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111. Abstract 

Advanced Vehicle Control Systems (AVCS) require large numbers of sensors for 
different levels within the control hierarchy. Whereas all sensors contain uncertainty to 
some degree, different sensors are particularly useful for specific environmental 
conditions. Therefore, sensor redundancy is essential to achieving high sensor data 
fidelity for use in real-world, non-ideal, unpredictable environments. In this work, a 
positioning sensor system, which includes Global Positioning System (GPS) receivers, a 
radar sensor, and a linear transducer is investigated. Positioning sensors provide 
information about the absolute or relative position of vehicles, a crucial component of the 
control system. GPS is potentially powerful for AVCS because of its high accuracy 
achievable by Differential GPS (DGPS) and other advanced GPS techniques. Field tests 
using these three sensors have been performed in cooperation with SRI International. 
Sensor noise models of GPS, radar, and linear Transducer sensors are developed based on 
the test data. A synchronization method is suggested for the scenario in which sensors 
output data at different frequencies and time delays. Two types of validation and fusion 
algorithms, PDAF and FUSVAF, are implemented for the open loop test data and the 
results are compared. A closed loop simulation has been performed using a simple PDD 
controller as the follower control law within a platoon. The sensor models developed here 
are applied in the simulation, and the two fusion algorithms are implemented and the 
results are compared. Finally, additional simulations incorporate results into VDL. 

3 



IV. Summary 

Sensors are always uncertain to some degree. They are also prone to a wide range of 
failure modes, each with varying degree of predictability. If these sensors are part of a 
system that relates to the safety of a system, noise and failure are unwelcome. Positioning 
sensors that give information about the absolute or relative position of vehicles within 
AVCS fall into the category of safety relevant sensors. The accuracy of single sensors is 
increased by improving the hardware and software or to use backup information to fuse 
information from several sources. This results in systems that perform acceptably in 
certain situations governed by internal sensor characteristics and environmental 
conditions. 

This report describes our efforts to develop a methodology for the aggregation of sensors. 
This includes the incorporation of information that is only partially redundant, has time 
lags to other sensor information, and accommodates both synchronized and 
unsynchronized data. Reduced visibility, obstacles (e.g. debris, bridges, or tall vehicles) 
blocking sensor signals, degrading sensor performance due to aging, inclement weather 
render any one sensor useless in some situations. Therefore, sensor redundancy is 
essential to achieve high sensor data fidelity. Two types of redundancy are involved for a 
sensor system: functional redundancy and physical redundancy. Physical redundancy is 
obtained by using multiple sensors to measure a single quantity. Functional redundancy is 
obtained through a functional and logical relationship among the parameter values 
measured by different sensors. Whereas both redundancy types are used in AVCS, in this 
work we focus on physical redundancy. Noise characteristics of three different sensors 
are investigated. 

Positioning systems give information about the absolute or relative position of vehicles. 
In the design of AVCS, the platoon model is utilized to increase highway capacity. 
Platoons consist of groups of anywhere from two to ten vehicles in a following pattern 
with an inter-vehicle spacing of approximately one meter at highway speeds. Vehicles 
within one platoon can be divided into two types: the leader (the first vehicle in the 
platoon) and the followers (all of the following vehicles). For the followers in a steady 
state motion, the goal of the control system is simply to follow the vehicle ahead and 
keep a relative distance of one meter. Because the entire platoon is moving at a very high 
speed, it is crucial that the inter-vehicle spacing is controlled accurately. Accurate 
measurement of the inter-vehicle spacing becomes significant since all follower control 
laws are based on it. Thus the motivation of this research is to increase the accuracy of 
the positioning sensor system. 

The purpose of this project is to: investigate GPS system noise characteristics, develop 
GPS and other sensor noise models, integrate the GPS sensor with other sensors to 
perform sensor validation and fusion, use the sensor models to perform close loop 
simulation of tracking within a platoon, and perform simulation in the VDL framework. 
The sensor aggregation produced by this research results in improved accuracy of the 
measurements provided for the machine level controller, a smoother ride, and improved 
safety of the system as a whole. 
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Chapter 1 Introduction 

One of the main motivations within the AVCS program lies in providing a safe ride. 
AVCS must reduce uncertainty and increase safety relative to the human counterpart to 
be successful. In reality, however, sensors fail for a variety of reasons that often cannot 
be entirely predicted. The validity of a sensor reading is never guaranteed. Therefore it is 
mandatory to have a system that deals with these uncertain readings, and, after validation, 
makes the optimal decision about which action to take (Goebel, 1996, Alag, 1996). 

The source of the sensor readings is manifold. Currently, there are numerous efforts 
under way within PATH to develop sensor systems for positioning tasks. These 
encompass radar, sonar, tachometer, gyros, GPS, vision, magnetic markers, laser, etc. 
Each sensor system has its unique advantages and disadvantages that makes one 
particular sensor more suitable in a given situation. What is missing is a comprehensive 
aggregation of all the sensor information to overcome shortcomings of any single sensor 
source. Attempts have been made (Agogino et al., 1995, 1997, Alag, 1995, Goebel, 
1996, Goebel et al, 1996) but with limited scope due to the non-availability of more 
sensors. It is feasible to assume that costs of sensors will drop sufficiently to assume that 
vehicles will be equipped with a variety of sensors. 

Therefore, PATH must allow aggregation of this sensor information. We envision this 
control scheme to work within the hierarchical structure of AVCS. Figure 1-1 shows the 
outline of the complex hierarchical structure of the AVCS control architecture that in 
addition to the link, planning, regulation, and physical layer consists of the network layer 
at the top. The task of the network layer controller is to assign a route to each vehicle 
entering the system. Below this is the link layer controller, one for a long segment of each 
highway. Its task is to assign a path to each vehicle entering the highway and target for 
the aggregate traffic. The remaining tasks are distributed among individual vehicles 
(Varaiya and Kurzhanski, 1988). 

The platoon layer in each vehicle is responsible for planning its path as a sequence of 
three elementary maneuvers, and for coordinating with neighboring vehicles the 
implementation of each maneuver. The regulation layer below it is responsible for 
executing a pre-computed feedback control in response to a command from the platoon 
layer as well as performing lower-level control tasks (Varaiya, 1991; Varaiya and 
Shladover, 1991; Sachs and Varaiya, 1993). Currently there is no element that acts as a 
supervisor in the sense that the information of redundant sensors (both hardware and 
analytical) is coordinated and sifted for inconsistencies. This need (Hsu et al. 1991; 
Patwardhan et al. 1992) between the vehicle sensors and the platoon layer must be filled 
to ensure proper operation of the system. Many parts of the system still assume that the 
communication systems and sensors work perfectly. This assumption is not realistic. 
Although uncertainty is taken into account in some cases, (Hedrick and Garg, 1993; 
Patwardhan et al. 1992), there exists no element that looks at the sensor readings from all 
relevant sensors at the physical level as well as information from the communication. We 
consider a multi-tier monitoring and diagnosis system that considers the uncertainties in 
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sensor readings to form a link between the platoon level controller and the regulation 
level controller and to rectify aberrant sensor readings by taking into account the 
information of several partly redundant sources. As shown in Figure 1- 1, sensor 
aggregation is being carried out on the Regulation layer and has partly been completed in 
the previous two PATH projects. Based on these results and as a next step, validation 
algorithms (shaded box in the platoon layer) check whether the data are compatible with 
global measurements. Information about malfunctions is passed to the link and network 
layer as warnings. 

