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Abstract 
Optimal Intercity Transportation Services  

with Heterogeneous Demand and Variable Fuel Price 
 

by 

Megan Smirti Ryerson 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark Hansen, Chair 

In this thesis we examine how fuel price variation affects the optimal mix of services in 
intercity transportation. Towards this end, we make two main contributions. The first is 
the development of an analytic total logistics cost model of intercity transportation, which 
is sensitive to fuel price and incorporates multiple classes of vehicles serving passengers 
with differentiated values of time. The second is an empirical investigation of the cost 
relationship between fuel price and operating cost for intercity transportation vehicles. 
The analytic total logistics cost models are combined with the empirical models to gain 
insights into the impact of fuel price on optimal service mixes in representative corridors. 
 
We consider a scheduled intercity transportation corridor on which different classes of 
intercity transportation vehicles serve passengers with differentiated values of time. In 
determining optimal service mix, we consider a central planner choosing the vehicles and 
service frequencies that provide the minimum total logistics cost for an intercity 
transportation corridor. The total logistics cost is the sum of the two main intercity 
transportation cost components: vehicle operator cost and passenger cost. In considering 
operating and passenger costs together, we balance cost efficiency and level of service of 
alternative vehicles with different cost structures and service attributes.  
 
In developing the total logistics cost model, we seek both analytic insights and numerical 
examples. To keep the model analytically tractable while at the same time incorporating 
multiple objectives, including fuel cost, operating cost, schedule delay, and line-haul 
time, we incorporate the continuum approximation method from logistics. In employing 
the continuum approximation, discrete variables are considered continuous, leading to 
analytic functions from which we can evaluate qualitatively the relationships among fuel 
price, service level, and comparative vehicle cost. An investigation of the analytic model 
suggests that, while a fuel price increase would increase costs for any corridor, the rate of 
cost increase for a corridor served by a mix of vehicle technologies diminishes more 
rapidly with fuel price. We also find that an increase in fuel price causes vehicles to 
become more differentiated with respect to the value of time of the passengers they serve. 
In other words, under high fuel prices the total logistics cost can be minimized by 
effectively segregating passengers on different types of vehicles according to their values 
of time. 
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We complement the analytic findings with an empirical investigation of the cost 
relationship between fuel price and operating cost for different classes of intercity 
transportation vehicles. We perform this analysis for a subset of intercity transportation 
vehicles for which data is readily available: jet and turboprop aircraft. In developing a 
translog operating cost model for jet aircraft, we estimate a flexible functional form that 
provides a detailed representation of the empirical relationship between fuel cost and 
operating cost, allowing for substitution, scale, aircraft age, and other effects – including 
interactions – to be captured. The function reveals that as fuel price increases, airlines 
will take steps to use fuel more efficiently by leveraging other inputs; however, the 
potential for this supplier input substitution for fuel is rather modest. This finding 
reinforces the formulation of the analytic total logistics cost model, in which the only 
actions available to a central planner to reduce costs are changing technologies and 
service frequencies. It also proves that empirical models with simpler functional forms 
are able to accurately predict operating costs, despite the lack of variable interactions. 
Using linear empirical operating cost models, we estimate operating cost and total 
logistics costs for intercity transportation corridors served by single vehicle fleets of three 
different aircraft classes. We find that a specific turboprop aircraft model, with a 
relatively low fuel consumption rate, provides intercity transportation service with the 
minimum operating cost compared with a jet with smaller seating capacity over all fuel 
prices considered and medium-capacity jets for some fuel prices. However, this is no 
longer the case when total logistics cost is considered, due to the lower quality of 
passenger service turboprops provide. At a given intercity transportation corridor 
distance, the fuel price for which the total logistics cost per passenger is equal across 
turboprops and low-capacity jets is in the fuel price range experienced from 2004 and 
expected through 2020. For this fuel price range, the total logistics cost per passenger for 
the medium-capacity jet is generally lower than the turboprop and always lower the low-
capacity jet. This suggests that a mix of services between intercity transportation vehicles 
could minimize cost for this range of fuel price.  
 
To investigate the possibility of mixing services to reduce costs further, we combine the 
analytic total logistics cost model with the empirical models. In addition to a jet and 
turboprop aircraft model, we build a high speed rail cost model and consider high speed 
rail as an additional intercity transportation technology. We find the minimum cost 
vehicle combination to be sensitive to fuel price in a small transition zone within which 
the cost ordering of vehicle combinations changes significantly, whereas outside this 
zone the orderings are stable. As the transition area is in the range of fuel prices 
forecasted between the years 2010-2035, the results indicate fuel price changes between 
2010 and 2035 may dramatically alter the most cost-effective ways to provide intercity 
passenger transport. We find that high speed rail is a part of a mixed vehicle service that 
can reduce total logistics cost, suggesting that an integrated air and rail strategy could be 
an effective tool to manage costs and fuel consumption for an intercity transportation 
system.  
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1.
 
Introduction 
 
1.1 Problem Statement  
The challenges of climate change policy related to aviation – a global pollutant and a 
mode with local, regional, and international components – have motivated considerable 
research. On both the macro and micro scale, research agendas in aviation and climate 
change are driven by the domains of sponsoring organizations. Policy relevant research 
serves a clear purpose in supporting the decision making of organizations and therefore 
focuses on actions within their purview. This can lead to suboptimal solutions; a 
component is optimized rather than the system, and the solution is at most second best. In 
this research, we take a systems-level point of view in investigating the effects of climate 
change policy on aviation.  
 
Greenhouse gas emissions (GHG), the gases that cause climate change, pose new 
challenges in the context of aviation and the broader intercity transportation system. The 
impacts of greenhouse gas emissions are spatially and temporally distributed rather than 
concentrated. As global rather than local pollutants that are not experienced at the point 
of emission (compared with noise), the pressure to reduce their emission is diminished 
and the locus of responsibility for doing so is unclear. The spatial distribution of GHG 
emissions is matched by the spatial distribution of aviation, a mode with local (airports), 
regional, national, and international components. Aviation organizations are grappling 
with unclear roles to regulate and reduce the emission of a pollutant with impacts outside 
their jurisdiction along with the need to remain competitive.  
 
While greenhouse gases are global pollutants, policy organizations are local in nature. 
Policies to curtail aviation-related GHG emissions are being considered at many levels, 
from local airport authorities to the International Civil Aviation Organization (ICAO). 
Existing research in intercity transportation reflects these policy-making institutions and 
their roles. As the European Commission is planning on the inclusion of aviation in their 
GHG emissions trading scheme (EU-ETS), researchers have investigated the 
macroeconomic and microeconomic impacts. Anger (2010) finds the macroeconomic 
impact to be small using the Energy–Environment–Economy Model. Microeconomic 
research finds the increase in airline costs is not significant enough to reduce demand, 
and that the cost increase can be passed along to customers without a change in 
operations (Albers et al., 2009; Scheelhaase and Grimme, 2007). Research on the actions 
of airport operators to reduce GHG emissions is similarly focused on actions that fall 
within the purview of airport operators, such as those described by Kim et al. (2009). 
However, as asserted by Reimer and Putnam (2007), in the absence of relaxing 
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constraints on the airport operator, their ability to reduce GHG emissions is minimal. 
Research into how the regulatory agency overseeing US aviation, the Federal Aviation 
Administration (FAA), could change descent profiles through Continuous Descent 
Approaches (CDA) to reduce GHG emissions has also yielded incremental but 
measurable results (Clarke et al., 2004). Finally, in an effort to inform transportation 
policy at a systems level, Chester (2008) performs an intermodal comparison of GHG 
pollutants from specific intercity transportation vehicles; Chester and Horvath (2010) 
build on this foundation with a parametric analysis over load factor.  
 
This body of research reflects the scope of existing policymaking institutions. In the US, 
the airlines set operations, routes, and vehicle technology; the airports provide and 
manage infrastructure; and the FAA provides guidance and policy related to airline and 
airport operations. Aircraft operators play a large role in choosing and altering 
operational frequency and vehicle types while considering passenger demands and 
preferences, airport restrictions, and competition. Research has implicitly limited itself in 
considering competition, a constraint supported by research and practice. At congested 
airports, airlines will lose their slots, or allowances to perform a take-off and landing 
operation at an airport, if they are underutilized. Furthermore, Wei and Hansen (2005) 
found that airlines could positively influence their market share by increasing vehicle 
frequency instead of vehicle size. While examples of research investigating the potential 
of larger vehicle sizes and decreased operations to reduce delays at a congested airport 
exist (for example, Coogan et al., 2009), research tends to reflect the airline concern of 
competition. Contrasted with the role of the aircraft operators, the FAA and airport 
operators have essentially no direct control of vehicle operation activity, including 
whether an airline serves a particular airport, the frequency or time of day of service, or 
the aircraft type or size used to provide service. Airports have a long-standing right to set 
minimum landing fees to reduce airfield delay during periods of congestion, a right 
amended in 2008 by the FAA to give airports expanded ability to influence operations 
(Federal Aviation Administration, 2008). While airports are constrained to use landing 
fees to limit congestion, not environmental impacts, Ryerson and Hansen (2009) found 
that lifting this constraint would give airports the ability to influence aircraft size, 
technology, and fuel consumption.   
 
In developing a methodology to capture the system optimal organization of intercity 
transportation under a climate change policy, we consider a central planner minimizing 
the total logistics cost, the sum of the two main intercity transportation cost components: 
vehicle (aircraft) operators and passengers. We define the goal of the central planner as 
finding the optimal (least cost) service mix – which vehicles and at what operational level 
– of an intercity transportation corridor. In summing and comparing costs for single and 
mixed vehicle scheduled services, this methodology determines the vehicle size, 
technology mix, and frequency to serve an intercity transportation corridor. The total 
logistics cost will include both vehicle operating costs and costs incurred by the 
passenger to capture the cost-reducing potential of alternative vehicles with different cost 
structures and service attributes.  
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In determining optimal service mix, a central planner could deploy new intercity modes – 
such as high speed rail – as well as new and redesigned aircraft at different operational 
levels. These vehicles have differentiated service qualities and inputs needed to produce 
passenger output. It could therefore be advantageous to serve an intercity corridor with a 
single vehicle technology, or alternately, a mix of vehicle technologies appealing to 
passenger subpopulations. This is particularly the case for short- and medium-haul 
intercity transportation, where diverse passenger travel purposes lead to highly 
differentiated passenger values of time. To capture the impact of aviation climate change 
policy, we formulate the models to be sensitive to fuel price. Fuel prices may change 
significantly in the future because of market conditions or environmental policies, as fuel 
consumption is directly correlated with the production of carbon dioxide (CO2), the most 
abundant GHG.   
 
In modeling the actions of a central planner in response to aviation climate policy, we 
develop both empirical models and analytic models. Empirical vehicle operating cost 
models provide direct insights into the relationship between operating cost and fuel price 
and guide development of the analytic models. To determine the vehicle technology 
combination that provides service at the lowest cost in response to an environmental 
policy, we develop analytic total logistics cost models of an intercity transportation 
corridor serving multiple passenger groups. This cost model captures input substitution 
within the production process of a vehicle combination. It also captures the effects of 
induced technological change, which is the movement to a more environmentally benign 
production process brought about by an environmental policy. The results of analytic 
models are combined with those of empirical models to determine the vehicle technology 
combination and level of key inputs that minimize cost for a corridor. In this research, we 
define passengers by their demand for travel and their value of time. We begin the 
analytic models with discrete passenger groups building to the consideration of passenger 
value of time to follow a continuous distribution. In formulating the model this way, with 
passengers following a continuous distribution and with fuel price as a parameter, we 
keep the definition of passengers and climate policy as general as possible.  
 
In considering an intercity transportation corridor from a total logistics cost approach, we 
draw from the logistics literature. Smilowitz and Daganzo (2007) and Daganzo and 
Newell (1993) consider a central planner organizing freight services by minimizing the 
operating cost and the cost of holding packages as inventory. A similar approach is 
illustrated in urban transportation, such as the work of Meyer and Miller (1984) and 
Keeler et al. (1975). The total logistics cost approach is employed to a more limited 
extent in aviation. Viton (1986) minimizes a total logistics cost model of an aviation 
corridor by assigning discrete aircraft models to different corridors. Hansen (1991) uses a 
total logistics cost model to compare the cost of two aviation corridors served by different 
aircraft technology, serving varied origin-destination pairs in the same city pair. In the 
total logistics cost model developed in this research, we address the skepticism shared by 
Viton (1986) and Keeler et al. (1975) in using one value of time to represent all 
passengers due to multiple time classifications (travel time, schedule delay) and varying 
values of passenger time (high-valued business travelers, low-valued leisure travelers). In 
a logistics setting, Smilowitz et al. (2003) consider two vehicle technologies serving two 
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packages with specific values of time, and find that an integrated network compared with 
separate distribution yields cost savings. Finally, in this research, we keep fuel price a 
parameter and evaluate how optimal solution changes parametrically with this key 
variable, a practice demonstrated by Oster and McKey (1984) in their evaluation of 
aircraft operating cost over stage length. 
 
In developing a system optimal model of a central planner solution parametrically over 
fuel price, we capture fundamental factors shaping the optimal mix of services on an 
intercity corridor –  such environmental concern (1.2), traffic density, vehicle technology, 
and passenger preferences (1.3) – in a model that is analytically tractable.  
 
1.2 Environmental Concern  
1.2.1 Greenhouse Gas Emissions  

It is well known that the operation of transport vehicles is a major component of 
anthropogenic climate change – the warming of the Earth‘s temperatures due to human 
activities. The production, delivery, and combustion of transportation fuels increase 
levels of greenhouse gases in the atmosphere (Environmental Protection Agency, 2007). 
The transportation sector is responsible for 13 percent of global GHG emissions and 28 
percent of United States domestic GHG emissions, making it the fifth and second largest 
contributor respectively (Pew Center on Global Climate Change, 2004). Recent estimates 
of global shares put aviation at two to three percent based on recent work accomplished 
by IPCC (Williams, 2007). Of the principal anthropogenic greenhouse gases (Carbon 
Dioxide (CO2); Methane (CH4); Nitrous Oxide (N2O); and Fluorinated Gases), CO2 is 
directly produced through the burning of fossil fuels (Environmental Protection Agency, 
2010). In addition to the anthropogenic greenhouse gases there are other mechanisms 
through which aircraft operations affect climate, such as contrail formation (Waitz et al., 
2004; Kim et al., 2007).  
 
Regulating and reducing the impacts of greenhouse gas emissions is more challenging 
than doing so with other pollutants, as GHGs are spatially and temporally distributed 
rather than concentrated. Unlike noise emissions from an aircraft overflight, GHG 
emission impacts are long term rather than immediate. Unlike criteria pollutants, GHG 
emissions are felt worldwide through the warming of the earth, rather than localized. 
Greenhouse gas emissions also have varying warming potential in the atmosphere that 
can vary depending on the spatial distribution of the emission. These challenges 
motivated a common metric in GHG policy: the emission of the most abundant 
greenhouse gas – Carbon Dioxide (CO2) that is directly correlated with the burning of 
fossil fuels (Environmental Protection Agency, 2010). State, federal, and international 
initiatives are looking to regulate the amount of CO2 released into the atmosphere by a 
variety of sectors through a variety of policy levers. A constraint on CO2 emissions is a 
resource constraint imposed on the production process and it is well known that such 
constraints can be represented through shadow prices on the associated resources; fuel 
price increases will most likely follow (Plaut, 1998). To this end, we consider CO2 
emissions policy as a change in fuel price. Such a perspective keeps the discussion 
general, a benefit because the mechanism through which CO2 will be regulated is not 

http://www.epa.gov/methane/sources.html
http://www.epa.gov/nitrousoxide/sources.html
http://www.epa.gov/highgwp/sources.html
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known in the United States. Moreover, uncertainty about the future of fuel costs makes 
the study of fuel price changes an additional compelling topic.  
 
1.2.2 Fuel  

Fuel and labor are the largest components of operating cost an airline faces. From 2000-
2009, about 50% of airline operating expenses are comprised of fuel and labor. However, 
throughout this period, the relative shares of fuel and labor saw a large shift as fuel prices 
rose and labor costs remained relatively constant shown in Figure 1.1, highlighting the 
volatility of fuel prices (Air Transport Association, 2010).  

 

 
Figure 1.1 Labor and fuel as a percent of operating cost, 2003-2009. 
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Because of the fuel cost volatility and the large role fuel plays in total operating costs, 
airlines engage in fuel hedging contracts to secure a certain price for fuel. There are a 
variety of hedging instruments (described by Carter et al., 2004) through which airlines 
can secure a fuel rate over a period. The practice of hedging can shield an airline from the 
volatility of oil prices and in turn stabilize airline costs (Morrell and Swan, 2006). 
Hedging, however, carries its own uncertainty and limitations. Hedging involves 
contracting for fuel, and requires airlines to pay in advance to secure a fuel price – an 
impossibility for many US carriers struggling with cash flow. Furthermore, it is possible 
that an airline can incorrectly predict the trend in oil prices. For an illustration, consider 
Figure 1.2. The bold line shows the price that the U.S. passenger airlines paid for fuel in a 
given quarter, while the dotted line represents the refiner price. Before the large fuel price 
spike in 2008 airlines were generally paying less than the price at the refiner, however, 
after the spike airlines were paying more, mostly due to fuel contracts. 
 

 
Figure 1.2 U.S. jet fuel price (dollars per gallon). 

Also evident in Figure 1.2 is the fluctuation in the price of aviation jet fuel. Aviation fuel 
price increased more than threefold from 2004 to 2008 and then quickly fell back to pre-
2004 levels. While airlines and manufacturers strive to continually improve their product 
through innovative technology and procedures, such actions resulted in modest efficiency 
growth compared with the peaks of fuel fluctuations (Air Transport Association, 2010).  
 
1.3 Short Haul Intercity Transportation System Trends 
There are trends that make short to medium-haul intercity transportation a fitting sector 
for which to develop environmental policy impact models. These is rapid growth 
throughout the system, modal diversity, and passengers with differentiated values of time.  
 
1.3.1 Growth Trends  

Air transport demand – passenger demand for service and airline demand for operations – 
has grown rapidly in recent decades. Despite a traffic decline precipitated by the 
recession in the second half of the first decade of the 21st century, FAA projections show 
traffic levels recovering by 2012 followed by a 30 percent growth by 2025 (Ball et al., 
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2010). The FAA has plans to meet some of the demand increase through the development 
of additional runways; however, by their own estimates, this increase in infrastructure 
will not be sufficient to meet all the demand at many congested airports (Federal Aviation 
Administration, 2007). This growth will be somewhat accommodated by a new 
technology and operational infrastructure termed the Next Generation Air Transportation 
System (NextGen); similar plans exist for the European airspace system (Smirti and 
Hansen, 2007; Eurocontrol, 2007). Both are large-scale modernization initiatives with 
similar goals: to transform the current air transportation system for their respective 
regions to meet the growing demand for air transportation.  Initiatives beyond NextGen 
exist yet tend to be more politically contentious. Coogan et al. (2009) discuss demand 
management initiatives, actions to reduce operations but maintain passenger and freight 
throughput with larger aircraft, such as congestion pricing and operational caps.  

 
1.3.2 New and Redesigned Aircraft Types  

New air transportation vehicles currently in research, development, and deployment 
stages offer extensive options for the transformation of intercity transportation. These 
new vehicles are segmented by their propulsion systems: aircraft with jet engines and 
aircraft with turboprop engines. These two vehicle classes present new opportunities to 
deploy vehicles to offer customizable service and meet environmental and operating cost 
objectives.  
 
Aircraft with jet engines are prominent in number in the intercity transportation system 
and varied in the capacity offered. A trend for jet aircraft is the expanding range of 
vehicle capacity, such that in 2010, there are aircraft of all sizes between the range of 30 
seats and 500 seats. Figure 1.3 shows a cumulative distribution function of single aircraft 
seat capacities owned or leased by US carriers in 2006 as reported to the US Department 
of Transportation. As can be seen, there is a large range in seat capacity (37 - 412) and 
available models span this range almost continuously. Furthermore, Figure 1.3 only 
includes aircraft operated by US carriers on domestic routes, and does not include notable 
aircraft such as the Airbus 340 which has between 261 and 380 seats depending on 
variant (Airbus, 2010). Boeing is currently developing two variants of the 787 aircraft 
series: the 787-8 Dreamliner will have a capacity of 210 - 250 seats and the 787-9 will 
have a capacity of 250 – 290 seats (Boeing Company, 2010). This will further reduce the 
one gap between aircraft sizes 276-360 shown in Figure 1.3.  
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Figure 1.3 Cumulative distribution function of aircraft model seat capacities owned/leased 

by US carriers, 2006. 

There is also an expanding of the seat capacity boundaries for aircraft jet engines. 
Vehicles with very limited capacity include subsonic business jets and very light jets 
(VLJs) used in commercial service. Both vehicles types have jet engines that enable high 
cruise speeds and also have long ranges of over 1000 miles. Their small size (three to 
eight seats for VLJs and eight to 19 seats for business jets) and relatively light weight 
make them suitable for landing at both public and private use airports (Espinoza et al., 
2008; Bonnefoy and Hansman, 2007). These features allow for a customizable, 
potentially on-demand service, such as what was offered by DayJet (Espinoza et al., 
2008). On the large end of the spectrum, Airbus delivered the first high capacity Airbus 
380, which seats 525 in a three-class configuration but could potentially seat over 800 
passengers in a one-class configuration (Airbus, 2007).  
 
