
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A Design Methodology for Efficient Implementation of Deconvolutional Neural Networks on
an FPGA

Permalink
https://escholarship.org/uc/item/01b3n7qb

Author
Zhang, Xinyu

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/01b3n7qb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Design Methodology for Efficient Implementation of Deconvolutional Neural
Networks on an FPGA

A Thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Xinyu Zhang

Committee in charge:

Professor Ken Kreutz-Delgado, Chair
Professor Ryan Kastner
Professor Larry Smarr

2017

Copyright

Xinyu Zhang, 2017

All rights reserved.

The Thesis of Xinyu Zhang is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2017

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . ix

Chapter 1 Need for Speed: Neural Networks 1
1.1 The AI Strikes Back . 1

1.1.1 Behind the Go Master 2
1.1.2 End of Moore’s Law 3

1.2 Possible Hardware Accelerator Choices 3
1.2.1 ASICs . 3
1.2.2 GPUs . 4
1.2.3 FPGAs . 5
1.2.4 Non-Volatile Memory 5

1.3 Our choice - the FPGA 6
1.4 Our Target Algorithm 6

Chapter 2 Background Knowledge . 8
2.1 Neural Network . 8
2.2 Deconvolutional Neural Network 9

2.2.1 Deconvolution Layer 9
2.2.2 Batch Normalization and ReLu Activation Layers 11

2.3 Generative Adversarial Network Training 12

Chapter 3 Introduction . 14
3.1 Design Challenges . 14
3.2 Contributions . 15
3.3 Thesis Organization . 16

Chapter 4 Deconvolution Hardware Design 17
4.1 Efficiency Problem of FPGA Implementation 17
4.2 Reverse Looping . 18
4.3 Stride Hole Skipping . 20
4.4 ReLu and Batch Normalization 21

iv

Chapter 5 Three-Step Design Optimization 22
5.1 Statistical Analysis . 22

5.1.1 Null Hypothesis Test 23
5.1.2 Test Statistics . 24

5.2 Roofline Analysis . 26
5.3 VLSI Level Optimization 28

5.3.1 Loop Unrolling 28
5.3.2 Loop Pipelining 29
5.3.3 Memory Partitioning 29
5.3.4 Register Insertion 30

Chapter 6 Evaluation . 31
6.1 DCNN implementation in Tensorflow 31

6.1.1 Dataset Overview 31
6.1.2 Network Configuration 33

6.2 Statistical Analysis . 34
6.3 Hardware System . 34
6.4 Generation Result . 35
6.5 Roofline Analysis . 37
6.6 Performance . 38

Chapter 7 Conclusion . 39
7.1 Summary . 39
7.2 Future Work . 39

7.2.1 ARM Code Optimization 39
7.2.2 Use a Larger FPGA 39
7.2.3 Ping-Pong Buffer 40
7.2.4 Convolution and Deconvolution 40
7.2.5 From Prototype to Applications 40
7.2.6 Low Bitwidth Training 40

Acknowledgements . 42

Bibliography . 43

v

LIST OF FIGURES

Figure 1.1: Visualization of possible future game moves 2
Figure 1.2: Matrix Multiplication using analog properties of silicon Material 6
Figure 1.3: DCNNs work for pattern completion/generation (Images from

[WZX+16] [SCH+16] [BKC15]). 7

Figure 2.1: A DCNN that generates realistic 64x64 indoor scenes 9
Figure 2.2: Visualization of a Single Deconvolution Layer 10
Figure 2.3: Visualization of Algorithm 1 with loop variables. 10
Figure 2.4: ReLu layer sets zeros for negative values in feature map 12
Figure 2.5: Visualization of a GAN training process [Goo16]. 13

Figure 3.1: Execution Paradigm of our accelerator (image is adopted from
[RMC15]). 15

Figure 4.1: Traditional implementation of deconvolution 18
Figure 4.2: An efficient way to deconvolve 19

Figure 5.1: Measure generation quality quantitatively using statistical tests 23
Figure 5.2: Process of judging a null hypothesis 24
Figure 5.3: Roofline Model, adopted from [ZLS+15] 26
Figure 5.4: Loop Unrolling . 28
Figure 5.5: Processing Engine . 29
Figure 5.6: Pipelining Execution . 29
Figure 5.7: Visualization of Memory Partitioning 29
Figure 5.8: Insert register to reduce local memory (BRAM) writes 30

Figure 6.1: Samples from MNIST database [LBBH98] 32
Figure 6.2: Samples from CelebA Face database [LLWT15] 32
Figure 6.3: MNIST Deconvolutional Neural Network Configuration. 33
Figure 6.4: Face Deconvolutional Neural Network Configuration. 33
Figure 6.5: Approximate concave curves based on trade-off between genera-

tive quality and implementation complexity. 34
Figure 6.6: Overview of Implementation Block Diagram. 35
Figure 6.7: Detailed Hardware Block Design, where the deconvolution block

denotes the accelerator, and the zynq7 processing system repre-
sents the ARM processor. 36

Figure 6.8: Sample MNIST and CelebA images generated by the full preci-
sion DCNN. 37

Figure 6.9: Images generated by different bitwidth DCNNs. 37
Figure 6.10: Design space Exploration for a layer with input 10x2x2 and

output 64x4x4. 38

vi

LIST OF TABLES

Table 6.1: FPGA Resource Utilization . 38
Table 6.2: Comparison to previous implementations 38

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Professor Ken

Kreutz-Delgado, for his continuous help and support. I would like to thank my

committee members Professor Larry Smarr and Professor Ryan Kastner, as well as

my research collaborators Srinjoy Das and Ojash Neopane. I am also grateful to

the Pacific Research Platform and Xilinx for their support of our research.

All of the chapters are currently being prepared for submission for publi-

cation of the material in “A Design Methodology for Efficient Implementation of

Deconvolutional Neural Networks on an FPGA”, Xinyu Zhang, Srinjoy Das, Ojash

Neopane, and Ken Kreutz-Delgado. The thesis author was the primary investigator

and author of this material.

viii

ABSTRACT OF THE THESIS

A Design Methodology for Efficient Implementation of Deconvolutional Neural
Networks on an FPGA

by

Xinyu Zhang

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Ken Kreutz-Delgado, Chair

In recent years deep learning algorithms have shown extremely high perfor-

mance on machine learning tasks such as image classification and speech recognition.