Some of the reasons for uncertainty in sensory information is measuring device error, 
environmental noise, and flaws or limitations in the data acquisition and processing 
systems. Extracting information from raw data is often difficult because of noise, missing 
data or occlusions. Phenomena may show up at disparate locations and can have a variety 
of time scales, from low frequency signals to high frequency vibrations. If the AVCS is 
to function safely and reliably it is important to account for all these sources of 
uncertainties, identify them through their characteristic signature, and propagate them to 
the final diagnosis of the system state. 
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Figure 1-1: Position of Intelligent Sensor Validation and Sensor Fusion and 
Intelligent Decision Advisor in the AVCS Control Hierarchy 

This report covers our results from MOU 322. Sensor model development is described in 
Chapter 2.  Chapter 3 discusses first data synchronization and then fusion of GPS results 
with other data. Chapter 4 describes the VDL simulation of our fusion algorithms. 
Finally, conclusions and future directions are discussed in Chapter 5. 
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Chapter 2 Sensor Model Development Based on Test Data 

For a complicated system like AVCS, we need to first simulate it to ensure that each 
component of the designed system will independently perform adequately as a system. 
For automatic highway systems, simulation is essential for controller design. To create a 
more realistic simulation environment, we need to simulate sensor output instead of 
assuming exact vehicle state measurement. This is the primary reason for the 
development of sensor models. Three position sensors are investigated in this chapter. 
Their models are developed based on real test data. In addition, the sensor models are 
evaluated by comparing their autocorrelation function estimations and histograms with 
those of the real test data. 

Test Setup 

All the real test data used in this work were collected during a field experiment on 
October 30th, 1997 at Golden Gate Fields, California. The experiment was performed in 
cooperation with SRI International with the help of several PATH researchers from 
Richmond Field Station using two PATH cars. The test setup is shown in Figure 2- 1. 

Follower Car 

Figure 2-1: Test Setup 

Three types of position sensors were used in the tests: GPS receivers, radar, and a 
Rayelco transducer. Three GPS receivers were used in the experiment. Two were 
installed on the two cars respectively and the third was used as a reference GPS station 
for the DGPS scheme. All three sensors were used to measure the inter-vehicle spacing. 

In the tests, we first fixed the reference GPS receiver. Then several static tests were 
performed at a distance of about 40 meters from the reference point. Dynamic tests were 
performed by driving the two cars around the reference point. Three sets of static test 
data and one set of dynamic data are used in this work. The radar and transducer data 
were synchronized when they were collected. Their outputs are at a frequency of 50 Hz. 
The data were recorded at frequency of 10 Hz. GPS test data were processed by SRI. 
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Since GPS position data were at 4Hz, the GPS receiver readings needed to be 
synchronized with the other two sensor readings. 

Noise Characteristics Analysis Methods 

In this project, two major statistical methods are studied to analyze noise characteristics 
and evaluate the noise models: histogram and autocorrelation function (Jenkins, 1968). 

Histogram --- Estimation of Probability Density Function (pdf) 

In the category of time series analysis, the probabilistic density function (pdf) is 
estimated by forming the histogram of the sample data. For example, a histogram of a 
pseudo zero mean Gaussian white process with 1000 samples generated in Matlab and 
the pdf of corresponding ideal random process are shown in Figure 2-2. 

Histogram of Pseudo Gaussian(N(O,l)), White Process (1000 Samples) 
40 I I I I I I I 

$ 30 - . . . . . . . . . .  .:. . . .  . . . .  .:. . . . . . . . . . .  - - 
E" a 
'ij 20 
5i 

- . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  - 
a 

5 10 - .: . . . . . . . . . . . . . . . .  - . . . . . . . . . .  . . .  

n I " 
-4 -3 -2 -1 0 1 2 3 4 

Value of samples 

Probability density function(pdf) of ideal Gaussian Random Variable(N(0,l)) 

Value of random variable x 

Figure 2-2: Histogram of Pseudo and ideal white 
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Gaussian Process 

The shape of the histogram more closely emulates the shape of the pdf when more 
samples are used. Similarly, in the development of sensor models with limited test data, 
we are able to derive only a rough distribution of the data, not the exact pdf. However, 
this visual measurement is still useful since it shows important properties of the data and 
is easy to use without involving complex calculations. In reality, however, an exact 
solution to this kind of problem does not exist because for a probabilistic model, limited 
test samples could never cover the whole probability space. 

Our goal of modeling a sensor system is to construct a probabilistic model using some 
commonly used random variables or processes. Additive White Gaussian Noise (AWGN) 
is one of the most typical random processes in this scenario. Since techniques relating 
AWGN are well-developed, computation would be greatly simplified if the sensor noise 
of interest is AWGN or could be approximated as AWGN. Furthermore, if the 
characteristics exhibited by the data are too complex to be modeled easily and model 
accuracy is not of crucial concern, we can implement the most typical random processes 
or combinations thereof for rough approximations. 

Sample Autocorrelation Function (ACF) 

An autocorrelation function describes the second order statistics of a random process. It is 
used here because it gives a visual picture of the degree to which samples in the process 
dependent on each other as a function of the separation between points in the data series. 

From Jenkins, 1968, the autocovariance function (ACVF) estimates of a discrete time 
series can be defined as the following: 

If the observations x1 ,x2 , . . . , x N  come from a discrete time series, the discrete 
autocovariance estimate is: 

l N  
N i = l  

where X =--zxi . 

Estimates of the ACF, also called the sample ACF, are obtained by dividing the above 
ACVF estimates by the estimate of the variance, which is 

Figure 2-3 shows the sample ACF of a pseudo white Gaussian process. 

12 



Sample ACF of Pseudo white Gaussian Process 
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Figure 2-3: ACF of Pseudo and ideal white Gaussian Process 

The ACF can be considered to be a measure of whiteness of a random process. If the 
sample ACF of a set of test data is quite similar to those in Figure 2-3, then it can be 
modeled as white noise. Note that different data can have identical sample ACF. Many 
types of ideal white noise have exactly the same ACF as shown in the second plot of 
Figure 2-3. And several forms of pseudo white noise have sample ACF‘s that are very 
similar. Furthermore, it is difficult to interpolate the data according sample ACF 
especially when it shows that the data are highly correlated (Jenkins, 1968). By visually 
observing the data and looking at the histogram, sample ACF can still be useful in 
modeling. 

