
UC San Diego
Recent Work

Title
Unit Root Testing via the Continuous-Path Block Bootstrap

Permalink
https://escholarship.org/uc/item/9qb4r775

Authors
Paparoditis, Efstathios
Politis, Dimitris N

Publication Date
2001-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9qb4r775
https://escholarship.org
http://www.cdlib.org/


2001-06

UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF ECONOMICS

UNIT ROOT TESTING VIA THE CONTINUOUS-PATH BLOCK
BOOTSTRAP

BY

EFSTATHIOS PAPARODITIS

AND

DIMITRIS N. POLITIS

DISCUSSION PAPER 2001-06
MARCH 2001



Unit Root Testing via the

Continuous-Path Block Bootstrap

Efstathios Paparoditis

Department of Mathematics and Statistics

University of Cyprus

P.O.Box 20537

CY 1678 Nicosia, Cyprus

Dimitris N. Politis

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-012

USA

Abstract

A new resampling procedure, the continuous-path block bootstrap, is proposed in the
context of testing for integrated (unit root) time series. The continuous-path block bootstrap
(CBB) is a nonparametric procedure that successfully generates unit root integrated pseudo
time series retaining the important characteristics of the data, e.g., the dependence structure
of the stationary process driving the randomwalk. As a consequence, the CBB can accurately
capture the distribution of many unit root test statistics. Large sample theory for the new
bootstrap methodology is developed and the asymptotic validity of CBB{based unit root
testing is shown via a bootstrap functional limit theorem. Applications of the new procedure
to least squares and Dickey-Fuller type test statistics of the unit root hypothesis are given.
Finite-sample simulations con�rm a good �{level accuracy and an increased power associated
with CBB{based unit root testing.

Key words: Autocorrelation, Hypothesis Testing, Integrated Series, Non-stationary Se-
ries, Random Walk, Resampling.
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1 Introduction

Consider time series data of the form X1; X2; : : : ; Xn, where fXt; t = 1; 2; : : :g is a sequence

of random variables with mean zero; for convenience we assume that X0 = 0 although other

common choices of the initial value can be also considered. Following the seminal work of Fuller

(1996) and Dickey and Fuller (1979), statistical methods for detecting the possible presence of

a unit root in the time series fXtg have attracted considerable attention over the last decades.

In particular, assume that the time series fXtg is either stationary, or I(1), i.e., integrated of

order one; as usual, the I(1) condition means that fXtg is not stationary, but its �rst di�erence
series fYtg is stationary, where Yt := Xt � Xt�1. The hypothesis test of interest can then be

stated as:

H0 : fXtg is I(1)

versus

H1 : fXtg is stationary:

Throughout the paper we use the term `stationary' as short-hand for `strictly stationary'.

A �rst step in carrying out this hypothesis test is to choose a parameter � with the property

that � = 1 is equivalent to H0, whereas � 6= 1 is equivalent to H1. A detailed discussion on

di�erent choices for the � parameter is given in the next Section. After deciding on a particular

choice for the � parameter, consider the new series fUtg de�ned by the equation:

Ut := Xt � �Xt�1 (1.1)

for t = 1; 2; : : : Equation (1.1) should be strictly considered as de�ning the new series fUtg, and
it is not to be thought of as the \model" generating the series fXtg. In this paper, we do not

assume a \model" for the fXtg series; the necessary technical assumptions placed on fXtg are
stated in detail in Section 2. Nonetheless, de�nition (1.1) is very useful as the new series fUtg
is easily seen to be stationary always: under H0 and/or under H1.

Numerous alternative procedures have been developed over the past three decades for testing

the hypothesis that fXtg is integrated of order one (i.e., � = 1) against the alternative that it

is integrated of order zero (i.e., � 6= 1); cf. Hamilton (1994) and Stock (1994) for an overview.

The majority of these procedures employ certain estimators of the parameter � under di�erent

speci�cations of the estimated equation and use limiting distributions to obtain the rejection

regions; cf. Fuller (1996) or Hamilton (1994). Nevertheless, the analysis is considerably com-

plicated due to the stochastic behavior of the random quantities involved. For instance, it is

well-known that the limiting distribution of the least squares (LS) estimator of the regression of

Xt on Xt�1 is nonstandard even in the simplest case of a random walk with i.i.d. residuals; this

asymptotic distribution is shown to depend on the particular model �tted to the series, lead-

ing to di�erent results for di�erent speci�cations of a deterministic term. Moreover, allowing

for serial correlation in the stationary process fUtg a�ects the limiting distribution by means

of nuisance (and hard to estimate) parameters like the spectral density of the process at zero.

Finally, the quality of large sample approximations have been questioned in several simulation
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studies where severe size distortions have been reported for some commonly used tests; see for

instance Schwert (1989) or DeJong et al. (1992).

In situations like the above, where the limiting distribution of a statistic depends on di�cult-

to-estimate parameters, resampling methods have often in the past o�ered an alternative and

potentially more powerful way to estimate the sampling behavior of a statistic of interest. How-

ever, none of the existing nonparametric bootstrap methods is directly applicable to the unit root

nonstationary case considered here; this is true, for instance, for the block bootstrap (K�unsch

(1989), Liu and Singh (1992)) and the stationary bootstrap (Politis and Romano (1994)) since

they are both designed for stationary weakly dependent processes|see Efron and Tibshirani

(1993) and Shao and Tu (1995) for an overview of bootstrap methods.

Furthermore, in designing a nonparametric bootstrap procedure for testing purposes, an

additional aspect must be taken into account which is important for good power performance.

For such purposes, the bootstrap procedure should be able to reproduce the behavior of the

test statistic under the null hypothesis (e.g., unit root integration) whether the observed series

obeys the null hypothesis or not. In this connection, recent fruitful attempts to approach the

unit root problem via bootstrap methods have been based on quite restrictive assumptions on

the parametric structure of the model generating the data, assuming|more often than not|an

AR(1) structure with i.i.d. residuals, i.e., equation (1.1) in connection to an i.i.d. sequence fUtg;
cf. Bertail (1994) and Ferretti and Romo (1996).

In the present paper, a new nonparametric bootstrap procedure is introduced, and |for rea-

sons to be apparent shortly| is termed the Continuous-Path Block Bootstrap testing procedure;

by its construction, the Continuous-Path Block Bootstrap testing procedure generates unit root

time series while at the same time it manages to automatically (and nonparametrically) replicate

the important weak dependence characteristics of the data, e.g., the dependence structure of

the stationary process fUtg. The Continuous-Path Block Bootstrap (CBB) testing procedure is

a modi�cation of a resampling algorithm introduced recently by Paparoditis and Politis (2000),

and it is based on the block bootstrap of K�unsch (1989) and Liu and Singh (1992).

To motivate the CBB, let us give an illustration demonstrating the failure of the block

bootstrap (BB) under the presence of a unit root. Figure 1(a) shows a plot of (the natural

logarithm of) the Dow Jones Utilities index series recorded daily from Aug. 28 to Dec. 18, 1972,

while Figure 1(b) shows a realization of a BB pseudo replication of this series using block size

10. It is obvious visually that the bootstrap series is quite dissimilar to the original series, the

most striking di�erence being the presence of strong discontinuities (of the `jump' type) in the

bootstrap series that|not surprisingly|occur every 10 time units, i.e., where the independent

bootstrap blocks join.

Please insert Figure 1 about here

Figure 1(c) suggests a way to �x this problem by forcing the bootstrap sample path to be

continuous. A simple way to do this is to shift each of the bootstrap blocks up or down with the

goal of ensuring: (i) that the bootstrap series starts o� at the same point as the original series,
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and that (ii) the bootstrap sample path is continuous. Notably, the bootstrap blocks used in

Figure 1(c) are the exact same blocks featuring in Figure 1(b).

At least as far as visual inspection of the plot can discern, the series in Figure 1(c) could just

as well have been generated by the same probability mechanism that generated the original Dow

Jones series. In other words, it is plausible that a bootstrap algorithm generating series such

as the one in Figure 1(c) would be successful in mimicking important features of the original

process; thus, the \Continuous-Path Block Bootstrap" of Figure 1(c) is expected to `work' in

this case.

Of course, the actual daily Dow Jones data are in discrete time, and talking about continuity

is|strictly speaking|inappropriate. Nevertheless, an underlying continuous-time model may

always be thought to exist, and the idea of continuity of sample paths is powerful and intuitive;

hence the name \Continuous-Path Block Bootstrap" for our discrete-time methodology as well.

Note that the above discussion describes just the rudimentary notion behind the CBB; we have

here assumed that this series is indeed unit root integrated, and have postponed|until the next

Section|the discussion of some necessary technical details, including the modi�cation of the

CBB that is required in the context of testing.

The paper is organized as follows. Section 2 describes in detail the CBB testing procedure and

states its main characteristics. A bootstrap functional limit theorem for partial sum processes

based on CBB pseudo-series is established in Section 3; consequently, the asymptotic validity of

the CBB in approximating the distribution of some commonly used test statistics is shown in

Section 4. Some extensions of the procedure are discussed in Section 5 while Section 6 examines

the small sample performance of the CBB method. Section 7 summarizes our �ndings while all

technical proofs are deferred to Section 8.

2 The Continuous-Path Block Bootstrap

As stated in the Introduction, we assume throughout the paper that the time series fXtg is either
stationary (hypothesis H1), or it is not stationary but its �rst di�erence series fYtg is stationary
(hypothesis H0), where Yt = Xt � Xt�1. Note that under H0 (which is equivalent to � = 1),

it is obvious that the sequence fYtg coincides with the sequence fUtg de�ned in equation (1.1).

For technical reasons, we strengthen the above set-up by requiring that the weak dependence

structure of fUtg satis�es one of two sets of conditions. The �rst one assumes that either fXtg is
stationary and linear, or it is not stationary but its �rst di�erence series fYtg is stationary and

linear; as usual, linearity implies an MA(1) representation with respect to some i.i.d. sequence

f"tg. The second condition replaces linearity by a strong mixing assumption. We are now able

to concisely state our assumptions in the following two conditions.

CONDITION A: fXtg satis�es one (and only one) of the following two conditions:

(i) (Case � = 1). Xt = Xt�1 + Ut where the process fUtg is generated by Ut =
P
1

j=0  j"t�j
with  0 = 1,

P
1

j=1 jj jj < 1, C	 =
P
1

j=0  j 6= 0 and f"tg a sequence of independent,

identically distributed (i.i.d.) random variables with mean zero, positive variance �2" and

E["4t ] <1.
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(ii) (Case � 6= 1). fXtg is stationary and generated by Xt =
P
1

j=0  j"t�j where the coe�-

cients  j and the sequence f"tg satisfy the same conditions as above.

Condition A simply states that the process fXtg is either a stationary linear process (� 6= 1)

or it is generated by integrating such a linear process (� = 1). Note that in both cases the

process fUtg de�ned by Ut = Xt � �Xt�1 is always linear and stationary. For � = 1 this is so

by assumption while for � 6= 1 we have

Ut = (1� �L)Xt = 	+(L)"t

where 	+(L) = (1 � �L)	(L), 	(L) =
P
1

j=0  jL
j and L is the shift operator de�ned by

LkXt := Xt�k for k 2 ZZ. Clearly,
P
1

j=0 jj +
j
j <1 and

P
1

j=0  
+
j
6= 0.

Apart from the linear class of stochastic processes, the CBB procedure can also be applied

to approximate the distribution of interest in case the dependence structure of the stationary

process driving the random walk is nonlinear but obeys a mixing condition. As usual, this is

de�ned by means of the strong mixing coe�cients; see e.g. Rosenblatt (1985). In particular, we

say that the process fXtg is strong mixing if �(k) ! 0 as k ! 1 where the mixing coe�cient

�(k) is de�ned by

�(k) = sup
A2B0

�1
;B2B1

k

���P (A \B)� P (A)P (B)
���:

Here Bl+m
l

denotes the �-algebra generated by the set of random variables fXl; Xl+1; : : : ; Xl+mg.
As an alternative to Condition A, we may impose the following condition on the process fXtg.

