Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Rapamycin induces transactivation of the EGFR and increases cell survival

Abstract

The mammalian target of rapamycin (mTOR) signaling network regulates cell growth, proliferation and cell survival. Deregulated activation of this pathway is a common event in diverse human diseases such as cancers, cardiac hypertrophy, vascular restenosis and nephrotic hypertrophy. Although mTOR inhibitor, rapamycin, has been widely used to inhibit the aberrant signaling due to mTOR activation that plays a major role in hyperproliferative diseases, in some cases rapamycin does not attenuate the cell proliferation and survival. Thus, we studied the mechanism(s) by which cells may confer resistance to rapamycin. Our data show that in a variety of cell types the mTOR inhibitor rapamycin activates extracellularly regulated kinases (Erk1/2) signaling. Rapamycin-mediated activation of the Erk1/2 signaling requires (a) the epidermal growth factor receptor (EGFR), (b) its tyrosine kinase activity and (c) intact autophosphorylation sites on the receptor. Rapamycin treatment increases tyrosine phosphorylation of EGFR without the addition of growth factor and this transactivation of receptor involves activation of c-Src. We also show that rapamycin treatment triggers activation of cell survival signaling pathway by activating the prosurvival kinases Erk1/2 and p90RSK. These studies provide a novel paradigm by which cells escape the apoptotic actions of rapamycin and its derivatives that inhibit the mTOR pathway.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View