In the following sections, we will compare histograms and sample ACF’s of our test data 
with the pseudo white Gaussian process in order to estimate how close our sensor outputs 
are to a white Gaussian process. By comparing the histograms and sample ACF’s of the 
test data and model based data, we will show how close our models to the real sensor 
systems. 

GPS Noise Characteristics and Noise Models 
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GPS Noise Characteristics (Bennett, 1996; Farrell, 1996; Christie, 1996; Grewall, et 
al, 1996; Kobayashi, et al, 1994,1995; Phillips, et al, 1996; Schonberg, et al, 1996) 

The predominant sources of error in GPS measurements are: satellite clock error, 
ephemeris error, receiver errors, and atmospheric/ionospheric delay. In addition, the 
accuracy of GPS can purposefully be degraded by the U.S. Department of Defense (DoD) 
using an operational mode called “Selective Availability” or “S/A”. S/A is designed to 
deny hostile forces the tactical advantage of GPS positioning. When, and if, it is 
implemented it will be the largest component of GPS error. Differential GPS 
measurements are potentially much more accurate than standard GPS measurement. The 
main idea of DGPS is the following. If we put a GPS receiver on the ground in a known 
location, we can use it to figure out exactly the errors the satellite data contains. Acting 
like a static reference point, it can then transmit an error correction message to any other 
GPS receivers that are in the local area, and they can use that error message to correct 
their position solutions. The correction can eliminate virtually all error in their 
measurements. 

1 Common Mode Errors I Standard Deviation 
Selective Availability 24.0m 
Ionosphere 7.0m 
Clock and Ephemeris 

0.7m Troposphere 
3.6m 

Non-common Mode Errors 
Receiver Noise 
Multbath 

Table 2-1: GPS System Error due to Noise Sources 

The two basic outputs of a GPS receiver are pseudo-range and carrier phase data. A dual 
frequency receiver outputs range and phase measurement for each carrier frequency. 
These four outputs and combinations thereof then provide useful signals needed for 
accurately calculation of the measured distance. Table 2-1 summarizes the main error 
sources and their standard deviation in a GPS system for a single receiver. The common 
mode errors are errors that are common to every receiver in a local region. The non- 
common mode errors are errors depending on specific receivers. Because they vary 
significantly for different types of receivers, ranges were not assigned. By combining 
several advanced GPS techniques, e.g., DGPS, narrow correlator technology, carrier 
phase tracking and carrier smoothing, and carrier cycle ambiguity resolution, the total 
error and noise can be reduced to a few centimeters or even less. In our experiment, two 
dual-frequency GPS receivers were installed on the two cars respectively. 

Besides the error sources summarized above, there are also three practical problems with 
a GPS system used in AVCS. The first is that the signals from the satellites could be 
blocked by tall buildings, tunnels, overpasses, etc. If this occurs, the GPS receiver may 
not be able to receive enough information to enable a calculation. Another problem is that 

14 



GPS data arrive at a relatively low frequency. We have to synchronize GPS outputs with 
other sensors. Finally, the low data update rate is undesirable for highly dynamic systems. 

A Simple Model of GPS Data 

The residual of the three sets of static test data, their histograms, and their sample ACF’s 
are shown in Figure 2-4. A simple noise model of GPS data is obtained as following by 
considering the residual of the data as zero mean, white Gaussian noise. 

y (n )  = x(n) + 0.002arg (n) ;  
where 

x ( n )  is the true distance we are measuring, 
y(n)  is the GPS sensor output, 
re ( n )  is white Gaussian random process, rg (n)  - N(0,l) at each time n, 
a = 1.0 if five or more than five satellites are available, 
a = 2.5 if four satellites are available . 
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-0.5 

Sample residual values(meters) 
0 500 1000 
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Figure 2-4: Residual of three sets of static test GPS data 
From the sample ACF plots shown in Figure 2-3, it can be seen that the ACF of this 
simple model does not approximate the test data very closely. However, because the 
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residual is quite small, using this simple model would not seriously detract most of the 
time. To increase accuracy, a more complex model is developed in the following. 

A Complex Model of GPS Data 

A relatively complex noise model of GPS data can be developed by observing all of the 
static test residuals in Figure 2-4. From the residuals, one notices that besides the high 
frequency noise, there are also some low frequency variations occurring in a random 
manner. The high frequency noise is modeled as zero mean, white Gaussian noise. The 
low frequency variation is modeled as a cosine wave with a random period and a random 
initial phase. 
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Figure 2-5: Comparison of GPS test data and model based data 
Based on these observations, the model is developed as 

y(n) = x(n )  + a(0.0015rg (n) + 0.0012c0s(2m / r,, + &)) 

where 
x(n)  is the true distance we are measuring, 
y(n) is the GPS sensor output, 
rg (n)  is the white Gaussian random process, 
rg (n) rg (n) - N(0,l) at each time n, 

16 



a = 1.0 if five or more than five satellites are available, 
a = 2.5 if four satellites are available, 
r, - U( 1200,2000) is the random period of the low frequency variation, 
eo - U (0,2n) is the initial phase, 
and U denotes a uniform distribution. 

From Figure 2-5, although it can be seen that this model is not exact since its sample 
ACF still differs from those of the test data, it is similar. The goal for the sensor model is 
not to regenerate the exact test data, but to generate model sensor readings statistically 
similar to the real test data to serve for the control system simulation. Therefore, we do 
not restrict ourselves to an exact match between test and model based data, Actually, 
from the three sets of test data it can be seen that their ACF’s differ as well. 

Radar Sensor and Noise Model 

Radar Sensor 

Radar (Microwave Radio Detection and Ranging) sensors measure the signal reflected 
back from an object. In AVCS, the radar sensor is used to measure distance and 
movement of vehicles via the Doppler effect. It transmits electromagnetic energy toward 
a target and studies the time arrival and the Doppler frequency shift of the reflections in 
order to calculate the distance from the target. The measurement signal is the round trip 
time, which depends on the distance of the object and the strength of the echo. One 
benefit of the radar sensor is that it can detect targets under all weather conditions. The 
range accuracy of a simple pulse radar depends on the width of the pulse it transmits, 
which has a trade-off with the bandwidth requirement of the receiver and transmitter. The 
radar used in the experiment has a range of 30 meters and operates at a frequency of 
24GHz. The output data is 50Hz and the records were taken at lOHz in the test. 

