness holds for heterogeneous networks.

Theorem 4.4.2 (PF sufficient condition for well-posedness on heterogeneous networks).
Assume that ¢ is some component-wise non-expansive (CONE) activation map. Then,

(Wi, A;, i =1,...,N) is well-posed for any such ¢ if Ay (Zf\;l |AT ®VVZ|> < 1. More-
over, the solution X of equation (4.13) can be obtained by iterating equation (4.13).

Proof. Similarly, we can rewrite equation (4.13) into the following “vectorized” form.

vee(X) = o (Z(AI @ W) vee(X) + Zvec<Bi>>

i=1

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 7

It follows from a similar scheme as the proof of Lemma 4.4.1 that if Ay <Zf\i1 A ® WJ) <

1, the above equation has unique solution which can be obtained by iterating the equation.
[]

Sufficient conditions in Theorems 4.4.1 and 4.4.2 guarantee convergence when iterating
aggregation step to evaluate state X. Furthermore, these procedures enjoy exponential
convergence in practice.

Tractable Well-posedness Condition for Training

At training time, however, it is difficult in general to ensure satisfaction of the PF suffi-
cient condition Ape(|W])Ape(A) < 1, because Aps(|W]) is non-convex in W. To alleviate the
problem, we give a numerically tractable convex condition for well-posedness that can be en-
forced at training time efficiently through projection. Instead of using Ape(|W|) < Ape(A)71,
we enforce the stricter condition |IW||s < Ape(A)~!, which guarantees the former inequality
by Apt(|W]) < |[W]|eo. Although [|[W]| < Apr(A)~! is a stricter condition, we show in the
following theorem that it is equivalent to the PF condition for positively homogeneous acti-
vation functions, (i.e. ¢(ax) = ag(x) for any > 0 and z), in the sense that one can use
the former condition at training without loss of generality.

Theorem 4.4.3 (Rescaled IGNN). Assume that ¢ is CONE and positively homogeneous.
For an IGNN (fo,W, A, bq, ») where (W, A) satisfies the PF sufficient condition for well-
posedness, namely \y(|W]) < M\y(A)7Y, there exists a linearly-rescaled equivalent IGNN

(fo, W', A b, d) with [|[W'||ee < Apy(A)~" that gives the same output Y as the original IGNN
for any input U.

Proof. Similarly, we can rewrite equation (4.13) into the following “vectorized” form.

vec(X) = ¢ (Z(AI ® W) vee(X) + Zvec<Bi>>

=1

It follows from a similar scheme as the proof of Lemma 4.4.1 that if Ay <Zf\;1 A ® VVJ) <

1, the above equation has unique solution which can be obtained by iterating the equation.
]

The above-mentioned condition can be enforced by selecting a k € [0,1) and projecting
the updated W onto the convex constraint set C = {W : |W|| < x/Ape(A)}.

For heterogeneous network settings, we recall the following:

Remark 4.4.5. For any non-negative adjacency matriz A and arbitrary real parameter
matriz W, it holds that ||AT @ Wllse = [|A |so|W llee = | A1V ||co-

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 78

The above remark follows from the facts that, || - || (resp. || - ||1) gives maximum
row (resp. column) sum of the absolute values of a given matrix. And that, for some

real matrices A and B, ||[A ® B« = max; ; (ZM |Aikle|> =max;; (O, [Ai| D 1Bji]) =
max; (3, [Aw]) max; (32, |Bjl) = [|Alloc|| Blloc-
Similar to the difficulty faced in the ordinary graph settings, ensuring the PF sufficient

condition on heterogeneous networks is hard in general. We propose to enforce the following
tractable condition that is convex in Wy’s: 2N | Aill1|[Willee < % < 1, & € [0,1). Note that

this condition implies HEZ]L Al ® WZ’ < k, and thus Ay (Zf\il Al ® WJ) <k < 1. The

PF sufficient condition for well-posedness on heterogeneous networks is then guaranteed.

Training of IGNN

We start by giving the training problem (4.16), where a loss L(Y, Y) is minimized to match
Y to Y and yet the tractable condition |[W | < x/Ape(A) for well-posedness is enforced
with x € [0, 1):

duin LY, fo(X)) = X = ¢(WXA+ba(U)), [Wlle < £/ Apx(A). (4.16)

The problem can be solved by projected gradient descent (involving a projection to the
well-posedness condition following a gradient step), where the gradient is obtained through
an implicit differentiation scheme. From the chain rule, one can easily obtain VgL for the
parameter of fo and V x L for the internal state X. In addition, we can write the gradient
with respect to scalar ¢ € W U as follows:

_ JOWXA+bo(U))
vqc_< -

where Z = WXA + bo(U) assuming fived X (see Section 4.4). Here, VL is given as a
solution to the equilibrium equation

Vz2L=Do (W'VzLAT +VxL), (4.18)

where D = ¢/(WXA + bo(U)) and ¢'(z) = d¢(z)/dz refers to the element-wise derivative
of the CONE map ¢. Since ¢ is non-expansive, it is 1-Lipschitz (i.e. the absolute value of
d¢(z)/dz is not greater than 1), the equilibrium equation (4.18) for gradient Vz£ admits
a unique solution by iterating (4.18) to convergence, if (W, A) is well-posed for any CONE
activation ¢. (Note that D ® (-) can be seen as a CONE map with each entry of D having
absolute value less than or equal to 1.) Again, VzL can be efficiently obtained due to
exponential convergence when iterating (4.18) in practice.

Once V7L is obtained, we can use the chain rule (via autograd software) to easily compute
VwL, VoL, and possibly V£ when input U requires gradients (e.g. in cases of features
learning or multi-layer formulation). The deriviation has a deep connection to the Implicit
Function Theorm. See Section 4.4 for details.

,Vz£> : (4.17)

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 79

Due to the norm constraint introduced for well-posedness, each update to W requires a
projection step (See Section 4.4). The new W is given by
Wt = me(W) = N 07| < /Apr(A) | M — W ||%, where 7¢ is the projection back onto C =
{IWleo < K/Apt(A)}. The projection is decomposible across the rows of W. Each sub-
problem will be a projection onto an £;-ball for which efficient methods exist [53]. A similar
projected gradient descent training scheme for heterogeneous network settings is detailed
in Section 4.4. Note that the gradient method in SSE [47] uses a first-order approximated
solution to equation (4.18). FDGNN [62] only updates © at training using gradient descent.

Implicit differentiation for IGNN

To compute gradient of £ from the training problem (4.16) w.r.t. a scalar ¢ € W U2, we
can use chain rule. It follows that,

0X
VL = <a—q, VX£> , (4.19)
where V x £ can be easily calculated through modern autograd frameworks. But %—X is non-
trivial to obtain because X is only implicitly defined. Fortunately, we can still leverage chain
rule in this case by carefully taking the “implicitness” into account.

To avoid taking derivatives of matrices by matrices, we again introduce the vectorized
representation vec(-) of matrices. The vectorization of a matrix X € R™*™ denoted vec(X),
is obtained by stacking the columns of X into one single column vector of dimension mn.
For simplicity, we use X := vec(X) and VL = vec(VxL) as a short hand notation of
vectorization.

d¢ 97 Oq°
where Z = WXA+bo(U) (Z = (AT @ W)X + bQ(U;) assuming fized X. Unlike X
in equation (4.2b), Z is not implicitly defined and should only be considered as a closed

evaluation of Z7 = WXA + bo(U) assuming X doesn’t change depending on Z. In some
sense, the Z in equation (4.20) doesn’t equal to WXA + bo(U). However, the closeness

property will greatly simplify the evaluation of %—g. It turns out that we can still employ

(4.20)

chain rule in this case to calculate g_)z(: for such Z by taking the change of X before hand into
account as follows,

0% 0s(7) N A ((AT®W)X+I?Q<U;> 9%
0z 0Z X YA

: (4.21)

where the second term accounts for the change in X that was ignored in Z. Another way
to view this calculation is to right multiply %—f on both sides of equation (4.21), which gives

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 80

the chain rule evaluation of % that takes the gradient flowing back to X into account:

ox 09 ((AT ® W)X + bg(US) . 06 ((AT ® W)X + bg(Uﬁ) o3
dq dq X dq
The equation (4.21) can be simplified as follows,

0X -
D¢ ((AT © W)X + bQ(Ui))

0X

where D = agg) = diag (gb’ ((AT @ W)X + bg(Ui)) . Now we can rewrite equation (4.19)
as

07
ox\ "

which is equivalent to equation (4.17). V zL£ should be interpreted as the direction of steepest
change of L for Z = WXA + bo(U) assuming fized X. Plugging equation (4.21) to (4.24),
we arrive at the following equilibrium equation (equivalent to equation (4.18))

V;L=DA@WTV;L+ D VL,
VzL=D® (W'VzLAT +VxL), (4.25)

where D = ¢'(WXA + bo(U)). Interestingly, VL turns out to be given as a solution of
an equilibrium equation particularly similar to equation (4.2b) in the IGNN “forward” pass.
In fact, we can see element-wise multiplication with D as a CONE “activation map” gzg() =
D ®(+). And it follows from Section 4.4 that if Ape(W)Aye(A) < 1, then A\pe(W A (AT) < 1
and VzL can be uniquely determined by iterating the above equation (4.25). Although the
proof will be more involved, if (W, A) is well-posed for any CONE activation map, we can
conclude that equilibrium equation (4.25) is also well-posed for gzg where ¢ can be any CONE
activation map.

Finally, by plugging the evaluated V z £ into equation (4.23), we get the desired gradients.
Note that it is also possible to obtain gradient V£ by setting the ¢ in the above calculation
to be ¢ € U. This is valid because we have no restrictions on selection of ¢ other than that
it is not X, which is assumed fixed. Following the chain rule, we can give the closed form

formula for Vi L, Vo L,w € Q, and V,L,u € U.

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 81

Vwl=V,LATXT VL= <ab§ff]) , VZ£> . Vl.L = <abgff]) : VZ£> .

Heterogeneous Network Setting We start by giving the training problem for hetero-
geneous networks similar to training problem (4.16) for ordinary graphs,

Juin, L(Y, fo(X))

1=1
ZHA [1l[Willeo <

The training problem can be solved again using projected gradient descent method where
the gradient of W; and €; for ¢ € R can be obtained with implicit differentiation. Using
chain rule, we write the gradient of a scalar ¢ € |J,(W; U €2;),

0 (S (WX A, + o, (U))
VL= < » ,VZ£> , (4.27)

where Z = SN (Wi X A; 4 bo,(U;)) and V4L in equation (4.27) should be interpreted
as “direction of fastest change of L for Z assuming fired X”. Similar to the derivation in
ordinary graphs setting, such notion of VL enables convenient calculation of V,£. And

the vectorized gradient w.r.t. Z can be expressed as a function of the vectorized gradient
w.r.t. X:

SN\ 1
oX
VL= <£> Vel (4.28)
0% _o02) , 20 (T (AT & WX + 00 T1))
07 97 0X 07
(f J)” (4.29)

D
oz MTQZ?)%W)) DY (T e,

=1

where D = %Z?) = diag (gb’ (Zf\il ((AZT ® W)X + m>>> . Plugging the

expression (4.29) into (4.28), we arrive at the following equilibrium equation for V ;£ and

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 82
V2L,

N
Z (Ai@W,VzL+ D VgL
- N
Vz2L=D0® <Z(WJVZLAZ) + sz) , (4.30)
i=1

where D = ¢/ (Zfil(WlX A + bQ(U,L))) Not surprisingly, the equilibrium equation (4.30)
again appears to be similar to the equation (4.10) in the IGNN “forward” pass. We can
also view element-wise multiplication with D as a CONE “activation map” ¢(-) = D ® ().
And it follows from Section 4.4 that if A\(|AT ® W) < 1, then A\y(|A ® WT|) < 1 and
V2L can be uniquely determined by iterating the above equation (4.25). It also holds that if
(Wi, Aiyi € {1,...,N}) is well-posed for any CONE activation ¢, then we can conclude that
equilibrium equation (4.30) is also well-posed for & where ¢ can be any CONE activation
map.

Finally, by plugging the evaluated V ;£ into equation (4.27), we get the desired gradients.
It is also possible to obtain gradient Vi, £ by setting the ¢ in the above calculation to be
q € U, U;. This is valid because we have no restrictions on selection of ¢ other than that it
is not X, which is assumed fixed.

After the gradient step, the projection to the tractable condition mentioned in Section 4.4
can be done approximately by assigning x; for each relation ¢ € R and projecting W, onto
Ci = {[[Willoo < &i/||A|l1}. Ensuring >, k; = £ < 1 will guarantee that the PF condition for
heterogeneous network is satisfied. However, empirically, setting x; < 1 with > . x; > 1 in
some cases is enough for the convergence property to hold for the equilibrium equations.

4.5 Numerical Experiment

In this section, we demonstrate the capability of IGNN on effectively learning a representation
that captures the long-range dependency and therefore offers the state-of-the-art performance
on both synthetic and real-world data sets. More specifically, we test IGNN against a
selected set of baselines on 6 node classification data sets (Chains, PPI, AMAZON, ACM,
IMDB, DBLP) and 5 graph classification data sets (MUTAG, PTC, COX2, PROTEINS,
NC11), where Chains is a synthetic data set; PPI and AMAZON are multi-label classification
data sets; ACM, IMDB and DBLP are based on heterogeneous networks. We inherit the
same experimental settings and reuse the results of baselines from literatures in some of the
data sets. The test set performance is reported. Detailed description of the data sets, our
preprocessing procedure, hyper-parameters, and other information of experiments can be
found in Section 4.5.

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 83

Synthetic Chains Data Set. To evaluate GNN’s capability for capturing the underlying
long-range dependency in graphs, we create the Chains data set where the goal is to classify
nodes in a chain of length [. The information of the class is only sparsely provided as the
feature in an end node. We use a small training set, validation set, and test set with only 20,
100, and 200 nodes, respectively. For simplicity, we only consider the binary classification
task. Four representative baselines are implemented and compared. We show in Figure 4.2
that IGNN and SSE [47] both capture the long-range dependency with IGNN offering a
better performance for longer chains, while finite-iterating convolutional GNNs with T' = 2,
including GCN [91], SGC [180] and GAT [170], fail to give meaningful predictions when the
chains become longer. However, selecting a larger T for convolutional GNNs does not seem
to help in this case of limited training data. We further discuss this aspect in Section 4.5.