In support of such applications, various FPGA accelerator architectures have been

proposed for convolutional neural networks (CNNs) that enable high performance

for classification tasks at lower power than CPU and GPU processors. However,

to date, there has been little research on the use of FPGA implementations of

deconvolutional neural networks (DCNNs). DCNNs, also known as generative

CNNs, encode high-dimensional probability distributions and have been widely

used for computer vision applications such as scene completion, scene segmenta-

tion, image creation, image denoising, and super-resolution imaging. We propose

ix

an FPGA architecture for deconvolutional networks built around an accelerator

which effectively handles the complex memory access patterns needed to perform

strided deconvolutions, and that supports convolution as well. We also develop

a three-step design optimization method that systematically exploits statistical

analysis, design space exploration and VLSI optimization. To verify our FPGA

deconvolutional accelerator design methodology we train DCNNs offline on two

representative datasets using the generative adversarial network method (GAN) run

on Tensorflow, and then map these DCNNs to an FPGA DCNN-plus-accelerator

implementation to perform generative inference on a Xilinx Zynq-7000 FPGA. Our

DCNN implementation achieves a peak performance density of 0.012 GOPs/DSP.

x

Chapter 1

Need for Speed: Neural Networks

The wave of Artificial Intelligent (AI) has been overwhelming since the

beginning of the 21st century. Brain-inspired neural network algorithms have

become the state-of-the-art in numerous applications, including computer vision and

audio recognition [LBH15][Sch15]. To meet the growing demands of computation

and needs of real-time and low-power applications, researchers have begun to design

accelerators for neural networks.

1.1 The AI Strikes Back

The AlphaGo [SHM+16] win over Go grandmaster Sedol Lee [Wik17a] was

one of the most exciting news in the AI field in 2016. Because there are 2× 10170

possible layouts of checkerboard in Go [Wik17b], a number greater than the total

number of atoms in the universe, the game of Go is one of the hardest tasks for

humans to excel in. If we can design an AI to defeat the top human players in

Go, it seems plausible that AI may be able to exhibit superhuman performance

in almost any arena, as long as we can collect enough training data, a prospect

that is both exciting and scary. So are we on the eve of massive AI revolution?

What could stop AI from automating vast areas of human labor and increasing the

productivity of the whole society? The only real impediment, it would appear, is if

we are unable to break the computational bottleneck associated with the increasing

complexity of AI algorithms and the looming end of Moore’s law.

1

2

1.1.1 Behind the Go Master

The algorithm behind AlphaGo is a sophisticated combination of reinforce-

ment learning and deep learning. Reinforcement learning [SB98] [BPW+12] provides

the strategic ability to think ahead and make the best current decision based on the

potential future rewards. Deep learning [Sch15] [LBH15] provides the awareness of

the gaming environment and the possible consequences of local moves by modeling

their distributions, which makes up most of the algorithm’s computational load.

Figure 1.1: Visualization of possible future game moves

Deep learning algorithms have shown extremely high performance on machine

learning tasks. However, such strong performance does not come for free. The

AlphaGo algorithm needs 1202 CPUs and 176 GPUs working in parallel [SHM+16]

to play as good as a professional player, and these numbers get nearly doubled when

it plays at the level of an international grandmaster such as Sedol Lee. Furthermore,

there is also an enormous amount of engineering work required to assemble and

maintain the huge computing cluster of required CPUs and GPUs. In sum, a

currently prohibitive computational burden prevents the advanced algorithms

underlying a state-of-the-art system like AlphaGo from becoming commercially

available to the general public.

3

1.1.2 End of Moore’s Law

If Moore’s Law [Sch97] remains true into the indefinite future, then the

computational burden will never be a headache. Thanks to Moore’s Law, the

computational power of an 2010 iPhone is stronger than a 1980s supercomputing

center. However, we have already begun diverging from Moore’s Law, and if we can

not push processor speeds farther, we will have to figure out other ways to meet the

computational burden needed to implement ever-more-powerful AI algorithms. To

accelerate computation, engineers are now designing specialized hardware for deep

learning algorithms, particularly for implementation of the convolutional neural

networks (CNNs), which have become the state-of-the-art algorithm for applications

like computer vision and audio recognition [Sch15] [LBH15] [GBC16].

1.2 Possible Hardware Accelerator Choices

Deep learning algorithms have specific execution patterns and are very

computationally intensive, which makes general purpose processor implementations

uneconomical in chip area and power consumption. A popular solution is to use

dedicated hardware that executes only deep learning algorithms but at very high

speeds. The pros and cons of different types of deep learning accelerators are

summarized in the following.

1.2.1 ASICs

Realizing deep learning algorithms in circuit logic by building a dedicated

application-specific integrated circuit (ASIC) can provide the highest computational

throughput and many other benefits in the same time. However, it’s well known

that designing and implementing ASICs are very difficult and expensive.

Pros

• The highest computational throughput

• The lowest power consumption

4

• The smallest chip area

• Inexpensive for users when it is mass-manufactured

Cons

• Difficult and expensive to design and manufacture (only affordable by a few

companies)

• Not reconfigurable; functionality is fixed once made

Some pioneering research is Wave Computing’s DPU [WXT+16], Google’s

TPU and China’s DianNao [CLL+14]. However, they all have different architectures

and specifications of usage, and none of these are ready to be applied in the massive

production settings.

1.2.2 GPUs

A graphics processing unit (GPU) is a much more parallel processor than

CPUs. GPUs execute executing with thousands of threads, while each thread can

be programed to realize arithmetic operations with a compiler. Its parallelism and

ease of programming make the GPU perhaps the most popular solution for deep

learning applications and research.

Pros

• Much higher throughput than CPU

• Easy to program and many well-tested tools available

Cons

• Expensive for users

• High power consumption; inappropriate for embedded application

• Large chip size

5

1.2.3 FPGAs

The field-programmable gate array (FPGA) is an integrated circuit which is

software definable. Programmers can implement customized algorithms in FPGA

circuits and achieve ASIC level speedup. Moreover, unlike ASIC, the circuits logic

in FPGA can be reprogramed.

Pros

• Faster than GPUs if carefully designed

• Easier to design and implement than ASICs

• Lower power consumption than CPUs and GPUs

Cons

• Slower than ASICs because of the switch delay introduced by reconfigurable

inter-connections

• Higher power consumption than ASICs

• Harder to program than GPUs

1.2.4 Non-Volatile Memory

There is recent research exploiting the analog feature of non-volatile mem-

ory, like resistive random-access memory (RRAM), for approximate computing

[LGS+15]. For example, a RRAM crossbar array can naturally transfer the weighted

combination of input voltages to output voltages and realize matrix–vector multi-

plication, as shown in Figure 1.2.