Noise Model of Radar Sensor 

The radar model we developed and show here is based on the test data under the 
calibration of scale: 13942.410 metedvoltage and offset: 0.1 168 meters. 

y(n) = x(n) + (0.0048 + O.OOLCx(n))r, (n); 
where 

x(n)  is the true distance we are measuring, 
y ( n )  is the radar sensor output, 
rg (n) is white Gaussian random process, rg ( n )  - N(0,l) at each time n. 
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Figure 2-6: Residual of three sets of static test Radar data 
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Figure 2-7: Comparison of radar test data and model based data 
From Figure 2.7, it can be seen that the sample ACF’s of radar test data and model based 
data are not quite similar. A model which has an ACF similar to that of the radar test data 
is difficult to obtain and would be very complex. Here a white Gaussian process with a 
variance changing with the measured distance is used to roughly model the radar outputs. 

-1 

Linear Transducer and Noise Model 

Rayelco Linear Transducer 

A Rayelco transducer is a linear motion transducer used to measure movement by means 
of a stainless steel cable which extends from the transducer and attaches to the object to 
be measured. At the transducer, the cable is wound around a spring loaded drum, which 
rotates a sensor within the transducer when the cable is extended. The transducer 
provides an electronic signal consistent with the cable’s movement which is exactly the 
object’s movement. Since the transducer is installed in one car and one end of the cable is 
physically attached to the other car, this sensor would not be used in a real world 
automatic highway system. However, because it is quite simple and accurate, it can be 
used in tests as a reference positioning sensor. The transducer we used in the experiment 
can measure distance up to approximately 15 meters and has an accuracy of about 0.1%. 

19 



The output data were available at 50Hz, and to minimize the storage required, we 
sampled them at 1OHz. 

Noise Model of Rayelco Transducer 

The following model of Rayelco transducer is under the calibration of scale: 1.229 
meters/voltage and offset: -0.015 1 meters. 

y ( n )  = x ( n )  + 0.003k(n);  

where 
x(n) is the true distance we are measuring, 
y(n)  is the radar sensor output, 

k ( n )  = 

' - 5  
- 4 
- 3  
- 2  
- 1 
0 
1 
2 
3 
4 

< 

when 0 I r, (n)  < I , ;  
when I ,  5 r, (n)  < I ,  ; 
when I ,  I r, (n) < I, ; 
when I, I r, (n)  < I, ; 
when l4 5 r, (n) < 1, ; 

when I ,  5 r,, (n)  < 1,; 
when I ,  I r,, (n)  < 1, ; 
when I ,  5 r,, (n)  < I, ; 
when 1, 5 r,, (n) < 1, ; 
when I ,  I r, (n)  < 1. 

where 
r, is a random variable uniformly distributed on [0,1] and 1; 's are got as 

following: 

rl = 0.0055; r2 = 0.1425; r3 = 0.1 121; 
t-4 = 0.0975; r-5 = 0.0985; r6 = 0.1015; 
r7 = 0.1067; I-, = 0.1249; r, = 0.1828; 
rlo = 0.0280. 

and 
1, = r,; I, = 1, + r2; I, = I, + r,; 
I, = I 3  + r,; I, =I4 + r,; I, =I, + r6; 

I, = I ,  +I- , ; / ,  =1,  +r8;I ,  = I ,  +r , .  

By observing the residual of the three sets of static test data, it can be seen that the output 
of the transducer was quantized uniformly into 10 different layers (shown in the 
histogram plots of Figure 2-8). The set { r; , i = 1, ..., 10) was obtained by calculating the 
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average percentages of the sample number distributed in every layer of the three sets of 
static test data. The sample ACF shows that the noise is quite close to white, meaning that 
samples at different times have almost the same probability distributions of being at the 
ten different layers. For this reason, a uniformly distributed random process can be used 
for r,, ( n )  . 

Residual of test#l(4m) Histograms Sample ACFs 
0.02 

0.01 
$!? 
3 0  2 
-0.01 

-0.02 
0 500 1000 -0.02 0 0.02 0 500 1000 

Residual of test#2(10m) 
0.02 200 

0.01 

0 

-0.01 

n nQ 
-"."L 

0 500 1000 -6.02 0 

.....I 0 5 . . . . . . . . . . . . .: i 

o p ,  

-0.5 
0.02 0 500 1000 

Residual of test#3(4m) Sample residual values 
0.02 

0.01 0 5 . . . . . . . . . . . .:. . . . . . . . . . . . 

0 . l ~  0 

-0.01 

-0.02 
0 500 1000 -0.02 0 0.02 0 500 1000 

Sample Sample residual values(meters) Sample 

Figure 2-8: Residual of three sets of static test linear transducer data 
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Figure 2-9: Comparison of linear transducer test data and model based data 

Comparing the test data and the model based data, this model is quite accurate in the 
sense that the model based data have histograms and sample ACF which are very similar 
to those of the test data. 
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Chapter 3 Fusion of GPS with Radar and Linear Transducer Data 

In this chapter, two types of sensor validation and fusion algorithms are applied to 
portions of the test data of the three sensors discussed in Chapter 2. This sensor 
validation and fusion is conducted in order to evaluate performance of the fusion schemes 
when the GPS sensor is integrated. A closed loop simulation is also performed using the 
sensor models from Chapter 2. Before we apply the fusion algorithms, we first need to 
synchronize the outputs of the three sensors since GPS outputs are at a different 
frequency (4Hz) from the other two sensors (1OHz). 

Sensor outputs synchronization 

- GPS measurement 
4 - Radar time 

I I I I I I 1 I I I I L 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 t (s) - GPS measurement - GPS prediction 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 t (s) 

Figure 3-1: Sensor Output Synchronization Scheme 

In this project, since GPS outputs were updated at a lower frequency than the other two 
sensors, we took the time stamps of the other two sensors as time reference and tried to 
interpolate GPS data at 4 Hz into these time stamps. The simplest synchronization would 
occur at each time stamp, taking the closest value of the GPS data as the predicted GPS 
output at that time stamp. Because we need to do the synchronization online, we have 
access to only the past data, so the most recent GPS output could be used as the current 
GPS output prediction. However, the delay introduced by this manner of synchronization 
is undesirable for most dynamic cases. Therefore in order to accommodate dynamic 
cases, a linear predictor is used to synchronize the GPS outputs with the other two 
sensors using the past two GPS readings. Suppose x ( n )  and x (n  - 1) are the most recent 
two measurements we have from GPS system. Then the predicted value of the GPS 
output at time t is just: 
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x(n)  - x(n  - 1) 

t n  - t n 4  
x ( t )  = x(n)  + ( t - 4  

The geometry of the synchronization scheme is shown in Figure 3-1. Although this 
method may be suboptimal, its strengths are evidenced by its easy and straightforward 
application. It will be used in following sections. 

