Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

UC Merced Previously Published Works

Cover page of Developing a narrative communication intervention in the context of HPV vaccination.

Developing a narrative communication intervention in the context of HPV vaccination.

(2024)

OBJECTIVE: We outline the development of a narrative intervention guided by the Common-Sense Model of Self-Regulation (CSM) to promote Human Papillomavirus (HPV) vaccination in a diverse college population. METHODS: We adapted the Obesity-Related Behavioral Intervention Trials (ORBIT) model to guide the development, evaluation, and refinement of a CSM-guided narrative video. First, content experts developed a video script containing information on HPV, HPV vaccines, and HPV-related cancers. The script and video contents were evaluated and refined, in succession, utilizing the think-aloud method, open-ended questions, and a brief survey during one-on-one interviews with university students. RESULTS: Script and video content analyses led to significant revisions that enhanced quality, informativeness, and relevance to the participants. We highlight the critical issues that were revealed and revised in the iterative process. CONCLUSIONS: We developed and refined a CSM guided narrative video for diverse university students. This framework serves as a guide for developing health communication interventions for other populations and health behaviors. INNOVATION: This project is the first to apply the ORBIT framework to HPV vaccination and describe a process to develop, evaluate, and refine comparable CSM guided narrative interventions that are tailored to specific audiences.

Brain responses to a lab-evolved artificial language with space-time metaphors

(2024)

What is the connection between the cultural evolution of a language and the rapid processing response to that language in the brains of individual learners? In an iterated communication study that was conducted previously, participants were asked to communicate temporal concepts such as "tomorrow," "day after," "year," and "past" using vertical movements recorded on a touch screen. Over time, participants developed simple artificial 'languages' that used space metaphorically to communicate in nuanced ways about time. Some conventions appeared rapidly and universally (e.g., using larger vertical movements to convey greater temporal durations). Other conventions required extensive social interaction and exhibited idiosyncratic variation (e.g., using vertical location to convey past or future). Here we investigate whether the brain's response during acquisition of such a language reflects the process by which the language's conventions originally evolved. We recorded participants' EEG as they learned one of these artificial space-time languages. Overall, the brain response to this artificial communication system was language-like, with, for instance, violations to the system's conventions eliciting an N400-like component. Over the course of learning, participants' brain responses developed in ways that paralleled the process by which the language had originally evolved, with early neural sensitivity to violations of a rapidly-evolving universal convention, and slowly developing neural sensitivity to an idiosyncratic convention that required slow social negotiation to emerge. This study opens up exciting avenues of future work to disentangle how neural biases influence learning and transmission in the emergence of structure in language.

Cover page of Labile assembly of a tardigrade protein induces biostasis.

Labile assembly of a tardigrade protein induces biostasis.

(2024)

Tardigrades are microscopic animals that survive desiccation by inducing biostasis. To survive drying tardigrades rely on intrinsically disordered CAHS proteins, which also function to prevent perturbations induced by drying in vitro and in heterologous systems. CAHS proteins have been shown to form gels both in vitro and in vivo, which has been speculated to be linked to their protective capacity. However, the sequence features and mechanisms underlying gel formation and the necessity of gelation for protection have not been demonstrated. Here we report a mechanism of fibrillization and gelation for CAHS D similar to that of intermediate filament assembly. We show that in vitro, gelation restricts molecular motion, immobilizing and protecting labile material from the harmful effects of drying. In vivo, we observe that CAHS D forms fibrillar networks during osmotic stress. Fibrillar networking of CAHS D improves survival of osmotically shocked cells. We observe two emergent properties associated with fibrillization; (i) prevention of cell volume change and (ii) reduction of metabolic activity during osmotic shock. We find that there is no significant correlation between maintenance of cell volume and survival, while there is a significant correlation between reduced metabolism and survival. Importantly, CAHS Ds fibrillar network formation is reversible and metabolic rates return to control levels after CAHS fibers are resolved. This work provides insights into how tardigrades induce reversible biostasis through the self-assembly of labile CAHS gels.

Cover page of Pyrylium- and Pyridinium-Based Ionic Liquids as Friction Modifiers for Greases

Pyrylium- and Pyridinium-Based Ionic Liquids as Friction Modifiers for Greases

(2024)

The use of ionic liquids (ILs) as lubricants or additives has been studied extensively over the past few decades. However, the ILs considered for lubricant applications have been part of a limited structural class of phosphonium- or imidazolium-type compounds. Here, new pyrylium- and pyridinium-based ILs bearing long alkyl chains were prepared and evaluated as friction- and wear-reducing additives in naphthenic greases. The physical properties of the synthetic ILs and additized naphthenic grease were measured. The tribological performance of the greases was measured by using standard benchtop tests. The addition of ILs was detrimental to wear, causing an increase in the amount of material removed by sliding relative to the base greases in most cases. In contrast, the friction performance improved under nearly all conditions tested due to the IL additives. The compatibility of the synthetic ILs with the naphthenic greases and its potential influence upon miscibility and tribological performance are tentatively proposed to be a result of the molecular structure.