Table 4.1: Multi-label node classification

100 Micro-Fy (%) performance on PPI data set.
_ 90 -~ SGC (Wu et al., 2019a)
X GCN (Kipf and Welling, 2016)
: 80 = GAT (Ve_liékovic’ et al., 2017)
Lé 70 DA RS Method Micro-F7 /%
= 60 Multi-Layer Perceptron 46.2
50 GCN [91] 59.2
0 2 4 6 8 10 GraphSAGE [74] 78.6
Long Range Dependency SSE [47] 83.6
Figure 4.2: Micro-F; (%) performance GAT [170] 97.3
with respect to the length of the chains. IGNN 97.6

Node Classification. The popular benchmark data set Protein-Protein Interaction (PPT)
models the interactions between proteins using a graph, with nodes being proteins and edges
being interactions. Each protein can have at most 121 labels and be associated with addi-
tional 50-dimensional features. The train/valid/test split is consistent with GraphSage [74].
We report the micro-averaged F score of a multi-layer IGNN against other popular baseline
models. The results can be found in Table 4.1. By capturing the underlying long-range
dependency between proteins, the IGNN achieves the best performance compared to other
baselines.

To further manifest the scalability of IGNN towards larger graphs, we conduct experi-
ments on a large multi-label node classification data set, namely the Amazon product co-
purchasing network data set [185] !. The data set renders products as nodes and co-purchases
as edges but provides no input features. 58 product types with more than 5,000 products
are selected from a total of 75,149 product types. While holding out 10% of the total nodes
as test set, we vary the training set fraction from 5% to 9% to be consistent with [47]. The

Thttp://snap.stanford.edu/data/#amazon

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 84

90 85
;\385 7// g
— —
o
: S s p—
Zgp SGC (Wu et al., 2019a) k4 -~ SGC (Wu et al., 2019a)
= GCN (Kipf and Welling, 2016) = GCN (Kipf and Welling, 2016)
struct2vec (Dai et al., 2016) -= struct2vec (Dai et al., 2016)
SSE (Dai et al., 2018) —— SSE (Dai et al., 2018)
75 IGNN 75 - IGNN
0.05 0.06 0.07 0.08 0.09 0.05 0.06 0.07 0.08 0.09
Fraction Fraction

Figure 4.3: Micro/Macro-F; (%) performance on the multi-label node classification task with
Amazon product co-purchasing network data set.

data set come with no input feature vectors and thus require feature learning at training.
Both Micro-F; and Macro-F} are reported on the held-out test set, where we compare IGNN
with a set of baselines consistent with those in the synthetic data set. However, we use
struct2vec [46] as an alternative to GAT since GAT faces a severe out-of-memory issue in
this task.

As shown in Figure 4.3, IGNN again outperforms the baselines in most cases, especially
when the amount of supervision grows. When more labels are available, more high-quality
feature vectors of the nodes are learned and this enables the discovery of more long-range
dependency. This phenomenon is aligned with our observation that IGNN achieves a better
performance when there is more long-range dependency in the underlying graph.

Graph Classification. Aside from node classification, we test IGNN on graph classifica-
tion tasks. A total of 5 bioinformatics benchmarks are chosen: MUTAG, PTC, COX2, NCI1
and PROTEINS [184]. See details of data sets in Section 4.5. Under the graph classification
setting, we compare a multi-layer IGNN with a comprehensive set of baselines, including a
variety of GNNs and a number of graph kernels. Following identical settings as [184, 182],
10-fold cross-validation with LIB-SVM [34] is conducted. The average prediction accuracy
and standard deviations are reported in Table 4.2. In this experiment, IGNN achieves the
best performance in 4 out of 5 experiments given the competitive baselines. Such perfor-
mance further validates IGNN’s success in learning converging aggregation steps that capture
long-range dependencies when generalized to unseen testing graphs.

Heterogeneous Networks. Following our theoretical analysis on heterogeneous networks,
we investigate how IGNN takes advantage of heterogeneity on node classification tasks. Three
benchmarks based on heterogeneous network are chosen, i.e., ACM, IMDB and DBLP [174,
134]. More information regarding the heterogeneous network data sets can be found in
Section 4.5. Table 4.3 compares IGNN against a set of state-of-the-art GNN baselines for
heterogeneous networks. The heterogeneous variant of IGNN continues to offer a competitive
performance on all 3 data sets where IGNN gives the best performance in ACM and IMDB

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 85

Table 4.2: Graph classification accuracy (%). Results are averaged (and std are computed)
on the outer 10 folds.

Data sets MUTAG PTC COX2 PROTEINS NCI1
graphs 188 344 467 1113 4110
Avg # nodes 17.9 25.5 41.2 39.1 29.8
DGCNN [193] 85.8 58.6 — 75.5 74.4
DCNN [12] 67.0 56.6 — 61.3 62.6
GK [151] 81.44+1.7 55.7+£0.5 — 71.44+0.3 62.5+0.3
RW [66] 79.2+2.1 559+0.3 — 59.6 £ 0.1 —
PK [128] 76.0+2.7 59.5+24 81.0+£0.2 73.7+0.7 82.5+0.5
WL [152] 84.1+19 58.0+25 83.24+0.2 74.7+0.5 84.5+0.5
FDGNN [62] 885+38 634+£54 83.3+£29 76.8 2.9 77.8+1.6
GCN [91] 85.6 5.8 64.2+4.3 — 76.0 & 3.2 80.2+2.0
GIN [182] 89.0+6.0 63.7£8.2 - 75.9 4+ 3.8 82.7+1.6
IGNN 89.3+6.7 70.1+56 869+40 T7T.7+34 805+1.9

data sets. While on DBLP, IGNN underperforms DMGI but still outperforms other baselines
by large margin. Good performance on heterogeneous networks demonstrates the flexibility
of IGNN on handling heterogeneous relationships.

Table 4.3: Node classification Micro/Macro-F; (%) performance on heterogeneous network
data sets.

Data sets ACM IMDB DBLP
Metric Micro-F; Macro-F; Micro-F; Macro-F; Micro-F; Macro-F;
DGI [169] 88.1 88.1 60.6 59.8 72.0 72.3
GCN/GAT 87.0 86.9 61.1 60.3 71.7 73.4
DeepWalk [138] 74.8 73.9 55.0 53.2 53.7 53.3
mGCN [116] 86.0 85.8 63.0 62.3 71.3 72.5
HAN [174] 87.9 87.8 60.7 59.9 70.8 71.6
DMGTI [134] 89.8 89.8 64.8 64.8 76.6 77.1
IGNN 90.5 90.6 65.5 65.5 73.8 75.1

More on Experiments

In this section, we give detailed information about the experiments we conduct.

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 86

For preprocessing, we apply the renormalization trick consistent with GCN [91] on the
adjacent matrix of all data sets.

In terms of hyperparameters, unless otherwise specified, for IGNN, we use affine trans-
formation bo(U) = QUA; linear output function fo(X) = OX; ReLU activation ¢(-) =
max(-,0); learning rate 0.01; dropout with parameter 0.5 before the output function; and
rk = 0.95. We tune layers, hidden nodes, and x through grid search. The hyperparameters
for other baselines are consistent with that reported in their papers. Results with identical
experimental settings are reused from previous works.

Synthetic Chains Data Set

We construct a synthetic node classification task to test the capability of models of learning
to gather information from distant nodes. We consider the chains directed from one end
to the other end with length [(i.e. [+ 1 nodes in the chain). For simplicity, we consider
binary classification task with 2 types of chains. Information about the type is only encoded
as 1/0 in first dimension of the feature (100d) on the starting end of the chain. The labels
are provided as one-hot vectors (2d). In the data set we choose chain length [= 9 and 20
chains for each class with a total of 400 nodes. The training set consists of 20 data points
randomly picked from these nodes in the total 40 chains. Respectively, the validation set
and test set have 100 and 200 nodes.

A single-layer IGNN is implemented with 16 hidden unites and weight decay of parameter
5 x 10~ for all chains data sets with different {. Four representative baselines are chosen:
Stochastic Steady-state Embedding (SSE) [47], Graph Convolutional Network (GCN) [91],
Simple Graph Convolution (SGC) [180] and Graph Attention Network (GAT) [170]. They
all use the same hidden units and weight decay as IGNN. For (GAT), 8 head attention is
used. For (SSE), we use the embedding directly as output and fix-point iteration n;, = 8,
as suggested [47].

As mentioned in Section 4.5, convolutional GNNs with 7" = 2 cannot capture the de-
pendency with a range larger than 2-hops. To see how convolutional GNNs capture the
long-range dependency as T grows, we give an illustration of Micro-F} verses T for the
selected baselines in Figure 4.4. From the experiment, we find that convolutional GNNs
cannot capture the long-range dependency given larger T. This might be a result of the
limited number of training nodes in this chain task. As T' grows, convolutional GNNs ex-
perience an explosion of number of parameters to train. Thus the training data becomes
insufficient for these models as the number of parameters increases.

Node Classification

For node classification task, we consider the applications under both transductive (Amazon)
[185] and inductive (PPI) [74] settings. Transducive setting is where the model has access to
the feature vectors of all nodes during training, while inductive setting is where the graphs

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 87

100
90
X - SGC (Wu et al., 2019a)
— 80 GCN (Kipf and Welling, 2016)
L = GAT (Veli¢kovic¢ et al., 2017)
o -- SSE (Dai et al., 2018)
o 70
= -- IGNN
=

60

501~ -

2 3 4 5 6 7 8 9 10

Number of Layers T

Figure 4.4: Chains with [= 9. Traditional methods fail even
with more iterations.

Table 4.4: The overview of data set statistics in node classification tasks.

Data set # Nodes # Edges # Labels Label type Graph type
Amazon (transductive) 334,863 925,872 58 Product type Co-purchasing
PPI (inductive) 56,944 818,716 121 Bio-states Protein

for testing remain completely unobserved during training. The statistics of the data sets can
be found in Table 4.4.

For experiments on Amazon, we construct a one-layer IGNN with 128 hidden units. No
weight decay is utilized. The hyper parameters of baselines are consistent with [185, 47].

For experiments on PPI, a five-layer IGNN model is applied for this multi-label classi-
fication tasks with hidden units as [1024, 512, 512, 256, 121] and x = 0.98 for each layer.
In addition, four MLPs are applied between the first four consecutive IGNN layers. We use
the identity output function. Neither weight decay nor dropout is employed. We keep the
experimental settings of baselines consistent with [170, 47, 91, 74].

Graph Classification

For graph classification, 5 bioinformatics data sets are employed with information given
in Table 4.2. 'We compare IGNN with a comprehensive set of baselines, including a va-
riety of GNNs: Deep Graph Convolutional Neural Network (DGCNN) [193], Diffusion-
Convolutional Neural Networks (DCNN) [12], Fast and Deep Graph Neural Network
(FDGNN) [62], GCN [91] and Graph Isomorphism Network (GIN) [182], and a number of
state-of-the-art graph kernels: Graphlet Kernel (GK) [151], Random-walk Kernel (RW) [66],
Propagation Kernel (PK) [128] and Weisfeiler-Lehman Kernel (WL) [152]. We reuse the
results from literatures [182, 62] since the same experimental settings are maintained.

As of IGNN; a three-layer IGNN is constructed for comparison with the hidden units of

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 88

Table 4.5: Statistics of the data sets for heterogeneous graphs [134]. The node attributes
are bag-of-words of text. Num. labeled data denotes the number of nodes involved during
training.

Relations . Num. Num. Num. Num.
(A-B) Num. ANum. BiNum. A-BRelation type relations | node attributes |labeled datalclasses
ACM Paper-Author | 3,025 | 5,835 9,744 P-A-P 29,281 1,830 600 3
Paper-Subject| 3,025 56 3,025 P-S-P 2,210,761 |(Paper abstract)
IMDB Movie-Actor | 3,550 | 4,441 10,650 M-A-M 66,428 1,Q07 300 3
Movie-Director| 3,550 | 1,726 3,550 M-D-M 13,788 (Movie plot)
Paper-Author | 7,907 | 1,960 14,238 P-A-P 144,783 9000
DBLP| Paper-Paper | 7,907 | 7,907 | 10,522 P-P-P 90,145 (Paper’abstract) 80 4
Author-Term | 1,960 | 1,975 57,269 | P-A-T-A-P |57,137,515

each layer as 32 and x = 0.98 for all layers. We use an MLP as the output function. Besides,
batch normalization is applied on each hidden layer. Neither weight decay nor dropout is
utilized.

Heterogeneous Networks

For heterogeneous networks, three data sets are chosen (ACM, IMDB, and DBLP). Con-
sistent with previous works [134], we use the the publicly available ACM data set [174],
preprocessed DBLP and IMDB data sets [134]. For ACM and DBLP data sets, the nodes
are papers and the aim is to classify the papers into three classes (Database, Wireless Com-
munication, Data Mining), and four classes (DM, AI, CV, NLP)?, respectively. For IMDB
data set, the nodes are movies and we aim to classify these movies into three classes (Action,
Comedy, Drama). The detailed information of data sets can be referred to Table 4.5. The
preprocessing procedure and splitting method on three data sets keep consistent with [134].

State-of-the-art baselines are selected for comparison with IGNN, including no-attribute
network embedding: DeepWalk [138], attributed network embedding: GCN, GAT and
DGI [169], and attributed multiplex network embedding: mGCN [116], HAN [174] and
DMGI [134]. Given the same experimental settings, we reuse the results of baselines
from [134].

A one-layer IGNN with hidden units as 64 is implemented on all data sets. Similar to
DMGI, a weight decay of parameter 0.001 is used. For ACM, x = (0.55,0.55) is used
for Paper-Author and Paper-Subject relations. For IMDB, we select k = (0.5,0.5) for
Movie-Actor and Movie-Director relations. For DBLP, x = (0.7,0.4) is employed for Paper-
Author and Paper-Paper relations. As mentioned in Section 4.4, in practice, the convergence
property can still hold when), x; > 1.

