Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Reversible Homolysis of a Carbon-Carbon σ-Bond Enabled by Complexation-Induced Bond-Weakening.

Abstract

A case study of catalytic carbon-carbon σ-bond homolysis is presented. The coordination of a redox-active Lewis acid catalyst reduces the bond-dissociation free energies of adjacent carbon-carbon σ-bonds, and this complexation-induced bond-weakening is used to effect reversible carbon-carbon bond homolysis. Stereochemical isomerization of 1,2-disubstituted cyclopropanes was investigated as a model reaction with a ruthenium (III/II) redox couple adopted for bond weakening. Results from our mechanistic investigation into the stereospecificity of the isomerization reaction are consistent with selective complexation-induced carbon-carbon bond homolysis. The ΔG‡ of catalyzed and uncatalyzed reactions were estimated to be 14.4 and 40.0 kcal/mol, respectively with the computational method, (U)PBE0-D3/def2-TZVPP-SMD(toluene)//(U)B3LYP-D3/def2-SVP. We report this work as the first catalytic example where the complexation-induced bond-weakening effect is quantified through transition state analysis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View