CONDITION B: For each value of �, the series fUtg is strong mixing and satis�es the

following conditions: E(Ut) = 0, EjUtj� < 1 for some � > 2, fU (0) > 0, where fU denotes

the spectral density of fUtg, i.e., fU (�) =
P
1

h=�1 U(h) expfi�hg and U(h) = E(UtUt+h).

Furthermore,
P
1

k=1 �(k)
1�2=� <1, where �(�) denotes the strong mixing coe�cient of fUtg.

If fXtg is unit root integrated then the above condition implies that the di�erenced process

Ut = Xt �Xt�1 is strong mixing. On the other hand, if fXtg is stationary (� 6= 1), then fXtg
is a strong mixing process satisfying the conditions stated above. Since in this case fUtg is a

moving average of fXtg, i.e., Ut = Xt��Xt�1, the process fUtg satis�es Condition B. Note that

Condition B does not imply A, i.e., there are stationary processes satisfying Condition A which

are not mixing; see Withers (1981) or Andrews (1984).

The Continuous-Path Block-Bootstrap (CBB) testing algorithm is now de�ned in the fol-

lowing six steps below. As before, the algorithm is carried out conditionally on the original data

fX1; X2; : : : ; Xng, and implicitly de�nes a bootstrap probability mechanism denoted by P � that

is capable of generating bootstrap pseudo-series of the type fX�

t
; t = 1; 2; : : :g. In the sequel, we

denote quantities (expectation, variance, etc.) taken with respect to P � with an asterisk �.

Continuous-Path Block Bootstrap (CBB) testing algorithm:
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1. First calculate the centered residuals

bUt = (Xt � �̂nXt�1) � 1

n � 1

nX
t=2

(Xt � �̂nXt�1) (2.1)

for t = 2; 3; : : : ; n where �̂n = �̂n(X1; X2; : : : ; Xn) is a consistent estimator of � based on

the observed data fX1; X2; : : : ; Xng; see Remark 2.2 below.

Attention now focuses on the new variables eXt de�ned as follows:

eXt =

8><>:
X1 for t = 1

X1 +
P

t

j=2
bUj for t = 2; 3; : : : ; n.

2. Chose a positive integer b(< n), and let i0; i1; : : : ; ik�1 be drawn i.i.d. with distribution

uniform on the set f1; 2; : : : ; n � bg; here we take k = [(n � 1)=b], where [�] denotes the
integer part, although di�erent choices for k are also possible. The CBB constructs a

bootstrap pseudo-series X�

1 ; : : : ; X
�

l
, where l = kb+ 1, as follows.

3. Construction of the �rst bootstrap block of b+ 1 observations. Set X�

1 = X1 and

X�

j := X1 + [ eXi0+j�1 � eXi0
]

for j = 2; : : : ; b+ 1: To elaborate:

X�

2 := X1 + [ eXi0+1 � eXi0
]

X�

3 := X1 + [ eXi0+2 � eXi0
]

...

X�

b + 1 := X1 + [ eXi0+b � eXi0
]:

4. Construction of the (m+1)-th bootstrap block from them-th block form = 1; 2; : : : ; k�1.

Let

X�

mb+1+j := X�

mb+1 + [ eXim+j � eXim ]

for j = 1; : : : ; b: To elaborate:

X�

mb+2 := X�

mb+1 + [ eXim+1 � eXim ]

X�

mb+3 := X�

mb+1 + [ eXim+2 � eXim ]

...

X�

mb+1+b := X�

mb+1 + [ eXim+b � eXim ]:
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5. Finally, compute the pseudo-statistic �̂� which is nothing other than the statistic �̂l based

on the pseudo-data fX�

1 ; : : : ; X
�

l
g.

6. Repeating steps 2{5 a great number of times (B times, say), we obtain the collection of

pseudo-statistics �̂�1; : : : ; �̂
�

B
. As will be shown shortly, an empirical distribution (or just a

histogram) based on the pseudo-statistics �̂�1; : : : ; �̂
�

B
provides a consistent approximation

of the distribution of �̂n(X1; : : : ; Xn) under the null hypothesis H0 : � = 1. The �{quantile

of the bootstrap distribution in turn yields a consistent approximation to the �{quantile

of the true distribution (under H0) which is required in order to perform an �{level test

of H0.

An intuitive way to understand the CBB construction is based on the discussion regarding

Figure 1(c) in the Introduction and goes as follows: (i) construct a BB (block bootstrap) pseudo-

series fX�

t
; t = 1; 2; : : :g based on blocks of size equal to b+1 taken from the series eXt; (ii) shift

the �rst block (of size b+ 1) by an amount selected such that the bootstrap series starts o� at

the same point as the original series; (iii) shift the second BB block (of size b + 1) by another

amount selected such that the �rst observation of this new bootstrap block matches exactly the

last observation of the previous bootstrap block; (iv) join the two blocks but delete the last

observation of the previous bootstrap block from the bootstrap series; (v) repeat parts (iii) and

(iv) until all the generated BB blocks are used up. Note that a CBB series using block size b

is associated to a BB construction with block size b + 1. This phenomenon is only due to the

fact that we are dealing with discrete-time processes; it would not occur in a continuous-time

setting. The reason for this is our step (iv) above: although we are e�ecting the matching of

the �rst observation of a new bootstrap block to the last observation of the previous bootstrap

block, it does not seem advisable to leave both occurrences of this common (matched) value to

exist side-by-side; one of the two must be deleted as step (4) suggests.

Remark 2.1 Note that the CBB idea is not applied to the fXtg data; rather, it is applied to

f eXtg which is obtained by integrating the centered residuals bUt. The reason for this centering

is that although the series Ut = Xt � �Xt�1 has a zero mean both under the null and under

the alternative, the estimated innovations eUt = Xt � �̂nXt�1 will likely have nonzero (sample)

mean; this discrepancy has an important e�ect on the bootstrap distribution e�ectively leading

to a random walk with drift in the bootstrap world. Fortunately, recentering the innovations

yields an easy �x-up; a similar necessity for residual centering has been recommended early on

even in regular linear regression|see Freedman (1981).

Remark 2.2 The quantity �̂n appearing in equation (2.1) is an appropriately chosen consistent

estimator of the parameter � based on the data fX1; X2; : : : ; Xng. In particular, for the validity

of the CBB we require that �̂n satis�es

�̂n = �+OP (n
�(1+�(�))=2) (2.2)

where �(�) = 1 if � = 1, and �(�) = 0 if � 6= 1. Condition (2.2) is satis�ed by many estimators;

we elaborate with three speci�c examples:
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Example 2.1 Let the parameter � have the meaning of the asymptotic lag-1 autocorrelation

of series fXtg, i.e., let
� = lim

t!1

EXtXt+1

EX2
t

:

Note that under H1 the series fXtg is stationary, and therefore the limit is unnecessary. Nev-

ertheless, the limiting operation is required under H0 (i.e., if the series fXtg is I(1)), in which

case we can easily calculate that

EXtXt+1

EX2
t

= 1 + O(1=t);

under the sole assumption that the series fUtg possesses a spectral density (which is guaranteed

by either Condition A or B).

The above discussion showed that if the series fXtg is I(1), then � = 1. To show that H0 is

essentially equivalent to � = 1 in this case note that if � = 1, then either fXtg is I(1), or it is the
trivial stationary process with constant sample-paths (by the Cauchy-Schwarz inequality); but

even this latter case can be put in the I(1) framework: Xt = Xt�1+Ut where fUtg is stationary
but with V ar(Ut) = 0.

Let �̂n = �̂LS be the (ordinary) least squares estimator obtained by regressing Xt on Xt�1

given by

�̂LS =

P
n

t=2XtXt�1P
n

t=2X
2
t�1

:

It is now well-known that the estimator �̂LS above satis�es equation (2.2); see Brockwell and

Davis (1991) for the stationary case, and Fuller (1996) or Phillips (1987) for the integrated case.

Example 2.2 We can similarly consider the parameter � signifying the asymptotic lag-k auto-

correlation of the series fXtg for some �xed k > 0, i.e.,

� = lim
t!1

EXtXt+k

EX2
t

:

Again under H1 the series fXtg is stationary, and the limit is unnecessary. Similarly, under H0,

we calculate that
EXtXt+k

EX2
t

= 1 +O(1=t);

using the fact that the series fUtg possesses a spectral density. Thus, it is apparent that H0

implies � = 1; but is � = 1 equivalent to H0? Technically speaking the answer is no, since a

value of one for the lag-k autocorrelation of a series fXtg may mean either that fXtg is I(1)

(as in Example 2.1 above), or that fXtg is periodic with period k. If, however, the periodicity

is ruled out, then � = 1 would e�ectively be equivalent to H0.

Now let �̂n = �̂LS;k be the (ordinary) least squares estimator obtained by regressing Xt on

Xt�k, i.e., let

�̂LS;k =

P
n

t=k+1XtXt�kP
n

t=k+1X
2
t�k

:
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It is now also true that equation (2.2) is satis�ed; see Brockwell and Davis (1991) for the sta-

tionary case, and Hall (1989) for the unit root case where �̂LS;k has been used as an instrumental

variable estimator in the context of a speci�c model.

To introduce the next example we modify Condition A by restricting the class of linear

processes considered to those possessing an in�nite order autoregressive representation.

CONDITION A� The process fXtg satis�es Condition A and the power series 	(z) =

1 +
P
1

j=1  jz
j is bounded, and bounded away from zero for jzj � 1.

Condition 	(z) 6= 0 for jzj � 1 implies the existence of an in�nite order autoregressive

representation for fUtg if � = 1. In particular, we have in this case that Ut = Xt�Xt�1 has the

representation Ut = �P1

j=1 �jUt�j + "t where

�(z) = 1 +

1X
j=1

�jz
j = 1=	(z):

Note that in this case the integrated process fXtg can be expressed as (1�L)(1+
P
1

j=1 �jL
j)Xt =

"t, i.e., e�(z) = (1 � z)�(z) has a unit root. If � 6= 1 then Condition A� implies that Xt =

�P1

j=1 �jXt�j + "t since in this case fXtg is by assumption linear and stationary, i.e., Xt =P
1

j=0  j"t�j and the power series 	(z) has no zeros for jzj � 1. Therefore, Condition A� states

that either is fXtg a stationary process possessing an in�nite order autoregressive representation
(� 6= 1) or fXtg is obtained by integrating such a process (� = 1).

If the process fXtg satis�es Condition A� , then an alternative representation (identity) of

Xt useful for testing purposes is given in the following lemma; cf. also Fuller (1996) for a similar

representation in the case that fXtg is a �nite order autoregressive process.

Lemma 2.1 If fXtg satis�es Condition A� then

Xt = �Xt�1 +

1X
j=1

aj(Xt�j �Xt�j�1) + "t (2.3)

where
P
1

j=1 jaj j < 1 and the coe�cients fajg are de�ned as follows: If fXtg is unit root

integrated then � = 1 and aj = �j for j = 1; 2; : : :, while if fXtg is stationary then

� = �
1X
j=1

�j and aj =

1X
s=j+1

�s for j = 1; 2; : : :

To see why the above statement is true note that in the unit root integrated case, repre-

sentation (2.3) is obviously valid for � = 1 and aj = �j , since in this case Xt = Xt�1 + Ut
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and Ut = �P1

j=1 �jUt�j + "t by assumption. On the other hand if fXtg is stationary then the

in�nite order autoregressive representation of fXtg can be written as

Xt = �
1X
j=1

�jXt�j + "t

= �
1X
j=1

�jXt�1 +

1X
j=2

�j(Xt�1 �Xt�2)

+

1X
j=3

�j(Xt�2 �Xt�3) + : : :+ "t

from which the required representation follows by the choice of � and aj stated in the lemma.

