Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

Gyrokinetic simulation of current-driven instabilities

Creative Commons 'BY' version 4.0 license
Abstract

The gyrokinetic toroidal code(GTC) capability has been extended for simulating current- driven instabilities in magnetized plasmas such as kink and resistive tearing modes with kinetic effects. This new gyrokinetic capability enables first-principles, integrated simulations of macroscopic magnetohydrodynamic(MHD) modes, which limit the performance of burning plasmas and threaten the integrity of fusion devices. The excitation and evolution of macroscopic MHD modes often depend on the kinetic effects at microscopic scales and the nonlinear coupling of multiple physical processes.

GTC simulation in the fluid limit of the internal kink modes in cylindrical geometry has been verified by benchmarking with an MHD eigenvalue code. The global simulation domain covers the magnetic axis which is necessary for simulating the macroscopic MHD modes. Gyrokinetic simulations of the internal kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface. This new GTC capability for current-driven instability has now been extended to simulate fishbone instabilities excited by energetic particles and resistive tearing modes.

GTC has also been applied to study the internal kink modes in astrophysical jets that are formed around supermassive black holes. Linear simulations find that the internal kink

modes in astrophysical jets are unstable with a broad eigenmode. Nonlinear saturation amplitude of these kink modes is observed to be small, suggesting that the jets can remain collimated even in the presence of the internal kink modes. Generation of a mean parallel electric field by the nonlinear dynamics of internal kink modes and the potential implication of this field on particle acceleration in jets has been examined.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View