6

Figure 1.2: Matrix Multiplication using analog properties of silicon Material

This analog arithmetic feature of RRAM could be used to implement deep

learning operation in analog circuits to save a significant amount of power at high

speeds. However, these prototypes are far from production and only presented in

few academic papers and laboratories [WXT+16].

1.3 Our choice - the FPGA

We choose an FPGA as the platform to develop our deep learning accelerator,

because this allows us to design custom algorithmic circuits and realize high perfor-

mance, while having the option to experiment with different hardware architectures.

Moreover, the circuit logic of an FPGA can be used for ASIC prototyping.

1.4 Our Target Algorithm

While current FPGA-based accelerators only focus on enhancing the perfor-

mance of convolutional neural networks (CNNs) in discriminative tasks [ZLS+15]

[PSMC13], we design and implement an accelerator for deconvolutional neural

7

networks (DCNNs), which are also known as generative CNNs [GBC16]. Unlike

discriminative CNNs that effectively “downsample” the input to produce clas-

sification [Sch15], DCNNs are generative models capable of generating data by

“upsampling” the input using deconvolution layers [ZKTF10]. There are many

applications of DCNNs, including multi-modal data modeling [WZX+16], super

resolution [SCH+16] and image-to-image translation [IZZE16] [BKC15] (see Figure

1.3).

Figure 1.3: DCNNs work for pattern completion/generation (Images from
[WZX+16] [SCH+16] [BKC15]).

These, and other exciting applications motivate us to design an FPGA-

based accelerator with the ability to execute deconvolution operations with high

throughput and low cost.

Chapter 2

Background Knowledge

In the previous chapter, we explain that the importance of designing special-

ized hardware to accelerate deep learning computation as a motivation to accelerate

the computation of deconvolutional neural networks (DCNNs) using an FPGA.

In this chapter, we provide background knowledge for DCNNs, the deconvolution

layers, and how we train our DCNNs.

2.1 Neural Network

The use of (artificial) neural networks provides a computational approach

that purports to mimic the way a brain performs distributed computation, where

the behaviors of neural units (”neurons”) are realized in a series of differentiable

math operations (denoted by the symbols h, g, f) that are nestedly applied over

high-dimensional input data x [i.e. h(g(f(x)))]. A layer, L, of a neural network

is comprised of several well-defined math operations. The form and nature of

these operators depends on the type of neural network that is implemented. We

are concerned with the structure and operators that define convolutional and

deconvolutional neural networks, as defined in references [Sch15] [DV16] [LBH15]

and the notation we use is also described in those references.

8

9

2.2 Deconvolutional Neural Network

A deconvolutional neural network (DCNN) converts latent space representa-

tions to high-dimensional data similar to the training set by applying successive

deconvolution operations in multiple layers [NHH15]. The latent space contains low-

dimensional latent variables that provide a succinct (“conceptual”) representations

of the possible outputs (e.g. an image). Thus a latent variable may correspond to

“chair” with the associated output being the image of a chair “generated” by the

DCNN (see Figure 1.3). Figure 2.1 shows a 5-layer DCNN developed in [RMC15]

that consists of 4 deconvolutional layers. The first layer is fully-connected and

transforms an input size of 1x100 to an output size of 1024x4x4; layers 2 to 5 are

deconvolution layers that project low-dimensional feature maps into corresponding

high-dimensional ones through successive layers.

Figure 2.1: A DCNN that generates realistic 64x64 indoor scenes based on the use
of four deconvolution layers that was trained on the Large-scale Scene Understanding
(LSUN) Dataset [RMC15] [YSZ+15] (Image is taken and adapted from reference
[RMC15]).

2.2.1 Deconvolution Layer

Figure 2.2 shows how a typical deconvolution layer works, where S and P

denote the chosen values of stride and padding respectively for a given layer. The

four steps required to implement the deconvolutional layer are: (1) multiply a single

input pixel ih, iw by a K ×K kernel; (2) add the result of step 1 to a local area

in the output feature map that starts at ih × S, iw × S; (3) repeat 1 and 2 for all

input pixels; (4) remove elements from output feature maps in the border by zero

padding of size P . The pseudo code of a deconvolution layer as implemented in

10

CPU is shown in Algorithm. 1 which uses the loop variables defined in Figure 2.3.

Figure 2.2: Visualization of a Single Deconvolution Layer

Figure 2.3: Visualization of Algorithm 1 with loop variables.

Algorithm 1 Deconvolution in CPU

1: procedure Deconvolution
2: for ic = 0 to IC − 1 do
3: for ih = 0 to IH − 1 do
4: for iw = 0 to IW − 1 do
5: for oc = 0 to OC − 1 do
6: for kh = 0 to K − 1 do
7: for kw = 0 to K − 1 do
8: oh ← S × ih + kh − P
9: ow ← S × iw + kw − P

10: out[oc][oh][ow]← (in[ic][ih][iw]
× kernel[oc][ic][kh][kw])

The relation of the input size IH×IW to output size OH×OW after applying

By convention we use capital letters e.g. OH to denote specific paraters of the deconvolution
layer whereas small letters e.g. oh to denote its corresponding loop variable.

11

stride and padding are given in the following equations [DV16]:

OH = S × (IH − 1) +K − 2P

OW = S × (IW − 1) +K − 2P
(2.1)

2.2.2 Batch Normalization and ReLu Activation Layers

We include batch normalization layers, comprised of element-wise math

operations that normalize the output from deconvolution layer (Eq. 2.2), each

followed by a ReLu activation function that sets all negative values in the feature

map to zero (Eq. 2.3). We tacitly take these layers to be the post-processing part

of the deconvolution layer and therefore they are not shown in Figure 2.1. Neither

of stages change the size of feature maps.

Batch Normalization

The batch normalization layer contains four parameters γ, β, µ, σ, which are

shared within a channel. γ and β are trained parameters, µ and σ are the statistical

mean and standard variance of the output feature maps from its corresponding

deconvolution layer, and they are calculated over training data. Letting “in” and

“out” denote input and output feature maps, the equation of batch normalization

layer is shown in Eq. 2.2:

out =
in− µ
σ
× γ + β (2.2)

Based on previous research [Shi00], the values of hidden layers inside a

neural network tend to gradually deviate from zero mean and unit variance; this

process is called internal co-variate shift problem. This problem makes the network

harder to converge, especially for DCNNs. Batch normalization layer was found to

be a very effective method to remove this shift effect [IS15].