Furthermore, since for � 6= 1 the process fXtg is stationary and
P
1

j=1 jj�jj < 1, we get by

simple algebra that

1X
j=1

jaj j =

1X
j=1

j
1X

s=j+1

�j j

�
1X
j=1

jj�jj <1:

Thus if the process fXtg is generated by a stationary in�nite order autoregressive process,

then the parameter � appearing in de�nition (1.1) and equation (2.3) is given by � = �P1

j=1 �j .

Furthermore, this parameter always satis�es

� � 1: (2.4)

To see this, note that the condition �(z) 6= 0 for jzj < 1 implies (by the continuity of the power

series �(z) and the fact that �(0) = 1) that �(z) > 0 for jzj < 1. By continuity again we get

limz!1 �(z) = 1 +
P
1

j=1 �j � 0 which is just (2.4). Note that � = 1 implies that �(z) has a unit

root.

Example 2.3 Assume that the underlying process satis�es Condition A� and let �̂n = �̂DF be

the so-called augmented Dickey-Fuller estimator of � and which is obtained by �tting a truncated

version of (2.3) to the observed series, i.e., by �tting the model

Xt = �Xt�1 +

pX
i=1

ai(Xt�i �Xt�i�1) + "t: (2.5)

To ensure consistency of �̂DF the order p = p(n) in the above equation is allowed to increase

to in�nity at some appropriate rate as the sample size n increases; see Said and Dickey (1984).

Note that for �xed p, equation (2.5) is the set-up considered by Dickey and Fuller (1979) for

�nite order autoregressive processes of known order.

From the discussion following Condition A� it is clear that � = 1 is equivalent to the null

hypothesis of unit root integration. Under some assumptions on the rate with which p increases,

10



Said and Dickey (1984) showed that in the unit root case �̂DF = 1 + O(n�1). In Section 8 we

extend their result by showing that if fXtg is a stationary process having the representation

(2.3), then �̂DF = �+OP (n
�1=2), where � = �P1

j=1 �j . Therefore, the estimator �̂DF considered

in this example obeys the stochastic behavior (2.2). Recall that for the choice of � discussed here

it follows from (2.4) that the value of � under the alternative is not necessarily in the interval

[�1; 1]; whereas � � 1 always, it may be the case that � < �1. For instance, if the true process
fXtg is the �rst order moving average process Xt = "t � �"t�1 with j�j < 1, � 6= 0, then Xt has

an autoregressive representation with �j = �j , i.e., � = �P1

j=1 �j = ��=(1 � �) which is less

than �1 for every � 2 (1=2; 1).

Note that while (2.3) is valid for all values of � considered, Condition A� does not necessarily

imply that the stationary process fUtg has an AR(1) representation with absolutely summable

coe�cients when the original process fXtg is stationary and possesses such a representation.

To see this recall that for � 6= 1 Condition A� implies that Xt = �P1

j=1 �jXt�j + "t. Now, if

Ut =
P
1

j=1 cjUt�j + "t exists then using the de�nition Ut = Xt � �Xt�1 and rearranging terms

it follows that c0 = 1 and cj = �j + �cj�1 for j = 1; 2; : : : which implies that jcj j 6! 0 if � � �1.

What is apparent from the above three examples is that there are di�erent possibilities for

the meaning we attach to the parameter � �guring in equation (1.1). Whereas � = 1 is equivalent

to an integrated (unit root) series in all examples above, the meaning of � = c (where c 6= 1

is some constant) is di�erent; this is a most important point in order to understand how our

testing procedure behaves when the fXtg data are actually stationary.

Remark 2.3 Note that the estimator �̂n used in calculating the residuals in step 1 of the CBB

algorithm is the same estimator whose distribution is required in order to perform the test of

H0 : � = 1. In other words, the practitioner �rst selects a suitable statistic for the unit root

test (making sure (2.2) is satis�ed), and then uses the same statistic in constructing the CBB

residuals. The reason this pairing is required can be better explained by the following simple

argument.

Having decided on using a particular estimator �̂n of the parameter � �guring in equation

(1.1), recall that our (ideal) objective is to approximate (by bootstrap simulations) the distri-

bution of �̂n under H0; in other words, we would like to be able to simulate the distribution of

�̂n in the context of equation (1.1) with � = 1. To do this, we would like to simulate fXtg data
from the equation

Xt = Xt�1 + Ut; (2.6)

and then use the simulated data to compute the distribution of �̂n.

We now go back to the CBB testing construction to see how the CBB attempts to approxi-

mate the above simulation. First recall that step 1 of the CBB algorithm e�ectively sets

eXt =
eXt�1 +

bUt:
But if we momentarily neglect the residual re-centering of equation (2.1) we see that

bUt ' Xt � �̂nXt�1:

11



Combining the above two equations we get:

eXt ' eXt�1 +Xt � �Xt�1 � (�� �̂n)Xt�1

i.e., eXt ' eXt�1 + Ut + (�̂n � �)Xt�1: (2.7)

Comparing equation (2.7) to our \target" equation (2.6), it is apparent that the only way

we will have our f eXtg series mimicking correctly the fXtg series of equation (2.6), i.e., the fXtg
series under the null hypothesis H0, is to have the term (�̂n � �)Xt�1 be negligible under all

possibilities for the true value of �; this is actually guaranteed by our equation (2.2). To drive

this point further, note that for a successful unit root bootstrap test procedure it is not su�cient

to be able to generate unit root pseudo-data, given unit root true data; the successful procedure

must be able to generate unit root pseudo-data (with the correct dependence structure for the

residuals) even if the true data happen to be stationary|this is what the CBB testing algorithm

succeeds in doing.

Remark 2.4 The simple choice �̂n � 1 in step 1 of the CBB algorithm was used in Paparoditis

and Politis (2000) in the context of series that are known to have unit root nonstationarity.

However, in the context of unit root testing discussed presently, such a choice of �̂n is inappro-

priate. This is so because by (2.6) and (2.7), �̂n must be a consistent estimator of � for all

possible values of this parameter; in particular, �̂n must satisfy eq. (2.2).

3 A Functional Limit Theorem for the CBB Partial Sum Pro-

cess

The asymptotic properties of the CBB testing procedure are largely based on the stochastic

behavior of the standardized partial sum process fS�
l
(r); 0 � r � 1g de�ned by

S�l (r) =
1p
l

j�1X
t=1

U�t =�
� for

(j � 1)

l
� r <

j

l
(j = 2; : : : ; l) (3.1)

and

S�l (1) =
1p
l

lX
t=1

U�t =�
�; (3.2)

where U�1 � X1, U
�

t
= X�

t
�X�

t�1 for t = 2; 3; : : : ; l and ��
2

= V ar�(l�1=2
P

l

j=1 U
�

j
). Note that

S�
l
(r) is a random element in the function space D[0; 1], i.e., the space of all real valued functions

on the interval [0; 1] that are right continuous at each point and have �nite left limits.

The following theorem shows that under a general set of assumptions on the process fXtg,
and conditionally on the observed series X1; X2; : : : ; Xn, the CBB partial sum process de�ned

by (3.1) and (3.2) converges weakly to the standard Wiener process on [0; 1]. This process
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is denoted in the following by W . To clarify some terminology used here and elsewhere in the

paper we note that if T �n = T �n(X
�

1 ; X
�

2 ; : : : ; X
�

n
) is a random sequence based on bootstrap sample

X�

1 ; X
�

2 ; : : : ; X
�

n and G a random measure, then the notation T �n ) G in probability means that

the distance between the law of T �
n
and the law of G tends to zero in probability for any distance

metrizing weak convergence.

Theorem 3.1 Let fXtg be a stochastic process, assume that the process fUtg de�ned by Ut =

Xt � �Xt�1 satis�es Condition A or Condition B and let �̂n be an estimator of � such that

equation (2.2) is satis�ed. If b!1 but b=
p
n! 0 as n!1, then

S�
l
) W in probability.

This basic result together with a bootstrap version of the continuous mapping theorem will

enable us to apply the CBB-testing procedure in order to approximate the null distribution of a

variety of di�erent test statistics proposed in the literature that correspond to di�erent choices

of the parameter � and the estimator �̂n. By the above theorem, we expect that the CBB

testing procedure will succeed in approximating the distribution of any such statistic �̂n under

the null hypothesis of unit root integration provided the following two conditions are ful�lled:

a) The choice of the parameter � is such that � = 1 is equivalent to the null hypothesis of unit

root integration, while � 6= 1 is equivalent to the alternative of a stationary process, and b) the

estimator �̂n of � satis�es equation (2.2). Such applications of the CBB testing procedure to

two popular statistics are given in the next section.

4 Applications to Unit Root Testing

In the �rst application we show consistency of the CBB in approximating the distribution of

the least squares estimator obtained by regressing Xt on Xt�1, i.., our Example 2.1. Interest in

the corresponding test statistic which has been investigated among others by Dickey and Fuller

(1979), Phillips (1987), Phillips and Perron (1988), see also Fuller (1996), occurs mainly because

of its simplicity and the fact that it allows for testing the unit root integrated hypothesis without

modelling the weak dependence structure of the process.

In the second application, validity of the CBB testing procedure in approximating the null

distribution of the so-called augmented Dickey-Fuller test statistic based on the regression (2.5) is

shown; cf. Fuller (1996), Dickey and Fuller (1991), Said and Dickey (1984) and our Example 2.3.

This test is considered here because of its popularity and because of its good power properties

reported in simulation studies; cf. Schwert (1989), DeJong et. al (1992)). See also Elliot et al.

(1996) for a theoretical discussion.

Although large sample Gaussian approximations of their distribution under the null are well-

known in the literature for both statistics considered, there are several reasons for expecting the

bootstrap to perform better than such large sample approximations. First of all, we expect

the bootstrap to be able to mimic more closely the �nite sample behavior of the test statistics
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considered under the null hypothesis. For instance, the bootstrap critical values are obtained

here without imposing any distributional assumptions on the stationary process fUtg driving the
random walk while the critical values commonly reported in the literature are based on Gaussian

process assumptions; cf. Fuller (1996), Hamilton (1994). Furthermore, it is well known that the

asymptotic distribution of the above statistics depends on nuisance (and di�cult to estimate)

parameters like the spectral density of the process at the origin. The CBB procedure manages to

estimate such quantities automatically making an explicit nonparametric estimation superuous.

Note that the asymptotic validity of the CBB testing procedure can be easily established

also for studentized versions of the statistics considered in this section, i.e., for statistics based

on the di�erence between estimator and hypothetical value of the parameter � divided by the

estimated standard error of the estimator. Such an extension of our procedure is straightforward

and we do not discuss it here in detail. Studentized versions of the statistics considered in this

paper have attracted attention in the literature mainly because the asymptotic distribution of

their ordinary (not studentized) versions depends on nuisance parameters.

4.1 Statistics Based on Ordinary Least Squares

Here we are concerned with the least squares estimator of the parameter � in the regression

Xt = �Xt�1 + et: (4.1)

It is well known that, under the null hypothesis where fXtg is unit root integrated, the asymp-

totic distribution of this estimator is a�ected if a constant term is included in the regression

(4.1) or not. Both cases are considered here, i.e., we show validity of the CBB procedure in ap-

proximating the distribution of the least squares estimator of the parameter � if the regression

Xt = � + �Xt�1 + et (4.2)

is �tted to the observed series. Let �̂LS denote the least squares estimator of � in (4.1) and

�̂LS;C in (4.2). To approximate the distribution of �̂LS we apply the CBB algorithm given in

Section 2 by using the estimator �̂LS in order to calculate the centered residuals bUt in the �rst

step. The pseudo-statistic �̂� computed in step 5 is then given by the least squares estimator of

the parameter of X�

t�1 obtained by regressing X�

t on X�

t�1. Similarly, in order to approximate

the distribution of �̂LS;C we use the same bootstrap variables as above but we include a constant

term in the regression of X�

t or X�

t�1. The estimator of the coe�cient of X�

t�1 in this regression

is denoted in the following by �̂�
LS;C

.