2DM: KDD,WSDM,ICDM, AI: ICML,AAALLICAL CV: CVPR, NLP: ACL,NAACL,EMNLP

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 89

Over-smoothness

Convolutional GNNs has suffered from over-smoothness when the model gets deep. An
interesting question to ask is whether IGNN suffers from the same issue and experience
performance degradation in capturing long-range dependency with its ”infinitively deep”
GNN design.

In an effort to answer this question, we compared IGNN against two latest convolutional
GNN models that solve the over-smoothness issue, GCNII [38] and DropEdge [144]. We use
the same experimental setting as the Chains experiment in Section 4.5. Both GCNII and
DropEdge are implemented with 10-layer and is compared with IGNN in capturing long-
range dependency. The result is reported in Figure 4.5. We observe that IGNN consistently
outperforms both GCNII and DropEdge as the chains gets longer. The empirical result
suggest little suffering from over-smoothness for recurrent GNNs.

100

90

80 1Y -»- DropEdge (Rong et al., 2020)
GCNII (Chen et al., 2020)

70 - IGNN

60 e N

0 2 4 6 8 10
Long Range Dependency

Micro-F1 (%)

50

Figure 4.5: Micro-F; (%) performance with respect to the length
of the chains.

4.6 Summary

In this chapter, we present the implicit graph neural network model, a framework of recurrent
graph neural networks. We describe a sufficient condition for well-posedness based on the
Perron-Frobenius theory and a projected gradient decent method for training. Similar to
some other recurrent graph neural network models, implicit graph neural network captures
the long-range dependency, but it carries the advantage further with a superior performance
in a variety of tasks, through rigorous conditions for convergence and exact efficient gradient
steps. More notably, the flexible framework extends to heterogeneous networks where it
maintains its competitive performance.

Broader Impact

GNN models are widely used on applications involving graph-structured data, including com-
puter vision, recommender systems, and biochemical strucature discovery. Backed by more

CHAPTER 4. IMPLICIT GRAPH NEURAL NETWORKS 90

rigorous mathematical arguments, our research improves the capability GNNs of capturing
the long-range dependency and therefore boosts the performance on these applications.

The improvements of performance in the applications will give rise to a better user ex-
perience of products and new discoveries in other research fields. But like any other deep
learning models, GNNs runs into the problem of interpretability. The trade-off between per-
formance and interpretability has been a topic of discussion. On one hand, the performance
from GNNs benefits the tasks. On the other hand, the lack of interpretability might make it
hard to recognize underlying bias when applying such algorithm to a new data set. Recent
works [77] propose to address the fairness issue by enforcing the fairness constraints.

While our research focuses on performance by capturing the long-range dependency, like
many other GNNs, it does not directly tackle the fairness and interpretability aspect. We
would encourage further work on fairness and interpretability on GNNs. Another contri-
bution of our research is on the analysis of heterogeneous networks, where the fairness on
treatment of different relationships remains unexplored. The risk of discrimination in par-
ticular real-world context might require cautious handling when researchers develop models.

Kronecker Product

For two matrices A and B, the Kronecker product of A € R™*" and B € RP*? is denoted as
A® B e Rpmxam;

AnB -+ AuB

A®B= Pt
AmB -+ A,.B

By definition of the Kronecker product, (A ® B)" = AT @ BT. Additionally, the following
equality holds assuming compatible shapes, (AT ® W) vec(X) = vec(W X A) [146], where
vec(X) € R™ denotes the vectorization of matrix X € R™*" by stacking the columns of
X into a single column vector of dimension mn. Suppose x; € R™ is the i-th column of X,
vec(X) = [z],...,z}]".

Leveraging the definition of Kronecker product and vectorization, the following equality
holds, (AT ® W)vec(X) = vec(WXA) [146]. Intuitively, this equality reshapes WX A
which is linear in X into a more explicit form (A" ® W) vec(X) which is linear in vec(X),
a flattened form of X. Through the transformation, we place WX A into the form of Mz.

Thus, we can employ Lemma 4.4.1 to obtain the well-posedness conditions.

91

Chapter 5

Stable Controllers Synthesis for
Partially Observed Systems

The connection from implicit deep learning as presented in Chapter 2 to control is natu-
ral. When we are exploring stable conditions for neural network controlled systems, we see
that the notations from implicit deep learning applies flawlessly to capture recurrent neural
networks as presented in (5.2) and (5.5). Through manipulations with the notation, we are
able to reach at some convex stability condition for the closed loop partially observed system
controlled with recurrent neural networks. We develop an iterative optimization algorithm
to generate a sequence of guaranteed-stable controllers for this highly difficult task. This
work serves as a demonstration of having implicit deep learning notations in control efforts
and hopefully enables future pushes on combining “implicit neural networks” in control and
innovations in implicit models from the control community.

5.1 Introduction

Neural network decision making and control has seen a huge advancement recently accom-
panied by the success of reinforcement learning (RL) [159]. In particular, deep reinforcement
learning (DRL) has achieved super-human performance with neural network policies (also
referred to as controllers in control tasks) in various domains [122, 112, 153].

Policy gradient [160] is one of the most important approaches to DRL that synthesizes
policies for continuous decision making problems. For control tasks, policy gradient method
and its variants have successfully synthesized neural network controllers to accomplish com-
plex control goals [107] without solving potentially non-linear planing problems at test time
[106]. However, most of these methods focus on maximizing the reward function which only
indirectly enforce desirable properties. Specifically, global stability of the closed-loop system
[145] guarantees convergence to the desired state of origin from any initial state and therefore
is a very important property for safety critical systems (e.g. aircraft control [33]) where not
a single diverging trajectory is acceptable. However, the set of parameters corresponding

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 92

to stabilizing controllers is in general nonconvex even in the simple setting of linear sys-
tems with linear controllers [57], which poses significant computational challenges for neural
network controllers under the general setting of nonlinear systems.

Thanks to recent robustness studies of deep learning, we have seen attempts on giving sta-
bility certificates and/or ensuring stability at test time for fully-observed systems controlled
by neural networks. Yet stability problems for neural network controlled partially observed
systems remain open. Unlike fully-observed control systems where the plant states are fully
revealed to the controller, most real-world control systems are only partially observed due to
modeling inaccuracy, sensing limitations, and physical constraints [28]. Here, sensible esti-
mates of the full system state usually depend on historical observations [29]. Some partially
observed systems are modeled using partially observed Markov decision process (POMDP)
[123] where an optimal solution is NP hard in general [125].

Chapter contributions. In the chapter, we propose a method to synthesize recurrent
neural network (RNN) controllers with exponential stability guarantees for partially observed
systems. We derive a convex inner approximation to the non-convex set of stable RNN
parameters based on integral quadratic constraints [120], loop transformation [145]and a
sequential semidefinite convexification technique, which guarantees exponential stability for
both linear time invariant (LTI) systems and general nonlinear uncertain systems. A novel
framework of projected policy gradient is proposed to maximize some unknown/complex
reward function and ensure stability in the online setting where a guaranteed-stable RNN
controller is synthesized and iteratively updated while interacting with and controlling the
underlying system, which differentiates our works from most post-hoc validation methods.
Finally, we carry out comprehensive comparisons with policy gradient, and demonstrate
that our method effectively ensures the closed-loop stability and achieves higher reward
on a variety of control tasks, including vehicle lateral control and power system frequency
regulation.

o

u(k) y(k) ¢

o ¢ w(k)L J(k)

P,

y(k) —u(k)
Figure 5.1: Feedback system of plant G and
RNN controller Figure 5.2: RNN as an interconnection of
P, and ¢

Chapter outline. In Section 5.2, we outline related works on addressing partial observ-
ability, and enforcing stability in reinforcement learning. Section 5.3 discusses our proposed
method for synthesizing RNN controllers for LTI plants with stability guarantees, and Sec-
tion 5.4 extends it to systems with uncertainties and nonlinearities. Section 5.5 compares
the proposed projected policy gradient method with policy gradient through numerical ex-
periments.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 93

Notation. S",S7,S", denote the sets of n-by-n symmetric, positive semidefinite and
positive definite matrices, respectively. D7, D” | denote the set of n-by-n diagonal positive
semidefinite, and diagonal positive definite matrices. The notation || - || : R™ — R denotes
the standard 2-norm. We define 5, to be the set of all one-sided sequences z : N — R".
The subset (3 C (3, consists of all square-summable sequences. When applied to vectors,
the orders >, < are applied elementwise.

5.2 Related Work

Partially Observed Decision Making and Output Feedback Control. In many
problems [163, 19], only specific outputs but not the full system states are available for
the decision maker. Therefore, memory in the controller is required to recover the full
system states [147]. Control of these partially observed systems is often referred to as output
feedback control [29], and has been studied extensively from both control and optimization
perspectives [52, 199]. Under the setting with convexifiable objectives (e.g., Ho, or Hj
performances), the optimal linear dynamic (i.e. with memory) controller can be obtained
by using a change of variables or solving algebraic Riccati equations [61, 201]. However,
for more sophisticated settings with unknown and/or flexibly defined cost functions, the
problems become intractable for the aforementioned traditional methods, and RL techniques
are proposed to reduced the computation cost and improve overall performance at test time,
including the ones [105, 106] with static neural network controllers, and the ones [192, 80, 175]
with dynamic controllers, represented by RNNs/long short-term memory neural networks.

Stability Guarantees For Neural Network Controlled Systems. As neural net-
works become popular in control tasks, safety and robustness of neural networks and neural
network controlled systems has been actively discussed [124, 115, 60, 21, 43, 119, 75, 141, 42,
191, 59]. Closely related to this work are recent papers on robustness analysis of memory-
less neural networks controlled systems based on robust control ideas. [186, 187, 136, 82]
conduct stability analysis of neural network controlled linear and nonlinear systems and pro-
pose verification methods by characterizing activation functions using quadratic constraints.
[51] adds additional projection layer on the controller to ensure stability for fully observed
systems. [142] studies the stability of RNN itself when fitted to data but does not consider
any plant to control by such RNN. The most related works are those that study dynamic
neural network controllers. [5, 92] adapt RNN controllers through RL techniques to obtain
stability guarantees. However, in these works, the reward function is assumed to be known,
and conservative updates of controller parameters projected to a box neighborhood of the
previous iterate are applied due to the non-convexity in their conditions. In contrast, our
work enables much larger and more efficient updates thanks to jointly convex conditions
derived through a novel sequential convexification and loop transformation approach unseen
in these works.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED

SYSTEMS 94
tanh(v) y=v
A 3
[T Bs — 44 ¢
/K_ y=0
» v A¢ n qu
********** sector bound 7 -
) tarh ¢ 2
' leaky ReLU(v) y = v #(k) = v(k)
4 o PTr A¢ + Bé
—7(1" al 2
L[Be — 4
> 2 P,
'''''''''' sector bound
leaky ReLU y(k) u(k)
Figure 5.3: tanh € sector [0, 1], Figure 5.4: Loop transformation. If ¢ € sec-
Leaky ReLU € sector [a, 1] tor [ag, By], then ¢ € sector [—1,,,x1, 1n,x1-

5.3 Partially Observed Linear Systems

Problem Formulation

Consider the feedback system (shown in Figure 5.1) consisting of a plant G and an RNN
controller my which is expected to stabilize the system (i.e. steer the states of G to the origin).
To streamline the presentation, we consider a partially observed, linear, time-invariant (LTT)
system G defined by the following discrete-time model:

y(k) = Cq x(k) (5.1b)

where z(k) € R"¢ is the state, u(k) € R™ is the control input, and y(k) € R™ is the output.
Ag € Rrexne Bo € R"¢*™ and Cg € R™*"¢, Since the plant G is partially observed, the
observation matrix Cz may have a sparsity pattern or be column-rank deficient.

Assumption 5.3.1. We assume that (Ag, Bg) is stabilizable, and (Ag, Cq) is detectable.
Assumption 5.3.2. We assume Aq, Bg, and Cq are known.

Assumption 5.3.2 is partially lifted in Section 5.4 where we only assume partial informa-
tion on the system dynamics.

Problem 5.3.1. Our goal is to find a controller m that maps the observation y to an action
u to both mazimize some unknown reward R = 3_4_ori(z(k), u(k)) over finite horizon T
and stabilize the plant G.

The single step reward ri(z(k), u(k)) is assumed to be unknown and potentially highly
complex to capture the vast possibility of desired controller. e.g. In many cases, to ensure

!The definitions of stabilizability and detectability can be found in [29].

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 95

extra safety, the reward is set to ri(z(k),u(k)) = 0,Vk > [if there is a state violation at
step [. This cannot be captured by any simple negative quadratic functions.

Controllers Parameterization

Output feedback control with known and convexifiable reward has been studied extensively
[147], and linear dynamic controllers suffice for this case. However, in our problem setting,
since the reward is unknown and nonconvex, and systems dynamics will become uncertain
and nonlinear in Section 5.4, we consider a dynamic controller in the form of an RNN, which
makes a class of high-capacity flexible controllers.

We model the RNN controller 7y as an interconnection of an LTT system P,, and combined
activation functions ¢ : R™ — R™ as shown in Figure 5.2. This parameterization is
expressive, and contains many widely used model structures [142]. The RNN 7, is defined
as follows

E(k+1) = Ak &(k) + Bg1 w(k) + Bgs y(k)
Pﬂ- U(k’) = CKl f(kﬁ) + DKl w(k) + DK2 y(kﬁ)
(k) = Cka2 &(k) + D3 y(k)

w(k) = ¢(v(k)) (5.2)

where £ € R™ is the hidden state, v,w € R"™¢ are the input and output of ¢, and matrices
Ax Bgi B

Ak, ..., Dgs are parameters to be learned. Define 6 = [g; Délg gﬁ] as the collection of
K2 K3

the learnable parameters of my. We assume the initial condition of £ to be zero £(0) = Onex1-

The combined nonlinearity ¢ is applied element-wise, i.e., ¢ := [p1(v1), ..., @n, (Vn ¢)]T, where
©; is the i-th scalar activation function. We assume that the activation has a fixed point at
origin, i.e. ¢(0) = 0.

Quadratic Constraints for Activation Functions

The stability condition relies on quadratic constraints (QCs) to bound the activation func-
tion. A typical QC is the sector bound as defined next.