12

ReLu Activation Function

The layer of rectified linear units (ReLu activation functions) does not have

parameters and its equation is simply shown in Eq. 2.3:

out = max(in, 0) (2.3)

Figure 2.4: ReLu layer sets zeros for negative values in feature map

2.3 Generative Adversarial Network Training

Generative adversarial network training (GAN) is a state-of-the-art method

to train generative neural networks such as DCNNs [Goo16]. The idea of GAN is

to train a generator the G network and discriminator D network simultaneously

(Figure 2.5). The four steps required to train G network are: (1) generate samples

from G; (2) label generated samples with 0 (fake), and train D to minimize the

loss L defined below; (3) label generated samples with 1 (real), and train G to

maximize loss L; (4) repeat steps 1, 2 and 3 until both G and D converge [AB17].

13

Figure 2.5: Visualization of a GAN training process [Goo16].

The G network is usually a DCNN with an input z, where z is a sample

from a simple low-dimensional prior distribution (latent space), such as the [−1, 1]

uniform distribution in the simplest case. The output of the network G(z) is a

generated sample that is intended to come from the training data distribution. The

D network is a binary classifier with an input that consists of both training samples

x and the generated samples G(z). The loss function of the discriminator is the

binary cross-entropy loss [GBC16]:

L = −1

2
Ex(logD(x))− 1

2
Ez(log(1−D(G(z))))

where D(x) ∈ {0, 1} is the classification result for input x, Ex denotes expectation

of training data distribution, and Ez denotes expectation of the prior distribution

of sample z. The training process set up a competition between the G network

and the D network. G is trained to maximize the loss L by generating samples

indistinguishable from real samples to fool D, while D is trained to minimize the

loss L by improving the discriminative criterion to raise the requirements for G.

When the training is finished, the G network is intended to generate fake samples

that are ideally statistically indistinguishable from the real data samples.

Chapter 3

Introduction

Chapters 1 and 2 described the motivations behind our intent to design

an FPGA-based accelerator for deconvolutional neural networks (DCNNs), and

background knowledge about DCNNs. In this chapter, we introduce the design

challenges, and describe our intended contributions.

3.1 Design Challenges

We follow the design paradigm of the discriminative CNN convolution

accelerator proposed in [ZLS+15], extending this design to implement customized

circuit logic for a single deconvolution layer in FPGA. This layer can be reused for

each layer of a DCNN to increase the overall throughput (see Figure 3.1).

14

15

Figure 3.1: Execution Paradigm of our accelerator (image is adopted from
[RMC15]).

It is the case that a direct translation of CPU-optimized deconvolution

algorithms to an FPGA will generally lead to inefficient implementations. A

suitable adaptation of the deconvolution operation to a hardware substrate such

as an FPGA is therefore necessary in order to achieve high performance with

low implementation complexity. In addition, although recent research shows that

discriminative CNNs are generally robust to low bitwidth quantization [WLW+16]

[DR95], it is important to be able to systematically study the effects of such

bitwidth reductions on the quality of inference from a generative model such as

DCNN implemented with finite precision on FPGA. Thus we proposed the use of

metrics which quantify the effects of such approximations in DCNNs in order to

achieve an efficient design optimized for performance and power.

3.2 Contributions

To address the issues described above, we make the following contributions

in this thesis.

1. We create a deconvolution accelerator with reverse looping and stride hole

skipping to efficiently implement deconvolution on an FPGA, where our pro-

posed solution, in a nontrivial way, reuses the same computational architecture

proposed for implementing a convolution accelerator in [ZLS+15].

16

2. We propose a three-step procedure to design the deconvolution accelerator as

follows.

(a) At the highest design level, we train DCNNs using the generative adver-

sarial network method (GAN) [GPAM+14] and use statistical tests to

quantitatively analyze the generative quality under different bitwidth

precisions to select the most cost-efficient bitwidth.

(b) We use the roofline model proposed in [ZLS+15] to explore the design

space in order to find the set of high-level constraints that achieves the

best tradeoff between memory bandwidth and accelerator throughput.

(c) We use loop unrolling and pipelining, memory partitioning, and register

insertion to further optimize performance.

3. We validate our procedure via two implementations on a Xilinx Zynq-7000

FPGA.

3.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 4 presents our

methodology for efficiently implementing an FPGA-based deconvolution accelerator.

Chapter 5 explains our three-step design methodology. Chapter 6 shows our

experimental results. Section 7 concludes the thesis.

Chapter 4

Deconvolution Hardware Design

In this chapter, we explain our methodology for efficiently implementing an

FPGA-based deconvolution accelerator.

4.1 Efficiency Problem of FPGA Implementation

An FPGA accelerator usually consists of processing elements (PEs), registers,

and local memory elements referred to as block RAMs (BRAMs). Processing

elements operate on data provided by the local memory, which communicates with

external dual data rate (DDR) memory using direct memory access (DMA). Figure

4.1 shows a traditional implementation of deconvolution, where TIH , TIW , TIC , TOH
,

TOW
, and TOC

are the dimensions of the input and output block. Replacing IH ,

OH with TIH , TOH
in Eq. 2.1, we have:

TOH
= S × (TIH − 1) +K − 2P (4.1)

Here the zero padding P = 0 because blocks are inside input feature maps. However,

Eq. 4.2 shows that the deconvolution results of input blocks overlap with each

other: ⌈
IH
TIH

⌉
× TOH

> OH (4.2)

Deconvolution arithmetic requires the overlapping regions between output blocks

to be summed together [DV16] (shown in Figure 4.1), which can be realized in

17

18

processor-based implementations. However handling such operations in FPGAs

requires either the design of additional hardware blocks which creates overhead or

communicating with a host processor which can increase system latencies thereby

precluding real-time applications.

Figure 4.1: Traditional implementation of deconvolution. The input feature map
is first divided into separate blocks and PEs read each block from DDR and process
the deconvolution operations on this block. Finally the results are stored back to
the DDR.

4.2 Reverse Looping

To avoid the overlapping sum problem, we propose a technique called reverse

looping, where instead of directly deconvolving the input space, we use the output

space to determine which input blocks to deconvolve and thus eliminating the

need for the additional summation operations described above. This procedure is

indicated in Figure 4.2. We first take a block in the output space and determine

which inputs are needed to calculate the values in the block. Then, for each block,

the input is deconvolved and the appropriate output is extracted. This is done

sequentially until values have been computed for the entire output space.

19

Figure 4.2: An efficient way to deconvolve

The loop iterations over ih and iw in the CPU implementation shown in

Algorithm 1 need to be recast over oh and ow. Referring to Algorithm 1 and Fig.

2.3, we have:

oh = ih × S + kh − P (4.3)

Rearranging terms, we get:

ih =
oh + P − kh

S
(4.4)

Algorithm 2 shows an deconvolution implementation with reverse looping.