The second class of aircraft are updated turboprops offering low operating cost and a 
lower tier of passenger service.  Prior to recent redesign efforts, turboprop aircraft were 
relatively loud, uncomfortable aircraft with a limited operational range. Because of this, 
turboprops fell out of favor with the introduction of regional jets (Johnston, 1995; 
Mozdzanowska and Hansman, 2004). Considering passenger preferences, abandoning the 
turboprop was not unwise: passenger disutility of turboprop travel, estimated by Adler et 
al. (2005), is estimated to be a non-trivial fraction of airfare. However, recent 
improvements to passenger level of service and operating range, coupled with the fuel 
price increases of 2008 have caused a surge of interest in new turboprop models. Two 
domestic carriers have adopted turboprops in their regional markets and international low 
cost carriers have emerged offering an all-turboprop fleet (for example, Canada‘s Porter 
Airlines). Many cite the ability of redesigned turboprops, with higher levels of passenger 
service than their predecessors, to balance operating cost and passenger service. As noted 
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by Aviation international News: ―Nothing re-ignites interest in new turboprops faster 
than a good old-fashioned ‗fuel crisis‘‖ (Huber, 2008).  
 
Comparative aircraft costs depend on fuel price. This is particularly the case for aircraft 
serving short haul markets (under-1000 miles). Short haul markets may be competitively 
served by three main aircraft types: turboprops, noted for their low fuel consumption; 
regional jets, 30-90 seat jets noted for their passer service qualities; and narrow body jets, 
105-150 seat jets noted for their balance of operating costs and passenger service ability. 
Figure 1.4 shows the change in United States airline ownership and leasing levels 
(summed to represent vehicle presence in the market) of these three different aircraft 
types gathered from US Department of Transportation data overlaid on the jet fuel 
purchase price from 1996-2009. Recent years have witnessed a shift away from 
turboprops toward regional jets, while the narrow body aircraft share remained stable. 
While regional jets are less fuel efficient on a per seat-basis, turboprops offer a lower 
level of passenger service in the form of comfort, speed, and perceived safety.  As seen in 
Figure 1.4, regional jets continue to be owned or leased in greater numbers even as fuel 
prices increase. One possible explanation is that despite high operating costs, the regional 
jet enables high frequencies and a high level of service that is valued by passengers.  
Another is that airlines expected the surge to be temporary. It may be that, since 
turboprops are more fuel efficient, increasing fuel prices could make this advantage 
outweigh the importance of passenger preference for a higher level of service and reverse 
the trend of regional jet adoption. 
 

 
Figure 1.4 Aircraft trends for short haul travel and U.S. jet fuel price paid by airlines 

(dollars per gallon). 

1.3.3 High Speed Rail  

The development of a high speed rail (HSR) network in the United States presents a new 
opportunity to transform intercity transportation. In February 2009, the American 
Recovery and Reinvestment Act allocated $8 billion for intercity rail projects. As 
reported by the Federal Rail Administration (2010), there are ten designated high-speed 
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Administration, 2010). California HSR is one such corridor that also has a state-wide 
mandate to develop HSR. On November 4, 2008, California voters approved Proposition 
1A which authorized funding and made into law that ―a clean, efficient high-speed train 
service linking Southern California, the Sacramento San Joaquin Valley, and the San 
Francisco Bay Area‖ will be built (California High Speed Rail Authority, 2009). The 
comparatively lower operational GHG emission travel mode of the HSR has potential to 
reduce GHG emissions and fuel consumption from the entire intercity travel system; 
however, the comparative emissions are highly dependent on vehicle load factor 
(Chester, 2008; Chester and Horvath, 2010).  
 

 
Figure 1.5 Designated High Speed Rail corridors in the United States. 

The definition of high speed rail varies across systems. The European Directive on 
Interoperability defines HSR as a train that achieves a maximum speed of 250km/h (155 
mph); this provides an imprecise picture of HSR, however, as some trains achieve higher 
average speeds while others achieve higher maximum speeds (Steer Davis Gleeve, 2006). 
In the United States, the California HSR system is designed to travel at a 220 mph 
maximum speed and 170 mph average speed, covering San Francisco to Los Angeles in 
2:40 time (California High Speed Rail Authority, 2009). Whatever the precise definition, 
there is a clear relationship between travel time and market share. As shown in Figure 1.6 
(from Steer Davis Gleeve, 2006), the travel time on a HSR system is a strong determinant 
of rail market share when compared with air transport. For intercity transport travel times 
below 3-4 hours, the market share for rail is consistently higher than 50%. This highlights 
the strong potential for intermodal competition in short- to medium-haul intercity 
transportation corridors.  
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Figure 1.6 Rail market share (compared with air) against rail travel time for select European 

intercity transportation corridors. 

1.3.4 Mode Split   

Coogan et al. (2009) report on the intercity mode shares for the two mega-coastal 
corridors of the US: the California corridor and the Northeast corridor. Mode shares are 
challenging to estimate because of the diversity of organizations that capture this 
information. We can see that California, a region with robust short distance rail service 
but lacking high-quality long distance rail service, has an intercity mode share dominated 
by auto for short distance and auto and air for the medium-haul distances (Figure 1.7, 
with distances in miles by driving). In Figure 1.8 we see the rail and air mode shares on 
the North East Corridor, but only as a percentage of the total air and rail market share 
(auto excluded). We see rail playing a much larger role in the mode share, as the intercity 
rail travel times are very competitive with air transportation. We see the same trend in 
both corridors, which is that longer distances equal higher mode share for air.  
 
In this research, we will consider high speed rail as the only alternative to air 
transportation. While auto plays a large role in intercity transportation, a recent HSR 
study provide a compelling argument for this scope definition. The Office of the 
Inspector General (OIG) investigated two improvement scenarios to the rail service travel 
times in the North East Corridor (Federal Railroad Administration, 2008). The first 
scenario was three-hour travel time between Boston and New York and 2.5 hour travel 
time between New York and Washington; the second scenario cut travel times by 0.5 
hours on both segments. The study found that the loss in air ridership would be 10.6 and 
20.3 percent under scenario one and two respectively, while the loss in auto ridership 
would be 0.3 and 0.6 percent. The negligible loss in auto ridership is explained by the 
service similarities between air and HSR compared with the flexibility an auto mode 
provides. OIG explains that those who choose auto do so for a reason – long airport/HSR 
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station access or egress times, or multiple destinations dispersed around a region – such 
that these passengers would be very unlikely to switch modes.    
 

 
Figure 1.7 Mode share and distance for certain California corridor city pair markets.  

 
Figure 1.8 Mode share and distance for certain Northeast corridor city pair markets.  
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flying time, schedule delay, and on-time performance assuming all non-fixed parameters 
are normally distributed. Another study pointing to the existence of passenger 
heterogeneity is Berry et al. (1996). By assuming that the preferences for prices and flight 
characteristics are correlated, they estimate different sets of coefficients for each group 
using a random utility model. They find an existence of two groups of passengers, one 
exhibiting more price elasticity.  
 
These two studies represent two snapshots in time approximately 10 years apart. 
Considering data of actual air tickets purchased 10 years apart, we can show that while 
passenger value of time differentiation is present in both years, this differentiation has 
grown with time. It is very clear that the value of time is become more dispersed, as in 
there is growing income disparity, when one considers the change in airfares over time. 
Using the Airline Origin and Destination Survey (DB1B) from the Bureau of 
Transportation Statistics, a 10% sample of airline tickets purchased domestically, we can 
evaluate the change in airfares in a span of 15 years. We consider the cumulative percent 
of passengers who paid a given fare per mile for all segments between 350 and 500 miles 
in two years: 1993 (in 2008 dollars) and 2008 (both in the second quarter, shown in 
Figure 1.9). The distribution of passenger fares has a steeper slope in 1993, representing a 
more limited distribution of fares compared with 2008. In 1993, 50% of passengers pay 
less than $350-$500, a fare much lower than the 50% of passengers paying less than 
$420-$600 in 2008. While there is a longer tail in 1993, such that that a small percent of 
passengers paid a fares not seen in 2008, the bulk of passengers paid a limited range of 
fares compared with 2008.  
 

 
Figure 1.9 Distribution of total system passenger one-way fares per mile. 
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1.4 Central Planner Response to a Fuel Price Increase  
In considering the actions available to a central planner in responding to a fuel price, we 
define two categories of responses. The first is input substitution within the production 
process of a vehicle combination. The second is induced technological change, which is 
the movement to a lower cost production process brought about by an environmental 
policy.  
 
In the context of intercity transportation, we define production processes by the vehicle 
technologies that convert inputs to outputs. We will consider production processes to be a 
single vehicle technology or a mix of vehicle technologies. The production process is 
represented by a total logistics cost function such that the inputs considered are supplier 
vehicle inputs (such as fuel, labor, and capital) and user inputs (such as travel time and 
schedule delay). Some possible production processes, represented by vehicle 
technologies, inputs and output are shown in Figure 1.10. Each vehicle combination in 
Figure 1.10 turns the inputs into the output through a technically efficient production 
process. These vehicle combinations, in the context of the intercity transportation system, 
are jets alone (J), turboprops alone (T), high speed rail alone (H), and a jet and turboprop 
mix (H and T), a high-speed rail and jet mix (H and J), and a turboprop and high-speed 
rail (T and H) mix.  

 
Figure 1.10 Inputs and output of single and mixed vehicle production processes. 

For each vehicle combination in Figure 1.10, at a given level of factor prices (the prices 
associated with the inputs), there is a vehicle combination with the lowest total logistics 
cost. There are many technically efficient seat capacities associated with each possible 
vehicle combination. However, for each vehicle combination there is only one seat 
capacity (or set of seat capacities in the mixed case) that is both technically efficient and 
minimizes cost for a given level of factor prices. If a factor price were to increase, two 
possible actions are possible. The first is that, for each production process box in Figure 
1.10, there will be a substitution of inputs and a move to another technically efficient seat 
capacity; this is input substitution. The second is that the production process that converts 
inputs to the output at the lowest cost changes; this represents induced technological 
change.  
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Figure 1.11 Illustration of input substitution and induced technological change.  

Input substitution and induced technological change are illustrated in Figure 1.11, which 
depicts two isoquants each representing the total logistics cost to produce output O with 
either vehicle combination i or j. The production process depicted is a two input 
production process: one passenger input (P) and one supplier input (S). At a baseline 
factor price for all inputs, point X1 represents the optimal point of production for vehicle 
combination i; point X2 represents the optimal point of production for vehicle 
combination 2. Let C(X1) and C(X2) represent the total logistics cost at the point of 
optimal production for vehicle combination i and j respectively. At a baseline (supplier) 
factor price of   

    C(X2) < C(X1); vehicle combination j has a lower cost to produce the 
same output as vehicle combination i. This is illustrated in Figure 1.11, as point X2 is on 
a lower budget line than point X1. If there is an increase in the factor price of fuel (a 
supplier input) represented by   

 , a new budget line and point of tangency exists for each 
vehicle combination. The shift from the optimal costs at   

  to the optimal costs at   
  – 

C(X2) to C(X4) and C(X1) to C(X3) – represents input substitution. Furthermore, at   
 , 

C(X3) < C(X4), such that optimal point of production for vehicle combination i is on a 
lower budget line than vehicle combination j. This change in vehicle combination with 
the lowest total logistics cost represents induced technological change.  
 
In the following chapters we will explore the potential of the two categories of reduction 
strategies – induced technological change and input substitution – to manage costs due to 
a fuel price increase. In chapter 2 and 3, we investigate the potential of supplier-to-
supplier input substitution (such that the production process is characterized by supplier 
inputs only), passenger-to-supplier input substitution (the production process is 
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characterized by supplier and passenger inputs), and induced technological change. Upon 
the finding that passenger-to-supplier input substitution and induced technological 
change have the greatest potential, chapter 4 develops a mathematical representation of 
intercity transportation that captures passenger-to-supplier input substitution and induced 
technological change. Chapter 5 presents a case study of an intercity transportation 
corridor by matching empirical models with the analytic models.  
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2.
 
The Potential of Turboprops for Reducing 
Aviation Fuel Consumption 
 

In light of the wide range of future fuel price scenarios, we seek to understand how fuel 
price affects the comparative advantage of alternative air transport technologies and 
vehicles. While recent years have witnessed a shift away from turboprops toward 
regional jets, it may be that, since turboprops are more fuel efficient, increasing fuel 
prices could reverse this trend. The objective of this chapter is to compare representative 
aircraft for their operating costs and passenger costs over a range of fuel prices. The 
range of fuel prices reflects uncertainties about future market conditions as well as 
environmental policy choices. 
 
In this chapter we compare the operating and passenger cost of turboprops, noted for their 
low fuel consumption, with two widely deployed aircraft, a regional jet and a narrow 
body jet. Operating costs include fuel, crew, maintenance, and airport costs. Passenger 
costs include travel time costs (flying time differences and schedule penalties) and the 
perceived disutility of flying on turboprops (relative to jets). By combining passenger and 
operating costs in a single function, this study takes a total logistics cost approach. This 
allows vehicles with different cost structures and service attributes to be compared. 
Homogenous fleets of each vehicle category are compared for operating and passenger 
costs over a range of fuel prices and route distances and the minimum cost fleet mix is 
determined. This study will perform these comparisons over wide ranges of distances and 
fuel prices to identify the combinations of values of these parameters at which the 
different aircraft models can serve segments with the lowest cost. 
 
Several previous studies model and compare operating costs for airlines. These studies 
employ models to look for aircraft with the lowest operating costs as a function of 
segment characteristics such as stage length and market density. Douglas and Miller 
(1974) develop comparative aircraft cost models that divide operating costs which vary 
per user into fixed and variable costs. Using cost models developed in this manner, with 
fixed components and components that vary with distance and traffic, aircraft costs are 
compared. When discussing an efficient airline market, Douglas and Miller (1974) 
qualitatively discuss fleet assignment based on passenger preferences but stop short of 
developing an integrated passenger and operating cost model. In a similar study, Oster 
and McKey (1984), compare the operating costs of different commuter aircraft and 
perform a parametric analysis of operating cost versus stage length. 
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The importance of considering a total logistics cost function with passenger and operating 
cost rather than individual cost components is demonstrated in two studies by Wei and 
Hansen (2003; 2005). Wei and Hansen (2003) develop a translog cost model for jet 
aircraft operating cost. It is found that airlines could decrease operating costs by up-
gauging from the sizes they typically employed during the study period. Such findings 
are balanced with the conclusions of a second study by Wei and Hansen (2005). Using a 
nested logit model, the study finds that an airline‘s market share experiences greater 
increases from increasing vehicle frequency rather than aircraft size. These findings point 
to the importance of balancing airline operating cost and passenger preference costs when 
choosing fleet mix and determining flight schedules. 
 
2.1 Model Formulation 
Let the total logistics cost per passenger to serve a segment with aircraft type i be  
Li (f,    , d, q,  ) where f is fuel price,    is a vector of other input prices, d is segment 
distance, q is passenger flow per day, and   is load factor—the fraction of aircraft seats 
occupied by passengers. While    is clearly an essential argument of the logistics cost 
function, our interest here is the variation of cost with f assuming other factor prices are 
fixed at present-day levels. Values for some of these prices—for example passenger 
travel time—are explicitly assumed in our formulation. Other factor prices—particularly 
those related to aircraft operating cost—are implicitly contained in industry cost data 
used to implement the model.  
 
We decompose Li into an aircraft operating cost component Ci and a passenger 
component Pi. The carrier component is further divided into a fuel component Fi, a pilot 
component Ri, a cabin crew component Si, a maintenance component Mi, and an airport 
landing fee component Ai. The passenger cost is decomposed into a flight time 
component Ti and a schedule delay component Di. Thus we have:  
 

         (2.1)   

 
                  (2.2)   

 
            (2.3)   

We assume that fuel required for a given aircraft type to fly a particular segment is 
independent of fuel price, that is that possibilities for factor substitution involving fuel are 
negligible. We also assume that fuel required for the segment can be approximated by a 
constant term corresponding to the fuel used for take-off and landing, and a linear 
distance term corresponding to cruise. Thus we have: 
 

                 𝑠   (2.4)   

where 𝑠  is seat capacity of aircraft type  , making   𝑠  the total passengers per flight. 
Estimation of the parameters    and    as well as the validity of the linear approximation 
are discussed below. 
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Pilot costs, cabin crew costs, and maintenance costs are all assumed to be proportional to 
block hours required to fly the segment,      , which, like fuel burn, is assumed to be 
approximated by a constant term (  ) and linear distance-varying term (  ): 
 

             (2.5)   

The proportionality constants for pilot and maintenance costs (   and   ) are obtained 
from airline data reported to the US Department of Transportation, which specify costs 
per block hour by airline and aircraft type in each of these categories. For cabin crew, we 
assume a constant block-hour cost per crew member ( ), which we multiply by the 
minimum number of cabin crew required for the aircraft type,   . Thus we have: 

                            𝑠   (2.6)   

 
                           𝑠   (2.7)   

 
                               𝑠   (2.8)   

The final component of carrier cost considered in this analysis is airport landing fees, 
which are proportional to maximum aircraft take-off weight, 𝑤 , yielding: 
 

      𝑤     𝑠   (2.9)   

where    is the landing fee per unit weight. 
 
Passenger travel time costs are proportional to total passenger flying time for the 
segment. We ignore access, processing, and boarding time, which we assume are 
independent of aircraft type. Total passenger time cost is then given by: 
 

                           (2.10)   

where    is the cost to passengers of flight travel time. 
 
As will be discussed below, passengers exhibit preferences for particular aircraft types, in 
particular for jet service as compared to turboprop service. Thus the passenger cost 
function includes a monetization of this preference,   . 
 
Finally, we introduce schedule delay cost, which captures the value of more frequent 
service that results from serving a given passenger flow with smaller aircraft. Schedule 
delay is defined as the time difference between when a passenger would like to fly and 
when a flight is available. The average schedule delay in a market depends on the 
distribution of passengers‘ desired flight times and the times when flights are scheduled. 
Empirical relationships, based on representative distributions of desired flight times and 
flight schedules, have been developed based on flight frequency. Thus: 
 

               ) (2.11)   
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where    is the cost of schedule delay,    ) is the schedule delay function, and    is the 
frequency with which aircraft type   would serve the market.    is calculated by finding 
the number of flights, each carrying passengers   𝑠 , required to serve the given flow: 
 

        𝑠    (2.12)   

 
2.2 Aircraft Operating Cost Model 
To determine how short haul fleet mixes might be configured in response to changing 
fuel costs, we consider three aircraft categories: turboprop, regional jet, and narrow body 
aircraft. Specific aircraft are chosen to represent the three categories on the basis of their 
large presence in the market and the availability of data. Details of these aircraft are 
shown below in Table 2.1 (ATR (2008), Boeing Company (2008), and Embraer (2008)).  

Table 2.1 Details of representative aircraft. 

Aircraft 
Category 

Aircraft 
Model Manufacturer Seats 

Maximum 
Takeoff 
Weight  

(lb) 

Runway 
Length 

Requirement 

Narrow 
Body Jet 

B737-400 The Boeing 
Company 

137 149,710 2,012 m 

Regional Jet ERJ 145 Embraer 44 44,070 1,951 m 

Turboprop ATR 72-
200 

EADS & 
Alenia 

Aeronautica 

72 50,265 1,408 m 

 

2.2.1 Carrier Component Costs 

Fuel consumption for the three aircraft over fixed distances is reported by European 
Environmental Agency (EEA) (2006).2  Using this data, individual relationships between 
fuel consumption and distance are developed for each aircraft model. These are the 
estimates for   and   in (2.4). The estimates indicate that the turboprop has substantially 
lower fuel burn than either jet, including a fixed component per flight that is over 50% 
less and a variable component that is over 60% less. 
 
For the jet aircraft, data to develop a relationship between flying time and distance is 
collected from the US Department of Transportation Form 41, summarized by aircraft 

                                                 
2  The EEA (2006) has data for a variety of jet and turboprop aircraft models. This data includes the fuel 
consumed, the travel time, and other metrics over a variety of travel distances lengths. To calculate fuel 
burn, Project Interactive Analysis and Optimization (PIANO), a parametric aircraft design model, was 
used. This model uses aircraft characteristics, such as number of engines and fuel type, to estimate fuel 
consumption for a distance by using standard values for thrust at different stages of flight and assuming a 
standard Landing Take-Off Cycle. Their methodology calculates fuel consumption from the entire gate-to-
gate operation for a flight of a defined distance. 
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model. For each aircraft model there are carrier-specific reports on average miles per 
flight, total block hours operated in a day, and the number of departures that aircraft 
completes in a day.3 From these variables, block time in hours for an individual flight is 
extracted. The block times for the turboprop are reported by the EEA for a range of 
distances; these observations are used in lieu of Form 41 due to low observation count. A 
relationship in the form of (2.4) is estimated for each aircraft model individually, with 
block time as the dependent variable and average distance from Form 41 as the 
independent variable. When this equation is used for flying time,   represents the time 
lost during taxi, take-off, climb out, landing and descent, while   is time that varies with 
distance. While the turboprop has considerably lower lost time then the jets, the distance-
varying time is over twice as large compared with the jets. 
 
Flight crew costs per block hour, denoted   in (2.6), are available from Form 41. Form 41 
reports these statistics for all carriers operating an aircraft type. To achieve a single value 
for crew costs, the carrier average for each aircraft model is used.4 Cabin crew, while not 
typically included in cost analyses, are included in this study because the aircraft 
necessitate different number of cabin crew, denoted   in (2.8). While one cabin crew 
could be sufficient for the regional jet, a minimum of two is necessary on the other 
aircraft (and two per aircraft type are assumed). Cabin crew costs ( ), are fixed at 
$20/block hour. The total crew costs are the largest for the narrow body, with the costs 
for the regional jet and the turboprop being roughly half of the narrow body crew costs.  
 
Maintenance costs per block hour (  in (2.7)) are also available from Form 41. The 
average direct maintenance plus maintenance burden costs per block hour for all airlines 
operating an aircraft model are used as the maintenance costs. Direct maintenance is 
labor and materials. Maintenance burden costs are overhead, such as maintenance 
administration, planning, and supervising (Bureau of Transportation Statistics, 2008). 
Maintenance per block hour is the largest for the narrow body and the smallest for the 
regional jet, with the value for the turboprop being roughly equal to the average of the 
two jet costs.  
 