Definition 5.3.1. Let a < 3 be given. The function ¢ : R — R lies in the sector |a, 5] if:
(p(v) —av) - (Br —p(v)) >0 Yv e R. (5.3)

The interpretation of the sector [« 5] is that ¢ lies between lines passing through the
origin with slope o and . Many activations are sector bounded, e.g., leaky ReLU is sector
bounded in [a, 1] with its parameter a € (0,1); ReLU and tanh are sector bounded in [0, 1]
(denoted as tanh € sector [0, 1]). Figure 5.3 illustrates different activations (blue solid) and
their sector bounds (green dashed).

Sector constraints can also be defined for combined activations ¢. Assume the i-th scalar
activation ; in ¢ is sector bounded by [ay, 5], @ = 1, ..., ny, then these sectors can be stacked

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 96

into vectors oy, By € R™, where ag = [, ...,an,] and By = [B1, ..., By,], to provide QCs
satisfied by ¢.

Lemma 5.3.1. Let ay, 8, € R™ be given with ay < 4. Suppose that ¢ satisfies the sector
bound [ovy, By element-wise. For any A € D', and for all v € R™ and w = ¢(v), it holds
that

MT Lii’?ﬁgjﬁ <A¢j2f¢)A} m >0, (5.4)

where Ay = diag(ay), and By = diag(fy,).

A proof is available in [59].

Loop Transformation

To derive convex stability conditions for their efficient enforcement in the learning process,
we first perform a loop transformation on the RNN as shown in Figure 5.4. Through loop
transformation, we obtain a new representation of the controller m;, which is equivalent to

the one shown in Figure 5.2:
v ~ |z
M _ P, M (5.50)

2(k) = d(o(k)). (5.5b)

The newly obtained nonlinearity ¢, defined in Figure 5.4, is sector bounded by [T, x1; Ingx1l,
and thus it satisfies a simplified QC: for any A €]D)Tff, it holds that

B Jenermeci

The transformed system P, defined in Figure 5.4, is of the form:

€k 1) = Ay (k) + Bra 5% =(K) + Brca y(k)

where
glK = Ag + Bg1S¢Cko, fz’m = Bra + Br1S¢Dxks,
Crk1 = Crg1+ Dg1S4Ck2, Dgo = Dgo + Dg1SyDps,

Sy = 2etBs, (5.7)

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED

SYSTEMS 97
The deriviation of P, is obtain by transforming the input to P, by the following equation:
w(k) = B¢+A¢z(k) + @v(/ﬂ). (5.8)
Substituting the expression of v(k) from (5.2) into (5.8) yields
wi) = B2 Aoy At Bog, ey e 2 X Bep iy s)

Finally, the transformed plant P, can be obtained by substituting (5.9) into (5.2).
~ Ag Bii1 B
We define the learnable parameters of w5 as ¢ = [G; DI}: ﬁiz . Since there is an one-to-

one correspondence (5.7) between the transformed parameters § and the original parameters
0, we will learn in the reparameterized space and uniquely recover the original parameters
accordingly.

Convex Lyapunov Condition

The feedback system of plant G and RNN controller in 75 (5.5) is defined by the following
equations

C(k+1)=AC((k)+ B z(k) (5.10a)
v(k) = C ((k)+D z(k) (5.10Db)
2(k) = ¢(v(k)) (5.10c)
where ¢ = [z, €7]7 gathers the states of G and P;, and
A = Ac+BaDk2Ca BGCN’Kli| B = {BGDKl B¢;A¢ }
o BKQCG AK ’ o Bk1 By—A4g)
C:[DK3CG CKQ], D:0n¢xn¢-

Note that matrices A, B,C,D are affine in §. The following theorem incorporates the QC
for ¢ in the Lyapunov condition to derive the exponential stability condition of the feedback
system using the S-Lemma [183, 27]

Theorem 5.3.1 (Sequential Convexification). Consider the feedback system of plant G in
(5.1), and RNN controller w5 in (5.5). Given a rate p with 0 < p < 1, and matrices
P € R gnd A € R™*" if there exist matrices Q, € S oy and Qg €]D++, cmd parameters

6 such that the following condition holds

p*(2P — PTQ.P) 0 AT T
0 2A—ATQA BT DT
A 5 o 0 >0, (5.11)
C D 0 Qo

then for any x(0), we have ||x Y| < v/ cond(P)p*||2(0)|| for all k, where cond(P) is the condition
number of P, and P := Ql_l , the feedback system is exponentially stable with rate p.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 98

Proof. Assume there exist (), € Siﬂr, Q- € DZZ, and 6, such that (5.11) holds. It follows
from Schur complements that (5.11) is equivalent to

A B T Q—l 0 A B Pz(zp—PTQ P) 0
{C D] [5 le} {C D}_[0 2]_/‘\TQ2A]f0- (5.12)

It follows from the inequalities PTQP — 2P = —Q;" and ATQ,A — 2A = —Q; " for any
P e R™*™ and A € R™*™ [165, 142] that (5.12) implies

T 1 21—1
RN LN G R

Defining P = Q7', and A = Q3', and rearranging (5.13), we have that P, A, and 0 satisfy
the following condition

ATPA—p?P ATPB] [c D]'[A 0]fc D
BTPA BTPB 0 I 0 —Al|0 T

] <0, (5.14)

Define the Lyapunov function V(¢) := (" P¢. Multiplying (5.14) on the left and right by
[C(k)T, 2(k)T] and its transpose yields

VICth+ 1) - V(e + 1) T AR (5.15)

It follows from ¢ € sector [~ 1nyx1, In,x1] that the last term in (5.15) is nonnegative, and
thus V(C(k + 1)) < p?V(¢(k)). Tterate it down to k = 0, we have V(((k)) < p*V(¢(0)),

which implies ||C(k)|| < v/cond(P)p*||¢(0)]|. Recall £(0) = 0. Therefore

lz ()| < (R < v/eond(P)p*[[C(0)]| = /cond(P)p*||x(0)

and this completes the proof. m

The above convex relaxation of the non-convex condition (5.14) leverages a “linearizing”
semi-definite inequality based on a previous guess of Q7' and Q;* (as P and A). The linear
matrix inequality (LMI) condition (5.11) is jointly convex in the decision variables 8, Q;,
()2, where ()1 and ()5 are the inverse matrices of the Lyapunov certificate and the multiplier
n (5.14), and this allows for its efficient enforcement in the reinforcement learning process.
Denote the LMI (5.11), Q; € S, and Q, € D%, altogether as LMI(Q1, Q2, 6, P, A), which
will later be incorporated in the policy gradient process to provide exponential stability
guarantees.

Based on the stability condition (5.11), define the convex stability set C(P,A) as

C(P,A) = {é: 3Q1,Qs, st LMI(Q1, Qs, 6, P,A)}. (5.16)

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 99

Given matrices P and A, any parameter 6 drawn from C (P, A) ensures the exponential
stability of the feedback system (5.10). The set C(P, A) is a convex inner-approximation to
the set of parameters that renders the feedback system stable, and the choice of P and A
affects the conservatism in the approximation. One way of choosing (P, A) is provided in
Algorithm 3.

Remark 5.3.1. Although only sector bounds (5.6) are used to describe the activation func-
tions, we can further reduce the conservatism by using off-by-one integral quadratic con-
straints [103] to also capture the slope information of activation functions as done in [186].

Remark 5.3.2. Note that although we only consider LTI plant dynamics, the framework can
be immediately extended to plant dynamics described by RNNs, or neural state space models
provided in [88].

r(k)«e— ¥

with

N
A ;p—%r(k)wr(k) >0 A
q(k>|:]p(k:) q(k) p(k)
G
u(k) ¢ y(k) u(k) y(k)
(a) uncertain plant (b) extended system of G and ¥ with
Figure 5.5: Illustration Fu(G,A) 1QCs

of Algorithm 3. The
set of all the stabilizing
0 is given in blue.

Figure 5.6: Uncertain plant and its corresponding constrained ex-
tended system

Projected Policy Gradient

Policy gradient methods [160, 176] enjoy convergence to optimality under the tabular setting
and achieve good empirical performance for more challenging problems. However, with little
assumption about the problem setting, they do not offer any stability guarantee for the closed
loop system. We propose the projected policy gradient method that enforces the stability of
the interconnected system while the policy is dynamically explored and updated.

Policy gradient approximates the gradient with respect to the parameters of a stochastic
controller using samples of trajectories via (5.17) without any prior knowledge of plant
parameters and the reward structures. Gradient ascent is then applied to refine the controller
with the estimated gradients.

ViR(mj) :/Xd”é(x)/uvéwé(u|x)Q”§(x,u)dudx

= IEé’INd,,’UNﬂé Q7 (x,u)Vglogms(u|z)]. (5.17)

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 100

In the above, 6 represents the parameters of n5. R(m;) is the expected reward (negative cost)
of the controller 5. d™(z) is the distribution of states z € X under 75, where X' is a set of states.
Q7 (x,u) is the reward-to-go after executing control u € U at state x under 75, where U is a set of
actions.

Like any gradient method, policy gradient does not ensure the controller is in some specific
set of preference (the set of stabilizing controller in our setting). To that end, a projection to the
stability set C(P,A), (Q1,Q2,0) « Hc(ﬁ,]\)w/)a is applied between gradient updates, where 6’ is
the updated parameter, and the projection operator Hc(P.R) (0") is defined as the following convex

program,
PP s
H o 9,6 . Q1:|_|:_ :| 0_0/2
ccpa@) € min @)= S| 10
st. LMI(Q1,Q2,6, P, A). (5.18)

Through the recursively feasible projection step (i.e. the feasibility is inherited in subsequent steps,
summarized in Theorem 5.3.2), we conclude with a projected policy gradient method to synthesize
stabilizing RNN controllers as summarized in Algorithm 3 and illustrated in Figure 5.5.

Theorem 5.3.2 (Recursive Feasibility). If LMI(Q]_,Q27§, P AL s

feasible (i.e. LMI(Q1,Q2,0, P"=1, A1 holds for some Q1, Q2, and 0), then LMI(Q1, Q2, 0, P, AY)
is also feasible, where P' = (Q})™! and A" = (Q4)~! are from the i-th step of projected policy
gradient, fori=1,2,...

Proof. The main idea is to show that (L Q5,0 is already a feasible point for LMI(Q1, Q2, 6, P, AY).
Since LMI(Q1, @2, 0, P AT s feasible, at optimum of the projection step, we obtain the min-
imizer (Q%,Q%,6") and LMI(Q},Q5%, 0%, Pt A""1) holds. Tt follows from inequalities 2P*~! —
PEITQIPT < (@) and 20T — AITQLAT < (QL)~" that

PR 0 1 AI CTr

0 (@)~ B D

A B Qi o =0, (5.19)
C D 0 Q5

which renders LMI(Q%, Q3, 07, P, A?) true at a feasible point of (Q%,Q%,0"). m

In the algorithm, the gradient step performs gradient ascent using the estimated gradient
VsR(m(6)). The projection‘ step projects‘the updated parameters 6 frpm the ‘gradient step to
the convex stability set C(P*, A"), where P* and A" are computed using Q] and @ from the previ-

ous projection step. We choose A° = I,, »» and construct PV based on the method in [147].

Remark 5.3.3. The projection step (5.18) is a semi-definite program (SDP) involving O((ne +
ng) X (ng + ng)) variables. The complexity of interior point SDP solvers usually scales cubically
with the number of variables, potentially bringing computational burden when (ng + ng) is large.
Luckily, most high dimensional problems admit low dimension structures [179] and such overhead
is only paid at training without further operations at deployment.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 101

Algorithm 3 Projected Policy Gradient

Input: Matrices P° and A s.t. C(P°, A%) is not empty, learning rate o > 0.
1: 1+ 0
2: while not converged do

3: 0 <+ 0" + oV;R(m) > gradient step
4: (@i, Q5+, éiﬂ) — HC(Pi,Ai)(e/i) > proj. step
5. pi+l — (QilJrl)_l? At — (Qz;rl)—l
6 11+ 1
7: end while

Output: 7;

()
v
o B Rk
u

I 1! Tt i = : 3
E F o - A e i
i 2 2 ’ (a) Decentralized (b) Localized
& alraly! |
% Lt
1 . @ i
© ®(b) (c) Ring (d) Star Topology
Figure 5.7: (a) Vehicle [1]; (b) Frequency Figure 5.8: Four communica-
Regulation on IEEE 39-bus New England tion topologies for IEEE 39-
Power System [11] bus power system [58].

5.4 Partially Observed Nonlinear Systems with
Uncertainty

In the context of RL, we often need to handle systems with nonlinear dynamics and/or unmodeled
dynamics. Here we model such a nonlinear and uncertain plant F,(G,A) (shown in Figure 5.6a)
as an interconnection of the nominal plant G, and the perturbation A representing the nonlinear,
and uncertain part of the system. Therefore, in this new problem setting, we only require system
dynamics to be partially known, and we use A to cover the difference between the original real
system dynamics, and partially known dynamics G. The plant F,(G, A) is defined by the following
equations:

a(k+1) =Ac x(k)+ Be1 q(k) + Baz u(k)
G p(k) = CGl x(k) + DGl q(k)
y(k) = Cg2 (k)
q(-) = A(p(-)) (5.20)

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 102

where z(k) € R"¢, u(k) € R™, and y(k) € R™ are the state, control input, and output of the
nominal plant G, and p(k) and ¢(k) are the input and output of A. The perturbation A : £57 — ¢3¢
is a causal and bounded operator.

The perturbation A can represent various types of uncertainties and nonlinearities, including
sector bounded nonlinearities, slope restricted nonlinearities, and unmodeled dynamics. Thus con-
sidering A extends our framework to the class of plants beyond LTI plants. The input-output
relationship of A is characterized with an integral quadratic constraint (IQC) [120], which consists
of a filter ¥ applied to the input p and output ¢ of A, and a constraint on the output » of ¥. The
filter ¥ is an LTI system with the zero initial condition (0) =0

nwxl:
Y(k+1) = Ay (k) + Byi p(k) + Bya q(k), (5.21a)
r(k) = Cy ¢(k) + Dy p(k) + Dy q(k). ’

To enforce exponential stability of the feedback system, we characterize A using the time-domain
p-hard IQC, which is introduced in [103], and its definition is also provided below.