The following theorem shows the asymptotic validity of the CBB testing procedure in ap-

proximating the distribution of both least squares estimators considered.

Theorem 4.1 Assume that the process fXtg satis�es Condition A or Condition B. If b ! 1
but b=

p
n! 0 as n!1, then

(i) supx2IR

���P ��l(�̂�
LS
� 1) � x

���X1; X2; : : : ; Xn

�
� P0

�
n(�̂LS � 1) � x

����! 0 in probability

and
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(ii) sup
x2IR

���P ��l(�̂�
LS;C

�1) � x
���X1; X2; : : : ; Xn

�
�P0

�
n(�̂LS;C�1) � x

����! 0 in probability,

where P0 denotes the probability measure under the null hypothesis that fXtg is generated by

integrating fUtg.

Note that in the above theorem we do not assume that the observed series is a realization

of a unit root integrated process, i.e., the CBB testing procedure approximates the distribution

of the least squares estimators considered under the null hypothesis of unit root integration

whether the observed process satis�es the null hypothesis or not.

Now, based on the above theorem, an (asymptotically) �-level CBB-based test of the null

hypothesis of unit root integration can be obtained as follows: Reject the null hypothesis if

n(�̂LS � 1) < C�
�
where C�

�
denotes the �-quantile of the bootstrap distribution of l(�̂�

LS
� 1),

i.e., C�� = inffu;P �(l(�̂�
LS
� 1) � u) � �g. Similarly, a test based on the statistic �̂LS;C can

be constructed by rejecting the null hypothesis if n(�̂LS;C � 1) is less than C�
�;�

, where C�
�;�

denotes the �-quantile of the bootstrap distribution of l(�̂�
LS;C

� 1).

4.2 Dickey-Fuller Type Statistics

Consider now the problem of approximating the distribution of the estimator �̂DF under the

null hypothesis, where �̂DF denotes the least squares estimator obtained by �tting the regression

equation (2.5) to the observed series X1; X2; : : : ; Xn. To do this, de�ne the centered di�erences

Dt = Xt �Xt�1 � 1

n� 1

nX
t=2

(X� �X��1);

t = 2; 3; : : : ; n. To estimate the distribution of �̂DF we apply the CBB algorithm as follows: We

use the estimator �̂DF to calculate the centered residuals bUt in the �rst step of the algorithm and

then generate the CBB series X�

1 ; X
�

2 ; : : : ; X
�

l
following steps 2 to 4. Additionally to the CBB

seriesX�

t , we also generate a pseudo-series of l centered di�erences denoted by D�

1; D
�

2; : : : ; D
�

l

as follows: For the �rst block of b+ 1 observations we set D�

1 = 0 and

D�

j
= Di0+j�1

for j = 2; 3; : : : ; b+ 1. For the (m+ 1)th block, m = 1; : : : ; k� 1 we de�ne

D�

mb+1+j = Dim+j ;

where j = 1; 2; : : : ; b. We then calculate the regression ofX�

t onX
�

t�1 and onD
�

t�1; D
�

t�2; : : : ; D
�

t�p.

The least squares estimator of the coe�cient of X�

t�1 in this regression, denoted by �̂�
DF

, is used

to approximate the distribution of the estimator �̂DF under the null hypothesis.

To motivate the above use of the CBB algorithm to approximate the distribution of �̂DF ,

recall our target regression (2.5) which relates Xt on Xt�1 and on the lagged di�erences Xt�j �
Xt�j�1, j = 1; 2; : : : ; p. Now, in the bootstrap world X�

t�j
� X�

t�j�1 = U�
t�j

which for large

n behaves like the random variable Ut�j , i.e., the bootstrap di�erences X�

t�j
�X�

t�j�1 behave
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asymptotically like Xt�j � �Xt�j�1 and not like Xt�j � Xt�j�1. Thus regressing X�

t
on X�

t�1

and on the lagged di�erences X�

t�j
�X�

t�j�1, j = 1; 2; : : : ; p, will mimic the regression of Xt on

Xt�1 and on Ut�j , j = 1; 2; : : : ; p. This, however, coincides with our target regression (2.5) only

if � = 1, i.e., only if the observed series is indeed unit root integrated. Furthermore, as we have

seen in Example 2.3, such an in�nite order autoregressive representation for the process fUtg
may not exist if � 6= 1.

Now, to understand where the de�nition of the new bootstrap variables D�

t
comes from, con-

sider the bootstrap observations in the (m+1)th block given by X�

mb+1+s where s 2 f1; 2; : : : ; bg.
Here we have X�

mb+1+s = X�

mb+s+ Ûim+s+1 and Ûim+s+1 behaves for large n like Uim+s+1 which

by (2.3) depends on the lagged di�erences Xim+s+1�j �Xim+s�j , j = 1; 2; : : : ;. Thus the boot-

strap analogue of (2.5) will be to regress X�

mb+1+s on X�

mb+s and on Xim+s+1�j � Xim+s�j ,

j = 1; 2; : : : ; p. Note that Dim+1+s�j is just a centered version of Xim+s+1�j �Xim+s�j

To approximate the distribution of �̂DF;�, i.e., of the least squares estimator of � in

Xt = � + �Xt�1 +

pX
i=1

ai(Xt�i �Xt�i�1) + "t; (4.3)

we include a constant term in the corresponding regression �tted to the pseudoseries fX�

t ; D
�

t ; t =

1; 2; : : : ; lg. The so obtained least squares estimator of the coe�cient of X�

t�1 is denoted in the

following by �̂�
DF;C

.

Since in both cases discussed here the pseudoseries X�

1 ; X
�

2 ; : : : ; X
�

n is generated in a non-

parametric way using the CBB procedure and not the parametric form given in (2.5), we expect

the bootstrap to be able to mimic correctly the `truncation e�ect' on the distribution of �̂DF

and �̂DF;C which is due to the fact that only a �nite order version of (2.3) is �tted to the series.

In other words, we expect the results based on the CBB testing procedure to be less sensitive

with respect to the choice of the parameter p.

Theorem 4.2 Assume that the process fXtg satis�es Condition A� . Assume further that

p!1 as n! 1 such that p3=n! 0 and
p
n
P
1

j=p+1 jaj j ! 0. If b!1 such that b=
p
n! 0

as n!1, then

(i) supx2IR

���P ��(l � p)(�̂�
DF

� 1) � x
���X1; X2; : : : ; Xn

�
� P0

�
(n � p)(�̂DF � 1) � x

���� ! 0 in

probability.

and

(ii) supx2IR

���P ��(l � p)(�̂�
DF;C

� 1) � x
���X1; X2; : : : ; Xn

�
� P0

�
(n � p)(�̂DF;C � 1) � x

���� ! 0

in probability.

Here P0 denotes the probability measure under the null hypothesis that fXtg is generated by

integrating fUtg.
Some remarks on the power of the CBB testing procedure are in order. By equation (8.18)

of Lemma 8.3 and the arguments used there we have that

p
n � p(�̂DF � �) =

1p
n� p

nX
t=p+2

Vt�1"t + oP (1) (4.4)
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where Vt�1 = e
0

1V
�1(p)Yt�1(p), e1 = (1; 0; : : : ; 0)

0

, V (p) = E(Yt�1(p)Y
0

t�1(p)) and Yt�1(p) =

(Xt�1; Xt�1 �Xt�2; : : : ; Xt�p �Xt�p�1)
0

. By (4.4) and along the same lines as in the proof of

Theorem 4 of Berk (1974) we get the following result.

Lemma 4.1 Assume that the process fXtg satis�es Condition A� with � 6= 1 and that p!1
as n!1 such that p3=n! 0 and

p
n
P
1

j=p+1 jaj j ! 0. Then

p
n� p

�̂DF � �
�DF

) N(0; 1); (4.5)

where �2
DF

= �2"e
0

1V
�1(p)e1.

For � 2 (0; 1) let C� and C�� be the �-quantiles of the distribution of (n� p)(�̂DF � 1) and

(l � p)(�̂�
DF

� 1) respectively under the null hypothesis of unit root integration. By Theorem

4.2 we have that C�� ! C� in probability and, therefore, that���P�(n� p)(�̂DF � 1) � C��

�
� P

�
(n� p)(�̂DF � 1) � C�

����! 0:

Now, since

P
�
(n� p)(�̂DF � 1) � C�

�
= P

�
(n� p)(�̂DF � �) � C� � (n� p)(�� 1)

�
= P

�pn� p (�̂DF � �)

�DF

� C�p
n � p �DF

�
p
n� p (�� 1)

�DF

�
we see {using (4.5){ that if � 6= 1 then

lim
n!1

P
�
(n � p)(�̂DF � 1) � C��

�
= �(1) = 1; (4.6)

since � = �P1

j=1 �j < 1. Here � denotes the distribution function of the standard normal.

Thus, under our assumptions, the power of the CBB based Dickey-Fuller type test approaches

unity as the sample size increases.

In concluding this section we mention that the above consistency result of the CBB testing

procedure can be also established for the case of the ordinary least squares estimator �̂LS dis-

cussed in the previous section. Furthermore, it is not di�cult to show that the tests considered

have nondegenerate power against local alternatives converging to the null at the rate n�1, i.e.,

if the true parameter is given by �n = 1� c=n for some c > 0..

5 Extensions: The Case of Nonzero Mean

In this section we briey indicate how the proposed CBB testing procedure can be extended

to deal with the case where the observed process has a drift and the regression equation �tted

includes a constant or a (linear) time trend component. To elaborate, consider the situation
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where fXtg is a stochastic process which is either stationary around a (possibly nonzero) mean

or its �rst di�erence series fYtg with Yt = Xt � Xt�1, is stationary with a (possibly nonzero)

mean. Note that in the latter case (and if the �rst di�erence series is an i.i.d. sequence) we are

simply in the case of a random walk with drift.

To elaborate on the appropriate modi�cation of the CBB procedure to deal with this case,

consider the process fUtg de�ned by

Ut := Xt � � � �Xt�1 (5.1)

where as before, � is a parameter such that � = 1 is equivalent to H0 whereas � 6= 1 is equivalent

to H1, and the constant � is de�ned such that E(Ut) = 0. The case � = 0 is the one considered

in the previous sections. To estimate the distribution of an estimator �̂n of � under the null

hypothesis that � = 1, our procedure should be able to generate unit root integrated pseudo-

series X�

1 ; X
�

2 ; : : : ; X
�

l
with a nonvanishing drift component. To do this, the following more

general CBB testing algorithm can be applied:

1. First calculate the centered residuals

bUt = (Xt � �̂ � �̂nXt�1) � 1

n � 1

nX
t=2

(Xt � �̂ � �̂nXt�1) (5.2)

for t = 2; 3; : : : ; n where �̂ is
p
n-consistent estimator of � and �̂n an estimator of �

satisfying (2.2). De�ne now new variables eXt as follows:

eXt =

8><>:
X1 for t = 1

X1 +
P

t

j=2
bUj for t = 2; 3; : : : ; n.

2. Chose a positive integer b(< n) and k as in step 2 of the CBB algorithm for the case � = 0.

3. For the �rst block of b+ 1 observations set X�

1 = X1 and

X�

j := X1 + (j � 1)�̂ + [ eXi0+j�1 � eXi0
]

for j = 2; : : : ; b+ 1:

4. To construct the (m+ 1)-th bootstrap block from the m-th block for m = 1; 2; : : : ; k � 1

let

X�

mb+1+j := X�

mb+1 + j�̂ + [ eXim+j � eXim ]

for j = 1; : : : ; b:

5. Compute the pseudo-statistic �̂� which is nothing other than the statistic �̂l of interest

based on the pseudo-data fX�

1 ; : : : ; X
�

l
g.
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The above version of the CBB algorithm can be used, for instance, to approximate the

distribution of the least squares estimator of the coe�cient of Xt�1 under the null hypothesis

that � = 1, if the model (4.2) or the model

Xt = �0 + �1t + �Xt�1 + et (5.3)

is �tted to the observed series X1; X2; : : : ; Xn. Similarly, the statistic of interest may be the

least squares estimator of � in (4.3) or in

Xt = �0 + �1t + �Xt�1 +

pX
i=1

ai(Xt�i �Xt�i�1) + "t: (5.4)

Note that in all cases above we allow for a nonzero mean � in (5.1). Thus the situation is di�erent

to that consider in the previous section since the distribution of the least squares estimators is

a�ected; cf. Hamilton (1994) or Fuller (1996). Nevertheless, the theory developed can be

easily extended to establish the asymptotic validity of the above generalized CBB proposal. For

instance, denote by �̂LS;T the least squares estimator of � in (5.3) and by �̂�
LS;T

the corresponding

estimator using the bootstrap series X�

1 ; X
�

2 ; : : : ; X
�

n generated according to the above CBB

algorithm. The following result can then be established.