Landing fees are fees levied by an airport on an arriving aircraft to capture value of 
providing service in the terminal airspace. Landing fees incorporate a charge for using the 
airfield. The most common landing fee is levied in proportion to aircraft weight (Odoni 
and de Neufville, 2003). The determination of landing fees varies airport to airport; in 
this study, fees are based on maximum takeoff-weight and are charged the existing 
landing fee at San Francisco International Airport ($3.01/1000 lbs) for illustrative 
purposes (San Francisco International Airport, 2007). This is the value of    in (2.9). The 

                                                 
3  Block hours are the number of hours to complete a gate-to-gate operation. As block time does not include 
aircraft processing time at the gate (or turn time), block times are a measure of flight time that are relatively 
not specific to an airline.  
4 A shortcoming to using the carrier average is that it is sensitive to different carrier operating procedures. If 
network and low-cost airlines operate the same aircraft, the average will be skewed downward than if all 
network airlines operate the aircraft in question. In the data used, there is only one low-cost carrier present, 
and that is for the ERJ 145 regional jet; it is then possible that the regional jet carrier average for crew costs 
is skewed downward. 
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airport-related costs therefore are linearly related to the weight of the aircraft, with the 
narrow body being the heaviest and the regional jet being the lightest.  
 
By combining the operating cost components including fuel, operating cost equations are 
derived for all aircraft models. Operating cost equations are presented as per operation 
and per passenger. Evaluating operating cost per passenger allows for a cost direct 
comparison for operating one seat on each aircraft. Aircraft seat capacity is shown in 
Table 2.1, and a load factor of 75.6% is assumed for each aircraft (Bureau of 
Transportation Statistics, 2007). Fuel price and distance are left as variables to facilitate a 
parametric analysis of the two variables in the following section. The equations for 
operating cost per passenger are shown in the latter part of Table 2.2. The values in Table 
2.2 are categorized by their coefficient: fuel price ( ), distance multiplied by fuel price 
(   ), distance ( ), and a fixed value per flight. 

Table 2.2 Operating cost equations, total and per passenger. 

 Coefficient Value 
Aircraft 
Category 

Fuel Price 

    
 Distance   Fuel 

Price       
Distance 

    Fixed 

Per Operation 
Narrow Body 2.7*102 2.1 2.6 1.3*103 
Regional Jet 1.9*102 1.9 1.2 5.9*102 
Turboprop 4.5*101 6.5*10-1 3.8 3.7*102 

Per Passenger 
Narrow Body 2.5 2.0*10-2 2.5*10-2 1.2*101 
Regional Jet 5.6 5.7*10-2 3.6*10-2 1.8*101 
Turboprop 8.1*10-1 1.2*10-2 7.0*10-2 6.6 

 
When the values in Table 2.2 are considered on a per operation basis, the turboprop 
exhibits a lower fixed cost and a lower cost that varies with fuel consumption than the jet 
aircraft. However, the cost that varies with distance alone is higher for the turboprop, due 
to greater variable travel time. The two jet aircraft have similar costs, yet their constants 
are greatly different due to the difference in airport-related costs and fixed travel time. 
When costs are considered on a per passenger basis the regional jet has consistently 
higher values than the narrow body. The lower seat capacity of the regional jet means 
costs are spread among fewer passengers. The costs that vary with distance alone are still 
highest for the turboprop, and therefore, while all other costs are lower, distance appears 
to be the factor which will constrain the turboprop from offering the lower costs. We now 
explore how these differences translate into the minimum cost homogenous vehicle fleet 
based on operating cost.  
 
2.2.2 Parametric Operating Cost Comparison 

We use the operating cost functions in Table 2.2 to compare the costs of the three aircraft 
models over a range of distances and fuel prices. Difference in operating cost per 
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passenger for two pairs of aircraft, the regional jet and the turboprop and the narrow body 
and the turboprop, are compared using contour curves representing a percent difference 
in operating cost. The calculations of percent difference in operating cost are done for 
varying distance and fuel price. Such a procedure allows for simple identification of the 
combinations of fuel price and distance for which a given aircraft has a cost advantage. In 
each chart, the middle dashed line represents the two aircraft being compared having an 
equal operating cost per passenger. The region under the middle dashed line represents 
the fuel price-stage length region where a turboprop has a lower cost per passenger; the 
region above the middle dashed line represents the fuel price-stage length region where 
the jet aircraft being compared has a lower cost per passenger. The percentage labels are 
based on the jet aircraft in comparison to the turboprop: 20% means the jet has a 20% 
higher operating cost than the turboprop, while -20% means the jet has a 20% lower 
operating cost than the turboprop.  
 
A fuel price and distance combination (for distances under-1000 miles) for which the 
regional jet has a lower or equal operating cost per passenger compared with the 
turboprop does not exist because the regional jet has a higher operating cost per 
passenger than the turboprop for all fuel prices and stage lengths. Therefore, Figure 2.1 
shows a contour plot for the regional jet and turboprop comparison with two curves, one 
for where the regional jet has a 50% higher operating cost per passenger than the 
turboprop, and the other for 30% higher. This is atypical because the regional jet 
consistently has a higher operating cost per passenger due to the higher per passenger fuel 
consumption and fixed block time for the regional jet.  
 
The figure also shows a contour plot for the narrow body and turboprop comparison. In 
this case, there are fuel price and distance combinations for which the two aircraft models 
have an equal operating cost. This equal operating cost curve exists in the sub-1000 mile 
distance region for fuel prices up to $4.00/gallon. The curves above and below the zero 
percent difference curve represent the narrow body holding a 20% higher and lower 
operating cost compared with the turboprop, respectively. The narrow body has a 20% 
higher operating cost per passenger than the turboprop for all stage lengths up to 1000 
miles when the fuel price equals levels seen in the summer of 2008, $4.30/gallon. At a 
price of $2.00/gallon, the situation is significantly different, with the narrow body jet 
having a lower cost per passenger than the turboprop for stage lengths greater than 300 
miles. As anticipated, the turboprop is very cost competitive over short distances because 
of the lower fixed and larger variable costs with distance.  
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Figure 2.1 Percent difference operating cost per passenger contour curve for regional jet and 
turboprop comparison and narrow body and turboprop comparison.  

There are additional factors beyond operating cost to be considered when comparing 
aircraft economics. 

 
2.3 Passenger Cost Model 
We now consider the passenger cost component of the total logistics function,  , 
described in section 2.1. The cost of flying time for each aircraft type is the flying time 
function multiplied by a passenger value of time,    in (2.10), to produce a cost per time-
passenger. The willingness to pay not to travel on a turboprop,  , incorporates the 
perceived negatives of flying on a turboprop, including increased passenger noise and 
potential safety concerns. Estimates for the passenger disutility of traveling on a 
turboprop and the cost of travel time can be found in Adler et al. (2005). The authors also 
find that business travelers are 43% of the population with the remaining 57% non-
business. The value of flying time and disutility for turboprop travel were estimated 
separately for both groups using a mixed logit model. The weighted average of these 
values finds values of $47.75/hour-passenger for travel time and $29.17/operation-
passenger for the disutility of turboprop service. 
 
The disutility of turboprop travel and the value of passenger flying time costs are 
included in the operating cost equations to produce a combined total logistics cost of 
aircraft operation. The operating and passenger cost per operation and per passenger 
equations are defined in Table 2.3. 
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The turboprop continues to exhibit the lowest costs that vary with fuel price (and distance 
multiplied by fuel price) on a cost per passenger basis. However, the turboprop disutility 
which is a fixed cost per operation, and flying time which varies with distance make the 
turboprop less advantageous in comparison to the operating cost results presented in 
Table 2.2. Turboprops have a slower flying time and an added disutility per passenger per 
operation which is reflected in the relative increase in costs compared with Table 2.2. The 
inclusion of passenger costs will further limit the range for which the turboprop offers the 
lowest cost.  

Table 2.3 Operating and passenger cost equations, total and per passenger. 

 Coefficient Value 
Aircraft 
Category 

Fuel Price 
     

Distance   Fuel 
Price       

Distance 
     Fixed 

Per Operation 
Narrow Body 2.7*102 2.1 1.3*101 4.6*103 
Regional Jet 1.9*102 1.9 4.2 1.8*103 
Turboprop 4.5*101 6.5*10-1 1.7*101 2.8*103 

Per Passenger 
Narrow Body 2.5 2.0*10-2 1.2*10-1 4.4*101 
Regional Jet 5.6 5.7*10-2 1.3*10-1 5.3*101 
Turboprop 8.1*10-1 1.2*10-2 3.0*10-1 5.1*101 

 
2.3.1 Parametric Operating and Passenger Cost Analysis 

Similarly to the contour plots in Figure 2.1, Figure 2.2 displays percent different contours 
for total logistics cost for the two aircraft comparison pairs. When passenger costs are 
introduced, a zero percent difference contour emerges between the regional jet and 
turboprop in the fuel price – distance space between $1.50/gallon and 100 miles and 
$3.50/gallon and 1000 miles. At $3.00/gallon, the regional jet has a lower cost for stage 
lengths greater than 400 miles, an increase of $0.50/gallon leads regional jets have a 
higher total cost per passenger for all stage lengths up 1000 miles. In short, fuel price 
peaks similar to the 2007-2008 run-up in fuel prices completely alter the competitive 
balance between regional jets and turboprops in the under-1000 mile market. 
 
The lower section of Figure 2.2 presents a similar analysis for narrow body jet and 
turboprops. Narrow body jets have a lower total cost per passenger than the turboprop for 
all distances and fuel prices up to $4.00/gallon. The zero percent difference contour curve 
does not extend to stage lengths over 400 miles, even at fuel prices as high as 
$15.00/gallon. It is clear from the operating and total cost fleet comparisons that the 
comparative advantage of narrow body jets over turboprops is strongly dependent on the 
monetization of passenger costs. Considering this total logistics cost, narrow body jets 
have a lower cost per passenger compared to turboprops under a wide range of fuel prices 
and distances. When only operating costs are considered, narrow body jets have a higher 
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operating cost per passenger when compared with turboprops for fuel costs above 
$4.00/gallon.  

 

 
Figure 2.2 Percent difference in total cost per passenger contour curve for regional jet and 
turboprop and narrow body and turboprop comparison.  

2.3.2 Value of Frequency  

The inclusion of frequency highlights the difference in operating aircraft with a wide 
range of seat capacities. The range of seating capacities means that a fixed number of 
passengers can be served by a different number of flights depending on the fleet 
selection. As passengers place value on the difference between desired arrival time and 
actual arrival time, the frequency of service is included into passenger costs. The value of 
the difference between a passenger‘s desired arrival time and actual arrival time, termed 
schedule delay, is estimated by Adler et al. (2005). Passenger value of frequency is 
captured through passenger willingness to pay for flights of varying flight times around 
the desired time and is denoted    in (2.11). Delays in either direction (early or late) were 
considered to be equally onerous.  
 
To capture the impact of providing more frequent service a relationship between 
frequency and schedule delay must be identified. Abrahams (1983) reviews a relationship 
developed by Eriksen (1978) for schedule delay based on flight frequency. The equation 
was estimated to account for schedule peaking and does not assume that flights are 
uniformly distributed in time. Equation (2.13) shows the schedule delay function for a 
given route, termed    ) in (2.12), in hours developed by (Eriksen, 1978). The equation 
for flight frequency (2.12) is determined by    the passenger flow per day between a 
given origin and destination per day, the seat capacity of aircraft type   (𝑠 ), and the load 
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factor ( ). The schedule delay determined from these variables is multiplied by the 
weighted average of schedule penalties for both business and non-business travelers (   , 
which is $15.77/hour (Adler et al., 2005). As the result (2.13) of does not depend on 
distance or fuel price, the new cost equations only differ from those previously defined 
by a constant. The constant term varies with market density; five representative market 
densities are chosen for analysis purposes. 

                (2.13)   

The zero percent difference contour curves between aircraft pairs after the introduction of 
schedule delay are shown for a range of market densities in Figure 2.3. The area under 
each curve represents the fuel price – distance space where the turboprop has the lower 
cost per passenger.  
 
When the turboprop is compared with the regional jet, increasing market density 
increases the fuel price – distance space where the turboprop offers a lower cost per 
passenger. Because the regional jet has a smaller seat capacity, its use necessitates more 
frequent service than the turboprop. At lower market densities, the schedule delay 
incurred by the regional jet is lower compared with the turboprop due to this more 
frequent service. As market density increases, the discrepancy in schedule delay is 
decreased, and the difference is overtaken by the higher operating cost of the regional jet. 
The highest fuel price in the upper half of Figure 2.3 is $3.50, which indicates that even 
after the introduction of schedule delay, the regional jet still offers a higher cost per 
passenger for a range of fuel prices, including those seen in the summer of 2008.  
 
The narrow body jet and the turboprop (lower half of Figure 2.3) exhibit a reverse 
relationship regarding market densities and cost per passenger than the regional jet and 
turboprop. Because the narrow body has almost twice the seats of a turboprop, it serves 
the same market density with less frequent service, increasing the schedule delayed 
incurred from using this aircraft. As market density increases, the cost impact of schedule 
delay decreases, and the fuel price – distance space where a turboprop offers a lower cost 
per passenger shrinks and tends toward higher fuel prices. Most of the market density 
curves begin at fuel prices of $4.60 to $7.60/gallon. At the highest fuel price shown, 
$14.80/gallon, the curves terminate at stage lengths between 400 and 600 miles. For a 
wide range of fuel prices and stage lengths, the narrow body exhibits a lower cost per seat 
despite higher schedule delays. 
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Figure 2.3 Zero percent difference total cost including schedule delay per passenger contour 
curve for regional jet and turboprop, and narrow body and turboprop comparison.  

The inclusion of schedule delay has finalized the fuel price – distance space where the 
turboprop has a lower cost per passenger.  
 
2.4 Market Penetration Analysis 
Here we put the minimum cost aircraft type analysis in the context of actual operations 
and passengers moved. We use data from the T100 Database collected by the Department 
of Transportation Bureau of Transportation Statistics. Each record corresponds to a 
service segment s, defined by an airport pair p(s), airline a(s), and aircraft type i(s), and 
specifies the number of monthly passengers flown z(s) for April 2008.5 Thus each s 
corresponds to a (d(s), z(s)) pair, where d(s) is the distance between airport pair p(s). For 

                                                 
5 Only segments under 1000 miles were collected to stay consistent with the study scope. Any 
segments flown less than 30 times in that month, or flights solely for freight were eliminated, as 
were those flown less than 40 miles. The aircraft type notation i(s) may encompass more than the 
three types introduced in Section 3, whereas the aircraft type i is restricted to the three study 
types.  
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each (d(s), z(s)) pair, the Li (f,   , d, q,  ) is calculated  i (turboprop, regional jet, narrow 
body   i) for a range of fuel prices f. Let MPR(s, f) be an indicator function equal to 1 if 
the turboprop (PR) is the aircraft type for which Li (f,   , d, q,  ) = min Li (f,   , d, q,  )  i 
and equal to zero otherwise. For each f the fraction of passengers carried per day who 
would be served at the minimum cost on a turboprop at a given fuel price, 
   𝑠       𝑠       𝑠  , is calculated. In addition to this aircraft comparison across 
all three aircraft types, the same method is used to compare the turboprop with each jet 
aircraft type individually.  
 
Figure 2.4 shows    𝑠       𝑠       𝑠       , the fraction of passengers on a 
representative day for each fuel price where the turboprop has a lower operating plus 
passenger cost (total cost hereafter) per passenger compared with the regional jet or the 
narrow body. Compared with the regional jet, at fuel prices under $2.00/gallon, the share 
of passengers transported where the turboprop has the lower total cost per passenger does 
not pass 5%. However, this share increases rapidly as fuel prices surpass $2.00/gallon; at 
a fuel price of $4.00/gallon almost 90% of passengers flown per day could be carried 
with a lower total cost per passenger on a turboprop compared with the regional jet. 
When considering the comparison between the turboprop and narrow body, at fuel prices 
under $2.00/gallon, the fraction of passengers which could be carried on a turboprop with 
less total cost per passenger than the narrow body is 20%. As fuel prices increase, the 
fraction increases slowly, ultimately reaching 80% at $15.00/gallon.  

 
Figure 2.4 Potential fraction of passengers served by a turboprop with the lowest total cost 
per passenger compared with a regional jet and a narrow body.  

Beyond the aircraft pair comparisons shown in Figure 2.4, a comparison between the 
three aircraft (Figure 2.5) gives an overall picture of the fraction of passengers that can be 
served on a turboprop at the minimum total cost per passenger. This fraction begins at 
one percent for a fuel price of $2.00/gallon, increases to 10% at a fuel price of 
$4.00/gallon, and reaches 80% at $15.00/gallon. As the slope between $3.00/gallon and 
$5.50/gallon is the steepest slope in Figure 2.5, a carbon tax instituted on fuel prices in 
this will range yield the largest percent increase in the fraction of passengers that can be 
served on a turboprop at the minimum total cost per passenger. For example, for fuel 
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prices of $4.00/gallon plus a $1.00/gallon carbon tax, the percent of passengers carried 
for the least cost on a turboprop would jump from 10% to 20%.  

 
Figure 2.5 Potential fraction of passengers served on a turboprop for the lowest comparative 
total cost per passenger.  

2.5 Conclusions  
This analysis shows that the determination of minimum cost aircraft operations over 
distances of 1000 miles or less is highly sensitive to fuel prices and passenger costs. The 
results of this study show that the popularity of regional jets is due to their relatively low 
passenger costs when compared with turboprops, and the popularity of narrow body jets 
is due to their ability to balance operating and passenger costs when fuel prices are below 
those commonly seen during the study period. We have seen that in 2007 turboprops 
made up less than 5% of the sum of turboprops, regional jets, and narrow body jets, down 
from 20% in 1996. Our results show that increasing fuel prices could reverse the trend of 
regional jets replacing turboprops in short haul markets. While aircraft adoption and 
deployment decisions are made for a variety of reasons, this study shows that high fuel 
costs can overshadow the importance of passenger costs. The inclusion of other costs 
based on fuel consumption, such as environmental costs, would tip the advantage to the 
turboprop. Such a finding allows for the consideration of additional taxes, such as carbon 
taxes, to encourage airline fleet selection to consider environmental and fuel preservation. 
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3.
 
The Impact of Fuel Price on Jet Aircraft 
Operating Costs  
 
In this chapter, we perform statistical cost estimation to investigate the relationship 
between aircraft operating cost and fuel price. Toward this end, we develop empirical jet 
aircraft operating cost models using published airline data. The most complicated of these 
models, the translog, provides the most complete representation of the empirical 
relationship between fuel cost and operating cost, allowing for substitution, scale, aircraft 
age, and other effects – including interactions – to be captured. The simpler models 
(Leontief and linear models) are more transparent, require fewer inputs, and allow the 
contribution of a single factor, such as fuel price, to operating cost to be more easily 
isolated. The development of multiple models and comparison of their predictions allows 
us to investigate the importance of the effects the translog uniquely captures, and thus to 
assess the tradeoffs between using a complicated but flexible cost model and a simpler 
but highly restrictive one in the subsequent research. 
 
The models developed in this chapter follow a large body of literature in empirical 
aircraft cost modeling, well described by Wei and Hansen (2003), that includes Caves et 
al., (1984), Hansen et al. (2001), and more recently Chau et al. (2005). Wei and Hansen 
(2003) develop a translog econometric operating cost model for jet aircraft allowing for 
variable aircraft size at the airline-aircraft level. The authors find that, keeping all inputs 
constant, there exists a unique aircraft size that minimizes operating cost. This finding 
supports the concept that schedule delay is not the only driver of aircraft size, but rather 
there are cost efficiencies in operating smaller aircraft. The authors also find that if pilot 
salaries are considered endogenous, the aircraft size that minimizes operating cost is 
significantly smaller than if pilot salaries are exogenous. In this chapter, we seek to both 
update and improve upon the model of Wei and Hansen (2003) and to consider in more 
detail the effect of fuel price. In improving the model, we use econometric methods that 
account for correlation across airlines, aircraft, and time. We also estimate on a larger and 
more up-to-date data set, which includes a broader range of aircraft types and explanatory 
variables. Our dataset includes aircraft sizes from regional to heavy jets. We also 
consider additional explanatory variables, such as aircraft age.  
 
The translog functional form allows for detailed analysis on the interactions between the 
drivers of operating cost. It can also be used to model the impact of fuel price on the 
aircraft size that minimizes operating cost; however, the detailed nature of the translog 
model (hereafter, TM) makes it challenging to minimize a more complete function of 
costs, such as a total logistics cost function. As in subsequent chapters we will be looking 
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to minimize a total logistics cost function, we develop operating cost models with more 
simple functional forms than the translog model and compare the results. The first model 
with a simple functional form considers aircraft to be Leontief technologies. These 
functions are developed in the previous chapter to study aircraft comparative costs under 
fuel price uncertainty. Hereafter we will refer to such a model as a Leontief Model, or 
LM for short. The second is a linear operating cost model based on the same dataset as 
the translog operating cost model.   
 
Leontief technology cost models assume that inputs of a cost model, such as labor, fuel, 
and materials, must be used in fixed proportions regardless of their prices. Because the 
inputs are assumed to be in fixed proportions, these models are specific to an aircraft 
type. This produces a set of models rather than a single, generalized model. However, as 
there is currently a wide range of aircraft types, of varying size, on the market, it is 
appropriate to consider aircraft size as a continuous variable.6 In an attempt to generalize 
aircraft cost models that are not specific to an aircraft type but retain the simplicity of 
Leontief models, Swan and Adler (2006) develop two jet aircraft operating cost models 
using Boeing and Airbus aircraft data. One is for single aisle aircraft while the other is for 
double aisle aircraft. Limiting the data source to these two airframe manufacturers 
implicitly limits the aircraft types considered to mid-size and large aircraft. Furthermore, 
as the model is based on aircraft size and distance traveled, it is not able to capture cost 
changes due to economic forces such as fuel price changes. In this study a third operating 
cost model is developed, a simple econometric model with a linear functional form, to 
represent operating cost relationships in a more simple way while allowing aircraft size to 
vary continuously. The comparison of the Leontief model and the linear model to the 
translog operating cost model sheds light on the importance of capturing the factor 
substitution of inputs and other effects in predicting operating costs.  
 