Definition 5.4.1. Let ¥ be an LTI system defined in (5.21), and M € S™ . Suppose 0 < p < 1.
A bounded, causal operator A : Egg — Egg satisfies the time-domain p-hard 1QC defined by ¥, M,
and p, if the following condition holds for all p € €5", ¢ = A(p), and N >0

e

N
> p (k)T Mr(k) > 0. (5.22)
k=0

where r is the output of U driven by inputs (p,q).

Remark 5.4.1. For a particular perturbation A, there is typically a class of valid p-hard 1QCs
defined by a fized filter ¥ and a matric M drawn from a convexr set M. Thus, in the stability
condition derived later, M € M will also be treated as a decision variable. A library of frequency-
domain p-1QCs is provided in [26] for various types of perturbations. As shown in [148], a general
class of frequency-domain p-I1QCs can be translated into time-domain p-hard IQC by a multiplier
factorization.

When deriving the stability condition, the perturbation A will be replaced by the time-domain
p-hard IQC (5.22) that describes it, and the associated filter ¥, as shown in Figure 5.6b. Therefore,
the stabilizing controller will be designed for the extended system (an interconnection of G and
) subject to IQCs, instead of the original F,(G,A). This controller will also be able to stabilize
the original F,(G,A). Define the extended state as z. = [z, 1 "]T.Also define ¢ = [z, ¢T]T to

gather the states of the extended system and the controller. The feedback system of the extended
system and the controller has the dynamics

C(k+1) =AC((k)+ B q(k)+ B2 z(k)
v(k) =C1 ((k) 4+ D1 q(k) + Dy z(k)
r(k) = Co ((k) + D3 q(k) + Dy 2(k),

9
)

(5.23)

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED

SYSTEMS 103
where
_ [Ae+Be2DyaCen BeaCra _ Be1 }
A= [BkQ%&Q " Ay,] ’ B = [Onian ’
BeQDk ¢ ¢
82:[5 é¢_A2¢ , ClZ[Dk3Ce2Ck2],
k1
D]. = 0n¢><nq7 D2 - OTL¢><n¢a CQ = [Cel Onrxng])
D3:Dely D4:0nr><n¢’

and the extended system (shwon in Figure 5.6b) and its state space matrices (A, Bei, ..., De1) are
defined as follows.

Te(k+1) = Ae ze(k) + Be1 q(k) + Bea u(k) (5.24a)
(k) = Cer 2e(k) + Der q(k) (5.24b)
y(k) = Cez we(k) (5.24c)

where
Ag 0 Ba] [Bcz]
Ae = 5 Be =) Be =
[BmCGl AJ ! [Bwle + By T lo
Ce1 = [D¢1CGl Cw] , De = [leDGl + D¢2] , Coo= [CGQ O] . (5.25a)

The next theorem merges the QC for q5 and the time-domain p-hard IQC for A with the Lyapunov
theorem to derive the exponential stability condition for the uncertain feedback system.

Theorem 5.4.1. Consider the feedback system of uncertain plant F,,(G,A), and RNN controller
mg. Assume A satisfies the time-domain p-hard IQC defined by ¥, M, and p, with 0 < p < 1.
Given P € H?”CX”C and A € R"s*"s_ [f there exist matrices Q1 € Sic_i_, Q2 €]D)i‘i, M e M, and
parameters 0 such that the following condition holds

-
R'TR A B B
Ci Dy Do
=0, (5.26)
R
Ci D1 Do 0 @2
where T = diag(p?(2P—P " Q1 P),2A—ATQ2A, —M) is a block diagonal matriz and R = {C] 2()0) D? }
2 3 4
Then for any x(0), we have ||z(k)|| < \/cond(P)p*||z(0)| for all k, where P := Q7*, i.e., the feed-

back system is exponentially stable with rate p.

Proof. Assume there exist Q1 € S++, Q- € ID)++, M € M, and 0 such that (5.26) holds. It follows
from Schur complements that (5.26) is equivalent to

2 D DT D
T (-1 p?(2P — PTQ.P) 0 0
am w5 lla noml-FT T 0 T aeaTen o frs0 G0

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 104

By inequalities PTQP — 2P - —Qfl and ATQoA — 2A > —Q;l for any P € R™*" and A €
R™*™ we have that (5.27) implies

A B B [QY 0 1[A Bl B]_ r
Ci D1 Dy 0 Q'|Ci D1 D,

Defining P = Ql_l and A = QQ_I, and rearranging (5.28), we have P,A, M, and 0 satisfy the
following condition

A B Bl'[P 0 A81 1D1D2TA 0], D Dy
I 0 0 0 —p?P Il |0 —Al]O O I

+[C; Dy Dy M[C; D3 Dy] <0 (5.29)

R=0. (5.28)

0 0o -M

Define the Lyapunov function V() := ¢ P¢. Multiplying (5.29) on the left and right by
[C(k)T, q(k)", 2(k)"] and its transpose yields

V(C(k+ 1) — p2V(C(k) + {ng : B _OA] [zgg] (k)T Mr(k) < 0. (5.30)

It follows from QNS € sector [—1, ox1> 1n ¢X1] that the third term is nonnegative. This yields
V(C(k+1)) = p?V(¢(k) + (k)T Mr(k) <O0.. (5.31)

Multiply (5.31) by p~2* for each k and sum over k to obtain

k—1

p2ETDV(C(R)) — PV (C(0) + Y p 2 r(t)Mr(t) < 0. (5.32)

t=0

By the assumption that A satisfies the p-hard IQC, the last term is nonnegative, and thus V({(k)) <
p*V (¢(0)) for all k, which implies [|¢(k)|| < \/cond(P)p*[|¢(0)[|. Recall £(0) = Opx1 and 9(0) =

Oy x1- Therefore

lz(k)ll < IC(R)I < /eond(P)p®[[¢(0)]] = v/cond(P)p"|l2(0)

and this completes the proof. m

This LMI (5.26) is jointly convex in 6, Q1, Q2 and M for any given P and A. Based on this
LMI, we define the convex robust stability set Cr(P, A):

Cr(P,A)i={0: Qi eSS, Qe MeM, st (5.26)}.

Any parameter 6 drawn from C r(P, A) ensures the exponential stability of the feedback system
of F;,(G,A) and 7, and this convex robust stability set can be used in the projection step.

Remark 5.4.2. If we only require the feedback system to be stable (p =1 in (5.26)), a more general
class of IQCs, the time-domain hard IQCs [120], can be used to describe A.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 105

5.5 Numerical Experiment

To compare our method against regular RNN controller trained without projection, we consider
6 different tasks involving control of partially observed dynamical systems, including a linearized
inverted pendulum and its nonlinear variant, a cartpole, vehicle lateral dynamics, a pendubot, and
a high dimensional power system. Figure 5.7 gives a demonstrative visualization of tasks including
vehicle lateral control and IEEE 39-bus power system frequency regulation, whose communication
topologies are shown in Figure 5.8.

Detailed Experimental Setup

In this section, we give detailed information about the experiments. All experiments are conducted
on a custom built machine with 36-core Intel Broadwell Xeon CPUs with 64 GB of RAM and are
terminated in tens of minutes. In all tasks, both our method and policy gradient are trained to
convergence and are capped at 1000 epochs. For each epoch, the gradient is estimated from a batch
of 6000 step data sampled from the controller interacting with the plant and is applied to update
the parameters. The trajectory length is capped at 200. The average reward from the sample of
trajectories from the 6000 steps are reported. We show 500 epoch plots in Figure 5.9 for clearer
capture of the convergence process. The experiments and models are coded in Python [168] with
Tensorflow [118], CVXPY [49] and MOSEK?. We choose the learning rate of le-3, picked from
grid search from le-1, le-2, le-3, le-4 to give best reward at convergence for policy gradient on
the inverted pendulum task. We use ADAM optimizer [89] and gradient clipping to a maximum
magnitude of 10 for each parameter. We use tanh activation for all our neural network controllers.
The implementation of policy gradient is consistent with [104]. And our method adds the projection
updates on the same code base. The initial guess for the Lyapunov matrix P° of Algorithm 3 is
constructed using the method introduced in [147], which computes the Lyapunov matrix for output
feedback control problem through LMIs. The initial guess for AY is an identity matrix.

Inverted Pendulum

We consider both a linearized inverted pendulum system and a full nonlinear version whose dy-
namics are given below. Both examples have two states x1, x2, representing the angular position
(rad) and velocity (rad/s). Only the plant output, y = x1, is observed. Our methods as described
in Sections 5.3 and 5.4 are applied for the linear, and nonlinear variants, with the goal of balancing
the inverted pendulum around the upright position.

Consider an inverted pendulum with mass m = 0.15 kg, length [= 0.5 m, and friction coefficient
= 0.5 Nms/rad. The discretized and linearized dynamics are:

- Sal B 3]

mil2

y(k)=[1 0] {xlgg] , (5.33)

2yww.mosek . com

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED

SYSTEMS
200
150
2 e
2 1001 g
& &
501 —— Our Method
—— Policy Gradient
0 - T T T T T
0 100 200 300 400 500

Training Epochs

200

150
B2 2
£ 100 2
Q 7}
4 o
50 —— Our Method
—— Policy Gradient

200 300 40

Training Epochs

100

0 500
AW N
14 / \ \\ \ -
£ 0+)
-14 \\ / 40
w g
-2 - :
-1 0 1-1 0 1
Ty B
(b)

1000 A 1000 4
800
- 800
600 —— Our Method H
—— Policy Gradient 5
< 600 -
400 == Our Method
200 400 A —— Policy Gradient
0 100 200 300 400 500 0 100 200 300 400 500
Training Epochs Training Epochs
1 10
-1 —10
0.5 5
0.0 1 & 0
—0.51 -5
1 1
0 g 0A »:
—1 1@ 1
1 5
e— - i
-1 : : : 51 . - -
0 50 100 150 200 0 50 100 150 200
Time Steps Time Steps
(c) (e)
1000 1000
| —— Our Method
800 800 1 ~—— Policy Gradient
600 —— Our Method § 600
—— Policy Gradient &, 200 4
400 -
200
200 -
T T T T T T 04— T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Training Epochs Training Epochs
1 B
0 %_ ° 0.25 “s —— Phase Q;
-1 % P e S P Fregency w;
o] TR AR —
7g] ’ Hidataggeisnnd
14
0
—11
10 :
01 d
—10 4 =] B
0 50 100 150 200 0 10 30 40 50
Time Steps Time Steps

Figure 5.9: (a) Inverted Pendulum (linear); (b) Inverted Pendulum (nonlinear); (c) Cartpole;
(d) Pendubot; (e) Vehicle lateral control; (f) IEEE 39-bus New England Power System
frequency regulation. The error bars of reward plots characterize standard deviation across
3 runs with different seeds. For (a) and (b), the left figures are from our method and right
figures from policy gradient. Converging trajectories are rendered in green while diverging
ones in red. For (c), (d), (e), trajectories from our method are given in blue while those from
policy gradient are in orange. For (f), top figure is given by our method and bottom one by

policy gradient.

where u is the control input (1/10 Nm), and 6 = 0.02 s is the sampling time.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 107

The discretized nonlinear dynamics of the inverted pendulum are

:I:l(k—i—l)] [1 0] [ml(k)} { 0 } [0]
= + | _ k) + u(k),
]l P o g E R R
$1(k)}
ky=11 0 ,

uk) =[1 0] [952(7?)

q(k) = A(z1(k)) = z1(k) — sin(z1 (k).
The nonlinearity A(z1) = x1—sin(z;) lies in the sector [0,0.41] for x; € [-1.4rad, 1.4 rad]. The time
domian p-hard IQC for describing the nonlinearity A is defined by the static filter ¥ = [Oél *11],
the matrix M = [§] for all A > 0, and any p > 0.

At training, we pick p = 1 for both tasks. The observation of output is limited to [—0.15,0.15]
and is normalized (i.e. devided by 0.15) before feeding into the controller. The trajectory ter-
minates when the limit is violated or the length arrives 200. The hyperparameters are set to
ng = 16,n¢ = 16. The following reward is used,

T
R=>[1.0— 100z (k)* — 10z2(k)* + 100u(k)?],
k=0
where (z1(k), z2(k)) is state and u(k) is control at step k.

Cartpole

A linearized cartpole system is considered, the goal of which is to balance the pendulum around
the upright position while keeping the position of the cart close to the origin. The discretized and
linearized dynamics of the cartpole are

v1(k+1) 1 —0.001 002 0 21(k) 0
wa(k+1)) _ 010050 002 | st | 0|
zs(k+1)] ~ |0 0079 1 —0.001| |zs(k) 0.04 ’
va(k+1)] |0 055 0 1.005 | |x4(k)| [—0.04
1 (k)
1 0 0 0] |2k
y(k)_[o 10 o] z3(k) |
z4(k)

where 1 and x2 represent the cart position (m) and the angular position (rad) of the pendulum, z3
and x4 are the corresponding cart velocities (m/s) and angular velocity (rad/s) of the pendulum,
u is the horizontal force (N) exerting on the cart, and y is the plant output.

At training, we pick p = 0.98. The observation of output is limited to x; : [-1,1], 22 :
[-7/2,7/2] and is normalized before feeding into the controller. The trajectory terminates when
the limit is violated or the length arrives 200. The hyperparameters are set to ng = 16,n¢ = 16.
The following reward is used,

T
R=Y [5.0—a21(k)? - za(k)? — 0.04w3(k)* — 0.1z4(k)* — 0.2u(k)?]

where (z1(k), z2(k), x3(k), z4(k)) is state and u(k) is control at step k.

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 108

Pendubot

A linearized pendubot is considered. The main goal is to balance the pendubot around the upright
position. The linearized and discretiezed dynamics (sampling time 6 = 0.01 s) of the pendubot are

ek+1)] [1 001 0 0 7 [a1(k) 0
wap(k)| _ | 06738 1 —02483 0 | aa(k)| | 04487 |
afg(k-i-l) - 0 0 1 0.01 xg(k) 0 ’
x4(k+1) —0.6953 O 1.0532 1 x4(k) —0.8509
) z1(k)
10 0 0] [aak)
y(k) = 0 0 1 0] |as(k)|”
z4(k)

where z1 and x3 represent the angular positions (rad) of the first link and the second link (relative
to the first link), x5 and x4 are the corresponding angular velocities (rad/s), u represents the torque
(Nm) applied on the first link, and y is the plant output.

