Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Low-cost and low-topography fabrication of multilayer interconnections for microfluidic devices

Abstract

Multilayer interconnections are needed for microdevices with a large number of independent electrodes. A multi-level photolithographic process is commonly employed to provide multilayer interconnections in integrated circuit (IC) devices, but it is often too expensive for large-area or disposable devices frequently needed for microfluidics. The printed circuit board (PCB) can provide multilayer interconnection at low cost, but its rough topography poses a challenge for small droplets to slide over. Here we report a low-cost fabrication of low-topography multilayer interconnects by selective and controlled anodization of thin-film metal layers. The process utilizes anodization of metal (tantalum in this paper) or, more specifically, repetitions of a partial anodization to form insulation layers between conductive layers and a full anodization to form isolating regions between electrodes, replacing the usual process of depositing, planarizing, and etching insulation layers. After verifying the electric connections and insulations as intended, the developed method is applied to electrowetting-on-dielectric (EWOD), whose complex microfluidic products are currently built on PCB or thin-film transistor (TFT) substrates. To demonstrate the utility, we fabricated a 3 metal-layer EWOD device with steps (surface topography) less than 1 micrometer (vs. > 10 micrometers of PCB EWOD devices) and confirmed basic digital microfluidic operations.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View