Cover page of Correlation-informed ordered dictionary learning for imaging in complex media.

Correlation-informed ordered dictionary learning for imaging in complex media.

(2024)

We propose a method for imaging in scattering media when large and diverse datasets are available. It has two steps. Using a dictionary learning algorithm the first step estimates the true Green's function vectors as columns in an unordered sensing matrix. The array data comes from many sparse sets of sources whose location and strength are not known to us. In the second step, the columns of the estimated sensing matrix are ordered for imaging using the multidimensional scaling algorithm with connectivity information derived from cross-correlations of its columns, as in time reversal. For these two steps to work together, we need data from large arrays of receivers so the columns of the sensing matrix are incoherent for the first step, as well as from sub-arrays so that they are coherent enough to obtain connectivity needed in the second step. Through simulation experiments, we show that the proposed method is able to provide images in complex media whose resolution is that of a homogeneous medium.

Cover page of Maintaining Transient Diversity Is a General Principle for Improving Collective Problem Solving.

Maintaining Transient Diversity Is a General Principle for Improving Collective Problem Solving.

(2024)

Humans regularly solve complex problems in cooperative teams. A wide range of mechanisms have been identified that improve the quality of solutions achieved by those teams on reaching consensus. We argue that many of these mechanisms work via increasing the transient diversity of solutions while the group attempts to reach a consensus. These mechanisms can operate at the level of individual psychology (e.g., behavioral inertia), interpersonal communication (e.g., transmission noise), or group structure (e.g., sparse social networks). Transient diversity can be increased by widening the search space of possible solutions or by slowing the diffusion of information and delaying consensus. All of these mechanisms increase the quality of the solution at the cost of increased time to reach it. We review specific mechanisms that facilitate transient diversity and synthesize evidence from both empirical studies and diverse formal models-including multiarmed bandits, NK landscapes, cumulative-innovation models, and evolutionary-transmission models. Apparent exceptions to this principle occur primarily when problems are sufficiently simple that they can be solved by mere trial and error or when the incentives of team members are insufficiently aligned. This work has implications for our understanding of collective intelligence, problem solving, innovation, and cumulative cultural evolution.

Cover page of Atypical RhoUV GTPases in development and disease

Atypical RhoUV GTPases in development and disease

(2024)

RhoU and RhoV are members of the Rho family of small GTPases that comprise their own subfamily. RhoUV GTPases are classified as atypical due to the kinetics of their GTP/GDP binding cycles. They also possess unique N- and C-termini that regulate their subcellular localization and activity. RhoU and RhoV have been linked to cytoskeletal regulation, cell adhesion, and cell migration. They each exhibit distinct expression patterns during embryonic development and diseases such as cancer metastasis, suggesting they have specialized functions. In this review, we will discuss the known functions of RhoU and RhoV, with a focus on their roles in early development, organogenesis, and disease.

Cover page of Seroprevalence of the Hepatitis E Virus in Indigenous and Non-Indigenous Communities from the Brazilian Amazon Basin.

Seroprevalence of the Hepatitis E Virus in Indigenous and Non-Indigenous Communities from the Brazilian Amazon Basin.

(2024)

Hepatitis E virus (HEV) infection is a common cause of acute viral hepatitis in tropical regions. In Brazil, HEV G3 is the only genotype detected to date. Reports on HEV prevalence are heterogeneous. We aimed to compare the prevalence of anti-HEV among three populations living in the Brazilian Amazon basin. Two cross-sectional studies were conducted in urban, rural, and Yanomami indigenous areas. Plasma samples from 428 indigenous and 383 non-indigenous subjects were tested for anti-HEV IgG using enzyme-linked immunosorbent assays. The overall prevalence of anti-HEV was 6.8% (95%CI: 5.25-8.72), with 2.8% (12/428) found in the Yanomami areas, 3% (3/101) in an urban area, and 14.2% (40/282) in a rural area. Multivariate logistic analysis indicated that patients aged 31-45 years or ≥46 years are more likely to present anti-HEV positivity, with a respective aOR of 2.76 (95%CI: 1.09-7.5) and 4.27 (95%CI: 1.58-12.35). Furthermore, residence in a rural area (aOR: 7.67; 95%CI: 2.50-33.67) represents a relevant risk factor for HEV infection. Additional studies detecting HEV RNA in fecal samples from both humans and potential animal reservoirs are necessary to comprehensively identify risk factors associated with HEV exposure.