Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Oral Administration of Faecalibacterium prausnitzii Decreased the Incidence of Severe Diarrhea and Related Mortality Rate and Increased Weight Gain in Preweaned Dairy Heifers

Abstract

Probiotics are a promising alternative to improve food animal productivity and health. However, scientific evidence that specific microbes can be used to benefit animal health and performance is limited. The objective of this study was to evaluate the effects of administering a live culture of Faecalibacterium prausnitzii to newborn dairy calves on subsequent growth, health, and fecal microbiome. Initially, a safety trial was conducted using 30 newborn bull calves to assess potential adverse effects of the oral and rectal administration of F. prausnitzii to neonatal calves. No adverse reactions, such as increased body temperature or heart and respiratory rates, were observed after the administration of the treatments. All calves survived the experimental period, and there was no difference in fecal consistency score, attitude, appetite or dehydration between the treatment groups. The rectal route was not an efficient practice while the oral route ensures that the full dose is administered to the treated calves. Subsequently, a randomized field trial was completed in a commercial farm with preweaned calves. A total of 554 Holstein heifers were assigned to one of two treatment groups: treated calves (FPTRT) and non-treated calves (control). Treated calves received two oral doses of F. prausnitzii, one at treatment assignment (1st week) and another one week later. The FPTRT group presented significantly lower incidence of severe diarrhea (3.1%) compared with the control group (6.8%). Treated calves also had lower mortality rate associated with severe diarrhea (1.5%) compared to control calves (4.4%). Furthermore, FPTRT calves gained significantly more weight, 4.4 kg over the preweaning period, than controls calves. The relative abundance of F. prausnitzii in the fecal microbiota was significantly higher in the 3rd and 5th weeks of life of FPTRT calves than of the control calves, as revealed by sequencing of the 16S rRNA gene. Our findings showed that oral administration of F. prausnitzii improves gastrointestinal health and growth of preweaned calves, supporting its use as a potential probiotic.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View