An adaptive method 

The difficulty with the above simple method is its noise amplification, especially when 
the vehicle decelerates. Notice that there are two terms in the equation for the simple 
method. When the vehicles are at high velocity, ideally the second term would be large 
since the dynamic part is derived mainly from the speed. On the other hand, when the 
vehicles run slowly, we want the second term to be small since the dynamic part mainly 
comes from the noise. Based on the simple method presented above, an adaptive method 
is created by adding a parameter K on the second term of the equation. It becomes 

x(n) - x(n - 1) 
t n  - *n-1 

x ( t )  = x(n)  + K (t-t ,) .  

For the GPS data, since the variance of the noise is quite small, we can just set a 
threshold for K at I(x(n) - x(n - 1)) / (t,  - tn-,)\ = 0.05 meters. If 

I(x(n) - x(n  - 1)) / (t,  - ta-l)l > 0.05, we set K = 1.0. Otherwise, K = 0.2. 

However, to for generalization, we need to design different curves of K for different 
sensors. A general curve of K could be designed by a window function with an 
exponential function on each side. An exponential function would also be used on the 
right side due to the possibility that some sensor readings might have undesirable outliers. 

Overview of two kinds of fusion algorithms--- PDAF and FUSVAF 

Two types of validation and fusion schemes were developed by BEST laboratory 
members, Satnam Alag and Kai Goebel, for their Ph.D projects (Alag, 1996; Goebel, 
1996). A common flow chart of the two methods is shown in Figure 3-2. 
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Figure 3-2: Sensor Validation and Fusion Scheme 
Suppose we are using a number of sensors measuring the same quantity. All of the 
original sensor readings are uncertain to some degree. The purpose of sensor validation is 
to discard most of the noise from the sensor readings and make the sensor system robust 
in the event of single sensor failure. The validated values are evaluated by passing 
through validation gates. The validation gates are designed based on the prediction of 
current state value using past information. Those validated values which are not too far 
from the predicted value (within the gates) are considered to be valid sensor 
measurements, while those out of the gates are considered to be invalid sensor 
measurements and would be rejected. Each valid sensor measurement is then assigned a 
confidence value (or a probability value) indicating to what degree they could be believed 
according how far they are from the predicted value. In the fusion block, we calculate the 
fused value by taking weighted average of all the valid sensor measurements using their 
confidence values as the weights. Note that the weighted average should also include the 
predicted value (therefore it needs a confidence value as well), so that if none of the 
sensor measurements is valid at a time, the predicted value could be taken as current 
fused value. 

In PDAF, a rule-based system is used first to find out the operating state of the vehicle, 
and then the proper system model is chosen. The model could be of the first, second, or 
third order according to the operating states (Alag, 1996). Then a Kalman filter based 
validation and fusion algorithm is used and a fixed validation gate is utilized for all 
sensors. Probabilities are assigned to each sensor based on a Gaussian validation curve. 
PDAF works well for zero mean, white, Gaussian noise because it is based on Kalman 
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filtering. However, it is not as ideal when other types of noise are present (Bar-Shalom, 
1993). 

In FUSVAF (Goebel, 1996), a Fuzzy Exponential Weighted Moving Average (FEWMA) 
time series predictor is used for validation, fuzzy validation gates are designed for each 
sensor, and a weighted average scheme is used for fusion. Different non-symmetric 
dynamic validation gates could be designed for different sensors according to their 
characteristics based on the measurements, predicted value and current system state. 
Confidence values are assigned corresponding to the validation curves. FUSVAF is 
acceptable for both Gaussian and non-Gaussian noise. It does not require a priori 
knowledge about the noise (Khedkar, 1992), a prerequisite for PDAF. In addition, it has 
great flexibility in the choice of validation gates. 

Comparison of the fusion results by the two algorithms 

Figure 3-3: Fusion of three positioning sensors using PDAF(static test) 
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Figure 3.3 shows the fusion of the three sensors using one set of the static test data (4m 
test). The true distance between the centers of the two GPS receivers measured by a tape 
is about 4.06 meters. Millimeter level accuracy could not be achieved by a tape. Because 
the mean values of the GPS and the transducer data are both about 4.057meters, we took 
4.057 as the true distance. Sum of square errors (SSE) of 1000 data samples are 
calculated for each sensor and the PDAF fused output. According to the SSE values, the 
radar is the most noisy sensor among those tested. The linear transducer has noise with 
magnitude within 1 cm, which is quite accurate as expected. The GPS data are quite 
accurate, with an SSE value is even less than that of the fused output. 

Fusion of two positioning sensors using PDAF(static test)(without GPS) 
4.15 I I I I I 1 I I I 

Trans SSE=0.06065 
Radar SSE=0.35186 
PDAF SSE=0.00826 

3.95 I I I I I I I I I 

0 100 200 300 400 500 600 700 800 900 1000 
sample 

Figure 3-4: Fusion of two positioning sensors using PDAF(static test)(without GPS) 

Figure 3.4 shows the fusion of two sensors using exactly the same radar and transducer 
data as in Figure 3-3. Comparing Figures 3-3 and 3-4, it can be seen that without GPS 
outputs, the fusion results slightly worsen. The PDAF fusion SSE value increases from 
0.0041 1 to 0.00826 m2. From this, we conclude that fusion of radar and transducer data 
using PDAF results in decent accuracy, and the integration of GPS outputs would 
enhance that accuracy. 
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Figure 3-5: Fusion of three positioning sensors using PDAF(dynamic open loop test) 

Figure 3.5 shows the fusion of three sensors using one set of dynamic test data. Here, we 
avoid the use of values like SSE to evaluate the performances of sensors and the fused 
outputs since we do not know the true distance for the dynamic case. But as expected, 
GPS and transducer data are reasonably similar. Radar readings contain more noise. The 
fused output is quite close to GPS and transducer outputs. At times, the fused output 
appears to be corrupted slightly by noisy radar outputs. 
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Figure 3.6 shows the fusion of three sensors using FUSVAF. The data used here are 
exactly the same as those in Figure 3-3. FUSVAF appears to be slightly more accurate 
than PDAF in the sense of SSE. 
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Figure 3-7 shows how FUSVAF behaves without GPS readings. Compared with Figure 
3-4, whose results use the same sensor test data, the performance of FUSVAF in this case 
appears to be worse than that of PDAF. 
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Figure 3-8: Fusion of three positioning sensors using FUSVAF(dynamic open loop 
test) 

Looking at Figures 3-8 and 3-5, the fused outputs of FUSVAF are closer to the GPS and 
transducer outputs than PDAF. This evidences higher FUSVAF accuracy since GPS and 
transducer sensors are supposed to be more accurate than the radar. 