At training, we pick p = 0.98. The observation of output is limited to x; : [—1,1], x5 : [-1, 1].
The hyperparameters are set to ng = 16, n¢ = 16. The following reward is used,

T
R=>[5.0—21(k)* - 0.05z5(k)* — 23(k)* — 0.05z4(k)* — 0.2u(k)?],
k=0

where (z1(k), z2(k), x3(k), z4(k)) is state and u(k) is control at step k.

Vehicle Lateral Control

In this setting, we consider the vehicle lateral control problem from [1, 186]. The goal is for the
vehicle to track the lane edge while avoiding strong control inputs. The continuous-time linear
vehicle lateral dynamics are

¢ 0 1 0 0 e 0 0
. 0 Caft+Car Caf+Car aCuy—bCar . Cay aCQf—bCar—anz
el _ mU - m mU € TTm - m
éol = |0 0 0 1 el Tl 0 |ut 0 c
éo 0 aCaf—=bCar _ aCuj—=bCar a®Cas+b>Car éo _aCuy a2Cy ;+62Cor
LU 1. U T, S S—

where e is the perpendicular distance to the lane edge (m), and ey is the angle between the tangent
to the straight section of the road and the projection of the vehicle’s longitudinal axis (rad). Let
x = le, é,eq, ég]T denote the plant state. The control u is the steering angle of the front wheel (rad).
The plant output is y = [e, ep] . The disturbance c is the road curvature (1/m). In this task, we
consider a constant curvature ¢ = 0. The values for the rest of the parameters are given in [186].
The controller is synthesized for the discretized dynamics with the sampling time § = 0.02 s.

At training, we pick p = 0.98. The observation of output is limited to e : [—10,10], e : [—1,1]
and is normalized before feeding into the controller. The trajectory terminates when the limit is
violated or the length arrives 200. The hyperparameters are set to ng = 16,n¢ = 16. The following

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 109

reward is used,

T
R=>" [5 0 — 0.01e(k)? — 0.04é(k)? — eg(k)? — 0.04é(k)? — —u(k)?|,
T
k=0

where (e(k), é(k), eg(k), ég(k)) is state and u(k) is control at step k.

Power System Frequency Regulation

In this task, we address the distributed control problem for IEEE 39-Bus New England Power
System frequency regulation [58, 82] with the decentralized communication topology shown in
Figure 5.8 (a). The main goal is to optimally adjust the mechanical power input to each generator
such that the phase and frequency at each bus can be restored to their nominal values after a
possible perturbation. The linearized and discretized (sampling time § = 0.2 s) dynamics of the
power system are

O] = Lomrnn ot n) [P0+ [] e

) = (1.0 [S0].

where n is the number of rotors (n = 10 in this example), the states Q,w € R™ represent the
phases and frequencies of the rotors, u € R™ represents the generator mechanical power injections,
values for inertia coefficient matrix M,,, damping coefficient matrix D, and Laplacian matrix L are
specified in Section IV of fazelnia2016convex.

Designing an optimal controller for these systems is challenging, because they consist of inter-
connected subsystems that have limited information sharing. For the case of distributed control,
which requires the resulting controller to follow a sparsity pattern, it has been long known that
finding the optimal solution amounts to an NP-hard optimization problem in general (even if the
underlying system is linear). End-to-end reinforcement learning comes in handy, because it does
not require model information by simply interacting with the environment while collecting rewards.

At training, we pick p = 0.98. The observation of output is limited to €; : [-0.5,0.5] and is
normalized before feeding into the controller. The trajectory terminates when the limit is violated
or the length arrives 200. The hyperparameters are set to ng = 20, n¢ = 20. The following reward
is used,

T
R=>"[5.0—[120k)|* — llw(k)||* - 0.2/u(k)|*],
k=0

where (2(k),w(k)) is state and u(k) is control at step k.

The experimental results including rewards and sample trajectories at convergence are reported
in Figure 5.9. In all experiments, our method achieves high reward after the first few projection
steps that ensures stability, greatly outperforming the regular method which suffers from instability
even after converging. For pendubot and inverted pendulum tasks, our method keeps perfecting the
performance after the first projection steps which already give high performance. While for cartpole,
vehicle lateral control, and power system frequency regulation tasks, our method converges to

CHAPTER 5. STABLE CONTROLLERS SYNTHESIS FOR PARTIALLY OBSERVED
SYSTEMS 110

optimal performance in one step. Our method gives converging trajectories for all tasks and achieves
faster converging trajectories on the vehicle lateral control task. In comparison, policy gradient has
been greatly impacted by the partial observability and converges to sub-optimal performance in
cartpole, pendubot, and power system frequency regulation tasks and requires more steps to achieve
optimal performance in inverted pendulum and vehicle lateral control tasks. Without stability
guarantee, policy gradient fails to ensure converging trajectories from some initial conditions for
all tasks excluding vehicle lateral control which is open-loop stable.

5.6 Summary

In this work, we present a method to synthesize stabilizing RNN controllers, which ensures the
stability of the feedback systems both during learning and control process. We develop a convex
set of stabilizing RNN parameters for nonlinear and partially observed systems. A novel projected
policy gradient method is developed to synthesize a controller while enforcing stability by recursively
projecting the parameters of the RNN controller to the convex set. By evaluating on a variety of
control tasks, we demonstrate that our method learns stabilizing controllers with fewer samples,
faster converging trajectories, and higher final performance than policy gradient. Future directions
include extensions to implicit models [15, 55] or other memory units.

111

Chapter 6

Conclusion and Future Research

In this dissertation, we look into deep implicit models, a new type of deep learning model involving
an infinite number of layers through the introduction of an equilibrium equation. Unlike deep
learning models with explicit feed forward neural networks, the output of implicit models bases
on a solution to some fixed-point equation for forward and backward pass in order to capture the
infinite number of layers. The new model has great prospects in the machine learning community
in bringing higher model capacity and enabling better performance.

The dissertation lays the theoretical and empirical foundations for deep implicit models. In
the first part, we present implicit deep learning, a pioneering framework of deep implicit models.
We discuss different theoretical aspects of implicit deep learning including well-posedness, training,
robustness, and more. In the second part, we extend the framework to solve empirical tasks
including representation learning in graph-structured data and stable controller synthesis. We
show that implicit models achieve better performances than deep learning counterparts in these
settings. In graph representation settings, as discussed in Chapter 4, we introduce the implicit graph
neural networks framework (IGNN). IGNN uses an infinite number of message passing processes
which resembles the class of traditional graph algorithms where some equilibrium state is attained
through graph operations. As a result, IGNN achieves unprecedented performance in capturing
long-range dependency in graphs. In stable controller synthesis settings, as discussed in Chapter 5,
implicit deep learning enables flexible modeling of neural networks via simple notations. Thanks to
the simplicity, we manage to derive convex conditions to specify stability of the closed loop system
and come up with an efficient algorithm to iteratively synthesize stabilizing controllers.

Deep implicit models have seen more and more attention from the machine learning community
in recent years thanks to research works laying the theoretical and empirical foundations. Even
though we have seen some successes of implicit models in a range of areas, there are still a lot of
future directions to look at. We list a few below.

Well-posdness in practice. In Chapter 2, we have discussed some sufficient well-posedness
conditions for implicit deep learning. Through the enforcement of such conditions, we are able to
obtain well-posed implicit models (e.g. implicit graph neural networks in Chapter 4). However,
the conditions proposed are still sufficient conditions and are potentially conservative. There are
other variants of implicit models that have not explicitly enforced well-posedness conditions when
doing training and inference but are still able to push the models to work with tricks and tweaks.

CHAPTER 6. CONCLUSION AND FUTURE RESEARCH 112

We believe exploration into the nature of well-posedness and practical yet efficient enforcement of
well-posedness are interesting directions to look into and will be of high impact in pushing implicit
models to the public.

Training and Inference. The training and inference of implicit models have mostly relied
on implicit gradient calculation through implicit function theorem. It turns out that both the
forward and backward calculations require a solution to an equilibrium equation. Deep implicit
models discussed in Chapter 2 and 4 are good examples. In the dissertation, we mostly use Picard
iteration to obtain the solution. At convergence, the solution quality is best but the calculation
can incur too much effort. For the model to empirically deploy to mobile devices or large scale
environments, the cost of computation needs to be lowered as much as possible. Future research on
lowering the training and inference cost will significantly benefit implicit models. The alternative
gradient-less training methods for implicit models through the introduction of Fenchel divergence
(as introduced in Chapter 3) is also a relatively unexplored but interesting direction to look at.

Capacity of implicit models. Recent empirical efforts (e.g. Chapter 4) on implicit models
have shown that implicit models are able to achieve higher capacity and achieve unprecedented
performances compared with deep learning with explicit feed forward networks. Intuitive expla-
nations for the performance bump have focused on the fact that implicit models can be seen as
infinitely deep neural networks. Theoretical views for such observation are still mostly unexplored.
Future research on theoretical depiction of higher capacity of implicit models will direct the new
designs and applications of implicit models.

Implicit model compression. The higher capacity of implicit models have been demon-
strated empirically in several applications without intentionally introducing model compression
techniques (e.g. encourage sparsity). We believe implicit models have great potential in further
compressing the current numbers of parameters to reach unprecedented model compression results.
Future research pushing on this would be highly impactful for the machine learning community
overall.

Connection to control. The implicit deep learning framework in Chapter 2 has a natural
connection to control systems. Specifically, it models all implicit models through the equilibrium
equation x = ¢(z) which can be captured using IQC for many activation functions, similar to what
is presented in Chapter 5. This opens up new analysis opportunities for neural network or implicit
model controlled systems. With the notational simplicity, we also expect future research to bring
some control inspired results to deep implicit models through the implicit deep learning framework.

113

Bibliography

Andrew Alleyne. “A comparison of alternative intervention strategies for unintended
roadway departure (URD) control”. In: Vehicle System Dynamics 27.3 (1997), pp. 157
186.

Luis B. Almeida. “Backpropagation in Perceptrons with Feedback”. In: Neural Com-
puters. Ed. by Rolf Eckmiller and Christoph v.d. Malsburg. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1989, pp. 199-208. 1SBN: 978-3-642-83740-1.

Brandon Amos and J Zico Kolter. “Optnet: Differentiable optimization as a layer in
neural networks”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 136—-145.

Brandon Amos et al. “Differentiable MPC for End-to-end Planning and Control”. In:
Advances in Neural Information Processing Systems. 2018, pp. 8289-8300.

Charles W Anderson et al. “Robust reinforcement learning control using integral

quadratic constraints for recurrent neural networks”. In: IEEE Transactions on Neural
Networks 18.4 (2007), pp. 993-1002.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. “Structured pruning of deep
convolutional neural networks”. In: ACM Journal on Emerging Technologies in Com-
puting Systems (JETC) 13.3 (2017), pp. 1-18.

J Dwight Aplevich. The essentials of linear state-space systems. Wiley New York,
2000.

Armin Askari et al. “Lifted Neural Networks”. In: arXiv preprint arXiv:1805.01532
(2018).

Armin Askari et al. “Lifted neural networks”. In: arXiv preprint arXiv:1805.01532
(2018).

Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated Gradients Give
a False Sense of Security: Circumventing Defenses to Adversarial Examples”. In: Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018. Vol. 80. Proceedings of Ma-
chine Learning Research. PMLR, 2018, pp. 274-283.

BIBLIOGRAPHY 114

[11]

[12]

[13]

[21]
[22]

[23]

[24]

[25]

T Athay, R Podmore, and S Virmani. “A practical method for the direct analysis
of transient stability”. In: IEEE Transactions on Power Apparatus and Systems 2
(1979), pp. 573-584.

James Atwood and Don Towsley. “Diffusion-convolutional neural networks”. In: Ad-
vances in neural information processing systems. 2016, pp. 1993-2001.

Filipe de Avila Belbute-Peres et al. “End-to-End Differentiable Physics for Learning
and Control”. In: Advances in Neural Information Processing Systems 31. Ed. by S.
Bengio et al. Curran Associates, Inc., 2018, pp. 7178-7189. URL: http://papers.
nips.cc/paper/7948-end-to-end-differentiable-physics-for-learning-
and-control.pdf.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine transla-
tion by jointly learning to align and translate”. In: arXiv preprint arXiw:1409.0473
(2014).

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In: Ad-
vances in Neural Information Processing Systems. 2019, pp. 688-699.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. “Deep Equilibrium Models”. Preprint
submitted. 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. “Multiscale Deep Equilibrium Mod-
els”. In: Advances in Neural Information Processing Systems 33 (2020).

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. “Stabilizing Equilibrium Models by
Jacobian Regularization”. In: arXiv preprint arXiv:2106.14342 (2021).

Andrew G Barto, Steven J Bradtke, and Satinder P Singh. “Learning to act using
real-time dynamic programming”. In: Artificial intelligence 72.1-2 (1995), pp. 81-138.

Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical
bias—variance trade-off”. In: Proceedings of the National Academy of Sciences 116.32
(2019), pp. 15849-15854.

Felix Berkenkamp et al. “Safe model-based reinforcement learning with stability guar-
antees”. In: arXiv preprint arXiv:1705.08551 (2017).

Abraham Berman and Robert J Plemmons. Nonnegative matrices in the mathematical
sciences. STAM, 1994.

Mathieu Blondel, Andre Martins, and Vlad Niculae. “Learning classifiers with fenchel-
young losses: Generalized entropies, margins, and algorithms”. In: The 22nd Inter-
national Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 606—
615.

Mathieu Blondel, André FT Martins, and Vlad Niculae. “Learning with Fenchel-
Young losses.” In: J. Mach. Learn. Res. 21.35 (2020), pp. 1-69.

Mathieu Blondel et al. “Efficient and Modular Implicit Differentiation”. In: arXiv
preprint arXiv:2105.15183 (2021).

BIBLIOGRAPHY 115

[26]

[31]

Ross Boczar et al. “Exponential stability analysis via integral quadratic constraints”.
In: arXiv preprint arXiv:1706.01357 (2017).

Stephen Boyd et al. Linear matriz inequalities in system and control theory. SIAM,
1994.

Darius Braziunas. “POMDP solution methods”. In: University of Toronto (2003).