Algorithm 2 Deconvolution with Reverse Looping

1: procedure ReverseDeconvolution
2: for kh = 0 to K − 1 do
3: for kw = 0 to K − 1 do
4: for oh = 0 to TOH

− 1 do . Loop over OH instead of IH
5: for ow = 0 to TOW

− 1 do . Loop over OW instead of IW
6: for oc = 0 to TOC

− 1 do
7: for ic = 0 to TIC − 1 do
8: COMPUTE(kh, kw, oh, ow, oc, ic)

9: procedure Compute(kh, kw, oh, ow, oc, ic)
10: ih ← (oh + P − kh)/S . Correspond to Eq. 4.4
11: iw ← (ow + P − kw)/S . Generalize to iw and ow
12: if ih, iw ∈ Z then
13: out[oc][oh][ow]← in[ic][ih][iw]× kernel[oc][ic][kh][kw]

Unfortunately Eq. 4.4 generally results in a non-integer value for the loop

variable ih, which is invalid [DV16]. One way to address this problem would be to

20

monitor ih so that fractional values can be discarded. However this would consume

additional hardware resources and create unnecessary latencies in the system.

4.3 Stride Hole Skipping

In this section, we propose a technique called stride hole skipping to ensure

ih of Eq. 4.4 is an integer. Toward this end, we recast oh in terms of two new

variables, o′h and fh and show that this leads to an effective way of solving the

aforementioned problem. First note that a sufficient condition for ih to be an

integer in Eq. 4.4 is:

(oh + P − kh) mod S = 0 (4.5)

Assuming OH

S
is an integer (OH is defined in Eq. 2.1), we can recast oh as follows:

oh = S × o′h + fh, fh ∈ {0, 1, ..., S − 1}

o′h ∈ {0, 1, ...,
OH

S
− 1}

(4.6)

Using the definition of oh in Eq. 4.5, we can recast the sufficient condition Eq. 4.5

in terms of fh as below:

(fh + P − kh) mod S = 0 (4.7)

Eq. 4.6 implies that we can rewrite fh as:

fh = S − ((P − kh) mod S) (4.8)

This can be verified by plugging in Eq. 4.8 into Eq. 4.7 which yields the following

identity:

(P − kh − (P − kh) mod S) mod S = 0 (4.9)

To prevent fh from taking a value equal to S, we enforce the additional condition:

fh = (S − ((P − kh) mod S)) mod S (4.10)

21

By using Eq. 4.10 to choose values for fh, we can ensure that oh computed from Eq.

4.6 meets the condition in Eq. 4.5. Therefore we can avoid the previously mentioned

issue of discarding fractional values of ih that we would otherwise encounter from

a direct application of Eq. 4.4. The pseudo code for deconvolution on FPGA is

shown in Algorithm 3.

Algorithm 3 Our FPGA Implementation of Deconvolution with reverse looping
and stride hole skipping

1: procedure ReverseSkippingDeconvolution
2: for kh = 0 to K − 1 do
3: for kw = 0 to K − 1 do
4: for o′h = 0 to

TOH

S
− 1 do

5: for o′w = 0 to
TOW

S
− 1 do . loop TOW

6: for oc = 0 to TOC
− 1 do . loop TOC

7: for ic = 0 to TIC − 1 do . loop TIC
8: COMPUTE(kh, kw, o

′
h, o

′
w, oc, ic)

9: procedure Compute(kh, kw, o
′
h, o

′
w, oc, ic)

10: fh ← (S − ((P − kh) mod S)) mod S
11: fw ← (S − ((P − kw) mod S)) mod S
12: oh = o′h × S + P + fh
13: ow = o′w × S + P + fw
14: ih ← (oh − kh)/S
15: iw ← (ow − kw)/S
16: out[oc][oh][ow]← in[ic][ih][iw]× kernel[oc][ic][kh][kw]

The difference in architecture between the deconvolution accelerator in

Algorithm 3 and the convolution accelerator proposed in [ZLS+15] is the local

memory addressing. The close similarity means that we can share the basic

computation architecture for both convolution and deconvolution layers.

4.4 ReLu and Batch Normalization

Notably, our deconvolution accelerator will optionally apply ReLu and batch

normalization computation to output feature maps of deconvolution layer. They

are comprised of element-wise math operations which are easy to implement.

Chapter 5

Three-Step Design Optimization

In the previous chapter, we presented our methodology for efficiently imple-

menting an FPGA-based deconvolution accelerator. In this chapter, we explain the

three-step design optimization methodology which goes as follows:

1. Use statistical analysis to find out the most cost-efficient bitwidth for the

hardware system.

2. Explore the design space using the roofline model proposed in [ZLS+15] to

optimize TOH
, TOW

, TOC
, and TIC .

3. Apply very-large-scale circuits integration (VLSI) optimizations to further

improve performance.

5.1 Statistical Analysis

It is important to study the effect of bitwidth reduction on the quality of

inferential samples drawn from the generative model. To find out the most cost-

efficient bitwidth for DCNNs using an appropriate metric, we fix TOH
, TOW

, TOC
, TIC ,

and study the trade-off between generative quality and implementation complexity

over a range of bitwidths using statistical analysis. In order to study the trade-

off, we need to quantify the visual quality of the output of DCNNs. Traditional

measures of performance, such as Kullback-Leibler divergence and log-likelihood

22

23

are not feasible in the high-dimensional settings that the typical deconvolutional

neural networks are used in.

5.1.1 Null Hypothesis Test

To overcome this drawback, we turn to statistical methods that allow us to

determine the closeness of statistics from training data to statistics created from

the full-precision DCNN and a low-bitwidth (10bit) DCNN (i.e. 10bit) as a way to

measure the generative quality of low-bitwidth DCNN.

Figure 5.1: Measure generation quality quantitatively using statistical tests

Specifically, we design a null hypothesis test and use its p-value to represent

generative quality. Given samples {Xi}mi=1, {Yi}ni=1, and {Zi}ri=1 respectively from

the training data, low-bitwidth DCNN, and full-precision DCNN, the null hypothesis

is that the samples Y are closer to samples X than samples Z. Figure 5.2 shows

the process of judging our null hypothesis using test statistics.

• a p-value > 0.5 indicates the low bitwidth DCNN is more similar to the

training data

• a p-value < 0.5 indicates the full precision DCNN is more similar to the

training data

24

Figure 5.2: Process of judging a null hypothesis

1. Generate samples from full-precision and low-bitwidth DCNNs

2. Calculate the value TS of test statistics ts from samples {Xi}mi=1, {Yi}ni=1, and

{Zi}ri=1.