The remainder of this chapter is organized as follows: The following section reviews the 
data collected for the development of the translog model and the modeling approach. 
Regularity conditions of the estimated TM are explored, and coefficient estimates are 
presented and interpreted based on the objective of the study. In the following section, 
predictions from the translog model and LM are compared. Finally, we present estimation 
results for linear model that allows for variable vehicle size while retaining the simple 
form of an LM, and compare the linear model with the translog.  

 

3.1 Translog Operating Cost Model  
The operating cost per operation (O) function has the form:   
 O = f( ,     ,    ) (3.1) M 
where   is a vector of input prices including fuel price;   is a vector of airline-aircraft 
outputs–specifically average seat capacity and segment length;   is the value capturing 
the time in year-quarter;   is the vector of airline designations; and   is the vector of 
aircraft age variables. Along with the fuel price, the vector   includes measures for pilot 

                                                 
5 This was not always the case. Viton (1986) expresses an interest in modeling costs with aircraft size as a continuous variable yet 
cites the limited aircraft sizes available during the study period as reason to perform an aircraft specific analysis.   
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cost and materials cost. The vector   includes the seat capacity per operation and average 
stage length per operation. While   and   are essential arguments of the operating cost 
function, this study will focus on the variation of operating cost with fuel price (fuel) and 
seats per operation (seat). The vector   includes variables to measure the age of the 
aircraft, the length of time an airline has been operating a certain aircraft model, and the 
number of hours operated in a quarter per airline per aircraft. The value q is one of a set 
of ordinal values signifying year-quarter values. We denote airlines by   and aircraft by 
n, such that each observation has a unique combination of  , n, and q. We capture airline 
fixed effects with  , where c = 1 if the observation is for airline i, 0 otherwise.  
 
The model specification used is a translog model to estimate the operating cost per 
departure (Ocnq). The translog model is widely used in cost modeling (for example, Wei 
and Hansen, 2003; Caves et al., 1984; Hansen et al., 2001); as a second order Taylor 
series expansion, it is able to approximate many different model specifications.  

                
 

          
 

 
          

 

 

        
 

 
  

 

 
       

   
    

 

 
      

 

 
 

 
     

   
      

 

 
      

 

          
 

    
    

 

      
   

      
 

 
      

 

            
 

    
    

 

      
   

      
 

 
    

 
      

(3.2)   

Where  

i,j index elements in p, z,  , or c 
                                      are coefficients to be estimated  
 
3.2 Data for Operating Cost Model 
To estimate the operating cost model in (3.2), data from the US Department of 
Transportation (DOT) Form 41 are collected. Form 41 provides quarterly cost data and 
operating statistics per airline and per aircraft type. The dataset includes a large set of 
explanatory variables and a date range from 1996-2006 inclusive. Data for 26 airlines (c) 
(network, regional, and low cost) that operated jet aircraft during the study period were 
collected (Appendix A1.1). Across the airlines there were 23 unique jet aircraft types (n) 
operated (Appendix A1.1) in this period. The panel data used in this model has airline-
aircraft designators in vector   over a set of year-quarters ( ). Because the set of   values 
represented in the data vary across q, the panel is unbalanced. The total number of 
observations is 1657 covering 66 unique aircraft-airline combinations. The dependent and 
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independent variables are presented in Table 3.1, and procedures for calculating these 
variables are discussed below. 

Table 3.1 Variables of the operating cost model. 

Vector Variable  
Label 

Variable 
Name 

Variable 
Units 

Variable description (specific to 
aircraft-airline pair, year-quarter ) 

 O Operating 
cost $/Departure Direct operating cost per departure 

  
seat Seats  Seats/ 

Departure 
Average aircraft seat capacity per 
departure  

asl Average 
stage length  

Miles/ 
Departure 

Average stage length traveled per 
departure  

   

pilot Pilot unit 
price 

$/            
Block Hour 

Ratio of pilot and copilot salaries to 
the amount of block hours  

fuel Fuel price  $/Gallon Ratio of the amount spent on fuel to 
the amount consumed 

ppi Materials 
price Unitless Producer price index, proxy for 

materials price 

  

util Utilization  Hours/ 
Quarter 

Number of hours an aircraft is 
operated in a quarter 

aage Airline-
Aircraft age Years Number of years an airline operates a 

particular aircraft model 

tage Technology 
age Years 

Time elapsed since the first year of 
entry in service across domestic 
airlines for a specific aircraft type 

 
The input prices and the independent variable, operating cost per operation (    ), are 
collected from US DOT Data in Form 41 Schedule P-5.2. Ownership costs related to 
depreciation and rentals were eliminated from this total to capture direct operational costs 
only. The data collected to develop input prices includes expenditures on aircraft fuels 
and pilots and copilots salaries. Aircraft operating statistics are collected from Form 41 
Schedule P05B.7 These statistics, collected for scheduled and non-scheduled service, 
include gallons of fuel used; available seat miles; revenue aircraft miles; departures 
performed; and block hours, or the sum of actual hours an aircraft spends from gate to 
gate. From these prices and statistics, the unit price of fuel and pilots, the average stage 
length, and seat capacity are derived.8 
 

                                                 
7 It is important to note that aircraft fuels is the actual cost of the fuel, without fuel taxes, any additional 
costs for the act of fueling the aircraft, or other charges. It is not the total cost related to fuel consumption, 
but rather the actual cost of fuel. The fuel tax exclusion has little impact as the tax on commercial aviation 
fuel was constant and minimal through at the study period at $0.044/gallon. 
8 Many airlines operate identical aircraft types with different seat capacities determined by their business 
models. For example, a network carrier looking to lure business passengers may operate an aircraft with 
fewer seats and more differentiated service classes, while a low cost carrier may use a one-class 
configuration. To exclude any cost impacts to operating different configurations of the same aircraft, each 
aircraft type is assigned the weighted average seat capacity for that aircraft type. 
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Data on aircraft age and utilization are collected from Form 41, Schedule B-43, which 
includes the total number of each aircraft model in service per airline per year, and the 
year in which the airline began to operate that aircraft model. The utilization (util) 
variable is derived from these statistics, as well as the number of years an airline operates 
a particular aircraft model (aage). Collected from the aircraft manufacturers is the first 
year of entry in service across domestic airlines for a specific aircraft type; these data are 
used to calculate the technology age (tage) of the aircraft, or the time elapsed between the 
earliest entry year in domestic service of an aircraft type and 2006. 
 
To capture the materials price, the Producer Price Index is collected from the Bureau of 
Labor Statistics; a similar method is employed in the work of Caves et al. (1984) as well 
as Hansen et al. (2001) to develop airline cost functions. Instead of converting costs and 
prices for each year of data into constant dollars, this study follows Hansen et al. (2001) 
and uses the Producer Price Index as both a proxy for materials cost and a gauge of 
changes in inflation. Furthermore, as the third factor price in the set with labor and fuel, it 
acts as a ―catch-all‖ term such that all non-fuel and non-pilot and copilot costs are 
captured by the producer price. The PPI is entered into the model to capture the cost of 
maintenance materials, but as a ―catch-all,‖ it also captures maintenance labor costs, 
which does not have a direct relationship with materials price.  
 
Table 3.2 includes the summary statistics for each independent variable, including the 
mean, median, standard deviation, and maximum and minimum values. 

Table 3.2 Summary statistics of variables in the operating cost model. 

  Mean 
Standard 
Deviation Median Minimum Maximum 

Seats  155.79 59.81 148.15 49.02 359.75 
Average stage length  1055.37 467.30 1057.59 125.11 2686.33 
Pilot price 419.56 165.04 414.87 11.02 1169.35 
Fuel price  1.07 0.53 0.84 0.35 2.56 
Utilization  803.06 227.63 835.30 13.87 1395.13 
Materials price 1.56 0.18 1.61 1.19 1.83 
Airline-Aircraft age 7.13 4.54 6.21 1.00 23.09 
Technology age 15.60 6.14 17.00 2.00 24.00 

 
3.3 Operating Cost Model Estimation  
Following the model definition and the data description, the translog operating cost 
model is estimated in this section. The data are demeaned such that the dependent 
variable and the independent variables are estimated about the mean values in the dataset. 
The process of demeaning ensures the resulting first order coefficients estimates are equal 
to the elasticities. At the sample mean, the elasticity of the operating cost respect to factor 
price i is   , the first order coefficient of factor price i. Therefore, the process of 
demeaning the data enables straightforward interpretations of the results: the effect at the 
sample mean of each independent variable is the parameter estimate.  



36 
 

 
To properly estimate the model in equation (3.1), we must take into account that the data 
form an unbalanced panel. The data is a panel of airline-aircraft pairs, and it is possible 
that different airline-aircraft pairs have different error variances. To test for the presence 
of heteroskedasticity, we test the null hypothesis of homoskedasticity against the 
alternative hypothesis that the residual variances depend on two key independent 
variables: fuel price, seat capacity, or both variables. The Breusch-Pagan, Cook-Weisberg 
test for heteroskedasticity finds p-values for both variables to be zero, which leads to a 
rejection of the null hypothesis and necessitates correction for heteroskedasticity. 
Furthermore, we expect to see autocorrelation; because the data is in a time series, we 
expect the error terms of a particular airline-aircraft pair to be correlated over time.  
Using the Wooldridge test for autocorrelation, we reject the null hypothesis that it is not 
present and therefore must include a correction in the model for autocorrelation. To 
estimate the model, we use ordinary least squares with panel-corrected standard error 
estimates and assuming first-order autocorrelation within panels.   
 
We estimate the full model, termed model 1, on the full set of variables (3.1). We also 
estimate model 2, in which coefficients that do not have statistical significance at least at 
the 10% level in model 1 are eliminated. Estimation results for both models are shown in 
Appendix A1.2. The coefficient estimates generally have the expected signs and most are 
significant at the five or one percent level. Prior to discussing estimation results, we first 
assess the conformance of the estimated model to regularity conditions. 
 
3.3.1 Regularity Conditions 

According to Diewert and Wales (1987), a translog cost function should satisfy certain 
regularity conditions. These regularity conditions ensure that a cost function is consistent 
with cost minimization. The five necessary regularity conditions are reviewed in Chua 
(2005); like Diewert and Wales (1987), we will focus on two conditions here. The first is 
that the cost function is linearly homogeneous; if all input prices,      , are scaled by the 
same proportion, the cost function will be similarly scaled by the same proportion. The 
second condition is that the cost function is concave in the input prices   , such that the 
matrix of second derivatives is negative semidefinite. This is expected because as an 
input price increases, a cost-minimizing production process would substitute away from 
that input.  
 
Before exploring linear homogeneity and concavity in input prices, we consider their 
relevance in our setting. The conditions are necessary if the decision-making unit, in our 
case an airline-aircraft pair, is a cost-minimizing unit. In much the cost literature 
reviewed in this chapter (for example, Caves et al. (1984) and Hansen et al. (2001)), the 
decision-making unit is at the airline level. It is clear that at the airline level that cost 
minimization is a valid assumption, as an airline is at the firm level. However, it is less 
clear that an airline-aircraft pair is a cost-minimizing unit. To consider this, we explore a 
possible scenario where an increase in cost for a particular airline-aircraft pair could lead 
to a decrease in costs for an airline. It is possible that a coupling of processes for different 
aircraft types could result in such a phenomenon. For example, standardization of a 
particular maintenance process across aircraft models could increase costs for one aircraft 
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model but decreases costs for all others, thus leading to a violation of the cost-minimizing 
assumption at the aircraft type level. In this instance, one particular aircraft model could 
experience an increase in the use of an input with an increase in factor price.  
 
Because we are not certain if the assumption of cost-minimization must hold for our 
airline-aircraft level model, we do not impose regularity condition constraints. The 
practice of constraining an airline-level operating cost model to exhibit linear 
homogeneity is widespread in the empirical literature, for example, Caves et al. (1984), 
Hansen et al. (2001) and the recent work of Zou and Hansen (2010). Empirical studies 
that constrain an airline operating cost model to exhibit concavity in input prices are 
limited, and include the work of Chua et al., (2005). Instead of imposing constraints on 
either condition, we investigate how well our unconstrained airline-aircraft operating cost 
model conforms to these conditions.  
 
Linear Homogeneity  

Diewert and Wales (1987) discuss that a model exhibits linear homogeneity if the 
conditions in equation (3.3) and equation (3.4) hold. Equations (3.3) and (3.4) ensure that 
a proportionate increase in all factor prices produces a similar increase in operating cost; 
for example, a 10% increase in all factor price leads to a 10% increase in operating costs. 
Equation (3.3) states that the first order coefficients for the factor prices sum to one. 
Together with the condition in (3.4) that the second order coefficients involving factor 
price must add to zero, scaling factor prices by k will lead to a proportional increase in 
operating costs. 

   
 

   (3.3)   

    
 

     
 

     
 

     
 

          (3.4)   

Table 3.3 shows the results of calculating equation (3.3) and equation (3.4) for model 1 
and model 2 for the second order coefficients that include     

 . This is calculated for 
constant j and     𝑢    𝑎𝑡   𝑎 𝑠  𝑎    .   
 
The equation (3.3) holds approximately for both models. We see that the condition from 
equation (3.4) nearly holds for             and most combinations of      , but does 
not hold for the second order coefficient on fuel price. The interpretation is, at the sample 
means, a factor price increase of k will lead to a proportional increase in operating cost. 
However, at values other than the sample mean, the function will not strictly exhibit 
linear homogeneity, such that a factor price increase of k may lead operating costs to 
increase by more or less than k. The behavior of operating cost with respect to a factor 
price increase is therefore data dependent and cannot be stated generally for the cost 
function.  
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Table 3.3 Linear homogeneity regularity conditions calculation. 

Term Coefficient Sum   Model 1 Model 2 
        1.006 1.121 

       
   

    
 

 
      

         
Fuel  -0.541 -0.279 
Materials 0.161 -0.316 
Pilot -0.050 -0.054 

     
   

      
 

 
      

         
Fuel  0.032 0.127 
Materials 0.304 0 
Pilot -0.118 -0.097 

           
 

    
    

         
Fuel  -0.013 -0.016 
Materials 0.046 0.044 
Pilot 0.018 0.012 

 
Concavity  
The cost function must be concave in prices, such that, as an input price increases, less of 
that input is employed. It is known that concavity in prices holds if and only if the 
Hessian matrix of the cost function is negative semidefinite. This is clearly a data-
dependent property, as the second order derivative depends on the data. As described by 
Diewert and Wales (1987), the Hessian (H) matrix of second derivatives is equal to:   

    𝑠  𝑠𝑠  (3.5)   

A is the matrix of factor price coefficients:     
         

         

         

 . s is the share vector, 

𝑠   𝑠 𝑠 𝑠   . Each component of the share vector, 𝑠 , is 𝑠  
    

 
, where    is the 

factor price of i, 𝑥  is the quantity of that factor used (per departure), and   is the 
operating cost per departure, all for a cnq combination. The values of 𝑥  for fuel and labor 
are captured directly from each observation; the value of 𝑥  for materials is captured as 
the operating cost minus the fuel and pilot labor costs, as it is a ―catch-all‖ for materials 
price and labor. The matrix 𝑠  is a diagonal matrix with the shares on the diagonal. We 
have three input prices, fuel (f), materials price (m), and pilot cost (l, for labor), such that 
         . The resulting Hessian matrix (H) is: 

   

    𝑠  𝑠 
     𝑠 𝑠     𝑠 𝑠 

    𝑠 𝑠     𝑠  𝑠 
     𝑠 𝑠 

    𝑠 𝑠     𝑠 𝑠     𝑠  𝑠 
 

  (3.6)   

 
As we have two models, we have two values for A, A1 for model 1 and A2 for model 2.  
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As H is data dependent, we have a value or H for each of the 1657 observations. For each 
observation, we calculate the share vector and determine if the H matrix is negative 
semidefinite. For model 1, we find there are no observations with a negative semidefinite 
Hessian matrix; for model 2, this result improved to 37.4% of observations with a 
negative semidefinite Hessian matrix. While the results yield low percentages, they are 
consistent with the literature. In developing an empirical cost model to explore the cost 
implications of airline alliances, Chua et al. (2005) find concavity with respect to input 
prices in 39.3% of their observations. Caves et al. (1984) find that 50% of the 
observations yield a negative semidefinite Hessian matrix. While Caves et al. (1984) find 
that the observations that do not conform generally fall in extreme data ranges, we do not 
find that in our study.  
 
Chua et al. (2005) discuss that the majority of transportation literature in which an 
empirical operating cost model is developed do not constrain the Hessian to be negative 
semi-definite; in a departure from the literature, the authors develop a separate set of 
estimates with a concavity constraint. The authors find that the 39.3% of observations 
that exhibit concavity in input prices increases to 83.1% with the constraint. This puts in 
perspective the 37.4% found in this study and the 39.3% found using the unconstrained 
model in Chua et al. (2005). 
 
In light of the failure of both models developed in this study to exhibit concavity in input 
prices, we focus on the individual input prices. We investigate if the second derivative of 
each input price is negative for all data points, such that, as the input price increases, the 
quantity of that input used is decreased. We do this by calculating the functions on the 
diagonal of the Hessian matrix, which are the second derivatives of operating cost with 
respect to each factor price i,     𝑠  𝑠 

 . The percent of data points for which 
    𝑠  𝑠 

    is reported in Table 3.4.  

Table 3.4 Negative second derivatives (%) with respect to factor prices. 

Factor Price Model 1 Model 2 
Fuel  96.3% 99.5% 
Materials 0% 100% 
Pilot 99.5% 99.5% 

 
We see that the key variable in this study, fuel price, along with pilot price, has 
consistently high percentages of negative second derivatives across models. The results 
suggest that aircraft operations exhibit the expected behavior of substituting away from 
inputs whose prices increase; in practice, this substitution is limited to clear operational 
needs and requirements. We notice that materials price exhibits starkly different results 
from model 1 to model 2. The second order coefficient on materials price is statistically 
insignificant in model 1, and as such, it is eliminated from model 2. Therefore the 
relevant entry in the Hessian matrix for model 2 is simply 𝑠 

  𝑠 ; as 𝑠   ,  
𝑠 

  𝑠   . The inconsistent behavior and the statistical insignificance may be related 
to PPI acting as a ―catch-all‖ variable, and therefore does not have a direct relationship 
with maintenance labor costs. It is possible that materials price in the form of PPI should 
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be further decomposed to more accurately capture the difference between maintenance 
materials and maintenance labor. 
 
In summary, we find in this section that our models do not strictly adhere to the regularity 
conditions set forth by Diewert and Wales (1987). However, we also discuss potential 
reasons why regularity conditions based on an assumption of cost-minimizing behavior 
do not fully apply to the model. Moreover, we confirm that operating cost is concave in 
the key variable of fuel price. In light of this we conclude that the estimated model is 
credible and therefore proceed to interpreting the estimation results. 
 

3.3.2 Interpretation of TM Results  

Table 3.5 contains select estimation results for model 1 (estimation results for both model 
1 and model 2 can be found in Appendix A1.2). As neither model was found to fully 
conform to regularity conditions, we choose to analyze model 1 because it contains the 
complete set of explanatory variables. The evaluation of the relationship between aircraft 
size and fuel price begins with the first order coefficient on aircraft size. The coefficient 
implies operating cost economies of aircraft size; a ten percent increase in aircraft size 
would increase operating cost by 4.4 percent. The first order coefficient of fuel price, 
0.408, implies that at the sample mean, a ten percent increase in fuel price would increase 
operating cost by 4.08%. As we found that model 1 exhibits linear homogeneity at the 
sample mean, we conclude that the share of operating cost attributed to fuel costs is 
40.80%. Beyond our two key variables of seat and fuel, we find the expected magnitudes 
and signs for the coefficients of asl, pil, util, and ppi. While previous studies have 
excluded the age variables, the model estimates show that the inclusion of these variables 
is warranted by their significant effect. The first order terms on technology age and 
airline-aircraft age are positive and statistically significant, and imply that, all else being 
equal, costs are greater for an aircraft developed in an earlier year.   

 
The higher order coefficients provide insight into how the independent variables interact, 
and how inputs are substituted due to factor price increases. The second order coefficient 
of the seat variable is positive and implies that aircraft economies of scale attenuate for 
aircraft sizes larger than the average size. The second order coefficient estimate on fuel 
price, 0.155, implies that the 4.08% increase in operating cost due to a 10% increase in 
fuel price would increase with fuel price greater than the sample mean. The interaction 
term between fuel price and aircraft size, 0.123, tells us that as fuel prices increase, 
economies of scale due to aircraft size diminish slightly. In sum, high fuel prices reduce 
cost economies of aircraft size. With regard to aircraft age, the negative interaction term 
between airline-aircraft age and fuel price is unexpected, but may result from learning 
curve effects. As an airline gains experience with an aircraft, it learns the optimal fuel 
loads, flying speeds, and altitudes. Such benefits are found by Southwest Airlines and 
their one aircraft type fleet (Gittell, 2002). The interaction between aircraft size and 
average aircraft age shows that smaller aircraft show the signs of age more quickly. 
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Table 3.5 Select operating cost model empirical results. 