Closed Loop Simulation 

To this point we have developed the sensor models and implemented the two fusion 
algorithms using our open loop test data. Next we show how the fusion schemes work for 
the closed loop case when GPS sensors are integrated. Since we only consider steady- 
state, straight following motion of two cars, a simple PID can be used here for the 
follower control law. The control goal is to track the lead car to maintain the desired 
inter-vehicle spacing of D = 2 meters. Then the spacing error is 

e ( i )  = d ( i )  - D = x ( i  - 1) - x ( i )  - D 

where index i refers to the follower and i - 1 refers to the lead car. Quantity d ( i )  is the 
distance between car i - 1 and car i , which is precisely the quantity being measured with 
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our positioning sensors. Variable z(i - 1) is the position of car i - 1 , and x ( i )  is the 
position of car i . The desired spacing is D = 2 meters. All units in the above equation 
are meters. 

Using the concepts suggested by Godbole and Lygeros (1993), the following PID 
controller can be developed: 

x(i) = c,e(i) + c,e(i) + c,e(i) . 

Under this control law the closed loop transfer function relating the spacing error 
experienced by car i - 1 to the spacing error experienced by car i is: 

N ( s )  = cus2 + c,s + cp y 

D(s) = s3 + C,S2 + c,s+ cp’ 
where 

The controller parameters, cp ,c, ,c, should be chosen (Godbole and Lygeros, 1993) such 
that 

In this simulation the parameter values are: cp = 2 10.0, c, = 140.0, c, = 15.0 . 
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Figure 3-10: Simulated Spacing Error using different sensor fusion schemes 

Figure 3-10 shows the simulated spacing error using different sensor fusion schemes. 
Note that the perfect curve refers to the case in which no noise is added, assuming an 
ideal case in which we have perfect sensors. Both PDAF and RJSVAF use the three 
sensor models (for GPS, the complex model is used) which we developed in Chapter 2. 
The radar and transducer models generate model based data at 50 Hz. GPS models 
generate data at 4 Hz. GPS model based data are synchronized with the other sensor 
models using the linear predictor introduced previously before it goes through the fusion 
algorithms. The GPS plot includes the GPS model based noise, with no sensor fusion 
schemes involved. Quantity SSE is the sum of squared spacing error of a 30 second 
simulation. Figure 3.10 shows the SSE values of one run. The SSE values might change 
slightly for every iteration of the simulation. For the perfect case, the SSE is 0.00438 m2. 
For PDAF, SSE varies from 0.0120 to 0.0155 m2. For FUSVAF, SSE varies from 0.013 
to 0.017 m2 . And for GPS only, SSE changes from 0.013 to 0.0165 m2 . Generally 
speaking, in the sense of SSE, PDAF performs a little bit better than the FUSVAF and the 
GPS only case. FUSVAF and the GPS only case perform almost identically. 
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Chapter 4 VDL Simulation of Sensor Fusion Algorithms 

Introduction 

The VDL (Vehicle Dynamics and Longitudinal Control) software package (Yip, 1993) is 
a platoon simulation program which models inter-vehicle longitudinal spacing and was 
developed by the Vehicle Dynamics and Control Laboratory at UC Berkeley (Swaroop, 
1994). Up to 9 cars in a platoon are modeled with adjacent spacing of 2 meters. The 
control objective is to maintain the desired spacing between adjacent cars in the platoon. 
The main file long-sim.c sets up the overall structure of the simulation and the time 
integration loop to update the state variables. After performing some initializations, it 
calls up the “controller” routine to update the controls. It then calls up the “rk4” routine 
to perform a fourth-order Runge-Kutta time integration to update the state variables. This 
time integration loop continues until the specified simulation end time is exceeded. For 
our case, we consider only the first car following the lead car, as shown in Figure 4- 1. 

-H I+-- 
Spacing Error 

Figure 4-1: Platoon Longitudinal Control 

Lead Car Profile 

The lead car’s position, velocity and acceleration profiles are given in Figures 4-2, 4-3, 
and 4-4. We can see that the lead car transitions from uniform velocity to acceleration 
and then decelerates back to uniform velocity. 

35 



tirne(s) 

Figure 4-2: Lead car position profile 

Figure 4-3: Lead car velocity profile 
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Figure 4-5: Program Flow Chart 
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Simulation Results 

First we ran the simulation program with no sensor model but with sensor noise added to 
the position measurement. The spacing error is depicted in Figure 4-6. 
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Figure 4-6: Spacing error without sensor noise 
We can see that when the lead car is at constant speed, the spacing error is close to zero, 
when the lead car accelerates the spacing error decreases, and as the lead car decelerates 
the spacing error increases. Finally, spacing error converges to zero when the lead car 
returns to a constant speed. 

When we integrate our sensor models into the program, the noise is added directly after 
the Runge-Kutta integration but prior to the controller. Three sensor models are added to 
the program named AddMeasureN0ise.c. The GPS, radar, and Rayelco sensor noise 
effects on spacing error are illustrated in Figures 4-7,4-8, and 4-9. We can see that noise 
was introduced into the spacing error measurement with similar magnitude for all three 
sensors. The average mean square errors for the three sensors are 2.4514e-4, 8.6954e-5, 
and 3.3520e-4, respectively. Note that the Rayelco sensor has the largest measurement 
noise while radar has the smallest. 
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Figure 4-7: Spacing error with GPS noise 
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Figure 4-9: Spacing error of with rayelco noise 
In order to extract useful information with sensor measurement, we use two methods to 
smooth out the noise. One method uses the Probabilistic Data Association Filter (PDAF), 
as developed by Satnam Alag (Alag, 1996), which results in the fused sensor 
measurement in Figure 4-10. The other method used is the Fuzzy Sensor Validation and 
Fusion Algorithm (FUSVAF) as developed by Kai Goebel (Goebel, 1996) and its result is 
depicted in Figure 4-1 1. We can see that both fusion algorithms achieve excellent 
extraction of the real spacing error from the sensor measurement. Compared to the 
spacing error without sensor noise, the noise magnitude is very small. Compared to 
additional analysis by Jiangxin Wang using MATLAB (Wang, 1999) as described in 
Chapter 3, similar conclusions can be reached. 
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Figure 4-10: Spacing error of car 1 with PDAF fusion algorithm 
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Figure 4-11: Spacing error of car 1 with FUSVAF fusion algorithm 

We note that during the first 10 seconds of the experiment the fuzzy algorithm performed 
poorly thus resulting in a significant overall average mean square error of 7.25 18e-5. 
Compare this to the overall mean square error of the PDAF algorithm, which was only 
1.3697e-6. However, recalculation after the first 10 seconds shows the Fuzzy algorithm 
to have a smaller average mean square error of 1.3872e-6, as compared to that of the 
PDAF algorithm, 1.4138e-6. 