Theorem 5.1 Assume that the process fXtg satis�es Condition B and assume that � in (5.1)

is di�erent from zero. If b!1 but b=
p
n! 0 as n!1, then

sup
x2IR

���P ��l(�̂�LS;T � 1) � x
���X1; X2; : : : ; Xn

�
� P0

�
n(�̂LS;T � 1) � x

����! 0

in probability, where P0 denotes the probability measure under the null hypothesis that fXtg is

generated by Xt = � +Xt�1 + Ut.

6 Small Sample Performance

A small simulation study was conducted to evaluate the �nite-sample performance of our CBB

bootstrap testing procedure. The simple ARMA(1,1) model:

Xt � �Xt�1 = Zt + �Zt�1

was used to generate the observed series fXtg based on the i.i.d. Gaussian series fZtg � N(0; 1).

The case � = 1 is the unit root case, whereas � = 0:9 and � = 0:85 corresponds to a stationary

series fXtg. Regarding the MA parameter �, the values �0:8; 0; and 0:8 were chosen; � = 0:8

corresponds to a positive dependence, which |in combination with our � choices| can yield

data that could conceivably be mistaken for a unit root if the sample size is small enough; � = 0

corresponds to either a random walk with i.i.d. errors, or a stationary AR(1) model (according

to whether � = 1 or � 2 f0:85; 0:9g). Finally, the case where � = 1 (unit root) and � = �0:8
deserves special attention; here the MA polynomial has a root close to unity which for small
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sample sizes yields series that can easily be mistaken for i.i.d., although in reality they are

integrated.

The simulations were performed by generating a number of M =1000 true fXtg series each
of length n+200 where the �rst 200 observations were discarded; we chose n = 100 and n = 200.

From each generated data series the CBB was called to perform a �-level test of the unit root

hypothesis H0. The test statistics that were used were based on the LS estimator n(�̂LS � 1) of

Example 2.1, and on Dickey-Fuller estimator (n � p)(�̂DF � 1) of Example 2.3. The CBB was

conducted by generating B =1000 bootstrap series (for each true series) in order to perform the

required Monte Carlo approximations.

In Tables 1 we report the empirical rejection probabilities of the CBB unit root test based

on the least squares estimator �̂LS with nominal level � = 0:05 under di�erent settings of the

ARMA parameters � and �, di�erent sample sizes, and di�erent choices of the blocksize b. In

Table 2 similar results are reported for the statistic �̂DF where we now vary the order p of the

lagged di�erences and {for computational reasons{ �x the blocksize at b = 8 for the sample size

n = 100 and b = 10 for n = 200.

The results of our small simulation are encouraging. Note that the case � = 1 in both

Tables 1 and 2 correspond to rejections when H0 is true; thus, we expect the entries there to

be close to the nominal level � = 0:05 of the test. This is indeed what appears to be happening

with the exception of the case where � = �0:8. However, even in this case the size distortion

for the ordinary least squares estimator is less severe than the one based on the asymptotic

distribution; cf. Phillips and Perron (1988). Nevertheless, the case � = �0:8 is a well-known

problematic situation in which|as discussed above|a practical `cancellation' of the AR unit

root with the MA `almost' unit root occurs, yielding series with sample paths closely resembling

a white noise. As a matter of fact, many authors argue that in such a case the stationary model

obtained after the `cancellation' may provide a more parsimonious description of the data, and

that consequently (false) rejections of H0 are not necessarily a bad thing; see Campbell and

Perron (1991), and Hamilton (1994).

Returning to our simulation results, note that the cases � = 0:9 and � = 0:85 correspond to

rejections when H0 is not true and should be rejected; thus, the corresponding entries measure

the power of our test against speci�c alternatives, and we expect/hope the entries there to be

close to one. This is indeed what is happening: the test CBB has power which increases with

sample size n (as expected) when the alternative remains �xed. Quite remarkably, in the n = 200

case the power of our test is very high and quite close to one under all alternatives considered,

even in the � = 0:8 case which is a case with appreciable positive correlation. Comparing the

power results in both tables with those reported in other simulation studies for the same model

and the same parameters, see for instance Philips and Perron (1988), Schwert (1989), Ng and

Perron (1995), it seems that for both statistics considered here the power of CBB based tests

outperforms that of the same tests based on asymptotic critical values. Furthermore, compared

with the results of the aforementioned published simulation studies, the power of the CBB based

augmented Dickey-Fuller type statistic (n � p)(�̂DF � 1) reported in Table 2 seems to be less

sensitive with respect to the choice of the order p.

Please Insert Table 1 and Table 2 about here
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7 Conclusions

In this paper we have proposed a new resampling procedure, the continuous path block boot-

strap testing procedure, that generates unit root integrated pseudoseries which retain the weak

dependence structure of the observed series. The procedure manages to accurately capture the

distribution of several unit root test statistics used in econometrics. Although we have restricted

our considerations to two such popular test statistics, the theory presented is general enough

in that it allows the application of the new resampling methodology to other test statistics too.

Our theoretical results, as well as the limited empirical evidence presented in this paper, largely

support the hypothesis that the new CBB testing procedure is a useful alternative to large

sample Gaussian approximations commonly used in the econometric analysis of nonstationary

time series. Notably, the idea of generating continuous path pseudoseries underlying the CBB

methodology presented in this paper is not limited to the block bootstrap but can also be applied

to other resampling techniques designed for stationary weak depended processes. For instance,

preliminary results indicate that a continuous-path version of the stationary bootstrap of Politis

and Romano (1994) can also be successfully employed in the context of unit root testing.

8 Auxiliary Results and Proofs

Proof of Theorem 3.1 Recall the de�nition of U�t and verify that the CBB random variable

X�

t is given by

X�

t = U�1 + U�2 + U�3 + : : :+ U�t

= X1 +

[(t�2)=b]X
m=0

minfb;t�mb�1gX
s=1

bUim+s; (8.1)

where bUt is de�ned in (2.1). For 0 � r � 1 and by the construction of the CBB series, we have

S�l (r) =
1p
l

[lr]X
j=1

U�j =�
�

=
1p
l
X1=�

� +
1p
l

MrX
m=0

BX
s=1

bUim+s=�
�

where Mr =
h
([lr]� 2)=b

i
and B = minfb; [lr]�mb� 1g. Recall that

bUt = Xt � �̂nXt�1 � 1

n � 1

nX
�=2

(X� � �̂nX��1): (8.2)

By Lemma 8.1 we have that ��
2 ! �2 in probability where �2 = 2�fU(0) and fU denotes the

spectral density of fUtg. Because of this, the fact that

S�l (r) =
1p
l

MrX
m=0

bX
s=1

bUim+s=�
� � 1p

l

bX
s=B+1

bUiMr+s=�� + OP (l
�1=2) (8.3)

21



and

sup
0�r�1

��� 1p
l

bX
s=B+1

bUiMr+s=����� = OP (k
�1=2) (8.4)

we consider in the following only the �rst term on the right hand side of equation (8.3). We �rst

show that uniformly in r

��� 1p
l

MrX
m=0

bX
s=1

bUim+s � 1p
l

MrX
m=0

bX
s=1

(Uim+s � E�Uim+s)
���! 0 (8.5)

in probability. To establish (8.5) verify that

1p
l

MrX
m=0

bX
s=1

bUim+s =
1p
l

MrX
m=0

bX
s=1

(Uim+s � 1

n � 1

nX
�=2

U�)

�(�̂� �)
1p
l

MrX
m=0

bX
s=1

(Xim+s�1 � 1

n � 1

nX
�=2

X��1):

Now, if � 6= 1 then �̂� � = OP (n
�1=2) and, therefore,

(�̂� �) 1p
l

MrX
m=0

bX
s=1

(Xim+s�1 � 1

n � 1

nX
�=2

X��1) = OP �(n
�1=2) (8.6)

uniformly in r, since fXtg is stationary. Furthermore, if � = 1, i.e., if fXtg is unit root integrated,
then �̂� � = OP (n

�1) and

(�̂� �)
1p
l

MrX
m=0

bX
s=1

(Xim+s�1 � 1

n � 1

nX
�=2

X��1) = OP �(b
1=2n�1=2) (8.7)

uniformly in r since in this case we have that

T �n :=
1p
l

MrX
m=0

bX
s=1

(Xim+s�1 � 1

n � 1

nX
�=2

X��1) = OP �(bk
1=2):

To see the above statement note that

E�
h bX
s=1

(Xim+s�1 � 1

n � 1

nX
�=2

X��1)
i

=

bX
s=1

(
1

n� b
n�bX
t=1

Xt+s�1 � 1

n� 1

nX
�=2

X��1)

=
1

(n� b)(n� 1)

h bX
s=1

�
(n� 1)

s�1X
t=1

Xt +

n�1X
t=n�b+s

Xt

�
+ b(b� 1)

nX
�=2

X��1

i
= OP (b

2(n� b)�1=2) + OP (b
2n1=2(n� b)�1) (8.8)
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and that

E�
h bX
s=1

(Xim+s�1 � 1

n� 1

nX
�=2

X��1)
i2

= OP (b
2(n� b)): (8.9)

Therefore, and because of the independence of the bootstrap blocks, we get

E�[T �
n
]2 =

1

l

MrX
m=0

E�
� bX
s=1

(Xim+s�1 � 1

n � 1

nX
�=2

X��1)
�2

+
1

l

MrX
m1=0

MrX
m2=0m1 6=m2

E�
� bX
s=1

(Xim1
+s�1 � 1

n� 1

nX
�=2

X��1)
�

�E�
� bX
s=1

(Xim2
+s�1 � 1

n� 1

nX
�=2

X��1)
�

= OP (kb
2(n� b)l�1) +OP (k

2b4l�1(n � b)�1)
= OP (b

2k) + OP (kb
3(n� b)�1):

From (8.6) and (8.7) it follows that uniformly r,

��� 1p
l

MrX
m=0

bX
s=1

bUim+s � 1p
l

MrX
m=0

bX
s=1

(Uim+s � 1

n� 1

nX
�=2

U� )
���! 0 (8.10)

in probability. Now, by the same arguments as those leading to (8.8) and (8.9) we get

1p
l

MrX
m=0

bX
s=1

� 1

n� 1

nX
�=2

U� �E�U�im+s

�
! 0

in probability, uniformly in r. This together with (8.10) establishes (8.5).