Variables 
First Order 

Term 
Second Order 

Term 
Variable 

Interactions 
First Order 

Term 

Seats 0.400*** 
(0.083)  

0.206*** 
(0.062) 

Seats – Average  
stage length 

-0.162*** 
(0.079) 

Average stage 
length 

0.803*** 
(0.054) 

0.126*** 
(0.033) Seats – Fuel price 0.123*** 

(0.048) 

Pilot price 0.296*** 
(0.038) 

0.038*** 
(0.012) 

Average stage  
length – Fuel price 

9.88*10-5  
(0.030) 

Fuel price 0.408*** 
(0.037) 

0.155*** 
(0.034) 

Airline-aircraft  
age – Fuel price 

-0.014*** 
(0.005) 

Utilization -0.124*** 
(0. 036) 

-0.011 
(0.007) 

Airline-aircraft  
age  – Seats 

-0.021** 
(0.010) 

Materials 
price 

0.302 
(0.210) 

0.717 
(0.632) 

 
 

Airline-
aircraft age   

0.037*** 
(0.007) 

1.08*10-3*** 
 (4.4*10-4) 

Technology 
age 

0.004** 
(0.002) 

1.28*10-3*** 
(3.49*10-4) 

Where 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level  
*Variables are significant at the 10% level  

 
3.3.3 Translog Operating Cost Prediction  

In this section, we evaluate the impact of fuel price on the aircraft size that minimizes 
operating cost per seat-mile. This analysis enables an understanding of how a fuel price 
increase might influence jet aircraft size from a purely operating cost perspective.  
 
We estimate operating cost per seat-mile for selected stage lengths over a range of 
aircraft sizes and fuel prices using the TM model 1 coefficient estimation results. We 
develop operating cost predictions using Delta Airlines as the base airline, and use the 
Delta Airlines average values for all variables except fuel price, stage length and seat 
capacity. The results presented are parametric over seats, fuel price and stage length; 
combinations of these three variables will be specified inputs. This will enable an 
interpretation of how the aircraft size that minimizes operating cost per seat-mile changes 
with the key input price of fuel.  
 
Figure 3.1 presents the operating cost per seat-mile over seats for three representative fuel 
prices. The fuel price values range from a minimum value ($0.50/gallon) and a maximum 
value ($5.00/gallon), double the maximum value experienced in the dataset.9 For constant 
distance flown, as fuel price increases, the aircraft size that minimizes operating cost per 
seat mile decreases. This reflects the positive interaction term between seats and fuel 
price. We also observe that for each stage length – fuel price combination, there is a 

                                                 
9 Note that the minimum and maximum fuel price range in the data is $0.35-2.56/gallon; predictions out of 
this range may be less reliable.  
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unique aircraft seat capacity that minimizes operating cost per seat mile. This is 
represented by the large black data point on each curve in Figure 3.1, and presented in the 
table in the lower right hand panel. The aircraft seat capacities that minimize cost are 
much larger, in most cases, than aircraft technology that exists today. While we confirm 
the finding of Wei and Hansen (2003) that there exists a unique aircraft size that 
minimizes operating cost per seat-mile, we depart from their finding that the technology 
size is in a range of existing aircraft technologies. Therefore, in the context of existing 
technologies, aircraft size should be maximized to minimize operating cost per seat-mile.  
 

ASL 500 ASL 1500 

  
ASL 3000  

 

 

 Average Stage Length 
500 1500 3000 

Fu
el

 P
ri

ce
 $0.50 650 1017 1200 

$2.50 425 662 865 

$5.00 350 542 708 

Figure 3.1 Seat capacity corresponding to the minimum operating cost per seat mile for a 
range of fuel prices and distances.  

A possible explanation for the large aircraft seat capacities that minimize operating cost 
is that airlines consider pilot costs to be endogenous, as suggested by Wei and Hansen 
(2003). To determine the impact of endogenously considering labor costs on cost-
minimizing seat capacity, we construct a relationship between the unit price of labor and 
aircraft seat capacity. The following is the resulting equation estimated using the dataset 
on which the translog model was estimated, with both coefficients significant at the one 
percent level. To be consistent in the estimation method, we estimate using ordinary least 
squares and panel specific standard errors and assumed autocorrelation within panels. As 
we are predicting operating costs for the year 2006, we deflate all data points to be in 
constant 2006 dollars. The estimation results are in A2.2.  
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    𝑡              𝑠 𝑎𝑡       

 
 (3.7)   

Where  
𝑠 𝑎𝑡    is the seat capacity of aircraft n operated by airline c in year-quarter q 
       are coefficients to be estimated 
 
For comparison purposes, the results in Figure 3.1 assume a labor price of about a 250 
seat aircraft, representative of a large model such as a Boeing 757 or a Boeing 767. Using 
equation (3.7) we calculate labor price for seat capacities between one and 1200 and 
predict operating cost from this augmented dataset. We see in Figure 3.2 that when labor 
price is endogenous to the model, the seat capacity that minimizes operating cost is 
reduced. However, aircraft technologies are still larger than exist in the system today for 
stage lengths greater than about 1500 miles. For stage lengths less than 1500 miles, the 
aircraft sizes that minimize operating cost per seat-mile exist in the system today, 
however, they are not typically flown for missions less than 1500 miles.  
 

ASL 500 ASL 1500 

  
ASL 3000  

 
 
 

 Average Stage Length 
500 1500 3000 

Fu
el

 P
ri

ce
 $0.50 445 716 972 

$2.50 347 578 805 

$5.00 303 514 724 

Figure 3.2 Seat capacity corresponding to the minimum operating cost per seat mile for a 
range of fuel prices and distances, labor price considered endogenous.  
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The use of the translog function enables investigation of the consequence of variable 
interactions. We find there is a unique aircraft size that minimizes operating cost per seat-
mile, and that fuel price plays a large role in determining this aircraft size. We also find 
that fuel price increases could lead to a reduction in aircraft size, if cost minimization is 
the goal. However, it is possible that relationships between our key variables of interest –
seat capacity and the unit price of fuel – can be captured by simpler functional form for 
operating cost. In the following section, we examine two such functional forms: the 
Leontief Technology operating cost model and the linear operating cost model.   
 
3.4 Leontief and Translog Operating Cost Model Comparison  

This section will investigate the difference in predicted values between the Leontief 
technology model (LM) developed in chapter 2 and translog model (TM). The LM was 
developed in the previous chapter using average values from the same data set used in the 
current study but a later year (2007). In chapter 2, three specific aircraft models are 
chosen for cost calculation, two of which are jet aircraft: an ERJ 145 regional jet and a 
Boeing 737-400 narrow body. The key cost categories – fuel, labor, and maintenance –
are summed based on statistical relationships between fuel burn and distance traveled and 
travel time and distance traveled.10 The values, presented in chapter 2, are reported in 
Table 3.6 in units of $/operation. Using the same methodology, the cost coefficients for a 
mid-sized aircraft (182 seats), the narrow body Boeing 757-200, are determined.   

Table 3.6 Leontief Technology model operating cost coefficients.  

 Coefficient Value 
Aircraft 
Category 

Fuel Price 

(f) 
Distance   Fuel 

Price       
Distance 

(d) Fixed 

B757-200 5.1*102 2.0 2.5 9.4*102 
B737-400 2.7*102 2.1 2.6 8.8*102 
ERJ 145 1.9*102 1.9 1.2 4.8*102 

 
We perform the comparison of LM and TM results by estimating operating cost per 
departure with both models and plotting the results. The inputs needed for estimation 
with the LM are simply fuel price and distance traveled. We choose three sample fuel 
prices and 13 stage lengths between 100 and 3000 miles. For the translog model, beyond 
fuel price and stage length we need all inputs shown in Table 3.1. To identify values for 
these inputs, we calculate average values specific to each aircraft type (ERJ 145, Boeing 
737-400 and Boeing 757-200) using the original dataset on which the translog model was 
estimated (deflated to 2006 values). For the value of seats, the seat capacities for the 
aircraft in the LM are equal to the aircraft averages; this value is used. Finally, we need to 
identify a base airline for which we estimate operating costs with the TM. We choose 
three representative airlines for the estimation: SkyWest (OO), Continental (CO), and 
USAir (US). We chose these airlines based on the coefficient estimates of the airline 
fixed effects (Appendix 1.2). SkyWest represents the 1st quartile, Continental the median, 

                                                 
10 It should be noted that the model in the previous chapter also includes airport charges as part of the 
operating costs; these are eliminated for this analysis because they are not part of the direct operating costs. 
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and USAir the 3rd quartile of the fixed effect coefficient estimates. For comparison, the 
operating cost per departure estimates from the LM and TM are plotted against each other 
along with a 45-degree equality line for the three aircraft types.   
 
We begin our discussion of Figure 3.3 by considering the effect of fuel price. While for 
most aircraft sizes at most fuel prices the predictions are relatively linear along a 45-
degree equality line, we do see trends in over-prediction and under-prediction that 
highlight the difference between Leontief technology models and translog models. At 
relatively low fuel prices, the LM predictions are significantly less than the TM 
predictions. At relatively high fuel prices, this relationship shifts such that the LM 
predictions are either higher than the TM predictions (for the regional jet and the Boeing 
737), or relatively higher compared with lower fuel prices. These effects reflect the 
technology assumptions behind the TM and LM. The LM considers aircraft to be a 
Leontief technology, in which all inputs must be used in fixed proportions. The TM 
model allows substitution between inputs when factor prices change. The LM was 
developed at a time when the operators of a 737-400 were paying an average of 
$2.01/gallon; the operators of a 757-200 were paying an average of $1.99/gallon. It 
therefore follows that when the TM and LM are applied at fuel prices close to this 
$2.00/gallon average, the TM predictions and the LM predictions will be very similar. 
For fuel prices above this average, the LM estimates should be relatively higher than the 
TM estimates. This is because the TM allows for input substitution: as fuel prices 
increase, airlines will take steps to use fuel more efficiently by leveraging other inputs, a 
phenomenon that the LM cannot capture. 
 

Regional Jet (ERJ 145) 
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Boeing 737-400 

 
 

Boeing 757-200 

 
Figure 3.3 Predicted operating cost per departure, Leontief Technology vs. translog 

operating cost model.   
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Similarly, one might expect that the TM would predict lower costs a low fuel prices, in 
this case a result of substituting cheap fuel for other inputs. Figure 3.3 does not bear this 
out however. Indeed, when low fuel prices are assumed the LM predictions are highest 
relative to the TM predictions. These results reinforce our previous conclusion that 
classical economic assumptions are not strictly applicable to operating costs for 
individual aircraft types. 
 
Moreover, these patterns aside, Figure 3.3 shows a relatively linear relationship along the 
45-degree equality line between the LM and TM for the two larger jet aircraft. This 
implies that, while there is a small under- and over-prediction trend, the potential for 
supplier input substitution for fuel is rather modest. Thus, while we are able to glean 
insights into variable interactions from the translog model, it is not essential to capture 
these interactions in order to accurately predict operating costs.  
 
This section finds that the Leontief technology operating cost model is able to accurately 
predict operating costs, despite sacrificing the estimation of variable interactions. In the 
final section, we explore a linear operating cost model, also transparent and takes few 
inputs like the LM, yet can capture variations in seat capacity and fuel price in a single 
model.   
 
3.5 Linear Operating Cost Model  
In developing the translog operating cost model, we were able to glean insights into the 
contribution of individual variables along with variable interactions. However, we found 
by comparing the LM and TM that operating costs can be accurately captured by models 
with less complexity. As there are instances when a less complicated, simple 
representation of operating costs is necessary, we explore a representation of operating 
cost that retains the simplicity of the LM but includes seat capacity as a variable.  
 
Estimating a linear model of operating costs proved to be a challenge. One possible 
reason for this challenge is the relationship between fuel efficiency (measured by seat-
miles per gallon of fuel) and seat capacity, shown in Figure 3.4. The fuel efficiency of an 
aircraft peaks around an aircraft size of 200 seats, which is generally the separation 
between narrow body and wide body aircraft. The TM is able to capture this through the 
positive interaction term between fuel and seat capacity, yet the linear model is unable to 
capture the parabolic relationship between fuel efficiency and seat capacity. As the focus 
of this research is on short haul transportation, we will restrict the dataset on which the 
linear model is estimated to include aircraft with seat capacities below 200 seats. 
 
Even with the restriction on seat capacity, estimating an operating cost model still 
presents a challenge. We therefore experiment with a model that treats operating cost 
without fuel – mainly fuel and maintenance – and operating cost due to fuel separately. 
We develop two models, one to capture the operating cost without fuel      

   and one to 
capture fuel consumption        for jet aircraft with seat capacities below 200 seats. The 
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Figure 3.4 Seat-miles per gallon of fuel vs. seats.  

final operating cost per departure function        is the sum of these two functions, 
where fuel is the unit price of fuel. 

      𝑢            
  (3.8)   

We develop an econometric operating cost model (3.9) and an econometric fuel 
consumption model (3.10), with the key variables of seats per departure (seat), average 
stage length traveled (asl), and airline fixed effects ( ). We do not include labor explicitly 
in the operating cost component but rather let it be endogenous to aircraft size. Similar to 
the estimation of (3.7) we deflate the cost values to be in constant 2006 dollars. We 
estimate this model on a dataset from the same source as the original dataset for the 
translog model, but with a slightly different date range: 2003-2009 inclusive. To estimate 
the TM on the full list of variables, the date range was limited to no later than 2006 
because of data availability; as the models in (3.9) and (3.10) includes three variables, we 
are able to use a more recent dataset. As the dataset is still an unbalanced panel, we 
estimate using ordinary least squares and panel specific standard errors and assumed 
autocorrelation within panels as we did with the translog model.  

    
       

 
  𝑠 𝑎𝑡     𝑎𝑠      𝑠 𝑎𝑡   𝑎𝑠     

      
(3.9)   

        𝑠 𝑎𝑡     𝑠      𝑠 𝑎𝑡   𝑎𝑠           (3.10)   

Where  
𝑠 𝑎𝑡    is the seat capacity of aircraft n operated by airline c in year-quarter q 
𝑎𝑠     is the average distance traveled by aircraft n operated by airline c in year-quarter q 
𝑠 𝑎𝑡   𝑎𝑠     is the interaction term between seats per operation and distance per 
operation 
           are coefficients to be estimated in (3.9) 
          are coefficients to be estimated in (3.10) 
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In estimating (3.9) and (3.10) (estimation results shown in Appendix A1.4 and A1.5, 
respectively), we find in both cases some key coefficients are statistically insignificant. 
Beginning with     

 , we find that   is marginally significant, with a t-statistic of -1.71. 
For     , the coefficient estimate of   is negative and insignificant. However, instead of 
dropping the variable of distance in both functions, we instead preserve the first order 
terms in both equation (3.9) and (3.10). This is for two reasons. The first is to preserve 
consistency with the analytic total logistics cost model to be presented in chapter 4. The 
second is to preserve the scale economies of aircraft size found with the translog model. 
We therefore define the preferred model as including only the main terms and not the 
interaction term or the constant. We find the coefficient estimates are significant and of 
the expected signs. The linear operating cost model is then the function in (3.8) with the 
parameter estimates of the preferred model.  
 
To evaluate the estimation performance of the linear model, we compare the estimates of 
the linear model and the TM. We predict values using both models at three fuel prices: 
$0.50/gallon, $2.50/gallon, $5.00/gallon; for 13 distances between 100 and 3000 miles; 
and with Delta Airlines as the base airline. For the additional variables in the TM, we use 
those consistent with the year 2006 and the Delta Airlines average. In general, when both 
models are estimated for relatively high fuel prices (above $2.50/gallon), the estimates 
from the linear model exceed those from the TM. This is further demonstrates that the 
TM captures input substitution in the case of fuel. The percent difference in estimates is 
smallest in the 100-200 seat range, with the TM predictions between 25% lower to 10% 
greater than the linear model predictions; this trend was also observed in the relationship 
between the LM and TM. For seat capacities close to the sample mean in the translog 
model, the TM and linear model estimates are fairly close. We demonstrate that a linear 
model restricted to a range of data is able to estimate operating costs within 0-25% of the 
estimates from the translog model.  
 
3.6 Conclusions 

In this chapter we develop three empirical operating cost models for jet aircraft based on 
a similar data set. In developing the translog model, we establish a detailed portrait of the 
relationship between aircraft operating cost and the variables that influence cost. We find 
relationships between seat capacity, fuel price, and other key variables not documented in 
previous literature. However, we find that the simpler functional forms of the LM and the 
linear model yield predictions of operating costs that are similar to the predictions of the 
TM. Through the comparison of the LM, which assumes the mix of inputs required to 
operate a given air vehicle is insensitive to factor price, and the translog operating cost 
model, we establish the limited role of supplier input substitution in managing fuel-
related cost. The linear model is developed such that the coefficients are parameters in an 
analytically tractable total logistics cost function in the next chapter. Here we establish 
that the simple linear formulation is able to predict operating costs that are similar to the 
predictions of the translog operating cost model. The LM and linear models have many 
strengths, including transparency, few inputs, and ease of prediction. While translog, 
Leontief technology, and linear models all play an important role in aviation cost 
modeling, this study suggests that use of the linear model is unavoidable for tractability. 
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4.
 
System Optimal Mathematical Models of 
Intercity Transportation  
 
In this chapter, we develop a parametric optimization model for intercity passenger 
transport in a given corridor, in which the parameter of central interest is effective fuel 
price. Toward this end, we consider a central planner minimizing the total logistics cost, 
including those to vehicle operators, passengers, and the environment. The goal of the 
central planner is to find the optimal (least cost) service mix, defined by the vehicles to 
operate and the headway at which to operate. We must therefore develop a total logistics 
cost function for an intercity transportation corridor. Vehicle types, headways, sizes, and 
passenger assignment to vehicles are chosen to minimize total logistics cost. Uniquely, 
the model allows for the use of mixed fleets—i.e. a slow inexpensive vehicle and a fast 
expensive one—and travelers with different values of time.  
 
Logistics scheduling literature considers how a central planner should schedule freight 
vehicle deployments to minimize costs. Smilowitz and Daganzo (2007) consider an 
integrated package delivery network and determine optimal service frequency using a 
total logistics cost function that considers all related operating costs. Daganzo and Newell 
(1993) develop an operating cost function to study delivery strategies as they relate 
handling costs. Neuman and Smilowitz (2002) consider the benefit of coordinating 
drayage movements in the Chicago Intermodal Freight Interchange. A planner‘s 
perspective is taken in all these studies. Instead of considering the incentives and 
motivations of the multiple operators and customers involved, least-cost routes, 
frequencies, and homogenous vehicle assignments are determined as if there were a 
central operator able to coordinate deployments. Neuman and Smilowitz (2002) find that 
considerable cost savings could be gained from central planner coordination of drayage 
movements due improved vehicle utilization. Hansen (1991) uses a total logistics cost 
function in an aviation context that includes social and private costs to compare two 
vehicle types in order to serve passengers with homogenous values of time. The costs 
considered in the total logistics cost function are passenger costs (airport access time, 
travel time, and schedule delay) and aircraft operating and ownership cost. 
 
While the previously mentioned studies assumed all customers have the same value of 
time, Viton (1986) and Keeler et al. (1975) note their skepticism with using one value of 
time to represent all passengers and situations due to multiple time classifications (travel 
time, schedule delay) and varying values of passenger time (high-valued business 
travelers, low-valued leisure travelers). Using a combination of revealed and stated 
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preference surveys of air transportation users, Adler et al. (2005) find the existence of 
significant variation in passenger value of time as well as differences between the value 
of schedule delay and on-time performance. Their study uses a mixed logit model and 
assumes all non-fixed parameters are normally distributed. Another study pointing to the 
existence of passenger heterogeneity is Berry et al. (1996). By assuming that preferences 
for prices and flight characteristics are correlated, they estimate two sets of coefficients 
for two passenger groups using a random utility model.  
 
Related research in logistics include exploratory, high level routing studies that consider 
both heterogeneous vehicles and passenger value of time. The delivery of packages with 
heterogeneous time values over a transport network has been studied by Smilowitz et al. 
(2003). In the study, the authors investigate the potential of serving two classes of 
packages – high value express and lower value deferred packages – on an integrated 
network instead of separating their distribution. The research compares two vehicles for 
service, aircraft for high value-of-time packages and truck ground transportation, and 
finds that cost savings can be achieved by using underutilized space on aircraft to serve 
the deferred packages. 
 
In this study, we will consider vehicle and input substitution in the same function. Total 
logistics cost functions that consider multiple vehicle types are well-explored in the 
literature, as are ones that address input substitution; however we lack an integrated 
analytic model that captures both effects fully in one function in the context of intercity 
passenger transportation. To this end, we develop mathematical models that capture 
airline costs and passenger costs in a total logistics cost function and assigns passengers 
to the most appropriate vehicle based on their value of time and preferred time of 
departure. The models allow for mixed-vehicle as well as single-vehicle services.  
Section 4.1 presents the assumptions and structure of the total logistics cost function 
methodology. In section 4.2, we construct total logistics cost functions for single and 
mixed vehicle combinations considering passenger groups defined by demand and value 
of time.  We describe the model assumptions and setup, and achieve an analytic solution 
for operational frequency and vehicle size. In sections 4.3 and 4.4 we consider passenger 
time to have a distribution, thus generalizing the representation of heterogeneous 
passengers.   
 
4.1 Total Logistics Cost Function Assumptions and Structure 
In this research we consider passengers who desire to travel on an intercity corridor.   
Service on this corridor is represented on an infinite timeline with vehicles scheduled to 
serve a single origin-destination pair. There is no limit on the number of vehicles 
available and therefore on the schedule frequency. We model three scenarios with 
varying assumptions regarding passenger characteristics and assignment:  
 

1. Passengers fall into discrete groups, each of which is characterized by a demand 
rate and value of time; passengers must be served in the headway in which they 
desire to depart. 
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2. Passenger value of time follows a continuous distribution; passengers must be 
assigned to a vehicle bounding the headway in which they desire to depart. 