3. Calculate P (|ts| ≥ TS), the value of which is defined the as p-value. If the

p-value is too small, then the test statistics value exists in the two tails of

the distribution under the null hypothesis. Therefore, the null hypothesis is

unlikely to be true and these low-bitwidth generated samples are significantly

different than full precision and real samples in terms of visual quality and,

vice versa.

4. Repeat 1, 2, and 3 for each low-bitwidth DCNN

5.1.2 Test Statistics

We use the Relative Maximum Mean Discrepancy (RMMD) Test proposed

by [BBB+15] as our test statistic. The RMMD is an extension of the Maximum

Mean Discrepancy (MMD), two sample test proposed by [GBR+12]. Given samples

{Xi}mi=1 and {Yi}ni=1 from distributions Px and Py the MMD test statistic is given

25

by:

MMD2(X, Y) =
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

(5.1)

the null hypothesis H0 : Px = Py is tested versus alternative H1 : Px 6= Py. In the

above equation, k is the Radial Basis Function given by [GBR+12]

k(x, y) = exp ||x− y|| (5.2)

The RMMD test builds upon the standard MMD framework by computing

the MMD test statistic between two pairs of distributions. Given samples {Xi}mi=1,

{Yi}ni=1, and {Zi}ri=1 respectively from the training data, low-bitwidth DCNN,

and full-precision DCNN, RMMD tests the null hypothesis H0 : MMD2(X, Y) <

MMD2(X,Z) against the alternative H1 : MMD2(X,Z) < MMD2(X, Y).

The equation of RMMD test, distribution of test statistics, and p-value for testing

H0 against H1 are given by [BBB+15]:

ts = −MMD2
u(Xm, Yn)−MMD2

u(Xm, Zr)√
σ2
XY + σ2

XZ − 2σXYXZ

(5.3)

ts ∼ N

[
0 ,

(
σ2
XY σXYXZ

σXYXZ σ2
XZ

)]
(5.4)

p ≤ Φ(ts) (5.5)

where Φ is the Normal Cumulative Distribution Function, σXY denotes the covari-

ance matrix of MMD2
u(Xm, Yn), σY Z denotes the covariance matrix of MMD2

u(Yn, Zr),

σXYXZ denotes the covariance matrix of MMD2
u(Xm∪Yn, Xm∪Zr). The p-value in

the above equation indicates the probability that, based on the observed samples,

the distribution based on the low bitwidth DCNN is closer to the training data

26

than the distribution based on the full precision DCNN is to the training data.

5.2 Roofline Analysis

The generative quality is determined by choosing the optimal bitwidth using

the procedure described in Section 5.1. We now turn to further increasing the

throughput by optimizing with respect to TOH
, TOW

, TOC
, and TIC , which are the

height, width, channel size of the output block, and the channel size of input block

respectively (see Figure 4.1). This is done using the roofline analysis proposed in

[ZLS+15]. Figure 5.3 shows an example roofline plot where the X axis denotes

the number of operations per memory access and Y axis denotes the number of

operations per cycle.

Figure 5.3: Roofline Model, adopted from [ZLS+15]

In this drawing, A, B and C correspond to designs of accelerator with different

values of TOH
, TOW

, TOC
, TIC . Design A transfers too much data, so computation

speed is low, and therefore falls well beneath the computation roof. Design B

lies well beneath the bandwidth roof, which means the system performance is

dominated by memory transfers. Design C is more efficient than A and B and has

a balance between computation speed and memory bandwidth. This technique is

27

described in [ZLS+15] where it was used for the design of convolution accelerator.

We apply roofline analysis to design a deconvolution accelerator and estimate the

computation to communication ratio (CTC) and computational roof (CR) for a

given deconvolution layer.

Computation to Communication Ratio

Let αin, αw, αout and Bin, Bw, Bout denote the trip counts and buffer sizes

of memory accesses to input/output feature maps, weights, respectively. The CTC

is given by [ZLS+15]:

CTC =
total number of operations

total amount of external memory access

=
2× IC ×OC × IH × IW ×K2

αinBin + αwBw + αoutBout

(5.6)

αout =
OC

TOC

OH

TOH

, αin = αw =
IC
TIC

αout (5.7)

Bin = TIC

(
TOH

+K

S

)(
TOW

+K

S

)
(5.8)

Bout = TOC
TOH

TOW
, Bweight = TOC

TICK
2 (5.9)

0 ≤ Bin +Bw +Bout ≤ BRAMcapacity (5.10)

Computation Roof

Let PD denotes the pipeline depth and II is the number of cycles between

the start of each loop iteration TOW
, the CR is given by [ZLS+15]:

CR =
total number of operations

number of execution cycles

=
2× IC ×OC × IH × IW ×K2

αinK2TOH
(PD + II(TOW

− 1))

(5.11)

28

where

0 ≤ TOC
TIC ≤ (# of DSPs)

0 < TIC ≤ IC

0 < TOC
≤ OC

0 < TOH
≤ OH

0 < TOW
≤ OW

Note that 0 ≤ TOC
TIC ≤ (# of DSPs) will not hold true when the bitwidth

is greater than 18, because the maximum bitwidth of the multipliers used in

our implementation is 18-bit [XIL16]. Since we use a bitwidth of 12 in all our

experiments this constraint is therefore valid.

5.3 VLSI Level Optimization

5.3.1 Loop Unrolling

Loop unrolling is a key technique of high level synthesis [CM08]. It works

by generating parallel hardware to accelerate FPGA program execution. Figure 5.4

illustrates how it works.

Figure 5.4: Loop Unrolling

The innermost loop TOC
and TIC in Algorithm 3 are unrolled and can be

executed in a constant amount of cycles P , which forms the processing engine as

shown in Figure 5.5.

29

Figure 5.5: Processing Engine

5.3.2 Loop Pipelining

Loop pipelining is a fundamental technique to improve throughput. We

pipeline the loop TOW
in Algorithm 3 with an interval of 2. The pipeline execution

paradigm shows in Figure 5.6.

Figure 5.6: Pipelining Execution

5.3.3 Memory Partitioning

Memory partitioning can increase the available bandwidth of on-chip local

memory by creating more read and write interfaces (shown in Figure 5.7).

Figure 5.7: Visualization of Memory Partitioning

30

5.3.4 Register Insertion

The critical path length and pipeline interval are constrained by the on-chip

local memory bandwidth, especially when the size of the processing engine is large.

To further improve performance, we insert registers to economize local memory

bandwidth, which is illustrated in Figure 5.8.