Conclusions 
From the simulation results in the VDL environment, we can see that (1) individual 
sensors exhibit not insignificant noise. However, through the combination of several 
sensors' information, coupled with the use of appropriate sensor fusion algorithms to 
smooth out the noise, we can achieve nearly accurate measurement. (2) Both the PDAF 
and FUSVAF algorithms achieve excellent extraction of the real spacing error from the 
sensor measurements. It must be noted that the error for the FUSVAF algorithm 
decreases significantly after a short period of time. 
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Chapter 5 Conclusions and Further Directions 

Conclusions 

The results of the open loop fusion and close loop simulation show that both PDAF and 
FUSVAF fusion schemes behave as expected and are consistent with previous research 
(Agogino et al., 1995, 1997). In the presence of GPS, radar and linear transducer noise 
(noise models for simulation), the two fusion schemes filter out noise to varying degrees 
and fuse multiple sensor readings. Furthermore, GPS provides a potentially powerful 
positioning sensor for vehicle control. The word ‘potentially’ is used here because we 
have not yet been able to make the system work reliably enough to be implemented 
directly. In addition, PDAF and FUSVAF are both effective fusion schemes for different 
combinations of positioning sensor systems that include the GPS sensor. 

From the simulation results in the VDL environment, we can see that individual sensors 
exhibit not insignificant noise. However, through the combination of several sensors’ 
information, coupled with the use of appropriate sensor fusion algorithms to smooth out 
the noise, we can achieve nearly accurate measurement. Both the PDAF and FUSVAF 
algorithms achieve excellent extraction of the real spacing error from the sensor 
measurements. It must be noted that the error for the FUSVAF algorithm decreases 
significantly after a short period of time. 

Future Directions 

It is shown in this research that GPS can achieve very high accuracy when it works well. 
As discussed above in order to keep the system working reliably, it becomes crucial to 
study the failure modes of GPS. 

Closed loop simulation has been done in this research using a simple PID controller and 
VDL. Additional simulation in other environments such as SmartAHS would be 
beneficial for further analysis of performance of the integrated sensor system. 

A simple linear predictor is used in this project to synchronize the sensor outputs. More 
situations need to be considered, e.g., if the sensor output is too noisy, which means that 
two neighboring points might have big difference, then the prediction of the current 
sensor reading only based on the most recent two sensor outputs would result in noise 
with large magnitude. Adaptive or fuzzy methods or their combination could be 
considered here to solve the problem. 

PDAF and FUSVAF have their own advantages and disadvantages. An interesting and 
potentially very powerful endeavor would be to develop a combined validation and 
fusion scheme, exploiting the desirable properties of both and rejecting their 
shortcomings. 

43 



Chapter 6 References 

Agogino, A., Alag, S . ,  Goebel, K., “A Framework for Intelligent Sensor Validation, 
Sensor Fusion, and Supervisory Control of Automated Vehicles in IVHS”, 
Proceedings of the ITS America Annual Meeting, Washington, D.C., 1995. 

Agogino, A., Alag, S . ,  Goebel, K., and Alag, S., “Intelligent Sensor Validation and 
Fusion for Vehicle Guidance Using Probabilistic and Fuzzy Methods”, MOU157, 
California PATH Research Final Report #D97-29,1997. 

Agogino, A., Goebel, K., and Alag, S . ,  “Intelligent Sensor. Validation and Sensor Fusion 
for Reliability and Safety Enhancement in Vehicle Control”, MOU132, UCB-ITS- 
PRR-95-40, California PATH Research Final Report, 1995. 

Alag, S . ,  “A Bayesian Decision-Theoretic Framework for Real-Time Monitoring and 
Diagnosis of Complex Systems: Theory and Application”, Ph.D. Thesis, Department 
of Mechanical Engineering, University of California at Berkeley, Berkeley, 1996. 

Alag, S . ,  Goebel, K., and Agogino, A., “Intelligent Sensor Validation and Fusion used in 
Tracking and Avoidance of Objects for Automated Vehicles”, Proceedings of the 
ACC 1995, Seattle, pp. 3647-53 vo1.5, 1995. 

Bar-Shalom Y., and Li, X., “Estimation and Tracking: Principles, Techniques, and 
Software”, Boston, MA: Artech House, 1993. 

Bennett, “Blended GPS/DR Position Determination System”, presented at the 9th 
International ION/GPS Meeting, Kansas City, MO, September 1996. 

Farrell, J., Barth, M., Galijan, R., Sinko, J., “GPS/INS Based Lateral and Longitudinal 
Control Demonstration”, MOU292, California PATH Research Final Report, 1998. 

Chao, S .  and A. M. Agogino, “Optimal Safety Decision Making in Advanced Vehicle 
Control Systems”, Proceedings of the 36th IEEE Conference on Decision and 
Control (Dec. 10-12, 1998, San Diego, CA), IEEE, New York, NY, Cat. No. 
97CH3612, Vol. 5, pp. 4788-9, 1997. 

Chao, S. and A. M. Agogino, “Hazard Diagnosis in Advanced Vehicle Control Systems”, 
Proceedings of the IASTED International Conference on Applied Modeling and 
Simulation, August 12-14, 1998. 

Christie, J., Parkinson B., Enge P., “The Effects of the Ionosphere and C/A Frequency on 
GPS Signal Shape Considerations for GNSS2”, Poster Presentation September 1996 
at ION GPS-96, Kansas City, Missouri. 

Godbole, N., and Lygeros, J., “Longitudinal Control of the Lead Car of a platoon”, Tech. 



Rep. PATH Memorandum 93-7, Institute of Transportation Studies, University of 
California at Berkeley, 1993. 

Goebel, K., and Agogino, A., “An Architecture for Fuzzy Sensor Validation and Fusion 
for Vehicle Following in Automated Highways”, Proceedings of the 29th ISATA, 
FZorence, Italy, pp. 203-209, 1996. 

Goebel, K., “Management of Uncertainty for Sensor Validation, Sensor Fusion, and 
Diagnosis Using Soft Computing Techniques”, Ph.D. Thesis, University of California 
at Berkeley, Berkeley, 1996. 

Goebel, K., S. Alag and A.M. Agogino, “Probabilistic and Fuzzy Methods for Sensor 
Validation and Fusion in Vehicle Guidance: A Comparison”, Proceedings of ISATA 
‘97, 30th International Symposium on Automotive Technology & Automation, pp. 
7 1 1-71 9, vol. 1 : Mechatronics/Automotive Electronics, 1997. 

Grewal, M.S.; Farrell, J.; Barth, M. “Application of DGPSANS to automobile navigation 
with latency compensation”, IEEE 1996 Position Location and Navigation 
Symposium Proceedings of Position, Location and Navigation Symposium PLANS 
‘96, Atlanta, GA, USA, pp. 433-6,1996. 

Jenkins, G. M., Watts, D. G., “Spectral Analysis and its applications”, HOLDEN-DAY, 
1968. 