Frank M Callier and Charles A Desoer. Linear system theory. Springer Science &
Business Media, 2012.

Nicholas Carlini and David A. Wagner. “Adversarial Examples Are Not Easily De-
tected: Bypassing Ten Detection Methods”. In: Proceedings of the 10th ACM Work-
shop on Artificial Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA,
November 3, 2017. ACM, 2017, pp. 3—14.

Miguel Carreira-Perpinan and Weiran Wang. “Distributed optimization of deeply
nested systems”. In: Proceedings of the Seventeenth International Conference on Ar-
tificial Intelligence and Statistics. Ed. by Samuel Kaski and Jukka Corander. Vol. 33.
Proceedings of Machine Learning Research. Reykjavik, Iceland: PMLR, 22-25 Apr
2014, pp. 10-19. URL: http://proceedings.mlr.press/v33/carreira-perpinani4.
html.

Miguel A Carreira-Perpinan and Mehdi Alizadeh. “ParMAC: distributed optimisation
of nested functions, with application to learning binary autoencoders”. In: arXiv
preprint arXiv:1605.09114 (2016).

Abhijit Chakraborty, Peter Seiler, and Gary J Balas. “Susceptibility of F/A-18 flight
controllers to the falling-leaf mode: Nonlinear analysis”. In: Journal of guidance, con-
trol, and dynamics 34.1 (2011), pp. 73-85.

Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector ma-
chines”. In: ACM transactions on intelligent systems and technology (TIST) 2.3
(2011), pp. 1-27.

Heng Chang et al. “Spectral Graph Attention Network”. In: arXiv preprint
arXiv:2003.07450 (2020).

Soravit Changpinyo, Mark Sandler, and Andrey Zhmoginov. “The power of sparsity
in convolutional neural networks”. In: arXiv preprint arXiv:1702.06257 (2017).

Pratik Chaudhari et al. “Entropy-sgd: Biasing gradient descent into wide valleys”.
In: arXiv preprint arXiv:1611.01838 (2016).

Ming Chen et al. “Simple and Deep Graph Convolutional Networks”. In: arXiv
preprint arXiv:2007.02133 (2020).

Tian Qi Chen et al. “Neural Ordinary Differential Equations”. In: Advances in Neu-
ral Information Processing Systems 31. Ed. by S. Bengio et al. Curran Associates,
Inc., 2018, pp. 6571-6583. URL: http://papers.nips.cc/paper/7892-neural -
ordinary-differential-equations.pdf.

BIBLIOGRAPHY 116

[40]
[41]

[42]

[43]
[44]
[45]

[46]

Tian Qi Chen et al. “Neural ordinary differential equations”. In: Advances in neural
information processing systems. 2018, pp. 6571-6583.

Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

Jason Choi et al. “Reinforcement learning for safety-critical control under model
uncertainty, using control lyapunov functions and control barrier functions”. In: arXiv
preprint arXiv:2004.07584 (2020).

Yinlam Chow et al. “A Lyapunov-based approach to safe reinforcement learning”. In:
arXiv preprint arXiv:1805.07708 (2018).

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified Adversarial Robustness
via Randomized Smoothing. 2019. eprint: arXiv:1902.02918.

Munther A Dahleh and Ignacio J Diaz-Bobillo. Control of uncertain systems: a linear
programming approach. Prentice-Hall, Inc., 1994.

Hanjun Dai, Bo Dai, and Le Song. “Discriminative embeddings of latent variable
models for structured data”. In: International conference on machine learning. 2016,
pp. 2702-2711.

Hanjun Dai et al. “Learning steady-states of iterative algorithms over graphs”. In:
International conference on machine learning. 2018, pp. 1106-1114.

Yann N Dauphin et al. “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization”. In: Advances in neural information processing
systems. 2014, pp. 2933-2941.

Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling lan-
guage for convex optimization”. In: Journal of Machine Learning Research 17.83
(2016), pp. 1-5.

Priya Donti, Brandon Amos, and J Zico Kolter. “Task-based end-to-end model learn-
ing in stochastic optimization”. In: Advances in Neural Information Processing Sys-
tems. 2017, pp. 5484-5494.

Priya L Donti et al. “Enforcing robust control guarantees within neural network
policies”. In: arXiv preprint arXiv:2011.08105 (2020).

John C Doyle. “Guaranteed margins for LQG regulators”. In: IEEE Transactions on
automatic Control 23.4 (1978), pp. 756-757.

John Duchi et al. “Efficient projections onto the 1 1-ball for learning in high dimen-
sions”. In: Proceedings of the 25th international conference on Machine learning. 2008,
pp. 272-279.

Geir E Dullerud and Fernando Paganini. A course in robust control theory: a convex
approach. Vol. 36. Springer Science & Business Media, 2013.

BIBLIOGRAPHY 117

[55]
[56]

[57]

[61]

[62]
[63]

[64]

[65]

Laurent El Ghaoui et al. “Implicit deep learning”. In: STAM Journal on Mathematics
of Data Science 3.3 (2021), pp. 930-958.

Utku Evci et al. “The difficulty of training sparse neural networks”. In: arXiv preprint
arXiv:1906.10732 (2019).

Maryam Fazel et al. “Global convergence of policy gradient methods for the lin-
ear quadratic regulator”. In: International Conference on Machine Learning. PMLR.
2018, pp. 1467-1476.

Ghazal Fazelnia et al. “Convex relaxation for optimal distributed control problems”.
In: IEEE Transactions on Automatic Control 62.1 (2016), pp. 206—221.

Mahyar Fazlyab, Manfred Morari, and George J Pappas. “Safety verification and ro-
bustness analysis of neural networks via quadratic constraints and semidefinite pro-
gramming”. In: IEEE Transactions on Automatic Control (2020).

Stefan R Friedrich and Martin Buss. “A robust stability approach to robot rein-
forcement learning based on a parameterization of stabilizing controllers”. In: 2017
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2017,
pp. 3365-3372.

Pascal Gahinet and Pierre Apkarian. “A linear matrix inequality approach to H
control”. In: International journal of robust and nonlinear control 4.4 (1994), pp. 421—
448.

Claudio Gallicchio and Alessio Micheli. “Fast and deep graph neural networks”. In:
arXiv preprint arXiw:1911.08941 (2019).

Claudio Gallicchio and Alessio Micheli. “Graph echo state networks”. In: The 2010
International Joint Conference on Neural Networks (IJCNN). IEEE. 2010, pp. 1-8.

Vignesh Ganapathiraman et al. “Inductive Two-layer Modeling with Parametric Breg-
man Transfer”. In: International Conference on Machine Learning. PMLR. 2018,
pp. 1636-1645.

Bolin Gao and Lacra Pavel. “On the properties of the softmax function with applica-
tion in game theory and reinforcement learning”. In: arXiv preprint arXiv:1704.00805
(2017).

Thomas Gartner, Peter Flach, and Stefan Wrobel. “On graph kernels: Hardness results
and efficient alternatives”. In: Learning theory and kernel machines. Springer, 2003,
pp. 129-143.

Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org.
2017, pp. 1263-1272.

BIBLIOGRAPHY 118

[68]

[75]

[76]

[77]

lan J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Har-
nessing Adversarial Examples”. In: 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. 2015. URL: http://arxiv.org/abs/1412.6572.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. “A new model for learning
in graph domains”. In: Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005. Vol. 2. IEEE. 2005, pp. 729-734.

Sven Gowal et al. “On the Effectiveness of Interval Bound Propagation for Training
Verifiably Robust Models”. In: CoRR abs/1810.12715 (2018). arXiv: 1810.12715.
URL: http://arxiv.org/abs/1810.12715.

Fangda Gu, Armin Askari, and Laurent El Ghaoui. “Fenchel lifted networks: A la-
grange relaxation of neural network training”. In: International Conference on Arti-
ficial Intelligence and Statistics. PMLR. 2020, pp. 3362-3371.

Fangda Gu et al. “Implicit graph neural networks”. In: Advances in Neural Informa-
tion Processing Systems. Vol. 33. 2020.

Fangda Gu et al. “Recurrent Neural Network Controllers Synthesis with Stability
Guarantees for Partially Observed Systems”. In: arXiv preprint arXiv:2109.03861
(2021).

Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on

large graphs”. In: Advances in neural information processing systems. 2017, pp. 1024—
1034.

Minghao Han et al. “H ., model-free reinforcement learning with robust stability guar-
antee”. In: arXiv preprint arXiv:1911.02875 (2019).

Song Han, Huizi Mao, and William J Dally. “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding”. In: arXiv
preprint arXiv:1510.00149 (2015).

Moritz Hardt, Eric Price, and Nati Srebro. “Equality of opportunity in supervised
learning”. In: Advances in neural information processing systems. 2016, pp. 3315—
3323.

Babak Hassibi, David G Stork, and Gregory J Wolff. “Optimal brain surgeon and gen-
eral network pruning”. In: IEEFE international conference on neural networks. IEEE.
1993, pp. 293-299.

Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 770—
778.

Nicolas Heess et al. “Memory-based control with recurrent neural networks”. In: arXiv
preprint arXiv:1512.04455 (2015).

BIBLIOGRAPHY 119

[31]

[82]

[33]

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiw preprint arXiw:1502.03167
(2015).

Ming Jin and Javad Lavaei. “Stability-certified reinforcement learning: A control-
theoretic perspective”. In: IEFE Access (2020).

Ming Jin et al. “Power up! robust graph convolutional network against evasion attacks
based on graph powering”. In: arXiv preprint arXiv:1905.10029 (2019).

Michael Kampffmeyer et al. “Rethinking Knowledge Graph Propagation for Zero-Shot
Learning”. In: arXiv preprint arXiv:1805.11724 (2018).

Kazuya Kawakami. “Supervised sequence labelling with recurrent neural networks”.
In: Ph. D. thesis (2008).

Mustafa Hani Khammash. “Stability and performance robustness of discrete-time
systems with structured uncertainty”. PhD thesis. 1990.

Jingu Kim, Yunlong He, and Haesun Park. “Algorithms for nonnegative matrix and
tensor factorizations: a unified view based on block coordinate descent framework”.
In: Journal of Global Optimization 58.2 (2014), pp. 285-319.

K. K. Kim, E. R. Patrén, and R. D. Braatz. “Standard representation and unified
stability analysis for dynamic artificial neural network models”. In: Neural Networks
98 (2018), pp. 251-262.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: International Conference on Learning Representations (2015).

Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convo-
lutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

James Nate Knight and Charles Anderson. “Stable reinforcement learning with re-
current neural networks”. In: Journal of Control Theory and Applications 9.3 (2011),
pp. 410-420.

J. Kolter. “Personal communication with A. Askari”. Aug. 2019.

Steven George Krantz and Harold R Parks. The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2002.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012), pp. 1097-1105.

Anders Krogh and John A Hertz. “A simple weight decay can improve generalization”.
In: Advances in neural information processing systems. 1992, pp. 950-957.

BIBLIOGRAPHY 120

[97]

[98]

[99]

100]

[101]
[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

Alexey Kurakin, Tan J. Goodfellow, and Samy Bengio. “Adversarial examples in
the physical world”. In: 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings. Open-
Review.net, 2017. URL: https://openreview.net/forum?id=HJGU3Rod1l.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial Machine Learning
at Scale”. In: 2017. URL: https://arxiv.org/abs/1611.01236.

Tim Tsz-Kit Lau et al. “A Proximal Block Coordinate Descent Algorithm for Deep
Neural Network Training”. In: Workshop track - International Conference on Learning
Representations (2018).

Vadim Lebedev and Victor Lempitsky. “Fast convnets using group-wise brain dam-
age”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2016, pp. 2554-2564.

Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”. In: Advances
in neural information processing systems. 1990, pp. 598-605.

Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278-2324.

Laurent Lessard, Benjamin Recht, and Andrew Packard. “Analysis and design of
optimization algorithms via integral quadratic constraints”. In: SIAM Journal on
Optimization 26.1 (2016), pp. 57-95.

Sergey Levine. CS285: Deep Reinforcement Learning. http://rail.eecs.berkeley.
edu/deeprlcourse/. Course previously known as CS294: Deep Reinforcement Learn-
ing. Accessed: 2021-05-24. 2021.

Sergey Levine and Vladlen Koltun. “Guided policy search”. In: International confer-
ence on machine learning. PMLR. 2013, pp. 1-9.

Sergey Levine et al. “End-to-end training of deep visuomotor policies”. In: The Jour-
nal of Machine Learning Research 17.1 (2016), pp. 1334-1373.

Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: The International Journal of Robotics
Research 37.4-5 (2018), pp. 421-436.

Jia Li, Cong Fang, and Zhouchen Lin. “Lifted proximal operator machines”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 4181—
4188.

Qimai Li, Zhichao Han, and Xiaoming Wu. “Deeper Insights into Graph Convolutional
Networks for Semi-Supervised Learning”. In: AAAI-18 AAAI Conference on Artificial
Intelligence. 2018, pp. 3538-3545.

Yujia Li et al. “Gated graph sequence neural networks”. In: arXiv preprint
arXiv:1511.05493 (2015).

BIBLIOGRAPHY 121

[111]
[112]

[113]

[114]
[115]
[116]

[117]

18]

[119]

[120]

[121]
[122]

[123]

[124]
[125]

[126]

Renjie Liao et al. “Reviving and improving recurrent back-propagation”. In: Interna-
tional Conference on Machine Learning. PMLR. 2018, pp. 3082-3091.

Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning.” In:
ICLR (Poster). 2016.

Yanpei Liu et al. “Delving into Transferable Adversarial Examples and Black-box
Attacks”. In: 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL: https://openreview.net/forum?id=Sys6GJqx1l.

Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neural
Networks through L_0 Regularization”. In: arXiv preprint arXiv:1712.01312 (2017).

Biao Luo, Huai-Ning Wu, and Tingwen Huang. “Off-policy reinforcement learning for
Hoo control design”. In: IEEE transactions on cybernetics 45.1 (2014), pp. 65-76.

Yao Ma et al. “Multi-dimensional graph convolutional networks”. In: Proceedings of
the 2019 SIAM International Conference on Data Mining. STAM. 2019, pp. 657-665.

Aleksander Madry et al. “Towards Deep Learning Models Resistant to Adversar-
ial Attacks”. In: International Conference on Learning Representations. 2018. URL:
https://openreview.net/forum?id=rJzIBfZAb.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. URL: https://www.tensorflow.
org/.

