Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Multiple sclerosis therapies differentially impact SARS-CoV-2 vaccine-induced antibody and T cell immunity and function

Abstract

BACKGROUNDVaccine-elicited adaptive immunity is a prerequisite for control of SARS-CoV-2 infection. Multiple sclerosis (MS) disease-modifying therapies (DMTs) differentially target humoral and cellular immunity. A comprehensive comparison of the effects of MS DMTs on SARS-CoV-2 vaccine-specific immunity is needed, including quantitative and functional B and T cell responses.METHODSSpike-specific Ab and T cell responses were measured before and following SARS-CoV-2 vaccination in a cohort of 80 study participants, including healthy controls and patients with MS in 6 DMT groups: untreated and treated with glatiramer acetate (GA), dimethyl fumarate (DMF), natalizumab (NTZ), sphingosine-1-phosphate (S1P) receptor modulators, and anti-CD20 mAbs. Anti-spike-Ab responses were assessed by Luminex assay, VirScan, and pseudovirus neutralization. Spike-specific CD4+ and CD8+ T cell responses were characterized by activation-induced marker and cytokine expression and tetramer.RESULTSAnti-spike IgG levels were similar between healthy control participants and patients with untreated MS and those receiving GA, DMF, or NTZ but were reduced in anti-CD20 mAb- and S1P-treated patients. Anti-spike seropositivity in anti-CD20 mAb-treated patients was correlated with CD19+ B cell levels and inversely correlated with cumulative treatment duration. Spike epitope reactivity and pseudovirus neutralization were reduced in anti-CD20 mAb- and S1P-treated patients. Spike-specific CD4+ and CD8+ T cell reactivity remained robust across all groups, except in S1P-treated patients, in whom postvaccine CD4+ T cell responses were attenuated.CONCLUSIONThese findings from a large cohort of patients with MS exposed to a wide spectrum of MS immunotherapies have important implications for treatment-specific COVID-19 clinical guidelines.FUNDINGNIH grants 1K08NS107619, K08NS096117, R01AI159260, R01NS092835, R01AI131624, and R21NS108159; NMSS grants TA-1903-33713 and RG1701-26628; Westridge Foundation; Chan Zuckerberg Biohub; Maisin Foundation.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View