Khedkar, P., and Keshav, S., “Fuzzy Prediction of Time Series”, Proceedings of the IEEE 
International Conference on Fuzzy Systems, San Diego, CA, pp281-8, 1992. 

Kobayashi, K.; Watanabe, K.; Munekata, F., “Accurate navigation via sensor fusion of 
differential GPS and rate-gyro”, Conference Proceedings IEEE Instrumentation and 
Measurement Technolgy Conference, Hamamatsu, Japan, 10- 12, pp556-9, May 1994. 

Kobayashi, K.; Cheok, K.C.; Watanabe, K.; Munekata, F., “Accurate global positioning 
via fuzzy logic Kalman filter-based sensor fusion technique”, Proceedings of the 
1995 IEEE IECOg Orlando, FL, pp. 1136-41 v01.2. 1995. 

Phillips, R.E.; Schmidt, G.T., “GPSDNS integration, System Implications and Innovative 
Applications of Satellite Navigation”, AGARD, Paris, France, pp. 9/1-18. 1996. 

Schonberg, T.; Ojala, M.; Suomela, J.; Torpo, A.; et al., “Positioning an autonomous off- 
road vehicle by using fused DGPS and inertial navigation”, International Journal of 
Systems Science, vo1.27, (no.8): 745-52. 1996. 

Swaroop, D., Hedrick, J. K., “Direct Adaptive Longitudinal Control for vehicle 
platoons”, Proceedings of the 33rd IEEE Conference on Decision and Control, p.684- 
9 vol.1, 1994. 



Wang, J., S. Chao, and A.M. Agogino, “Sensor Noise Model Development of a 
Longitudinal Positioning System for AVCS”, Proceedings of the American Control 
Conference ‘99, pp3760-4, vol. 6, ACC’99, June 2-4, 1999. 

Wang, J., S. Chao, and A.M. Agogino, “Validation and Fusion of Longitudinal 
Positioning Sensors in AVCS”, Proceedings of the American Control Conference ‘99, 
pp2178-82, vol. 3, ACC’99, June 2-4, 1999. 

Wang, J., “Sensor Validation and Fusion of GPS Aided Longitudinal Positioning System 
for IVHS”, Master’s Thesis, University of California at Berkeley, Berkeley, 1999. 

Yip, P. P., Vehicle Dynamics and Longitudinal Control, Simulation Package, 1993. 


	CHAPTER 1 INTRODUCTION
	CHAPTER 2 SENSOR MODEL DEVELOPMENT BASED ON TEST DATA
	TEST SETUP
	GPS NOISE CHARACTERISTICS AND NOISE MODE rs
	RADAR SENSOR AND NOISE MODEL
	LINEAR TRANSDUCER AND NOISE MODEL

	CHAPTER 3 FUSION OF GPS WITH RADAR AND LINEAR TRANSDUCER DATA
	SENSOR OUTPUTS SYNCHRONIZATION
	AN ADAPTIVE METHOD
	OVERVIEW OF TWO KINDS OFFUSION ALGORITHMS--- PDAF AND Fusv AF
	COMPARISON OFTHEFUSION RESULTS BY THE TWO ALGORITHMS

	CHAPTER 4 VDL SIMULATION OF SENSOR FUSION ALGORITHMS
	INTRODUCTION
	LEAD CAR PROFILE
	PROGRAM FLOWCHART
	SIMULATION RESULTS
	CONCLUSIONS

	CHAPTER 5 CONCLUSIONS AND FURTHER DIRECTIONS
	CONCLUSIONS
	FUTURE DIRECTIONS

	CHAPTER 6 REFERENCES
	DECISION ADVISOR IN THEAVCS CONTROLHIERARCHY

	FIGURE 2-1:TEST SETUP
	FIGURE 2-2: HISTOGRAM OFPSEUDO AND IDEAL WHITE
	FIGURE 2-3: ACF OF PSEUDO AND IDEAL WHITE GAUSSIAN PROCESS
	FIGURE 2-4: RESIDUALOF THREE SETS OF STATIC TEST GPS DATA
	FIGURE 2-5: COMPARISON OFGPS TESTDATA AND MODELBASED DATA
	FIGURE 2-6: RESIDUALOFTHREE SETS OF STATIC TFSTRADAR DATA
	FIGURE 2-7: COMPARISON OFRADAR TESTDATA AND MODELBASED DATA
	FIGURE 2-8: RFSIDUALOFTHREE SETS OF STATIC TEST LINEAR TRANSDUCER DATA
	FIGURE 2-9: COMPARISON OFLINEAR TRANSDUCER TEST DATA AND MODELBASED DATA
	FIGURE 3-1: SENSOR OUTPUT SYNCHRONIZATION SCHEME
	FIGURE 3-2: SENSOR VALIDATION AND FUSION SCHEME
	FIGURE 3-3: FUSION OFTHREEPOSITIONING SENSORS USING PDAF(STATIC TEST)
	FIGURE 3-4: FUSION OF TWO POSITIONING SENSORS USING PDAF(STATIC TEST)(WITHOUT GPS)
	FIGURE 3-5: FUSION OF THREE POSITIONING SENSORS USING PDAF(DYNAMIC OPEN LOOP TEST)
	FIGURE 3-6: FUSION OFTHREEPOSITIONING SENSORS USINGFUsVAF(STAT1C TEST)
	FIGURE 3-7: FUSION OFTWO POSITIONING SENSORS USING msvAF(STAT1C TEST)(WITHOUT GPS)
	FIGURE 3-8: FUSION OFTHRFE POSITIONING SENSORS USING wSVAF(DYNAM1C OPEN LOOP TEST)
	FIGURE 3-9: LEAD CAR VELOCITY AND ACCELERATION PROFILES FOR CLOSE LOOP SIMULATION
	FIGURE 3-10: SIMULATED SPACINGERROR USING DIFFERENT SENSOR FUSION SCHEMES
	FIGURE 4-1: PLATOON LONGITUDINAL CONTROL
	LEAD CAR POSITION PROFILE
	FIGURE 4-3: LEAD CAR VELOCITY PROFILE
	FIGURE 4-4: LEAD CAR ACCELERATION PROF1 LE
	PROGRAM FLoWCHART
	FIGURE 4-6: SPACINGERROR WITHOUT SENSOR NOISE
	FIGURE 4-7: SPACING ERROR WITH GPS NOISE
	FIGURE 4-8: SPACING ERROR OF WITH RADAR NOISE
	FIGURE 4-9: SPACING ERROR OF WITH RAYELCO NOISE
	FIGURE 4-10: SPACING ERROR OF CAR 1 WITH PDAF FUSION ALGORITHM
	FIGURE 4-11: SPACING ERROR OFCAR 1 WITH FUsvAF FUSION ALGORITHM
	2-1: GPS SYSTEM ERROR DUE TO NOISE SOURCES
	-0 o
	-0 o