3. Passenger value of time follows a continuous distribution; passengers are assigned 
to the most appropriate vehicle, which in some cases may not bound the headway 
in which they desire to depart. 

 
We consider fleets consisting of one or two vehicle types (or technologies). In the case of 
a single vehicle fleet, we define the vehicle type to be   where       = {jet, turboprop, 
highspeed rail}. If the fleet contains two vehicle types, we define the vehicle pairs to be   
where     = {{turboprop and jet}, {high speed rail and jet}, {turboprop and high speed 
rail}}. c is thus a set containing two vehicles, which are in turn elements of set I. We 
therefore have       or     and use the index   to generally refer to a vehicle technology 
whether it is part of a single- or two-vehicle fleet.    
 
Each vehicle operation on technology   – whether       or     – generates a cost to the 
service provider and a cost to the passengers on-board. There are two costs incurred by 
the supplier to operate vehicle type  : a fixed component (    which does not depend on 
the passenger load and a variable component (  ) which represents the marginal cost of 
carrying an additional passenger on a vehicle operation. Both    and    are functions of 
fuel price f, distance d, and other supplier factors. If i is the index representing the vehicle 
technology used for the operation in question, and assuming full vehicle occupancy, then 
the cost associated with an operation on a per passenger basis:   

  
   , where 𝑠  is the 

number of seats per departure on vehicle type  . 
 
Each passenger incurs two costs associated with traveling on the intercity transportation 
system. The first is the time spent in-vehicle, which is the travel time for a given distance 
on vehicle type   (  ). The second is schedule delay, the expected value of for a 
passenger of type   on vehicle type   is denoted 𝑤   . This is the expected difference 
between when a passenger of type   desires to depart and the actual departure time of 
vehicle  . The time costs are monetized through multiplication by the passenger value of 
time λn.  

 
We will explore the scenarios in the following sections. In all scenarios we assume that 
passenger demand is exogenous, because our focus is on the supply side rather than the 
demand side of the system. 
 
4.2 Total Logistics Cost Models for Passenger Scenario One 
Under scenario 1 we segment passengers into groups. The index for passenger groups is 
n, and passenger groups are defined by a value of time λn and an exogenous demand,   . 
The sum of all passenger groups is the total demand,        . Furthermore in 
scenario 1 each passenger group has a desired departure time that is uniformly distributed 
and passengers must be served in the headway in which they desire to depart. Said 
another way, the rate in which passengers would hypothetically ―arrive‖ for a vehicle 
departure is a constant value (  ). This is the wished for arrival rate as discussed in 
Daganzo and Garcia (2000). Vehicle operation schedules are based on these passenger 
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assumptions. The Continuum Approximation method described by Daganzo (1999) 
illustrates that with a stationary wished for arrival curve and the passenger assumptions 
made here, vehicles are scheduled uniformly to minimize schedule delay. In other words, 
vehicles are scheduled over time at a constant headway, such that a single frequency (the 
inverse of headway) of vehicle departures over time holds.  
 
In this section we develop a total logistics cost function for a corridor served by a single 
vehicle technology and a mixed vehicle technology. We begin by defining notation for 
parameters and decision variables.  
 
Parameters:  

   Vehicle fixed cost, function of fuel price (f) and distance (d),             

   Vehicle variable cost, function of fuel price (f) and distance (d),             

   In-vehicle travel time, function of distance (d),     
           

   Total flow of passengers,          
      

   Flow of passengers in group n,          
      

λn Passenger value of time for group n,                  

𝑤    Expected schedule delay for a passenger of type n on vehicle type i,      

τn Critical departure time,      

     Time interval for departure,      

     Generalized cost (time) differential,      

      Probability a passenger is of type n 

      Probability a passenger is on vehicle type i 

         Conditional probability that a passenger on vehicle type i is of passenger 
type n 

         Conditional probability that a passenger is assigned vehicle type i given they 
are of type n 

𝑠  Seats per operation on vehicle type i,      
           

 
Decision Variable:  
The decision variable is vehicle frequency, F, for the two possible vehicle combinations:  

   Vehicle frequency (single technology combination),           
      

   Vehicle frequency (mixed technology combination),           
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In both the single and mixed vehicle cases, the passenger cost is dependent on the vehicle 
type on which a passenger is traveling. Quantities must be developed to capture this 
vehicle assignment: the proportion of passengers on each vehicle type  , and the 
proportion of passengers of each type n on each vehicle type  . We then define two 
events: event   , which is the event that a passenger is assigned to vehicle type  ; and 
    the event that a passenger is of type n.       defines the proportion of passengers on 
vehicle type  .          is the conditional probability that a passenger on vehicle type   is 
of passenger type n.  
 
The three quantities related to passenger allocation,                 and 𝑤   , can 
expressed in terms of parameters                . We begin by considering how 
passengers are assigned to vehicles in both the single and mixed vehicle case. In the 
problem formulation, user optimal vehicle assignment and system optimal vehicle 
assignment are identical if we assume that passengers pay variable vehicle operating cost 
as well as time costs.. When assigning passengers to a vehicle, the central planner seeks 
to minimize the sum of the generalized cost of each passenger. The generalized cost is a 
function of travel time, vehicle variable cost, expected schedule delay, and passenger 
value of time. Vehicle variable cost,     is included so passengers internalize the marginal 
cost their vehicle choice imposes on the system. If passengers internalize the marginal 
cost they impose on the system in choosing which vehicle departure to take, the solution 
is system and user optimal.  
 
Passengers are defined by two indices: their passenger group (demand and value of time) 
n and the vehicle type on which they are assigned i. We will consider the passenger 
generalized cost, which is the cost incurred by a single passenger in units of time. We 
now construct an expression for the generalized cost. Consider Figure 4.1 and Figure 1.1, 
which depict an interval of time between two scheduled departures—i.e a headway. 
Figure 4.1 shows the single vehicle case for a vehicle technology    . Figure 1.1 
displays the mixed vehicle case, in which the two vehicles form the set        . In both 
cases the expected total time (generalized, to include money costs) faced by a passenger 
desiring to depart during this headway (of time length  

  
 or  

  
) is the sum of the travel 

time,   , the variable cost divided by value of time,   

  
  and the expected schedule delay, 

𝑤   . (We assume here, without loss of generality, that the passenger pays the variable 
cost and chooses which vehicle to take in order to minimize her generalized cost. 
However, as explained above, we obtain the same results if the supplier — or anyone else 
— pays these costs and passengers are assigned to vehicles by the central planner.) To 
find the point in time when passengers are indifferent between two vehicles we find the 
critical departure time τn, or the instant in time in which the generalized cost for both 
vehicles are equal. We assume that passengers are indifferent to departures scheduled 𝑡 
units before or 𝑡 units after the preferred time. Therefore, to find τn we draw lines of slope 
1 representing the schedule delay cost for either vehicle and find their point of 
intersection. The x-coordinate of the intersection is the critical departure time τn. The y-
coordinate is the generalized cost at τn, which is also the maximum cost a passenger of 
type n would face in utilizing the system.  
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We can now define the time interval for departure on vehicle i by passenger of type n 
(    ), which is the time interval between the departure time of vehicle i and τn. If a 
passenger of type n desires to depart in the region      she will be assigned to vehicle 
type i. Because passengers of type n have desired departure times that are uniform over 
time (and therefore over     ), the expected wait time for passengers of type n is     

 
. It 

follows that      is one-half the headway when vehicles are of a single type (Figure 4.1); 
however, when the vehicles are different technologies (Figure 4.2), this region may be 
either larger or smaller than one-half the headway due to vehicle and passenger attributes. 
We term the difference between      and  

   
 as the generalized cost differential,     .      

is the additional time region beyond one-half the headway in which a passenger of type n 
will be assigned to a vehicle of type i;      is zero in the single vehicle case, and 
expressed in terms of the performance parameters vehicle type j and type k for the mixed 
vehicle case. This is shown in (4.1); the equation for 𝑤    follows in (4.2) (in which an 
unsubscripted F is used to represent both Fc and Fi).  

 
 

     
               

   
            (4.1)   

 
𝑤    

    

 
 

 

 
 

 

  
       (4.2)   

Figure 4.1 shows the generalized cost vs. time for the single vehicle case. Figure 4.2 
shows this for the mixed vehicle case.  
 

 
Figure 4.1 Generalized cost (time) and related quantities for the single vehicle case, 

passenger scenario 1. 
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Related Time Areas for Passenger n  
on Vehicle Technology   

Related Time Areas for Passenger n on 
Vehicle Technology   

  
Figure 4.2 Generalized cost (time) and related quantities for the mixed vehicle case, 

passenger scenario 1. 

We can now define values for       and           By the total probability theorem, the 
unconditional probability of a passenger being on vehicle type  ,        is the sum of the 
conditional probability that a passenger is assigned vehicle type   given they are of type 
n,           multiplied by the probability they are a passenger of type n,      . 
         is the ratio of the passenger vehicle assignment region for passengers of type n 
on vehicle   and the headway. This is the passenger assignment region divided by the 
vehicle headway:                 It directly follows from the above definitions that 
      

  

  
.   

 
                    

 

  
         

  
 (4.3)   

From Bayes‘ theorem, the conditional probability that a passenger is of type n given they 
are on vehicle type  ,         , is the ratio of passengers of type n assigned to vehicle 
type   to the total passengers assigned to vehicle type  .  
 

         
      

        
 (4.4)   

Recall that the supplier cost associated with each operation is      𝑠 , where 𝑠  is the 
number of seats per departure on vehicle type  . Assuming a load factor of one, the seats 
per operation is equal to the number of passengers on each vehicle 
 𝑠          (4.5)   
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Having determined these relationships, we can now specify the total logistics cost per 
passenger for the single and the mixed vehicle case.  
 
4.2.1 Single Vehicle Fleets 

For single vehicle fleets, we define the objective function as the total logistics cost of an 
intercity transportation corridor served by a vehicle   where      . The difference in cost 
between the two vehicles whose departures bound the headway is zero, as they are 
identical. Also, when considering single vehicle fleets, vehicle headways are simply the 
inverse of frequency. It follows that the expected passenger wait time is independent of 
passenger group n and simply one-quarter of the inverse of frequency (4.6).  

 𝑤    
 

   
 (4.6)   

The objective function is to minimize the total logistics cost per passenger. It will be 
convenient to superscript the decision variable and the total logistics cost (TLC) at 
optimal frequency with the passenger scenario and the letter b to designate base case: 
  

         
   .  

 
The TLC is defined by the following:  
 

   
    

  
     

  
      

 

 
 

   

         
 

   
     

  

 

 
 

 

 
  

     

  
    

 

  
         

 

   
    

 
 

(4.7)   

In this function, two costs are related to the decision variable   
   . The fixed supplier 

cost is positively related to the decision variable (more vehicle operations, higher fixed 
cost), while the passenger cost is negatively related to   

    (increased vehicle operations 
reduces schedule delay). Daganzo (1999) discusses this cost tradeoff in the logistics 
literature, where the decision variable is the shipment size (termed the Economic Order 
Quantity (EOQ)). The formulation of (4.7) defines the decision variable as the frequency 
of ―shipments‖ or vehicle operations.  
 
As the total logistics cost function is non-linear and convex, we can determine the 
optimal value of frequency:  
 

  
    

  
      

   
 

 
 

 (4.8)   

 
Which is a true minimum as     

    
    

  
      

    
    

   .  

 
The frequency that minimizes TLC is inversely proportional to fixed vehicle cost and 
positively related to passenger flow and value of time, capturing the EOQ tradeoff costs.  
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We can now develop a function for the vehicle-specific TLC per passenger at optimal 
frequency. 
 

  
    

    
          

 
          

  
 (4.9)   

The quantity           
 

  and the value of optimal frequency (4.8) represent the 
primary competing forces in intercity transportation: economies of scale and passenger 
preference for customized service. As fixed costs increase, then, all else equal, frequency 
decreases, because of the greater cost penalty for operating more flights. Conversely, as 
passenger value of time and/or demand increases, then, all else equal, frequency of 
operations increase as passengers – either individually or collectively – derive more value 
from frequent service.  
 
4.2.2 Mixed Vehicle Fleets    

The objective function is now for the total logistics cost of an intercity transportation 
corridor served by vehicles in set  . The decision variable is the frequency of the mixed 
vehicle fleet per unit time which, following the deployment assumption above, is equally 
divided across the two available vehicle types (identified by j and k hereafter). For each 
vehicle pair, the following inequalities are assumed to hold:            .  
 
The notation for the decision variable is   

   , where 1 is the passenger scenario and 𝑎 
corresponds to the case number 𝑎                 . The following case will be 
designated the base case (b) for passenger scenario 1 and the key quantities will be 
designated   

    for the decision variable and   
    for the objective function.  

 
We begin building the objective function assuming that a non-zero fraction of each 
passenger group is assigned to each of the two vehicle types. This means that no 
passenger group can have a time interval for departure that exceeds a full headway, 
which leads to the following condition in order for the objective function to be valid:  
 

 
 

     
    

          (4.10)   

Cases 𝑎              for which this assumption is violated are discussed in the 
following section.  
 

The supplier cost per passenger of the mixed vehicle fleet is      
   

   
           . The 

passenger cost is a function of the fraction of passengers of each type n on each vehicle 
type i,              , and the passenger cost incurred by passengers of each group on 
that aircraft type,       𝑤     . Thus, the passenger cost expression is  
                         𝑤    . By summing the passenger and supplier cost 
expressions, we achieve the objective function, the total logistics cost per unit time for 
the mixed technology case:  
  



59 
 

  
           

    
   

        
       

 
           

   

 𝑤      

   
    

   

      

 
  

             

  
   

    
 

      

        
    

 

   
    

    

 
    

(4.11)   

 
We now find the value of   

    that minimizes   . The optimum frequency is thus: 
 

  
    

  
      

                  
 

  
 

 
 

 (4.12)   

 

Which is a true minimum as     
   

    
    

  
      

      
    

   .  

 
The frequency that minimizes TLC is related to the sum of the fixed vehicle cost, 
passenger value of time, and the flow of passengers, reflecting the EOQ tradeoff. In this 
way, the optimal frequency is similar in the single and mixed vehicle cases. However, in 
the mixed case we also have a function of the assignment areas in the form of the 
generalized cost (time) differential    . If    

     such that the vehicle have the same 
travel time and variable cost, and    is constant   , then   

    
   

    
. If    

    and 
   is constant     as the difference in generalized cost increases, the interpretation is that 
schedule delay is more onerous than travel time for passenger group  . Passengers in 
group   are less willing to wait for a particular vehicle, and therefore, the overall 
frequency increases.  
 
Using   

     we achieve a function for the minimum total logistics cost of a mixed 
vehicle fleet. The total logistics cost function at optimality shown in (4.13), again with a 
component capturing the trade between fixed cost and passenger value of time:  

  
    

 
                          

 
                  

 
  

 
 

 

   
 

(4.13)   

 
Two components of this function that are directly related to two components of the single 
vehicle total logistics cost function:           

   
 
    

 
. Simply replacing       in the 
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single vehicle total logistics cost function with the weighted average of each value yields 
these two components, showing the similarity of the two functions. However, the 
function incorporates the generalized cost differential. As the generalized cost differential 
increases, the contribution of passenger flow and value of time decreases, as passengers 
are, if     

     experiencing reduced schedule delay. 
 
The optimal solution is (4.13) when conditions outlined in (4.10) are met; we term this 
the base case. However, there are five ways that these conditions can be violated. These 
groups are presented in two categories due to their similarities. Upon determining that the 
conditions in (4.10) are violated with the optimal value of frequency in (4.12), the 
appropriate case is determined using the optimal value of frequency   

    
  Recall the 

case designation 𝑎, where 𝑎 corresponds to the case number 𝑎                 . 
Case 𝑎=b designates the ―base case‖ when the conditions in (4.10) are met. 
 
Group 1: All passengers on one vehicle type  

Case 1-1    
    

 
 

     
      : All passengers assigned to vehicle type   

Case 1-2    
    

  
 

     
     

 

     
     : All passengers assigned to vehicle type   

 
Group 2: Some passengers are divided between vehicles 
Assuming two vehicle types         and two passenger types         

Case 1-3    
    

  
 

     
       

    
  

 

     
 : All passengers of type   are assigned to 

vehicle type   

Case 1-4    
    

  
 

     
       

    
  

 

     
 : All passengers of type   are assigned to 

vehicle type   

Case 1-5    
    

  
 

     
        

 

     
     : All passengers of type   are assigned 

to vehicle type  , and all passengers of type   are assigned to vehicle type   
 
A new function is developed for each case and a new optimal frequency determined, 
which is considered in the following sections.   
 
Case 1-1 and 1-2 
In case 1-1 and 1-2 there are no passengers divided between vehicle types, and all 
passengers are simply assigned to one vehicle type. These bounds represent the limitation 
of the assumption that passengers must be served in the headway in which they desire to 
depart. In the mixed vehicle case, when    occurs earlier than the departure time of 
vehicle type   for all passenger groups n, the physical interpretation is that all passengers 
are willing to wait longer than a full headway for Vehicle   (case 1-1). Hence,   

    
 

 

     
      . Case 1-2 is when    is later than the departure time of Vehicle   for all 

passenger groups n, and passengers are willing to wait longer than a full headway for 
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Vehicle  . The mathematical representation of case 1-2 is   
    

  
 

     
      

 

     
 

     . These two cases are illustrated in Figure 4.3.  
 

Mixed Vehicle Total Logistics Cost 
Function: Bounds Violated, Case 1-1 

Mixed Vehicle Total Logistics Cost 
Function: Bounds Violated, Case 1-2 

  
Figure 4.3 Generalized cost (time) and related quantities under the violated passenger 

assignment assumption, Case 1-1 and 1-2. 

We can define a new total logistics cost function based on each of these two cases. In 
fact, except for a change of index, the function for both cases is the same. Define index i 
so that for case 1-1 i=j and for case 1-2 i=k. The decision variable at optimality for case 
1-1 is   

    , for case 1-2   
    

  The supplier cost is based on the fixed cost of both 
vehicles and the variable cost of the vehicle to which all passengers are assigned. Since 
all passengers are assigned to one vehicle, the expected value of schedule delay is one-
half the headway, and the travel time is that of the vehicle to which all passengers are 
assigned.  

  
    

        
   

   
    

      

  
    

 

   
     𝑎        (4.14)   

 
Similarly to (4.12), the frequency that minimizes (4.14) is:  
 

  
    

  
      

      
 

 
 

 𝑎        (4.15)   

 
Which is a true minimum as     
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We expect the optimal frequency to resemble the optimal frequency from the single 
vehicle cost, as the schedule delay is equal in both cases. We find the TLC at optimal 
frequency to be a simple function of the variable cost and travel time on vehicle i and the 
sum of the fixed costs.   

  
    

 
                

 
          

  
     𝑎        (4.16)   

Case 1-1 and 1-2 are virtually the single vehicle case, as all passengers are assigned to 
one vehicle. The difference is in the sum of the fixed costs, which is reflected in the total 
logistics cost at optimal frequency. In further similarity to the single vehicle case, as 
passengers are directly assigned to vehicles, the solution is valid over the entire range. 
Therefore, cases 1.1 and 1.2 are terminal cases.   
 
We note that for cases 1-1 and 1-2 the mixed fleet is never optimal, since the costs could 
be further reduced by not operating the class of vehicles that are empty. We present this 
―degenerate case‖ mainly for completeness.   
 
Case 1-3 1-4, and 1-5 
In cases 1-3; 1-4; and 1-5; we restrict our attention to cases with two passenger groups, 
one with a low value of time (indexed  ) and the other with a high value of time (indexed 
 ), so      . In case 1-3 and 1-4, one group of passengers         will divide between 
vehicle types while the other will not. In case 1-5, there are no passengers of type   
assigned to vehicle type  , and no passengers of type   assigned to vehicle type  .  
 
Case 1-3 
In case 1-3 a passenger of type h experiences Zj,h, the assignment area for a vehicle of 

type j, which is longer than a full headway, such that   
    

  
 

     
 . Passengers of type l 

are divided between the two vehicle types such that   
    

  
 

     
 . Case 1-3 is illustrated 

by Figure 4.4. Case 1-4 is very similar, with passengers of type h divided between 

vehicles (  
    

  
 

     
 ) and passengers of type l experiencing an assignment area for 

vehicle type k, Zk,l, such that   
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Mixed Vehicle Total Logistics Cost Function: Bounds Violated, Case 1-3 

  
Figure 4.4 Generalized cost (time) and related quantities under the violated passenger 

assignment assumption, Case 1-3.  

In case 1-3 there are no passengers of type   on vehicle type  . We need a new 
expression for      , the proportion of passengers on vehicle type  . All passengers of 
type   are on vehicle type   and all passengers of type   who desire to depart in the 
assignment period      are on vehicle type  . Passengers of type   who desire to depart in 
assignment period      are on vehicle  . Hence: 

      
      

          

  
 

 

      
   

          

  
 

(4.17)   

We also define the conditional probability that a passenger is assigned to vehicle type   
given they are of type  :.  
                        

 

          
  

         

  
 

(4.18)  
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We write the final total logistics cost function:  

  
      

    
   

   
                       𝑤     

   
 

 
    

  
    

 

   
     

(4.19)   

And the optimal frequency:  
 

  
    

  
     

    

 

         
         

 

 
 

 (4.20)   

Which is a true minimum as     
   

    
    

  
     

    
 

   
    

 
  

  .  

 
We find the total logistics cost at optimal frequency by substituting for   

    :  

  
     

 

   
       

 
                   

                   
   

     
       

 
 
  

(4.21)  

 
We have the same components as the single vehicle case, yet the costs related to 
passengers of type   are weighted more heavily. These passengers do not divide between 
vehicle types, and their expected schedule delay is greater than for passengers of type  .  
 