Figure 5.8: Insert register to reduce local memory (BRAM) writes

Chapter 6

Evaluation

In the previous chapter, we explained the three-step design methodology.

In this chapter, we show the experimental setup and results.

6.1 DCNN implementation in Tensorflow

We train two deconvolutional neural networks (DCNNs) using the generative

adversarial network (GAN) method (described in chapter 2) on the MNIST and

CelebA Human Face datasets [LLWT15]. The training work flow is implemented

using the Python Programming Language [Lan17] and Tensorflow [AAB+16] on a

K-80 GPU.

6.1.1 Dataset Overview

MNIST is a database of handwritten digits with a training set of 60,000

examples and a test set of 10,000 examples [LBBH98]. Figure 6.1 shows some

sample images from the database. The size of each image is 28×28.

31

32

Figure 6.1: Samples from MNIST database [LBBH98]

CelebA is a database of human faces with a set of 202599 examples in total

[LLWT15]. Figure 6.2 shows some sample images from the database. We scale each

image to 3×64×64, where “3” denotes RGB channels.

Figure 6.2: Samples from CelebA Face database [LLWT15]

33

6.1.2 Network Configuration

Figure 6.3 and 6.4 shows the configurations of the MNIST and Face DCNN.

Figure 6.3: MNIST Deconvolutional Neural Network Configuration.

Figure 6.4: Face Deconvolutional Neural Network Configuration.

34

6.2 Statistical Analysis

We export the parameters of the DCNNs described above to a hardware

simulator to generate samples in different bitwidth settings, and study the trade-off

between generative quality and system complexity over a range of bitwidths by

determining p-value×minimum slack and p-value/power as a function of bitwidths.

The two curves are shown in Figure 6.5. Both curves peak at bitwidth 12, which we

take to be a good choice because it represents a high p-value (generative quality)

with a low power consumption and high minimum slack.

(a) p-value/power vs bitwidth (b) p-value×slack vs bitwidth

Figure 6.5: Approximate concave curves based on trade-off between generative
quality and implementation complexity.

6.3 Hardware System

We implemented the deconvolution accelerator IP with Vivado HLS (v2016.2).

We use ap fixed.h from Vivado Math Library to implement fixed point arithmetic

operations with arbitrary bitwidth precision, and use hls stream.h & ap axi sdata.h

to model streaming data structure. The hardware system is built on a Xilinx

Zynq-7000 FPGA XZ7020 with Vivado Design Suite and Xilinx SDK. The FPGA

7Z020 is programed with our accelerator IP and the ARM processor is used to

initialize the accelerator, set parameters, and transfer data for each layer. An

overview of the implementation block diagram is in Figure 6.6 and the Vivado

Design block diagram is shown in the Figure 6.7.

35

Figure 6.6: Overview of Implementation Block Diagram.

The FPGA 7Z020 is similar in size to a quarter coin and has 220 DSP slices,

85K logic ceils, 4.9MB block rams and 200 I/O pins. Our accelerator can fit into

this small chip and be shipped into much smaller embedded devices in production.

6.4 Generation Result

Figure 6.8 shows some generated faces and digits from our trained DCNNs.

Figure 6.9 shows the output of DCNNs under different bitwidths for the same

input. Visually evaluating the degradation of image quality is only feasible in the

cases of extremely low bitwidth such as 8 bits. Our proposed methodology provides

an analytical framework for quantifying the trade-off between image quality and

implementation complexity over a range of bitwidths.

36

Figure 6.7: Detailed Hardware Block Design, where the deconvolution block
denotes the accelerator, and the zynq7 processing system represents the ARM
processor.

37

Figure 6.8: Sample MNIST and CelebA images generated by the full precision
DCNN.

Figure 6.9: Images generated by different bitwidth DCNNs.

6.5 Roofline Analysis

Figure 6.10 shows all constraint-admissible design solutions for the first layer

of our CelebA DCNN, where the best design is shown as located at the left corner

of the roof.

38

Figure 6.10: Design space Exploration for a layer with input 10x2x2 and output
64x4x4.

6.6 Performance

Table 6.1 shows the utilization rate after place and route, and we compare

our DCNN performance with some existing CNN accelerators for reference in table

6.2. The performance can be further improved by implementing a ping-pong buffer

in our system.

Table 6.1: FPGA Resource Utilization

DSP LUT FF BRAM
95% 48% 29% 48%

Table 6.2: Comparison to previous implementations

Chip Precision #DSP Freq GOPS GOPS/DSP
[PSMC13] VLX240T Fixed 768 150M 17 0.022
[ZLS+15] VX485T Float 2800 100M 61.62 0.022

Ours 7Z020 16Fixed 220 100M 2.6 0.012

Chapter 7

Conclusion

7.1 Summary

In this thesis, we develop an FPGA-based deconvolution accelerator for

deconvolutional neural networks and propose a three-step design methodology

which first uses statistical analysis to find the most cost-efficient bitwidth, then

explore the design space with roofline model [ZLS+15], and use VLSI optimization

methods to produce the final design. Finally, we implement our method on a

Zynq-7000 FPGA and realize a performance density of 0.012 GOPs/DSP.

7.2 Future Work

7.2.1 ARM Code Optimization

The opportunity remains to significantly optimize the C code we wrote for

the embedded arm processor, which will increase the overall throughput.

7.2.2 Use a Larger FPGA

The Xilinx FPGA 7Z020 is a small board with limited resources and designed

for embedded applications. Given the increasing popularity of deploying large

FPGAs (i.e. Xilinx Virtex 7 Series) in data centers, it is worth testing our accelerator

39

40

on large FPGA boards.

7.2.3 Ping-Pong Buffer

By using a ping-pong buffer, the throughput of an FPGA can be significantly

increased because memory transfer and computation can be fully parallelized under

that setting. Since our implementation is the first attempt to design an FPGA-

based accelerator for deconvolution, and [SFM16] shows that high-level synthesis

may not be able to generate correct verilog implementation when ping-pong buffer

is used, we did not include it in the current version of our accelerator.

7.2.4 Convolution and Deconvolution

In Chapter 4, we showed that our deconvolution accelerator reuses the

same computational architecture with the one proposed in [ZLS+15]. It will

be interesting to investigate the use of the accelerator in applications involving

sequential alternating convolutions and deconvolutions.

7.2.5 From Prototype to Applications

Although we successfully implemented our accelerator on an FPGA, our

implementation does not have proper input and output devices. To run a DCNN

on our current implementation, we need to compile network parameters into a C

program executable for ARM, which is not automatic. For this prototype to be

useful, we need to support camera, monitor, Linux OS, file system and IP network

functions in the C source code for ARM.