We next show the convergence of the centered bootstrap partial sum process

1

��
1p
l

MrX
m=0

bX
s=1

(Uim+s � E�Uim+s); (8.11)

to the Brownian motion W on [0; 1]. For this note �rst that [[lr]=b] = [kr] and therefore we can

consider instead of (8.11) the asymptotically equivalent statistic

1

��
1p
l

[kr]X
m=0

bX
s=1

(Uim+s � E�Uim+s):

Note that the above expression di�ers from (8.11) solely by the fact that the �rst sum is up to

[lr]=b instead of ([lr]� 2)=b terms. The above statistic can be written in the form

1

��
1p
l��

[kr]X
m=0

bX
s=1

(Uim+s � E�Uim+s) =
1p
k

[kr]X
m=0

V �m; (8.12)
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where the random variables

V �
m
=

1p
b

bX
s=1

(Uim+s �E�Uim+s)

are independent and have mean zero under the bootstrap distribution. Note that by the de�ni-

tion of ��
2

and because V ar�(b�1=2
P

b

s=1 Uim+s) we have that

jV ar�(V �
m
)� ��2 j ! 0 (8.13)

in probability. Consider now the partial sum

V �(r) =

[kr]X
m=0

eV �
m
;

where f eV �
m
; m = 0; 1; 2; : : : ; [kr]g with

eV �
m
=

1p
[kr] + 1

p
V ar�(V �m)

V �
m
;

forms an array of independent random variables. Since by de�nition V ar�( eV �m) = 1=([kr] + 1)

and

[kr]X
m=0

E�j eV �
m
j2+�

n
V ar�(

[kr]X
m=0

eV �m)o(2+�)=2
=

1

([kr] + 1)(2+�)=2

[kr]X
m=0

E�
��� V �mq
V ar�(V �m)

���2+�

=
[kr] + 1

([kr] + 1)(2+�)=2
1

(V ar�(V �m))
(2+�)=2

� 1

n � b
n�bX
t=1

� 1p
b

bX
s=1

(Ut+s � E�Uim+s)
�2+�

= OP

�
([kr] + 1)��=2

�
! 0;

we conclude by Liapunov's Theorem (cf. Sering (1980)) that

[kr]X
m=0

eV �m ) N(0; 1) (8.14)

in probability. (8.14) and (8.13) implies then since

1p
k��

[kr]X
m=0

V �m =

s
V ar�(V �m)

��
2

s
[kr] + 1

k
V �(r); (8.15)
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that

1p
k��

[kr]X
m=0

V �
m
) W (r) (8.16)

in probability. Similarly, if r2 � r1 we get (V
�(r1); V

�(r2)�V �(r1))) (W (r1);W (r2)�W (r1))

in probability. This implies (V �(r1); V
�(r2)) ) (W (r1);W (r2)) in probability and an easy

extension gives (V �(r1); V
�(r2); : : : ; V

�(rm)) ) (W (r1);W (r2); : : : ;W (rm)) in probability, for

nay �xed set of points r1 < r2 < � � � < rm in [0; 1]. To conclude the proof of the theorem

it remains to show tightness of V �(r). This, however, follows by a version of the functional

limit theorem for partial sums of triangular arrays of independent random variables given in

Billingsley (1999), p. 147, since
P[kr]

m=0
eV �
m
is a sum of independent random variables with mean

zero and

max
0�m�[kr]

V ar�( eV �m) = 1

[kr] + 1
! 0

as n!1. Thus V � ) W in probability which by (8.5), (8.12) and (8.15), implies the assertion

of the theorem. 2

Lemma 8.1 Under the assumptions of Theorem 3.1 and if n!1, then

(i) l�1
P

l

j=1 U
�

j
! 0,

(ii) ��
2

:= V ar�[l�1=2
P

l

j=1 U
�

j
]! �2 := 2�fU(0)

and

(iii) ��
2

U
:= l�1

P
l

j=1 U
�
2

j
! �2

U
:= E(U2

t
),

in probability.

Proof: To prove (i) note that by (8.5) we have

l�1
lX

j=1

U�j = l�1X1 + l�1
k�1X
m=0

bX
s=1

bUim+s

= l�1
k�1X
m=0

bX
s=1

Uim+s + oP (1)

and that the �rst term in the right hand side of the above expression is the sample mean of a

block bootstrap series which converges to E(Ut) = 0 under the assumptions of the lemma.

Since the proof of (ii) and (iii) are very similar we show only (ii). For this recall that

V ar�[l�1=2
lX

j=1

U�j ] = E�
h�
l�1=2

lX
j=1

U�j

�2i� �E�hl�1=2 lX
j=1

U�j

i�2
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and by (8.5) ���l�1=2 lX
j=1

U�
j
� l�1=2

k�1X
m=0

bX
s=1

(Uim+s �E�(Uim+s))
���! 0

in probability. Therefore,

E�
�
l�1=2

lX
j=1

U�
j

�
! 0 in probability.

Furthermore,

E�
�
l�1=2

lX
j=1

U�
j

�2
= E�

�
l�1=2

k�1X
m=0

bX
s=1

Uim+s

�2
+ oP (1)

! �2

because the �rst term on the right hand sight of the last equality above is nothing else that

the variance of the bootstrap sample mean based on a block bootstrap sample fUim+s; m =

0; 1; : : : ; k � 1 and s = 1; 2; : : : ; bg which is known to converge to �2; cf. K�unsch (1989). 2

Lemma 8.2 Let the conditions of Theorem 3.1 be satis�ed. If n!1 then

(i) l�2
P

l

t=2X
�
2

t�1 ) �2
R 1
0 W

2(r)dr,

(ii) l�1
P

l

t=2X
�

t�1U
�

t ) 1
2
(�2W 2(1)� �2

U
),

(iii) l�3=2
P

l

t=1X
�

t�1 ) �
R 1
0 W (r)dr,

(iv) l�1=2
P

l

t=1 U
�

t
) �W (1),

in probability, where joint weak convergence of the above limits also applies.

Proof: To prove (i) verify that

l�2
lX

t=2

X�
2

t�1 = l�2
lX

t=2

� t�1X
j=1

U�
j

�2

= ��
2 1

l

lX
t=2

S�
2

l ((t� 1)=l)

= ��
2

lX
t=2

Z
t=l

(t�1)=l
S�

2

l ([lr])dr

= ��
2

Z 1

0
S�

2

l ([lr])dr

) �2
Z 1

0
W 2(r)dr
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in probability, by Theorem 3.1 and Lemma 8.1.

To establish (ii) we write

l�1
lX

t=2

X�

t�1(X
�

t
�X�

t�1) =
1

l

lX
t=2

� t�1X
j=1

U�
j

�
U�
t

=
1

2l

lX
t=2

h
(

tX
j=1

U�
j
)2 � (

t�1X
j=1

U�
j
)2 � U�

2

t

i

=
��

2

2

lX
t=2

h
S�

2

l
(t=l)� S�2

l
((t� 1)=l)� 1

l��
2
U�

2

t

i

=
��

2

2

h
S�

2

l
(1)� S�2

l
(1=l)

i
� 1

2l

lX
t=2

U�
2

t

) 1

2

�
�2W 2(1)� �2

U

�
in probability, by Theorem 3.1 and Lemma 8.1.

Assertion (iii) follows because

l�3=2
lX

t=2

X�

t�1 = l�3=2
l�1X
t=1

(

tX
j=1

U�j )

= ��
1

l

lX
t=2

S�l ((t� 1)=l)

and (iv) because

l�1=2
lX

t=1

U�t = ��S�l (1):

The joint weak convergence to the above limits is established using the Cramer-Wold device;

cf. Sering (1980). 2

Proof of Theorem 4.1: To prove the �rst assertion of the theorem recall that

l(�̂�LS � 1) =
�
l�2

lX
t=2

X�
2

t�1

�
�1
l�1

lX
t=2

X�

t�1(X
�

t �X�

t�1)

and apply Lemma 8.2 (i) and (ii) as well as the �-method; cf. Sering (1980). The second part

of the theorem follows because the least squares estimator (�̂�; �̂�
LS;C

)
0

obtained by regressing

X�

t on X�

t�1 and on a constant is given by p
l �̂�

l(�̂�
LS;C

� 1)

!
=

 
1 l�3=2

P
l

t=2X
�

t�1

l�3=2
P

l

t=2X
�

t�1 l�2
P

l

t=2X
�
2

t�1

!
�1 

l�1=2
P

l

t=2 U
�

t

l�1
P

l

t=2X
�

t�1U
�

t

!
:
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The desired result follows then by Lemma 8.2 and the same arguments as for the �rst part of

the theorem. 2

Lemma 8.3 Let the process fXtg satisfy Condition A� and let �̂DF be the least squares

estimator of the coe�cient of Xt�1 in the regression of Xt on Xt�1 and on Xt�i � Xt�i�1,

i = 1; 2; : : : ; p. If the choice of p is such that p = p(n)!1, p3=n! 0 and
p
n
P
1

j=p+1 jaj j ! 0

as n!1, then

(n� p)(1+�(�))=2(�̂DF � �) = OP (1)

where � = �P1

j=1 �j.

Proof: Note that under Condition A' we have � � 1. Since for � = 1 the assertion has

been proved by Said and Dickey (1984), we need to consider only the case � < 1. For this let

�̂ = (�̂DF ; â1;n; : : : ; âp;n)
0

be the least squares estimator of � = (�; a1; : : : ; ap)
0

and recall that

�̂ � � =
� nX
t=p+2

Yt�1(p)Y
0

t�1(p)
�
�1

nX
t=p+2

Yt�1(p)et (8.17)

where Yt�1(p) = (Xt�1; Xt�Xt�1; : : : ; Xt�p�Xt�p�1)
0

and et = Xt� �Xt�1�
Pp

j=1 aj(Xt�j �
Xt�j�1). Let Vn(p) = (n � p)�1

P
n

t=p+2 Yt�1(p)Y
0

t�1(p), V (p) = E(Yt�1(p)Y
0

t�1(p)) and e1 =

(1; 0; : : : ; 0)
0

we then have that

p
n � p(�̂DF � �) = e

0

1

p
n � p(�̂ � �)

= e
0

1V
�1(p)

1p
n � p

nX
t=p+2

Yt�1(p)"t

+e
0

1V
�1(p)

1p
n� p

nX
t=p+2

Yt�1(p)(et � "t)

+e
0

1(V
�1
n (p)� V �1(p))

1p
n � p

nX
t=p+2

Yt�1(p)et: (8.18)

Let Vt�1 = e
0

1V
�1(p)Yt�1(p). The desired result follows then because under the assumptions

made
1p
n� p

nX
t=p+2

Vt�1(et � "t) = oP (1): (8.19)

1p
n� p

nX
t=p+2

Vt�1"t = OP (1); (8.20)

p
p+ 1

V �1n
(p)� V �1(p)

 = oP (1); (8.21)

and

E
 1p

n� p
nX

t=p+2

Yt�1(p)et

2 � Cp(n� p)
1X
j=0

�2j : (8.22)
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Here, kxk denotes the Euclidean norm of a vector x while for a matrix A, kAk = sup
kxk�1 kAxk.

We proceed by showing that assertions (8.19) to (8.22) are true.