The bounds on this function are related to (4.10), such that   

     
    

    
  . If this holds, 

then case 1-3 is the optimal mixed vehicle case. It is possible that, upon solving for 

optimal frequency   
    , that   

     
    

    
   . If this occurs, passengers of type l are no 

longer divided between vehicle types. Therefore, all passengers of type   are on vehicle 
type  , and all passengers of type l are on vehicle type   or  . Using the new value for 
optimal frequency   

    , we determine which case, 1-1 or 1-5, to which the value of 
  

     belongs.  
 
In case 1-1 no passengers are assigned to vehicle type k. This is the case to be executed if  
  

    
 

 

     
  .   
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In case 1-5, no passengers of type   are assigned to vehicle type  , and no                            
passengers of type   are assigned to vehicle type  . This is the case to be executed if 

  
    

  
 

     
      

 

     
  .   

 
As these two alterative cases are terminal cases, solving for case 1-1 or 1-5 would be the 
final step.   
 
Case 1-4 

In case 1-4, there are no passengers of type   on vehicle type  , as   
    

  
 

     
 , and  

passengers of type   are split between vehicle types as   
    

 
 

     
. We need a new 

expression the quantities for      . All passengers of type   in one headway are on 
vehicle type  . All passengers of type   who desire to depart in the assignment period 
     are on vehicle type  . Passengers of type   who desire to depart in assignment period 
     are on vehicle of type  . Hence:  
 

      
   

          

  
 

 

      
      

          

  
 

(4.22)  

We also need the conditional probability that a passenger is assigned to vehicle type i 
given they are of type  :  
 

         
  

         

  
 

 
                       

(4.23)  

 
We can write the final total logistics cost function:  

  
      

    
   

   
                       𝑤     

   

 
    

  
    

 

   
   

  
(4.24)  

And the optimal frequency:  
 

  
    

  
     

    

 
        

        

 

 
 

 (4.25)  

 

Which is a true minimum as     
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We find the total logistics cost at optimal frequency:  

  
     

 

   
       

 
                   

                   
   

     
       

 
 
  

(4.26)  

 
Again we have the same components as the single vehicle case, yet the costs related to 
passengers of type   are weighted more heavily. These passengers do not divide between 
vehicle types, and their expected schedule delay is greater than for passengers of type  .  
 
Similar to case 1-3 it is possible that, upon solving for optimal frequency   

    , that 

 
 

     
    

    
   . If this occurs, passengers of type h are no longer divided between 

vehicle types. All passengers of type   are on vehicle type  , and all passengers of type h 
are on one vehicle type. Using   

    , we determine which case, 1-2 or 1-5, for which the 
value of   

     conforms.  
 
In case 1-2 no passengers are assigned to vehicle type j. This is the case if   

    
 

 
 

     
     

 

     
  . 

 
In case 1-5, no passengers of type   are assigned to vehicle type  , and no                            
passengers of type   are assigned to vehicle type  . This case occurs if   

    
 

 

     
 

  . 
 
As these two alterative cases are terminal cases, solving for case 1-2 or 1-5 would be the 
final step.   
 
Case 1-5 
In case 1-5, there are no passengers of type   assigned to the fast, expensive, vehicle type 
 , and no passengers of type   assigned to the slow, inexpensive, vehicle type  . 

Therefore, the optimal frequency   
    

  
 

     
         . In this case, illustrated by 

Figure 4.5, a passenger of type h has a Zj,h that is longer than a full headway, and likewise 
for Zk,l. for passengers of type l.  
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Mixed Vehicle Total Logistics Cost Function: Bounds Violated, Case 1-5 

  
Figure 4.5 Generalized cost (time) and related quantities under the violated passenger 

assignment assumption, Case 1-5.   

The total logistics cost function for case 1-5 reflects the fact that both passenger groups 
are assigned to dedicated vehicles. Therefore, the expected value of schedule delay is 
one-half the headway, and the travel time for a group is simply that of the vehicle to 
which it is assigned. 

  
    

        
   

   
 

  

  
          

 

   
     

 
  

  
          

 

   
      

(4.27)   

The frequency that minimizes   
    is identical to   

     and   
    :  

 

  
    

  
      

      
 

 
 

 (4.28)   

Which is a true minimum as     
   

    
    

  
      

    
    

 
  

  .  

 
The frequency is identical to   

     and   
     because in these three cases the schedule 

delay is equal for all groups, as is the fixed cost. We find the TLC at optimal frequency to 
be a simple function of the variable cost and travel time on each vehicle i incurred 
separately by each passenger group and the sum of the fixed costs. This is again very 
similar to cases 1-1 and 1-2 except that here only passengers of type   incur costs related 
to vehicle type   while passengers of type   incur costs related to vehicle type  .  
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          (4.29)   

Passenger groups are assigned to dedicated vehicles in this case, so the concept of 
assignment region does not apply. Therefore, case 1-5 is a terminal case.  
 
Now that the single vehicle case, the mixed vehicle base case, and the five alternative 
mixed vehicle cases are solved, we present the solution algorithm.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.6 Passenger scenario 1 solution algorithm. 

Upon solving for   
    

   (single vehicle case), and   
     through the solution algorithm, 

we find the minimum total logistics cost combination (either single or mixed) by 
enumeration. In solving this function we are looking for the technology mix of both 
technology size and type that minimizes cost across all potential mixes.   
 

3. Solve   
    

 and   
    

for 
vehicles j and k 

1. Solve the unconstrained mixed vehicle 
case for   

     and   
     

2. Check   
     is within defined bounds  

2a. Use   
     to determine 

valid case (1-1 through 1-5) 
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     and 

   
     of this case 

If   
     is within 
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     is 
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If case 1-3, 1-4, or 1-5 occurs, it may be beneficial from a cost perspective to integrate 
the single and mixed vehicle cases such that all headways are not bound by vehicles of 
the same technology. This will be explored in passenger scenario 3, section 4.4.  
 
4.3  Total Logistics Cost Models for Passenger Scenario Two 
In passenger scenario 2 rather than having discrete passenger groups, we assume that 
passengers have a value of time that follows a continuous distribution. We consider that 
at each point t, a passenger will be assigned one of the two vehicle departures that bound 
the headway in which they desire to depart. They will be assigned based on their value of 
time, such that at each point t there is a breakeven value of time   𝑡 . We define notation 
for parameters and decision variables:  
 
Parameters:  

   Vehicle fixed cost,             

   Vehicle variable cost,             

   In-vehicle travel time,                

   Total flow of passengers,                

𝑡  Time 

  𝑡  Indifference value of passenger time,                  

      Minimum and maximum values for the distribution of value of time 

    𝑡   Probability a passenger has a value of time below   𝑡  

 
Decision Variable:  
The decision variable is vehicle frequency, F, for the two possible vehicle combinations:  

    Vehicle frequency (single technology combination),                 
   Vehicle frequency (mixed technology combination),                 

 
4.3.1 Single Vehicle Fleet  
Consider one headway with a time of the first vehicle departure at 0 and the second 
vehicle departure at  

  
, as shown in Figure 4.7. Both vehicles have the same non-schedule 

delay component,    
  

 
 for a passenger with value of time  . Therefore, passengers 

who fall in  𝑡    𝑡  
 

   
 will be assigned to the vehicle that departs at time 0; 

passengers with 𝑡 
 

   
 𝑡  

 

  
  will be assigned to the vehicle that departs at  

  
.  
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Figure 4.7 Generalized cost (time) and related quantities for the single vehicle case, 

passenger scenario 2. 

The supplier cost per passenger has the same form as in (4.7). Using the superscript with 
the passenger scenario 2 and the base case designator, the number of passengers on each 
vehicle is  

  
   . The supplier cost per passenger is the sum of the fixed and the variable 

cost per passenger.  
   

     

 
    (4.30)   

If value of time and desired departure time are independently and uniformly distributed, 
then the expected value of   is a function of the upper (  ) and lower (  ) bounds. 
Because we are considering passenger cost on a per passenger basis, we consider the cost 
incurred by a passenger,      

 
    𝑡 , over each time slice t weighted by the 

probability a passenger arrives at time t,   
   .  

 

   
    

     

 
     𝑡 

 

  
   

 

 𝑡 (4.31)   

The objective function is the sum of (4.30) and (4.31).  
 

  
    

  
     

 
     

     

 
  

 

   
        (4.32)   

The total logistics cost function is non-linear and convex, and again we can determine the 
optimal value of frequency by minimizing   

    over the decision variable   
   .  
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 (4.33)  

Which is a true minimum as     
   

    
    

  
  

    
    

   .  

 
The frequency that minimizes TLC under passenger scenario 2 is strongly reminiscent of 
the frequency that minimizes TLC under passenger scenario 1 (4.8). The optimum 
frequency depends on fixed vehicle cost, passenger flow, and the bounds on passenger 
value of time, again reflecting the EOQ tradeoff costs. We can now develop a function 
for the vehicle-specific TLC per passenger at optimal frequency, that is related to (4.9).  
 

  
    

  
         

 
 

 
 

    
         

 
 (4.34)  

 
As in (4.9), we see that the quantity           represents the trade between economies 
of scale and passenger preference for customized service.   
 
4.3.2 Mixed Vehicle Fleet  
In the mixed vehicle case, a passenger who desires to depart at time 𝑡    𝑡  

 

  
  will be 

assigned to either a vehicle of type k or j. We assume value of time and desired departure 
time are independently and uniformly distributed and consider a value of time unique to 
each departure time t for which passengers who arrive at t are indifferent to both vehicle 
types. This is termed the indifference value of time,   𝑡 . The generalized cost of a 
passenger desiring to depart at time t is the sum of the vehicle travel time,   , the 
variable cost divided by the indifference value of time,   

    
  and the schedule delay. The 

schedule delay is for a passenger who desires to depart at t would be 𝑡 for vehicle type k 
or   

  
 𝑡 for vehicle type j (Figure 4.8). We find the indifference value of time (as a 

function of t) by setting the generalized cost incurred by a passenger on either vehicle to 
be equal:  
 

   
  

  𝑡 
 𝑡     

  

  𝑡 
 

 

  
    

 𝑡 (4.35)  

 
  𝑡  

     

        𝑡  
 

  
    

 (4.36)  
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Figure 4.8 Generalized cost (time) and related quantities for the mixed vehicle case for 

passenger scenario 2. 

A headway with a departure at 𝑡    of vehicle type k and a departure at 𝑡  
 

  
 of vehicle 

type j is identical to a headway with the opposite vehicle departure profile. Therefore, we 
consider the headway shown in Figure 4.8 to be representative for the entire corridor.  
 
Because passenger value of time follows a distribution, the probability that a passenger 
has a value of time below the critical value is the cumulative distribution function at   𝑡 , 
    𝑡  . The remaining       𝑡   is the fraction of passengers with a time value 
greater than the indifference value of time.  
 
As we consider passenger value of time to follow a uniform distribution, the following 
hold: 

 
        𝑡   

  𝑡    

 
 

 

        𝑡   
  𝑡    

 
 

     𝑡     (4.37)  

     𝑡   
  𝑡    

     
      𝑡     (4.38)  

In considering   𝑡  over the range      𝑡     we are ensuring that       𝑡     
(we will explore cases when   𝑡  violates these bounds in the following section). The left 
pane of Figure 4.9 shows the range of the CDF,     𝑡  ,  for which      𝑡    ; the 
right pane of Figure 4.9 shows the graph of   𝑡  vs. t, over the range      𝑡    .  
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Figure 4.9 CDF and indifference value of time, mixed vehicle case. 

As the case presented below is for when   𝑡          we will term this the base case 
and use the notation   

    and   
    for the decision variable and the objective function, 

respectively.   
 
The variable supplier cost and the passenger cost both involve the cumulative distribution 
function, and represent a weighted average passenger and variable supplier cost. It will be 
convenient to refer to the sum of the passenger cost and variable supplier cost as      
where a represents the case designation. We integrate the sum over t over the interval 
   

 

  
     and multiply the sum by   

    to consider the weighted average number of 
passengers that arrive in each time interval t.  

       
           𝑡           

       𝑡
   

    
  

 

            𝑡   

     𝑡       𝑡             𝑡    

(4.39)  

     
         

       
 

  
       

         
       

      

   
          

 
  

          
 

        
   

     
          

    
          

   
(4.40)  

 

The total logistics cost function is the sum of the fixed cost,   
         

  
  and     :  
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(4.41)  

Let us assume that the lower bound of the value of time distribution is zero (    ) and 
the resulting total logistics cost is:  

     
  

         

  
    

  

 
 

 

  
        

 
  

          
 

   
   

     
          

    
          

   
(4.42)  

Upon setting     , we see that      depends mostly on variables related to vehicle 
type j, with the exception of the fixed cost and the log component. Equation (4.40) in this 
form does not have an analytic solution. As there is a single component adding to the 

complication, 
  

          
 

   
   

     
          

    
          

  , we will explore the contribution of this 

component. We define upper and lower bounds of the following quantities:        , 
       ,   

   , and   . We estimate the bounds for         and         by 
analyzing the dataset described in the previous chapter.11 The bounds for    are drawn 
from the literature. The bounds for   

    are determined by estimation of the single 
vehicle case using already established bounds.  
 
We define two functions: the full model (4.42) and the truncated model (4.43), which is 
the full model without the log term.   
 

 
  

     
  

         

  
    

  

 
 

 

   
        (4.43)  

Values for each quantity, evenly spaced across the defined interval are chosen; for all 
value combinations we calculate   

    and   
     and find an average percent difference   

(-4.10%), maximum percent difference (-13.19%), and 90th percentile percent difference 
(-7.02%). These values are relatively small, especially considering the overall purpose of 
the model is to develop qualitative insights than precise values. To gain insights from an 
analytic form, we use the truncated model. We find the frequency that minimizes total 
logistics cost by minimizing the total logistics cost function over the decision variable 
  

     .  

                                                 
11 Aircraft operating statistics and costs collected by the Department of Transportation from 2003-2008, on 
a per airline, per aircraft type, per year-quarter basis.    
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 (4.44)  

 

Which is a true minimum as     
    

    
     

  
  

    
     

   .  

 
We see that the frequency that minimizes   

     is of a very similar form to   
     and 

   
    , the mixed vehicle case for passenger scenario 1 when all passenger groups are 

assigned to one vehicle type.  
 
The total logistics cost function at optimal frequency is a function of the variable cost and 
the travel time on vehicle j, the sum of the fixed cost, and the upper bound of the value of 
time distribution. The fixed cost captures the cost of both vehicle types, while the 
variable cost and the travel time are only dependent on vehicle type j. When 
approximating the passenger scenario 2 base case with   

     , we are implicitly assuming 
all passengers are assigned to vehicle type j without violating the boundary conditions. 
The values    and    factor into the function in the full form of   

   , but also in the 
bounds for which   

      is valid.  
 

  
       

        

  
 

 
 

    
    

 
 (4.45)  

As we set     , the optimal solution in (4.45) is valid when     𝑡    . However, 
the conditions can be violated when   𝑡    (note   𝑡  can never be equal to zero due to 
construction) or   𝑡     . Upon determining that the conditions are violated, the 
appropriate case is determined using the indifference value of time. There are five ways 
that these conditions can be violated, that yield two mathematically unique solutions. 
Therefore, the cases are presented in two groups, case 2-1 and case 2-2; each group has 
sub-cases and one unique mathematical solution. For all cases, we consider t on the 
interval    

 

  
  and passengers with a value of time   on the interval       .  

 
Case 2-1: All passengers are assigned to vehicle type k 

Case 2-1(a)   𝑡     𝑡 
Case 2-1(b)   𝑡      𝑡 
Case 2-1(c) Combination of case 2-1(a) and case 2-1(b) 
 

Case 2-2: Some passengers are divided between vehicle types 
Case 2-3(a)   𝑡     Combination of case 2-1(b) and the base case 
Case 2-3(b)   𝑡   : Combination of case 2-1(a), 2-1(b), and the base case  

A new function is developed for each case.  
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Case 2-1 
If    𝑡     𝑡 or   𝑡      𝑡, there are no passengers divided between vehicle types, 
and all passengers are simply assigned to one vehicle type. In case 2-1(a),   𝑡     𝑡, 
such that for all wished-for departure times t, the indifference value of time is negative. 
This means that, when schedule delay is taken into account, vehicle j takes longer than 
the less expensive vehicle k. Since we assume that no passengers would be willing to 
spend more for a longer trip, all passengers will choose vehicle k in this case. Case 2-1(b) 
is when   𝑡      𝑡, such that passengers have an indifference value of time that is 
greater than the upper bound. This means no passenger is willing to pay the extra cost 
required to take the fast, more expensive vehicle. Thus they are all assigned to vehicle 
type k. In case 2-1(c), some values of t make it such that   𝑡   , while for other values 
  𝑡    . Despite the discontinuity, case 2-1(c) identical to (a) and (b) such that all 
passengers are assigned to vehicle type k. These three cases are illustrated in Figure 4.10, 
which shows the range of     𝑡   each case captures and the graph of   𝑡     𝑡    
 
In both cases, as no passengers are divided between vehicle types, the expected value of 
time is   

 
. The total logistics cost function is then a very simple function of the supplier 

and passenger cost:  
 

  
    

  
         

  
    

  

 
 

 

   
   

     (4.46)   

This function is identical to the unbounded case truncated model, except k is the vehicle 
incurring costs of    and  . This follows directly from our understanding of   

     , as we 
are implicitly assuming all passengers are assigned to one vehicle type. Because this 
function is identical to   

    , then   
    

   
     . It is therefore not possible for 

passengers to further reduce costs by dividing between vehicles. As such, case 2-1 is a 
terminal case, such that if, upon solving for the base case, it is determined that   𝑡  is 
outside       , then case 2-1 is the final case to be solved.  
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Case 2-1(a) 

  
Case 2-1(b) 

  
Case 2-1(c) 

  
 
Case 2-2 
For case 2-2, two different scenarios yield mathematically the same result. The cases are 
identical, as passengers are assigned to vehicle type k until a time for which   𝑡    ; 
after this point in time passenger are divided between vehicles.  
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In case 2-2(a), passengers arrive at certain times t for which      𝑡 , with the 
indifference value of time that is equal to or greater than the upper bound, such that they 
are assigned to vehicle type k. Passengers arriving at t such that     𝑡     will 
divided between vehicles.  
 
In case 2-2(b),     𝑡     for some t such that passengers are divided between 
vehicles; while   𝑡     for some t and   𝑡    for some t such that passengers are all 
assigned to vehicle k. At the discontinuity (shown in the lower panel of Figure 4.10) all 
passengers continue to be assigned to vehicle type k as   𝑡  approaches   , as   𝑡    .  
The region of the CDF for which these sub-cases fall, and the graph of   𝑡  𝑣𝑠 𝑡 are 
shown in Figure 4.10. 

Case 2-2(a) 

  
Case 2-2(b) 

  
Figure 4.10 CDF and indifference value of time, Case 2-2. 

We have two ―regimes‖ in case 2-2 separated by a time 𝑡   ,   𝑡    
 

  
. This is the 

time for which   𝑡     and the instant for which      𝑡    : 
 

𝑡    
     

   
 

 

   
   

 
     

 
 (4.47)   
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All passengers who arrive on the interval   𝑡  𝑡    are assigned to vehicle type k, 
while passengers who arrive on the interval 𝑡    𝑡  

 

  
    are divided between 

vehicles. Following the notation established in the base case, the sum of the variable cost 
component of the supplier cost and the passenger cost of the total logistics cost functions 
for these two regimes is termed       The sum of      and the fixed cost   

         

  
 is 

the total logistics cost:  
 

  
    

  
         

  
   

   𝑡     

    
   

  

 
 𝑡     

    

 

 𝑡

    
           𝑡      

 

  
   

    

  
 

  
   

 𝑡             𝑡   

     𝑡     

  𝑡             𝑡     𝑡 

(4.48)   

The full function and the truncated function are presented in Appendix A2.1. Again, we 
have two functions, the full model (4.48) and the truncated model without the log term, as 
we had in the base case. For all possible combinations of        ,        ,   

   , 
and   , we calculate   

    and   
    , and find an overall average percent difference                

(-3.92%), maximum percent difference (-6.83%), and 90th percentile percent difference 
(-5.28%). As was found in the base case, these values are relatively small. For the 
truncated model, we find the frequency that minimizes total logistics cost by minimizing 
the total logistics cost function   

     over the decision variable   
    .  

  

  
           

 
       

   

 
 

  
      

 

 
                     

                            

 
 
 

 

(4.49)  

Upon determining   
      it is possible that another case could become valid. However, it 

will not be possible for the base case to become valid if   
        

     . Holding all other 
components of   𝑡  constant, if  

  
 increases, the denominator of   𝑡  will decrease and 

  𝑡  will increase. Therefore, if   
        

     , the only possible case alternative to case 



80 
 

2-2 is 2-1(b) where   𝑡      𝑡, such that all passengers are assigned to vehicle type k. 
We investigate numerically and find that   

      is strictly smaller than   
      for all 

plausible ranges of   ,   ,    and      , which implies that the only possible case 
alternative is 2-1(b). The resulting value for   

     is determined with   
     . While an 

analytic solution for   
      can be determined, it is a complicated function from which it 

is difficult to gain insights and not presented.  
 
Upon determining the value of   

     , we re-calculate the value of   𝑡 . If we find that 
the initial conditions for case 2-2(a) or 2-2(b) hold, then case 2-2 is the optimal solution. 
However, it is possible that, upon solving for   

     , that the recalculation of   𝑡  finds 
that the initial conditions for case 2-2(a) or 2-2(b) are violated. Because   

        
      , 

the only possible case is that   𝑡      𝑡, case 2-1(b) such that all passengers are 
assigned to vehicle type k. As case 2-1(b) is a terminal case, solving for either case 2-1(b) 
or determining that 2-2 is the appropriate case would be the final step.   
 