7.2.6 Low Bitwidth Training

In this work, we train our DCNNs using tensorflow in double precision,

and scale them to 12bit for FPGA with tolerable generative quality degradation.

However, [ZWN+16] shows that the quantization step and its performance penalty

can be avoided for discriminative CNNs by training neural networks under low

bitwidth settings. For achieving better generative quality and higher throughput in

41

hardware, it is worth investigating low bitwidth training problem for generative

neural networks like DCNNs.

42

ACKNOWLEDGEMENTS

All of the chapters are currently being prepared for submission for publi-

cation of the material in “A Design Methodology for Efficient Implementation of

Deconvolutional Neural Networks on an FPGA”, Xinyu Zhang, Srinjoy Das, Ojash

Neopane, and Ken Kreutz-Delgado. The thesis author was the primary investigator

and author of this material.

Bibliography

[AAB+16] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[AB17] Martin Arjovsky and Léon Bottou. Towards principled methods for
training generative adversarial networks. In NIPS 2016 Workshop on
Adversarial Training. In review for ICLR, volume 2016, 2017.

[BBB+15] Wacha Bounliphone, Eugene Belilovsky, Matthew B Blaschko, Ioannis
Antonoglou, and Arthur Gretton. A test of relative similarity for model
selection in generative models. arXiv preprint arXiv:1511.04581, 2015.

[BKC15] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion. arXiv preprint arXiv:1511.00561, 2015.

[BPW+12] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M
Lucas, Peter I Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego
Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in games, 4(1):1–43, 2012.

[CLL+14] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A
machine-learning supercomputer. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages
609–622. IEEE Computer Society, 2014.

[CM08] Philippe Coussy and Adam Morawiec. High-Level Synthesis: From
Algorithm to Digital Circuit. Springer Publishing Company, Incorpo-
rated, 1st edition, 2008.

43

44

[DR95] Gunhan Dundar and Kenneth Rose. The effects of quantization on
multilayer neural networks. IEEE Transactions on Neural Networks,
6(6):1446–1451, 1995.

[DV16] Vincent Dumoulin and Francesco Visin. A guide to convolution
arithmetic for deep learning. arXiv preprint arXiv:1603.07285, 2016.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[GBR+12] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Schölkopf, and Alexander Smola. A kernel two-sample test. Journal
of Machine Learning Research, 13(Mar):723–773, 2012.

[Goo16] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks,
2016.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

[IZZE16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-
to-image translation with conditional adversarial networks. arXiv
preprint arXiv:1611.07004, 2016.

[Lan17] Python Programming Language. Python software foundation, 2017.

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

[LGS+15] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang. Rram-based
analog approximate computing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 34(12):1905–1917,
Dec 2015.

[LLWT15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
face attributes in the wild. In Proceedings of International Conference
on Computer Vision (ICCV), 2015.

http://www.deeplearningbook.org

45

[NHH15] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning de-
convolution network for semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, pages 1520–1528,
2015.

[PSMC13] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Cor-
poraal. Memory-centric accelerator design for convolutional neural
networks. In Computer Design (ICCD), 2013 IEEE 31st International
Conference on, pages 13–19. IEEE, 2013.

[RMC15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised
representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434, 2015.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. MIT press Cambridge, 1998.

[Sch97] Robert R. Schaller. Moore’s law: Past, present, and future. IEEE
Spectr., 34(6):52–59, June 1997.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[SCH+16] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P
Aitken, Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time
single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1874–1883, 2016.

[SFM16] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn
accelerator efficiency through resource partitioning. arXiv preprint
arXiv:1607.00064, 2016.

[Shi00] Hidetoshi Shimodaira. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical
planning and inference, 90(2):227–244, 2000.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[Wik17a] Wikipedia. Alphago versus lee sedol — wikipedia, the free encyclope-
dia, 2017. [Online; accessed 24-January-2017].

46

[Wik17b] Wikipedia. Go and mathematics — wikipedia, the free encyclopedia,
2017. [Online; accessed 15-March-2017].

[WLW+16] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian
Cheng. Quantized convolutional neural networks for mobile devices.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4820–4828, 2016.

[WXT+16] Yu Wang, Lixue Xia, Tianqi Tang, Boxun Li, Song Yao, Ming Cheng,
and Huazhong Yang. Low power convolutional neural networks on
a chip. In Circuits and Systems (ISCAS), 2016 IEEE International
Symposium on, pages 129–132. IEEE, 2016.

[WZX+16] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and
Joshua B Tenenbaum. Learning a probabilistic latent space of object
shapes via 3d generative-adversarial modeling. In Advances in Neural
Information Processing Systems, pages 82–90, 2016.

[XIL16] XILINX INC. 7 Series DSP48E1 Slice, 9 2016. Rev. 1.9.

[YSZ+15] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser,
and Jianxiong Xiao. Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015.

[ZKTF10] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob
Fergus. Deconvolutional networks. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 2528–2535.
IEEE, 2010.

[ZLS+15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep con-
volutional neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
161–170. ACM, 2015.

[ZWN+16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Need for Speed: Neural Networks
	The AI Strikes Back
	Behind the Go Master
	End of Moore's Law

	Possible Hardware Accelerator Choices
	ASICs
	GPUs
	FPGAs
	Non-Volatile Memory

	Our choice - the FPGA
	Our Target Algorithm

	Background Knowledge
	Neural Network
	Deconvolutional Neural Network
	Deconvolution Layer
	Batch Normalization and ReLu Activation Layers

	Generative Adversarial Network Training

	Introduction
	Design Challenges
	Contributions
	Thesis Organization

	Deconvolution Hardware Design
	Efficiency Problem of FPGA Implementation
	Reverse Looping
	Stride Hole Skipping
	ReLu and Batch Normalization

	Three-Step Design Optimization
	Statistical Analysis
	Null Hypothesis Test
	Test Statistics

	Roofline Analysis
	VLSI Level Optimization
	Loop Unrolling
	Loop Pipelining
	Memory Partitioning
	Register Insertion

	Evaluation
	DCNN implementation in Tensorflow
	Dataset Overview
	Network Configuration

	Statistical Analysis
	Hardware System
	Generation Result
	Roofline Analysis
	Performance

	Conclusion
	Summary
	Future Work
	ARM Code Optimization
	Use a Larger FPGA
	Ping-Pong Buffer
	Convolution and Deconvolution
	From Prototype to Applications
	Low Bitwidth Training

	Acknowledgements
	Bibliography