We �rst show that

E
 1p

n� p

nX
t=p+2

Vt�1(et � "t)
2 � C(n� p)

1X
j=p+1

a2
j
: (8.23)

From this and the assumption that
p
n
P
1

j=p+1 jaj j ! 0 the validity of (8.19) is established. To

see (8.23) note that kV �1(p)k is uniformly bounded above by a constant C for all p, which is

given by one over the smallest eigenvalue of V (p); cf. Berk (1974), p. 493. Furthermore, for

v = e
0

1V
�1(p) = (v1; v2; : : : ; vp+1) we have

Vt�1 = v
0

Yt�1(p) =

p+1X
k=1

ckXt�k

where c1 = v1+v2, cj = vj+1�vj for j = 2; 3; : : : ; p and cp+1 = �vp+1. Using Xt =
P
1

j=0  j"t�j
we then get

Vt�1 =

1X
j=0

bj"t�1�j (8.24)

where

bj =

minfj;p+1gX
i=1

ci j�i:

We next show that V ar(Vt�1) � C, i.e.,
P
1

j=0 b
2
j
� C. To see this note that

V ar(Vt�1) = e
0

1V
�1(p)e1

=
�
0 � c1;2��1D c2;1

�
�1

(8.25)

where �D = E[ eYt�1(p) eY 0

t�1(p)],
eYt�1(p) = (Xt�1�Xt�2; Xt�2�Xt�3; : : : ; Xt�p�Xt�p�1)

0

and

c1;2 = c
0

2;1 = (0 � 1; 1� 2; : : : ; p� p�1). (8.25) follows using the partition

V (p) =

 
0 c1;2
c2;1 �D

!

of the matrix V (p), the fact that �D is nonsingular and well-known results for partitioned

matrices. The nonsingularity of �D is a consequence of Lemma 5.1.1 of Brockwell and Davis

(1991) since V ar(Xt � Xt�1) = 2(0 � 1) > 0 and Cov(Xt � Xt�1; Xt+h � Xt+h�1) ! 0

for h ! 1. Note that 0 � c1;2�
�1
D
c2;1 > 0 because this quantity is the mean square error

E(X̂t�Xt)
2 of the best linear predictor X̂t of Xt, i.e., X̂t is the projection of Xt on the closed

span spfXt�1 � Xt�2; Xt�2 � Xt�3; : : : ; Xt�p � Xt�p�1g. Lemma 2 of Berk (1974) and the

established properties of Vt�1 give then the desired result (8.23).
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(8.20) follows since by (8.24) and straightforward calculations we get

E
h 1p

n� p

nX
t=p+2

Vt�1"t

i2
=

1

n� p

nX
t=p+2

nX
s=p+2

E(Vt�1Vs�1"t"s)

= E("4
t
)

1X
j=0

b2
j
:

To prove (8.21) note �rst that by equations (2.10) and (2.11) of Berk (1974) we get

(n� p)E
h 1

n� p
nX

t=p+1

Xt�1(Xt�j �Xt�j�1)� 2(j�1 � j�2)
i2 � C1;

and

(n� p)E
h 1

n� p

nX
t=p+1

(Xt�i �Xt�i�1)(Xt�j �Xt�j�1)� (�i�j+1 + 2i�j � i�j�1)
i2 � C2:

Using the above bounds and the fact that the squared Euclidean norm of a matrix is bounded

by the sum of its squared elements we have

E
Vn(p)� V (p)2 � Cp2

n � p: (8.26)

Therefore,

pE
Vn(p)� V (p)2 ! 0 (8.27)

because by assumption p3=n! 0 as n!1. Now,Vn(p)�1 � V (p)�1 =
Vn(p)�1�V (p)� Vn(p)�V (p)�1

�
Vn(p)�1Vn(p)� V (p)

V (p)�1
= gnGng

with an obvious notation for gn, Gn and g. Recall that g is bounded, let qn = kVn(p)�1�V (p)�1k
and verify that gn � qn + g. Since Gn ! 0 in mean square and g is bounded, we can choose n

large enough so that gGn < 1 which leads to the inequality

kVn(p)�1 � V (p)�1k �
g2
Vn(p)� V (p)

1�
Vn(p)� V (p)g ; (8.28)

from which
p
pkVn(p)�1 � V (p)�1k ! 0 is concluded using (8.27).
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To see (8.22) let Xs(p) = (Xs�1; Xs�2; : : : ; Xs�p)
0

and write

E
 1p

n � p
nX

t=p+2

Yt�1(p)et

2 � 2E
 1p

n � p
nX

t=p+2

(Xt�1; X
0

t�1(p))
0

et

2
+2E

 1p
n� p

nX
t=p+2

(0; X
0

t�2(p))
0

et

2
and argue as in equation (2.13) of Berk (1974). 2

To proceed with the proof of Theorem 4.2 we �x some notation. LetDn be the (p+1)�(p+1)
diagonal matrix Dn =

D
(l�p);pl � p; : : : ;pl � p

E
, and let C(p) and eC(p) be the block matrices

C(p) =

 
c11 0

0

0 �D

!
and eC(p) =

0B@ ~c11 ~c12 0
0

~c21 ~c22 0
0

0 0 �D

1CA ;
where 0 is a p�1 zero vector, c11 = ~c22 = (l�p)�2Pl

t=p+2X
�
2

t�1, ~c21 = ~c12 = (l�p)�1Pl

t=p+2X
�

t�1

and ~c11 = 1. Furthermore, let Y �t�1(p) = (X�

t�1; D
�

t;1; : : : ; D
�

t;p)
0

and eY �t�1(p) = (1; X�

t�1; D
�

t;1;

: : : ; D�

t;p)
0

. The following lemma is then established.

Lemma 8.4 Let the assumptions of Theorem 4.2 be satis�ed. If n!1 then

(i)
p
p+ 1

Dn

�P
l

t=p+2 Y
�

t�1(p)Y
�
0

t�1(p)
�
�1
Dn � C(p)�1

! 0,

(ii)
p
p+ 1

Dn

�P
l

t=p+2
eY �
t�1(p)

eY �0
t�1(p)

�
�1
Dn � eC(p)�1! 0,

(iii) (l� p)�1
P

l

t=p+2X
�

t�1

�
U�t �

Pp

j=1 a
�

j
D�

t;j

�
) 1

2�
2
"C	

�
W 2(1)� 1

�
,

and

(iv) (l� p)�1=2
P

l

t=p+2

�
U�t �

Pp

j=1 a
�

j
D�

t;j

�
) �"W (1).

in probability, where joint convergence of the limits in (iii) and (iv) applies.

Proof: Consider (i). Let D�

t
(p) = (D�

t�1; D
�

t�2; : : : ; D
�

t�p
)
0

and

C�n(p) = D�1
n

P
l

t=p+2 Y
�

t�1(p)Y
�
0

t�1(p)D
�1
n be the block diagonal matrix

C�n(p) =

0@ (l� p)�2Pl

t=p+2X
�
2

t�1 (l � p)�3=2Pl

t=p+2X
�

t�1D
�
0

t
(p)

(l� p)�3=2Pl

t=p+2X
�

t�1D
�

t (p) (l � p)�1Pl

t=p+2D
�

t (p)D
�
0

t (p)

1A :
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Verify �rst that for i; j 2 f1; 2; : : : ; pg,

(l� p)E�
�
(l� p)�1

lX
t=p+2

D�

t�i
D�

t�j
� (�i�j+1 + 2i�j � i�j�1)

�2 � C1 (8.29)

and

(l� p)E�
�
(l � p)�3=2

lX
t=p+2

X�

t�1D
�

t�j

�2 � C2 (8.30)

in probability, where the constants C1 and C2 do not depend on p. To see (8.29) recall that

E(Xt�i�Xt�i�1)(Xt�j�Xt�j�1) = �i�j+1+2i�j�i�j�1 and that theD�

t
are block bootstrap

replicates of centered di�erences of the original observations. Let ~(i; j) = �i�j+1 + 2i�j �
i�j�1 and note that

lX
t=p+2

D�

t�i
D�

t�j
=

k�1X
m=[(p+1)=2]

bX
s=maxf1;p+1�mbg

Dim+s�iDim+s�j :

For computational simplicity we consider in the following the asymptotically equivalent quantity

(l� p)E�
�
(l� p)�1

k�1X
m=0

bX
s=1

Dim+s�iDim+s�j � ~(i; j)
�2

which equals

(l� p)E�
�
(k)�1

k�1X
m=0

�
k(l� p)�1

bX
s=1

Dim+s�iDim+s�j � ~(i; j)
��2

l2k�1(l� p)�1
k�1X
m=0

E�
�
b�1

bX
s=1

Dim+s�iDim+s�j � ~(i; j)
�2

l2k�1(l� p)�1
n�bX
t+1

�
b�1

bX
s=1

Dt+s�iDt+s�j � ~(i; j)
�2
:

Now, b�1
P

b

s=1Dt+s�iDt+s�j is a
p
b-consistent estimator of ~(i; j) and, as in Berk (1974), we

have

bE(b�1
bX

s=1

Dt+s�iDt+s�j � ~(i; j))2 � C

where the constant C does not depend on i and j. We therefore get

l2k�1(l� p)�1
n�bX
t=1

�
b�1

bX
s=1

Dt+s�iDt+s�j � ~(i; j)
�2

= OP (l
2k�1b�1(l � p)�1)

= OP (1)

uniformly in i and j.
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To see (8.30) note that

(l� p)�2E�
� k�1X
m=0

bX
s=1

Xim+s�1Dim+s�j

�2
= (l� p)�2

k�1X
m=0

E�
� bX
s=1

Xim+s�1Dim+s�j

�2
= k(l� p)�2(n� b)

n�bX
t=1

� bX
s=1

Xt+s�1Dt+s�j

�2
:

The desired result follows then since as in Said and Dickey (1984), p. 601/602, we have

b�2
bX

s1=1

bX
s2+1

E
�
Xt+s1�1Dt+s1�iXt+s2�1Dt+s2�i

�
� C

where the constant C does not depend on i and j.

By (8.29) and (8.30) we have that

E�kC�
n
(p)� C(p)k2 � C

(p+ 1)2

l � p
and, therefore, p

p+ 1kC�
n
(p)� C(p)k ! 0 (8.31)

in probability by the assumption that p3=n! 0. To show that (i) is true we usep
p+ 1kC��1

n
(p)� C�1(p)k � kC��1

n
(p)kkC�

n
(p)� C(p)kkC�1

n
(p)k

� g�
n
kC�

n
(p)� C(p)kg�

with an obvious notation for g�
n
and g�. Verify that g�

n
� kC��1

n
(p) � C�1(p)k + g�. Since

E�kC�n(p)�C(p)k2 ! 0 and g� is bounded in probability, we can choose n large enough so that

g�kC�
n
(p)� C(p)k < 1 in probability. Thus we have the inequality

kC��1
n

(p)� C�1(p)k � g�kC�n(p)� C(p)k
1� kC�n(p)� C(p)kg�

from which assertion (i) follows by (8.31).

Since assertion (ii) can be proved using the same arguments, the details are omitted.

To prove (iii) we �rst show that

��� 1

l� p

lX
t=p+2

X�

t�1(U
�

t �
pX

j=1

ajD
�

t�j)�
1

l� p

k�1X
m=0

bX
s=1

X+
im+s�1(U

+
im+s �

pX
j=1

ajDim+s�1�j )
���! 0

(8.32)
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in probability, where U+
t
= (Xt � �Xt�1)� (n � 1)�1

P
n

�=2(X� � �X��1) and X
+
t
is the series

obtained by replacing bUt by U+
t
in the �rst step of the CBB algorithm. To see (8.32) note that

1

l� p

lX
t=p+2

X�

t�1(U
�

t
�

pX
j=1

ajD
�

t�j
) =

1

l� p

k�1X
m=0

bX
s=1

X+
im+s�1(

bUim+s �
pX

j=1

ajDim+s�1�j) (8.33)

and consider the term

1

l� p

k�1X
m=0

bX
s=1

Xim+s�1
bUim+s: (8.34)

For this term we have

1

l � p
k�1X
m=0

bX
s=1

Xim+s�1
bUim+s =

1

l� p
X1

k�1X
m=0

bX
s=1

bUim+s

+
1

l � p
k�1X
m1=0

bX
s1=1

�m1�1X
m2=0

bX
s2=1

bUim2
+s2 +

s1�1X
s2=1

bUim1
+s2

� bUim1
+s1

=
1

l� p
X1

k�1X
m=0

bX
s=1

bUim+s

+
1

2

h� 1p
l

k�1X
m=0

bX
s=1

bUim+s

�2 � 1

l

k�1X
m=0

bX
s=1

bU2
im+s

i
:

Now, by lemma 8.3 and the de�nition of bUt we have that bUim+s = U+
im+s+OP (n

�1=2) uniformly

in m and s. Thus

1

l � pX1

k�1X
m=0

bX
s=1

bUim+s =
1

l� p
X1

k�1X
m=0

bX
s=1

U+
im+s + OP (n

�1=2): (8.35)

Similarly, we get

1

l� p

k�1X
m=0

bX
s=1

bU2
im+s =

1

l� p

k�1X
m=0

bX
s=1

(U+
im+s)

2 +OP ((l� p)�1=2)OP (n
�1=2): (8.36)

Furthermore, using

1p
l � p

k�1X
m=0

bX
s=1

bUim+s =
1p
l� p

k�1X
m=0

bX
s=1

U+
im+s

�(�̂� �) 1p
l � p

k�1X
m=0

bX
s=1

(Xim+s1 �
1

n � 1

�1X
�=2

X��1)

and (8.6) and (8.7) we get

��� 1p
l� p

k�1X
m=0

bX
s=1

bUim+s � 1p
l� p

k�1X
m=0

bX
s=1

U+
im+s

���! 0 (8.37)
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in probability. From (8.35), (8.36) and (8.37) we obtain (8.32).