Nikolai Matni et al. “From self-tuning regulators to reinforcement learning and back
again”. In: 2019 IEEFE 58th Conference on Decision and Control (CDC). IEEE. 2019,
pp. 3724-3740.

Alexandre Megretski and Anders Rantzer. “System analysis via integral quadratic
constraints”. In: IEEE Transactions on Automatic Control 42.6 (1997), pp. 819-830.

Carl D Meyer. Matriz analysis and applied linear algebra. Vol. 71. Siam, 2000.

Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: nature 518.7540 (2015), pp. 529-533.

George E Monahan. “State of the art—a survey of partially observable Markov deci-
sion processes: theory, models, and algorithms”. In: Management science 28.1 (1982),
pp- 1-16.

Jun Morimoto and Kenji Doya. “Robust reinforcement learning”. In: Neural compu-
tation 17.2 (2005), pp. 335-359.

Martin Mundhenk et al. “Complexity of finite-horizon Markov decision process prob-

lems”. In: Journal of the ACM (JACM) 47.4 (2000), pp. 681-720.

Sharan Narang et al. “Exploring sparsity in recurrent neural networks”. In: arXiv
preprint arXiv:1704.05119 (2017).

BIBLIOGRAPHY 122

[127]
128
[129]
[130]
[131]

[132]

[133]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]

Geoffrey Negiar et al. “OPTML 2017: Lifted Neural Networks for Weight Initializa-
tion”. In: (2017).

Marion Neumann et al. “Propagation kernels: efficient graph kernels from propagated
information”. In: Machine Learning 102.2 (2016), pp. 209-245.

Mark Newman. Networks. Oxford university press, 2018.

Kenta Oono and Taiji Suzuki. “Graph Neural Networks Exponentially Lose Expressive
Power for Node Classification”. In: ICLR 2020 : Eighth International Conference on
Learning Representations. 2020.

Lawrence Page et al. The pagerank citation ranking: Bringing order to the web. Tech.
rep. Stanford InfoLab, 1999.

Nicolas Papernot et al. “Distillation as a Defense to Adversarial Perturbations Against
Deep Neural Networks”. In: IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016. IEEE Computer Society, 2016, pp. 582-597. DOI:
10.1109/SP.2016.41. URL: https://doi.org/10.1109/SP.2016.41.

Nicolas Papernot et al. “The Limitations of Deep Learning in Adversarial Settings”.
In: IEEFE Furopean Symposium on Security and Privacy, EuroSE&P 2016, Saarbricken,
Germany, March 21-24, 2016. IEEE, 2016, pp. 372-387. DOI: 10.1109/EuroSP.2016.
36. URL: https://doi.org/10.1109/EuroSP.2016. 36.

Chanyoung Park et al. “Unsupervised Attributed Multiplex Network Embedding”.
In: arXiv preprint arXiv:1911.06750 (2019).

Junyoung Park, Jinhyun Choo, and Jinkyoo Park. “Convergent Graph Solvers”. In:
arXiv preprint arXiv:2106.01680 (2021).

Patricia Pauli et al. “Linear systems with neural network nonlinearities: Improved sta-
bility analysis via acausal Zames-Falb multipliers”. In: arXiv preprint arXiv:2105.17106
(2021).

Hongbin Pei et al. “Geom-GCN: Geometric Graph Convolutional Networks”. In:
ICLR 2020 : Eighth International Conference on Learning Representations. 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social
representations”. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. 2014, pp. 701-710.

Fernando Pineda. “Generalization of back propagation to recurrent and higher order
neural networks”. In: Neural information processing systems. 1987, pp. 602—-611.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. “Semidefinite relaxations
for certifying robustness to adversarial examples”. In: Advances in Neural Information
Processing Systems. 2018, pp. 10877—-10887.

Benjamin Recht. “A tour of reinforcement learning: The view from continuous con-
trol”. In: Annual Review of Control, Robotics, and Autonomous Systems 2 (2019),
pp. 253-279.

BIBLIOGRAPHY 123

[142)

[143]

[144]

[145]
[146]
[147]
[148]
[149]

[150]

[151]
[152]
[153]

[154]

[155]

[156]

Max Revay, Ruigang Wang, and Tan R Manchester. “A Convex Parameterization of
Robust Recurrent Neural Networks”. In: IEEE Control Systems Letters 5.4 (2020),
pp. 1363-1368.

Max Revay, Ruigang Wang, and Tan R Manchester. “Lipschitz Bounded Equilibrium
Networks”. In: arXiv preprint arXiv:2010.01732 (2020).

Yu Rong et al. “DropEdge: Towards Deep Graph Convolutional Networks on Node
Classification”. In: ICLR 2020 : Fighth International Conference on Learning Repre-
sentations. 2020.

Shankar Sastry. Nonlinear systems: analysis, stability, and control. Vol. 10. Springer
Science & Business Media, 2013.

Kathrin Schacke. “On the kronecker product”. In: (2018).

Carsten Scherer, Pascal Gahinet, and Mahmoud Chilali. “Multiobjective output-
feedback control via LMI optimization”. In: IEEE Transactions on automatic control
42.7 (1997), pp. 896-911.

Lukas Schwenkel et al. “Model predictive control for linear uncertain systems using
integral quadratic constraints”. In: arXiv preprint arXiv:2104.05444 (2021).

Abigail See, Minh-Thang Luong, and Christopher D Manning. “Compression of neural
machine translation models via pruning”. In: arXiv preprint arXiv:1606.09274 (2016).

Uri Shaham, Yutaro Yamada, and Sahand Negahban. “Understanding Adversarial
Training: Increasing Local Stability of Neural Nets through Robust Optimization”.
In: (2015). DOI: 10.1016/j .neucom.2018.04.027. eprint: arXiv:1511.05432.

Nino Shervashidze et al. “Efficient graphlet kernels for large graph comparison”. In:
Artificial Intelligence and Statistics. 2009, pp. 488-495.

Nino Shervashidze et al. “Weisfeiler-lehman graph kernels”. In: Journal of Machine
Learning Research 12.77 (2011), pp. 2539-2561.

David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484-489.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency Maps”. In:
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Workshop Track Proceedings. Ed. by Yoshua Bengio and
Yann LeCun. 2014. URL: http://arxiv.org/abs/1312.6034.

Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-
scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from
overfitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929-1958.

BIBLIOGRAPHY 124

[157]

[158]

[159]
[160]
[161]
[162]
[163]
[164]

[165]

[166]

167]

[168]
[169]

[170]

Johannes Stallkamp et al. “The German traffic sign recognition benchmark: a multi-
class classification competition”. In: The 2011 international joint conference on neural
networks. IEEE. 2011, pp. 1453-1460.

Ilya Sutskever et al. “On the Importance of Initialization and Momentum in Deep
Learning”. In: Proceedings of the 30th International Conference on International Con-
ference on Machine Learning - Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org,
2013, pp. 11I-1139-111-1147. URL: http://dl.acm.org/citation.cfm?id=3042817.
3043064.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

Richard S Sutton et al. “Policy gradient methods for reinforcement learning with
function approximation.” In: NIPs. Vol. 99. Citeseer. 1999, pp. 1057-1063.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
1st. Cambridge, MA, USA: MIT Press, 1998. 1SBN: 0262193981.

Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings of the
IEEFE conference on computer vision and pattern recognition. 2015, pp. 1-9.

Victor Talpaert et al. “Exploring applications of deep reinforcement learning for real-
world autonomous driving systems”. In: arXiv preprint arXiv:1901.01536 (2019).

Gavin Taylor et al. “Training neural networks without gradients: A scalable admm
approach”. In: International Conference on Machine Learning. 2016, pp. 2722-2731.

Mark M Tobenkin, Ilan R Manchester, and Alexandre Megretski. “Convex parameter-
izations and fidelity bounds for nonlinear identification and reduced-order modelling”.
In: IEEE Transactions on Automatic Control 62.7 (2017), pp. 3679-3686.

Bertrand Travacca. Fenchel Young Neural Network on Synthetic Data, bertravacca
GitHub repositories: implicit lifted Nets synthetic simulation for feedforward nn. Ver-
sion 1.0. Aug. 2019. DOI: 10.5281/zenodo . 3364839. URL: https://zenodo.org/
account/settings/github/repository/bertravacca/implicit-1lifted_Nets-
synthetic-simulation-for-feedforward-nn.

Bertrand Travacca, Laurent El Ghaoui, and Scott Moura. “Implicit Optimization:
Models and Methods”. In: 2020 59th IEEE Conference on Decision and Control
(CDC). 2020, pp. 408-415. DOT: 10.1109/CDC42340.2020.9304169.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009. 1SBN: 1441412697.

Petar Velickovi¢ et al. “Deep graph infomax”. In: arXiv preprint arXiw:1809.10341
(2018).

Petar Velickovi¢ et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903
(2017).

BIBLIOGRAPHY 125

[171]

[172]

173]

[174]

175

[176]
[177]
178]
[179]
[180]
[181]
[182]
[183]

184]

[185]

Fangping Wan et al. “NeoDTI: neural integration of neighbor information from a het-
erogeneous network for discovering new drug-target interactions”. In: Bioinformatics
35.1 (2019), pp. 104-111.

Tiancai Wang, Xiangyu Zhang, and Jian Sun. “Implicit feature pyramid network for
object detection”. In: arXiv preprint arXiv:2012.13563 (2020).

Po-Wei Wang et al. “SATNet: Bridging deep learning and logical reasoning using a
differentiable satisfiability solver”. In: Proceedings of the 36th International Confer-
ence on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.
Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA:
PMLR, Sept. 2019, pp. 6545-6554. URL: http://proceedings .mlr . press/v97/
wangl9e.html.

Xiao Wang et al. “Heterogeneous graph attention network”. In: The World Wide Web
Conference. 2019, pp. 2022-2032.

Daan Wierstra et al. “Solving deep memory POMDPs with recurrent policy gra-
dients”. In: International conference on artificial neural networks. Springer. 2007,
pp. 697-706.

Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229-256.

Ezra Winston and J Zico Kolter. “Monotone operator equilibrium networks”. In:
Advances in Neural Information Processing Systems 33 (2020).

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the
conver outer adversarial polytope. 2017. eprint: arXiv:1711.00851.

John Wright and Yi Ma. High-Dimensional Data Analysis with Low-Dimensional
Models: Principles, Computation, and Applications. Cambridge University Press, 2021.

Felix Wu et al. “Simplifying Graph Convolutional Networks”. In: Proceedings of the
36th International Conference on Machine Learning. PMLR, 2019, pp. 6861-6871.

Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: arXiv
preprint arXiv:1901.00596 (2019).

Keyulu Xu et al. “How powerful are graph neural networks?” In: arXwv preprint
arXiv:1810.00826 (2018).

V.A. Yakubovich. “S-procedure in nonlinear control theory (in Russian)”. In: Vestnik
Leningrad. Univ. 1971.

Pinar Yanardag and SVN Vishwanathan. “Deep graph kernels”. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2015, pp. 1365-1374.

Jaewon Yang and Jure Leskovec. “Defining and evaluating network communities based
on ground-truth”. In: Knowledge and Information Systems 42.1 (2015), pp. 181-213.

BIBLIOGRAPHY 126

[186]

187]

[188]

[189)]
[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]
[198]

[199]

He Yin, Peter Seiler, and Murat Arcak. “Stability analysis using quadratic constraints
for systems with neural network controllers”. In: IEEE Transactions on Automatic
Control (2021).

He Yin et al. “Imitation learning with stability and safety guarantees”. In: IFEFE
Control Systems Letters (2021).

Rex Ying et al. “Graph convolutional neural networks for web-scale recommender
systems”. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery € Data Mining. 2018, pp. 974-983.

Yong Yu et al. “A review of recurrent neural networks: LSTM cells and network
architectures”. In: Neural computation 31.7 (2019), pp. 1235-1270.

Jinshan Zeng et al. “Global convergence of block coordinate descent in deep learning”.
In: arXiv preprint arXiv:1803.00225 (2018).

Kaiqging Zhang, Bin Hu, and Tamer Basar. “Policy Optimization for s Linear Control
with H., Robustness Guarantee: Implicit Regularization and Global Convergence”.
In: Learning for Dynamics and Control. PMLR. 2020, pp. 179-190.

Marvin Zhang et al. “Learning deep neural network policies with continuous memory
states”. In: 2016 IEEE international conference on robotics and automation (ICRA).
[EEE. 2016, pp. 520-527.

Muhan Zhang et al. “An end-to-end deep learning architecture for graph classifica-
tion”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Ziming Zhang and Matthew Brand. “Convergent Block Coordinate Descent for Train-
ing Tikhonov Regularized Deep Neural Networks”. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems. NIPS’17. Long Beach,
California, USA: Curran Associates Inc., 2017, pp. 1719-1728. 1SBN: 978-1-5108-6096-
4. URL: http://dl.acm.org/citation.cfm?id=3294771.3294935.

Ziming Zhang and Matthew Brand. “Convergent block coordinate descent for train-
ing tikhonov regularized deep neural networks”. In: Advances in Neural Information
Processing Systems. 2017, pp. 1721-1730.

Ziming Zhang, Yuting Chen, and Venkatesh Saligrama. “Efficient training of very deep
neural networks for supervised hashing”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, pp. 1487-1495.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. “Deep learning on graphs: A survey”. In:
IEEE Transactions on Knowledge and Data Engineering (2020).

Lingxiao Zhao and Leman Akoglu. “PairNorm: Tackling Oversmoothing in GNNs”.
In: ICLR 2020 : Fighth International Conference on Learning Representations. 2020.

Yang Zheng, Yujie Tang, and Na Li. “Analysis of the Optimization Landscape of
Linear Quadratic Gaussian (LQG) Control”. In: arXiv preprint arXiv:2102.04393
(2021).

BIBLIOGRAPHY 127

[200] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In:
arXiv preprint arXiv:1812.08434 (2018).

[201] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal control.
Vol. 40. Prentice hall New Jersey, 1996.

[202] Michael Zhu and Suyog Gupta. “To prune, or not to prune: exploring the efficacy of
pruning for model compression”. In: arXiv preprint arXiv:1710.01878 (2017).