We next show that

1

l � p
k�1X
m=0

bX
s=1

X+
im+s�1(U

+
im+s �

pX
j=1

ajDim+s�1�j)) 1

2
�2
"
C	

�
W 2(1)� 1

�
: (8.38)

For this note that by (2.3) and the de�nition of Dt�j we have

1

l � p
k�1X
m=0

bX
s=1

X+
im+s�1(U

+
im+s �

pX
j=1

ajDim+s�1�j)

=
1

l � p
k�1X
m=0

bX
s=1

X+
im+s�1("im+s � 1

n � 1

nX
�=2

"� )

+
1

l � p

k�1X
m=0

bX
s=1

pX
j=1

ajX
+
im+s�1

� 1

n� 1

nX
�=2

(X� �X��1)� 1

n � 1

n�pX
�=p+2

(X��j �X��j�1)
�

+
1

l � p

k�1X
m=0

bX
s=1

1X
j=p+1

ajX
+
im+s�1

�
(Xim+s�j �Xim+s�j�1)� 1

n � 1

n�pX
�=p+2

(X��j �X��j�1)
�

= T �1;n + T �2;n + T �3;n

with an obvious notation for T �1;n, T
�

2;n and T �3;n. The proof of assertion (iii) of the lemma is

then concluded from

T �1;n )
1

2
�2"C	

�
W 2(1)� 1

�
; (8.39)

T �2;n ! 0 (8.40)

and

T �3;n ! 0; (8.41)

in probability. We proceed by showing that (8.39) to (8.41) are true.

Consider T �1;n and let "+
t
= "t � (n� 1)�1

P
n

�=2 "� . We have

T �1;n =
1

l � p
k�1X
m=0

bX
s=1

X+
im+s�1"

+
im+s

=
1

l � p
k�1X
m=0

bX
s=1

(X1 +

m�1X
r=0

bX
s=1

U+
ir+j

+

sX
j=1

U+
im+j)"

+
im+s

=
1

l � p
k�1X
m=0

bX
s=1

(

m�1X
r=0

bX
s=1

U+
ir+j

+

sX
j=1

U+
im+j)"

+
im+s + OP (l

1=2(l� p)�1): (8.42)

Using the polynomial decomposition given in Phillips and Solo (1992) we can write

U+
t
= 	(1)"+

t
� (1� L)e	(L)"+

t
(8.43)
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where L is the shift operator, 	(1) = C	 =
P
1

j=0  j ,
e	(L) = P

1

j=0
e jLj and e j = P

1

i=j+1  i.

Note that
P
1

j=0 j
2 2

j
<1 implies that

P
1

j=0 j e jj <1. Substituting (8.43) in (8.42) we get

1

l � p
k�1X
m=0

bX
s=1

(

m�1X
r=0

bX
s=1

U+
ir+j

+

sX
j=1

U+
im+j)"

+
im+s

= 	(1)
1

l� p

k�1X
m=0

bX
s=1

(

m�1X
r=0

bX
s=1

"+
ir+j

+

sX
j=1

"+
im+j)"

+
im+s

� 1

l� p

k�1X
m=0

bX
s=1

�m�1X
r=0

bX
s=1

(1� L)e	(L)"+
ir+j

+

sX
j=1

(1� L)e	(L)"+
im+j

�
"+
im+s

= L�1;n + L�2;n

with an obvious notation for L�1;n and L�2;n.

Now,

L�1;n = 	(1)
1

l� p
k�1X
m=0

bX
s=1

(

m�1X
r=0

bX
s=1

"+
ir+j

+

sX
j=1

"+
im+j)"

+
im+s

= 	(1)
1

2

h� 1p
l � p

k�1X
m=0

bX
s=1

"+
im+s

�2 � 1

l� p

k�1X
m=0

bX
s=1

("+
im+s)

2
i

and because

1p
l � p

k�1X
m=0

bX
s=1

"+
im+s ) N(0; �2")

and

1

l � p
k�1X
m=0

bX
s=1

("+
im+s)

2 ! �2"

in probability, we get using C	 = 	(1) that

L�1;n )
1

2
�2"C	

�
W 2(1)� 1

�
:

We next show that L�2;n ! 0 in probability. For this let V +
t

= e	(L)"+
t
and note that

L�2;n =
1

l� p

k�1X
m=0

bX
s=1

hm�1X
r=0

bX
j=1

(V +
ir+j

� V +
ir+j�1

)
i
"+
im+s

+
1

l � p
k�1X
m=0

bX
s=1

h s�1X
j=1

(V +
im+j

� V +
im+j�1

)
i
"+
im+s

=
1

l� p

k�1X
m=0

bX
s=1

m�1X
r=0

(V +
ir+b

� V +
ir
)"+
im+s

+
1

l � p
k�1X
m=0

bX
s=1

(V +
im+s�1

� V +
im
)"+
im+s:
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Since
P

k�1
r=0(V

+
ir+b

� V +
ir
) = OP (k

1=2) uniformly in r and
P

k�1
r=0

P
b

s=1 "
+
im+s = OP (l

1=2) we get

1

l� p

k�1X
m=0

bX
s=1

m�1X
r=0

(V +
ir+b

� V +
ir
)"+
im+s = OP (k

1=2l1=2(l� p)�1)

and

1

l � p
k�1X
m=0

bX
s=1

(V +
im+s�1

� V +
im
)"+
im+s = OP ((l� p)1=2);

which shows that L�2;n ! 0 in probability.

Consider the term T �2;n and verify that

1

n � 1

nX
t=2

(Xt �Xt�1)� 1

n� p

nX
t=p+2

(Xt�j �Xt�p�j) = OP (p
1=2(n� p))

uniformly in j. Since l3=2
P

k�1
m=0

P
b

s=1X
+
im+s�1 = OP (1) we get

T �2;n = OP

� l3=2p3=2

(l� p)(n� p)
�
! 0

for p3=n! 0.

Finally, to see why T �3;n ! 0 in probability, note that

1

l� p

k�1X
m=0

bX
s=1

E�(X+
im+s�1

)2 = OP (n� b)

and

1

l � p
k�1X
m=0

bX
s=1

E�
� 1X
j=p+1

aj

h
(Xim+s�j �Xim+s�j�1)� 1

n� 1

nX
t=p+2

(Xt�j �Xt�j�1)
i�2

= OP (

1X
j=p+1

a2j):

By the Cauchy-Schwarz inequality with then get

T �3;n = OP (
p
n � p

1X
j=p+1

jaj j)

which goes to zero under the assumptions of the lemma. 2

Proof of Theorem 4.2: We give the proof of the �rst part of the theorem since the second

part is proved along the same lines.
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Let � = (1; a1; : : : ; ap)
0

and note that

(l� p)(�̂�
DF

� 1) = e
0

1Dn(�̂
� � �)

= e�1C
�
�1

n
(p)D�1

n

lX
t=p+2

Y �
t�1(p)e

�

t

where

e�t = X�

t � ��
0

Y �t�1(p)

= U�
t
�

pX
j=1

ajD
�

t�j

and

C�
�1

n
(p) = Dn

� lX
t=p+2

Y �
t�1(p)Y

�

0

t�1(p)
�
�1
Dn:

Write

(l� p)(�̂�DF � 1) = e
0

1C
�1(p)D�1

n

lX
t=p+2

Y �t�1(p)e
�

t

+e
0

1

�
C�

�1

n (p)� C�1(p)
�
D�1
n

lX
t=p+2

Y �t�1(p)e
�

t

and verify by straightforward calculations that

D�1
n

lX
t=p+2

Y �
t�1(p)e

�

t

 = OP �(
p
p+ 1): (8.44)

This together with lemma 8.4 (i) implies that

���e01�C��1n (p)� C�1(p)
�
D�1
n

lX
t=p+2

Y �t�1(p)e
�

t

���! 0 (8.45)

in probability.

Now, since C�1(p) is a block diagonal matrix with �rst row given by (c�111 ; 0; 0; : : : ; 0) we get

e
0

1C
�1(p)D�1

n

lX
t=p+2

Y �t�1(p)e
�

t =
�
(l� p)�2

lX
t=p+2

X2�

t�1

�
�1 1

l� p

lX
t=p+2

X�

t�1e
�

t :

Thus ���(l � p)(�̂�DF
� 1)�

�
(l � p)�2

lX
t=p+2

X2�

t�1

�
�1 1

l � p
lX

t=p+2

X�

t�1e
�

t

���! 0
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in probability. Because of this and the fact that 
(l � p)�2Pl

t=p+2X
�
2

t�1

(l� p)�1
P

l

t=p+2X
�

t�1e
�

t

!
)
 

�2
"
C2
	

R
W 2(r)dr

1
2�

2
"
C	(W

2(1)� 1)

!
;

in probability, cf. Lemma 8.2(i) and Lemma 8.4 (iii), we conclude that

(l � p)(�̂�DF � 1)) 1

2C	

�
W 2(1)� 1

�. Z
W 2(r)dr

in probability. The assertion of the theorem is then established by the observation that the right

hand side of the above expression is the asymptotic distribution of (n� p)(�̂DF � 1) under the

hypothesis that fXtg is unit root integrated; cf. Said and Dickey (1984). 2
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CAPTIONS FOR FIGURES

Figure 1 (a) Plot of the natural logarithm of the Dow Jones index series recorded daily

from Aug. 28 to Dec. 18, 1972; (b) plot of a BB pseudo-series with block size 10; (c) plot of a

CBB realization with block size 10.
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n=100 n=200

Blocksize Blocksize

� � b=4 b=6 b=8 b=5 b=7 b=10

1.0 0.8 0.046 0.053 0.049 0.049 0.041 0.050

0.0 0.045 0.058 0.061 0.056 0.047 0.056

-0.8 0.437 0.377 0.371 0.495 0.462 0.469

0.9 0.8 0.603 0.637 0.614 0.986 0.984 0.981

0.0 0.753 0.773 0.773 0.998 0.997 0.997

-0.8 1.000 1.000 1.000 1.000 1.000 1.000

0.85 0.8 0.876 0.859 0.860 1.000 1.000 0.999

0.0 0.960 0.961 0.951 1.000 1.000 1.000

-0.8 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Empirical rejection probabilities of the CBB unit root test with nominal level

� = 0:05 under di�erent settings of the ARMA parameters � and �. The test statistic used here

was n(�̂LS � 1) of Example 2.1.
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n=100 n=200

Blocksize=8 Blocksize=10

� � p=4 p=6 p=8 p=5 p=7 p=9

1.0 0.8 0.010 0.012 0.012 0.055 0.054 0.055

0.0 0.032 0.033 0.026 0.058 0.061 0.063

-0.8 0.170 0.141 0.126 0.218 0.187 0.165

0.9 0.8 0.292 0.299 0.300 0.982 0.966 0.965

0.0 0.583 0.569 0.546 0.995 0.983 0.979

-0.8 1.000 0.999 0.997 1.000 1.000 1.000

0.85 0.8 0.567 0.563 0.541 0.998 0.998 0.997

0.0 0.844 0.814 0.792 1.000 0.999 0.999

-0.8 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: Empirical rejection probabilities of the CBB unit root test with nominal level

� = 0:05 under di�erent settings of the ARMA parameters � and �. The test statistic used here

was (n � p)(�̂DF � 1) of Example 2.3; the chosen CBB block sizes were: 8 (case n = 100), and

10 (case n = 200).
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