Now that the single vehicle case, the mixed vehicle base case, and the three valid 
alternative mixed vehicle cases are solved, we present the solution algorithm:  
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Figure 4.11 Passenger scenario 2 solution algorithm. 

Upon solving for the single vehicle case,   
    

  , and   
     through the solution 

algorithm, we find the minimum total logistics cost combination (either single or mixed) 
by enumeration. In solving this function we are looking for the technology mix of both 
technology size and type, that minimizes cost across all potential mixes.   
 
4.4 Total Logistics Cost Models for Passenger Scenario Three 
In this section, we relax the assumption that passengers must be assigned to a vehicle 
bounding the headway in which they desire to depart. It therefore is no longer the case 
that headways must be constant and that vehicles be scheduled in an alternating sequence 
of vehicle types. To keep the discussion general, we will again consider two vehicle 
types: k and  ; the index i will represent either vehicle. We present a list of parameters 
and decision variables below.  
  

3. Solve   
    

 and   
    

for 
vehicles j and k  

1. Solve the unconstrained mixed 
vehicle case for   

     and   
     

2. Check   𝑡  is within defined bounds  

2a. Use   𝑡  to determine 
valid case (a = 1, 2) 

2b. Solve for   
     and 

   
    of this case 

If   𝑡  is within 
defined bounds 

for case 2-b 

If case 2-2 

2d. Check   𝑡  is within 
defined bounds  

If   𝑡 is outside defined bounds for case 2-b 

If   𝑡 is within 
defined bounds 

If case 2-1 

If   𝑡  is 
outside defined 

bounds 
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Parameters:  
   Vehicle fixed cost,             

   Vehicle variable cost,             

   In-vehicle travel time,                

  Total flow of passengers,                

𝑡 Time 

  𝑡  Indifference value of passenger time,                  

      Minimum and maximum values in the distribution of value of time  

    𝑡   Probability a passenger has a value of time below   𝑡  

 
Decision Variables:  

    The length of a headway when bound only by vehicles of type  ,                

    The length of a headway when bound by vehicles of type   and of type   
              ;         

 

Recall       and      , such that j is the faster, more expensive vehicle and k is the 
slower, less expensive vehicle. We limit our scope to the consideration of vehicle type k 
scheduled between two vehicles of type  . Additional changes could be made to broaden 
the scope to include a scenario with a vehicle of type k scheduled between more than two 
vehicles of type j. With minor changes, the case of vehicle type j schedule between two 
vehicles of type k could also be solved. In this model there are two types of headways: 
those bounded by a vehicle of type j only (   ), and those bound by the mixed vehicle 
types of k and j (   ). Again, we consider an infinite timeline of an intercity corridor with 
vehicles scheduled to serve a single origin destination pair with unconstrained vehicle 
availability. Shown in Figure 4.12, one cycle is equal to     

   

 
. All passengers who 

desire to depart in one cycle will be assigned to one vehicle scheduled in that cycle, as a 
passenger could never minimize their cost by crossing cycles. Therefore a single cycle 
can be evaluated alone and can be generalized to the entire corridor. Figure 4.13 shows 
the time region detail for one cycle.   
 

 
Figure 4.12 Headway and cycle representation in passenger scenario 3. 

Cycle

time

kj j j j jk

CycleCycle

   +        +        +        +        +        +     

Vehicle type

Headway type
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Figure 4.13 Generalized cost (time), time regions, and related quantities for passenger 

scenario 3. 

We again consider fleets consisting of two vehicle types. There are four passengers 
categories    , defined by the headway in which they desire to depart and the vehicle 
type to which they are assigned. These are depicted below. The first entry specifies the 
headway and the second the assigned vehicle.  
 

Passenger 
Group 

Headway Vehicle 
Type 

1 Hjj j 
2 Hkj j 
3 Hkj k 
4 Hjj k 

 
Continuing from the previous section, we consider the value of time to have a uniform 
distribution and employ the concept of indifference value of time. Under the assumptions 
of passenger scenario 3 there are two ranges for this indifference value of time: one for 
𝑡          and one for 𝑡       

   

 
 . For passengers of type 2 and 3 that desire to depart 

in    , the indifference value of time is the same as determined in the previous section, 

  𝑡  
     

            
. For passengers type 4 and 1 that desire to depart in    , we must 

derive the value. We do this by considering a headway interval   𝑡  
   

 
  and setting 

the generalized costs of passenger type 4 to that of the generalized cost of passenger type 
1.  
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  𝑡 
 𝑡         

  

  𝑡 
 𝑡        𝑡  

   

 
 (4.50)   

 
  𝑡  

     

          
                  𝑡  

   

 
 (4.51)  

Note that the indifference value of time does not depend on the desired departure time 𝑡. 
Both passenger types would incur a time cost of t, while only passenger group 4 would 
incur the additional cost of    .   
 
The indifference value of time   𝑡  is:  
 

 
  𝑡   

     

       𝑡     
                   𝑡      

(4.52)         

          
                       𝑡  

   

 
 

In the following sections we will build the passenger cost and variable supplier cost 
functions for the two groups of passengers that arrive in the same headway: 2 and 3, and 
1 and 4. The fixed operating cost is discussed in the next section. It will be again be 
convenient to superscript the decision variables and the total logistics cost with the case 
designation 3-a, and refer to the sum of the passenger cost and variable supplier cost as 
         . We begin with the base case for passenger scenario 3 and present additional 
cases in the following section.  
 
Passenger cost function, type 2 and 3 
Passengers of type 2 and 3 arrive in a headway of type     bound by vehicles of type k 
and j. Passengers of type 2 are assigned to vehicle of type j and passengers of type 3 are 
assigned to vehicle of type  . Passengers served in a headway of type     desire to depart 
at a time 𝑡         . These passengers and their related costs are identical to those 
explored previously in section 4.3.2. A passenger of type 2 who desires to depart at time 𝑡 
will incur a schedule delay cost of     𝑡 and a travel time cost of   , while a passenger 
of type 3 who desires to depart at a time 𝑡 would incur a schedule delay cost of 𝑡 and a 
travel time of   . The passenger and variable cost derived in (4.48) are shown again 
below in (4.53) and (4.54):  

           
 

   
           𝑡      

   
   

 

     
    𝑡             𝑡   

     𝑡       𝑡             𝑡     𝑡 

(4.53)   
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(4.54)   

Following the discussion in the previous section regarding bounds, (4.54) holds when 
    𝑡    . Violation of this bound is discussed in the previous section. 
 
Passenger cost function, type 1 and 4 
Passengers of type 1 and 4 arrive in a headway of type     bound by two vehicles of type 
j. By definition passengers of type 1 are assigned to vehicle of type j and passengers of 
type 4 are assigned to vehicle of type  . If we consider the first vehicle in this headway to 
depart at time 0 (rather than    ), passengers who desire to depart in a headway of type 
    can do so over the time interval 𝑡     

   

 
 . A passenger of type 1 who arrives at time 

𝑡 will incur a schedule delay cost of 𝑡 and a travel time cost of   ; a passenger of type 4 
would incur a schedule delay cost of     𝑡 and a travel time of   .  
  
Expressions for the expected passenger value of time and the cumulative percent of 
passengers with value of time   𝑡  in (4.37) and (4.38) hold. The passenger cost and the 
variable operating cost for a passenger that desires to depart over time interval 𝑡     

   

 
  

is therefore: 
 

           
 

   
           𝑡      

   
   

 

 

  𝑡             𝑡   

     𝑡     

     
    𝑡             𝑡     𝑡 

(4.55)   

We multiply this equation by  

  
 to calculate the weighted average considering the 

number of passengers that arrive in each time slice 𝑡   𝑡  
   

 
. We solve the integral 

and achieve:  
 

             
  

 
 
   

   

 
     

        

       
          

 (4.56)   

With substitution of function (4.52), we see that this function is:  
 

             
  

 
 
   

   

 
     

  𝑡 

  
 
     

 
  (4.57)   
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The first two terms of the function capture the passenger cost for a passenger of type 1 
assigned to vehicle type j. The third term captures the difference in variable costs and the 
percent of passengers who are assigned to vehicle type k. This term will be negative by 
definition, such that the overall contribution of the variable cost will be less than   , 
reflecting that some passengers incur    for which      .  
 
Equation (4.56) considers that the indifference value of time   𝑡  falls on the interval 
      . As   𝑡  is independent of t over the interval 𝑡       

   

 
 , there are only two 

ways   𝑡  can fall outside the interval       :   𝑡    or   𝑡    ; these two 
scenarios yield mathematically identically results. For convenience, we will continuing 
the numbering scheme from the previous section, and call this case 2-3. 
 
In case 2-3,   𝑡          𝑡    such that all passengers are assigned to a vehicle of 
type k. The expected schedule delay is the sum of the expected schedule delay endured in 
the headway in which they desire to depart (

   

 
), and the full headway of    . The 

function is: 
 

             
  

 
    

   

 
      (4.58)   

 
Total logistics cost function  
In defining the total logistics cost function for the base case, we must consider the fixed 
cost. For every cycle, there are       

   

 
  passengers that desire to depart. The 

operating cost per passenger is then:   
 

      

           
 (4.59)   

The total logistics cost function can be presented in a generic form. If we consider the 
passenger and variable cost components           and          , then:  
 

  
    

      

           
  

   

        
           

  
 

 
 

   

        
           

(4.60)   

where  
   

        
  is the proportion passengers that incur a cost of           and 

 

 
 

   

        
  is the proportion passengers that incur a passenger cost of             

 
For the base case 3-b, the total logistics cost function is:  
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(4.61)   

Equation (4.61) is the objective function to be minimized over     and    . An analytic 
expression for the optimum does not exist in either full or truncated form.   
 
Equation (4.61) is the objective function when      𝑡      𝑡. Upon determining this 
condition is violated for any value of t, the appropriate case can be determined using the 
indifference value of time. The total logistics cost function for passenger scenario 3 
includes costs incurred over two headway types:     and    . If the condition on   𝑡  is 
violated over 𝑡         , the alternative cases are 𝑎       , as presented in passenger 
scenario 2. If this condition is violated over 𝑡       

   

 
 , the alternative cases is 𝑎   . 

The new cases are 3-1 and 3-2:  
 
Case 3-1: Combination of case 2-1 (𝑡         ) and case 2-3 (𝑡       

   

 
 ), all 

passengers are assigned to vehicle type k 
 
Case 3-2: Combination of case 2-2 (𝑡         ), where some passengers are assigned to 

k and others divided, and the base case 3-b (𝑡       
   

 
 ), with all passengers 

divided 
 
A new total logistics cost function is developed for each case. As analytic solutions for 
optimal frequency cannot be determined, each function is described conceptually. 
 
Case 3-1 
If    𝑡     𝑡 or   𝑡      𝑡, all passengers are assigned to a vehicle of type k. Either 
range holds over 𝑡         ; because for 𝑡     ,   𝑡  takes on a constant value as the 
function for   𝑡  is independent of t over this region, the range also holds for 𝑡     . 
The graph of the indifference value of time over t for the two possible ranges of   𝑡  
which yield case 3-1 are illustrated in Figure 4.14.   
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  𝑡     𝑡    𝑡      𝑡  

  
Figure 4.14 Indifference value of time, Case 3-1. 

The expected value of time is again   

 
. The total logistics cost function is then a function 

of the supplier and passenger cost in both cases:  

  
     

   

        
            

 

 
 

   

        
          

 
      

           
 

(4.62)  

  
     

   

        
     

  

 
    

    

 
     

  
 

 
 

   

        
     

  

 
    

   

 
  

 
      

           
 

(4.63)  

 
The concept of assignment region is not relevant in these cases, as passengers are directly 
assigned to either vehicle type. Therefore, there is no possibility that, up on solving case 
3-1 or 3-2 that passengers could minimize cost by being assigned in a different way. 
Therefore, case 3-1 is a terminal case.   
 
Case 3-2 
In case 3-2, all passengers desiring to depart in a headway of type     are divided 
between vehicles such that   𝑡         (the base case, 3-b). Some passengers desiring 
to depart in a headway of type     are assigned to a vehicle of type k and the remaining 
are divided (case 2-2). The graphs of the indifference value of time over t for case 3-2 is 
illustrated in Figure 4.15.  
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    𝑡   𝑡      𝑡           𝑡  

  
Figure 4.15 Indifference value of time, Case 3-2. 

The total logistics cost function for case 3-2 is therefore:  

  
     

   

        
            

 

 
 

   

        
          

 
      

           
 

(4.64)  

Where:  

           
𝑡   

   
     

  

    

 𝑡     
    

 

 𝑡

  
 

   
        𝑡     

   

    

      𝑡             𝑡   

     𝑡      𝑡             𝑡     𝑡 

(4.65)  

and 𝑡    
     

   
 

   

 
 

     

 
.  

 
From the discussion related to case 2-2, it is possible that upon solving for the optimal 
frequency that   

    
   

    . If this is the result, case 3-1 should be solved for as the 
solution; and as it is a terminal case, should be the final solution.  
 
Now that the single vehicle case, the mixed vehicle base case, and the alternative mixed 
vehicle cases are solved, we present the solution algorithm.  
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Figure 4.16 Passenger scenario 3 solution algorithm. 

Upon solving for   
    

   
     and   

    
   through the solution algorithm, we find the 

minimum total logistics cost combination (either single or mixed) by enumeration. In 
solving this function we are looking for the technology mix of both technology size and 
type, that minimizes cost across all potential mixes.   
 
In developing the model for passenger scenario 3 in this way, we capture a central 
planner organizing vehicle departures of different types jointly. It is possible to approach 
the concept of unequal headways from a different perspective. Consider uncoordinated 
vehicle departures of two vehicle types, j and k, and the two decision variables: the 
frequency of vehicle type j, Fj and the frequency of vehicle type k, Fk. Using the ratio of 
the decision variables, we can determine the headway lengths and the passenger 
assignment in each headway type. Such a model approaches capturing unequal headways 
in a more general way, yet is less consistent with the system optimal perspective of a 
central planner organizing vehicle departures of all types.   
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 and   
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3. Solve the solution algorithm in 
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mixed vehicle case 

If   𝑡  is within 
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4.5 Conclusions 
In this chapter, we develop analytic models characterizing the intercity transportation 
system to conceptually evaluate the relationship between optimum service characteristics 
and fuel price. The models represent the total logistics cost of an intercity transportation 
system in that they include both vehicle operating costs and costs incurred by the 
passenger. In summing operating and passenger costs, we exploit the cost-reducing 
potential of alternative vehicles with different cost structures and service attributes. The 
models are developed for both single and mixed vehicle services and determine the 
vehicle size, technology mix, and frequency to serve a corridor at minimum total logistics 
cost.  
 
In chapter 3 we established that supplier-to-supplier input substitution is minimal, such 
that operating costs can be modeled with a simple mathematic function. Defining 
vehicles generically and characterizing them simply with a fixed cost, a variable cost per 
seat, and a passenger cost in the form of travel time, enables the consideration of many 
intercity transportation vehicles. Furthermore, we consider aircraft vehicle size to be 
endogenous and continuous. This is the benefit of employing continuum approximation 
models and capturing all pertinent costs – those incurred from operating vehicles and 
traveling in them – in one function. While we found in chapter 3 that the interaction term 
between fuel price and aircraft size was positive, the resulting aircraft size that minimized 
operating cost per seat-mile was larger than technically feasible. Therefore, representing 
operating cost as the sum of a fixed cost and a cost that varies with seats, hence implying 
infinite aircraft size to minimize operating cost per seat-mile, is appropriate given current 
aircraft technology bounds.  
 
The total logistics cost models are formulated to be sensitive to fuel price, which may 
change significantly in the future as a result of market conditions or environmental 
policies. We find that increasing fuel price impacts vehicle frequency due to two 
components of the intercity transportation system. The first is the fixed cost – as fuel 
price increases, fixed vehicle operation cost increases, and frequency decreases. The 
second is from the vehicle variable cost per seat. As fuel price increases, the absolute 
difference between vehicle variable costs increases in a mixed vehicle service, and the 
vehicles are more differentiated. In this research we find that as vehicles become more 
differentiated, the optimal vehicle frequency increases. This is because passengers are 
increasingly unwilling to wait for a particular vehicle as the vehicles are more 
differentiated. A change in fuel price therefore forces frequency to decrease, with the rate 
of decrease diminishing with fuel price.  
 
In analyzing an intercity passenger transportation corridor, we allow for passengers with 
heterogeneous values of time. Passenger scenario 1 considers discrete passenger groups, 
each defined by a demand rate and a value of time. Passenger scenario 2 and 3 allow 
value of time to follow a continuous (uniform) distribution. Considering a distributed 
value of time captures a more realistic picture of passenger preferences. Finally, by not 
pre-defining the value of time we consider a wide range of future scenarios. It is well 
known that a single passenger experiences a value of time that varies over time and 
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situation. Furthermore, the value of time for a population will also change over time due 
to socioeconomic forces. Therefore, considering value of time a variable enables both 
parametric analysis for short and long run value of time variations.  
 
For the three passenger scenarios, we present a solution algorithm for the mixed vehicle 
total logistics cost function. As no passenger scenario has a single total logistics cost 
function that describes all mixed vehicle cases, the solution algorithm is based around a 
key value that determines the valid case. For passenger scenario 1, this is the optimal 
value of frequency. As the base case for passenger scenario 1 requires that all passengers 
be served in the headway in which they desire to depart, there is a well defined range in 
which the optimal frequency may fall. If it falls outside this range, we present five 
alternative solutions, or cases. For passenger scenarios 2 and 3, we simply find the range 
of the indifference value of time to determine the valid case. The range to which the 
indifference value of time is compared is the upper and lower bound of the value of time 
distribution; the case which is valid follows from if and how these bounds are broken. In 
presenting multiple cases for the mixed vehicle function for each passenger scenario, we 
preserve the transparency of the total logistics cost models, such that we are able to gain 
insights between fuel costs and optimal service despite the host of cases possible for each 
passenger scenario.  
 
The solution algorithms also provide us with a path to total logistics cost minimization. 
We find the minimum total logistics cost combination (either single or mixed) by 
enumeration. We first identify the vehicles under consideration and a set of input 
parameters for each vehicle. For passenger scenarios 1 and 2, we solve for the minimum 
total logistics cost in the single vehicle case for all vehicles in consideration; for 
passenger scenario 3, we solve the single vehicle case defined in passenger scenario 2. 
For passenger scenarios 1 and 2, we then solve for the mixed vehicle total logistics cost 
for all possible vehicle mixes. For passenger scenario 3, we would also solve for the 
vehicle arrangement with two vehicles of type j for each vehicle of type k. For each 
passenger scenario, we would then compare the total logistics costs of all possible vehicle 
combinations and identify the minimum total logistics cost vehicle combination.   
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5.
 
Numerical Case Study  
 
In this chapter we seek to illustrate the analytic model of intercity transportation to gain 
insights into the impact of fuel price on optimal service mix in representative corridors. 
Using the total logistics cost function for passenger scenario 1 (discrete passenger 
groups), we explore an intercity passenger transportation corridor served by jet aircraft 
technology, turboprop aircraft technology, or High Speed Rail (HSR) technology. 
Through numerical examples, we explore how the minimum cost vehicle technology 
changes with fuel price. We also explore comparative relationships across vehicle 
combinations with numerical examples, including the difference in total logistics cost 
across vehicle combinations.  
 
In chapter 3, we develop a linear operating cost model for jet aircraft; the estimated 
coefficients become parameters in the total logistics cost function. In this chapter, we 
begin by estimating a similar function on a related dataset for turboprop aircraft; 
additionally for both jet and turboprop aircraft we estimate travel time functions. As HSR 
does not exist in the United States yet, we rely on projected cost and operating statistics 
from the California High Speed Rail Business plan, published in December 2009. 
Because the figures in the business plan are projected, we validate the projections with 
cost and operating statistics reported by existing HSR systems across the world, 
summarized and presented in a report by de Rus et al. (2009).  
 
In identifying additional parameters such as demand and value of time, we collect 
operating statistics and published values from the literature and publically available 
sources. While we keep the discussion general rather than pick a specific intercity 
corridor to analyze, we base the constants on the California Corridor, specifically from 
San Francisco to Los Angeles. We choose this corridor as the distance between airports 
and between HSR stations (377 and 418 miles respectively) is similar; the passenger 
demand is mostly generated at the ends of the corridor as it is defined; and there is an 
existing high level of passenger traffic service that, by 2020, may be served by air or rail.   
 
5.1 Additional Model Development  
In this section we develop the necessary operating cost and travel time models, and 
identify additional necessary parameters to serve as inputs to the analytic total logistics 
cost model. The jet operating cost model is presented in chapter 3. In this section we 
develop and present the turboprop and HSR operating cost model. Next, we develop 
travel time relationships with distance for the three vehicle types. Finally, we establish 
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parameter values for the other key quantities based on the literature and operating 
statistics of the California Corridor.  
 
5.1.1 Turboprop Operating Cost  

In this section, we develop a linear turboprop operating cost model. We estimate this 
model using data from the same US Department of Transportation (DOT) Form 41 
database used in chapter 3. We collect 494 observations from 9 airlines and 7 aircraft 
types on a per airline    , per aircraft type (n), and per year-quarter (q) basis for the date 
range 2003-2009. We again have the key variables of seats per departure (seat), average 
stage length traveled (asl), and airline fixed effects ( ). To be consistent with the jet 
aircraft linear operating cost model, we develop a separate fuel consumption model (3.10) 
and an operating cost model without fuel costs (3.9). We add these two models together 
(with the fuel model multiplied by a fuel price) to achieve operating cost, shown in (3.8). 
Like the linear operating cost model for jet aircraft, we deflate the cost values to be in 
constant 2006 dollars. The dataset is an unbalanced panel and the same estimation 
technique, ordinary least squares and panel specific standard errors and assumed 
autocorrelation within panels, is used. The following equations show the linear jet aircraft 
technology operating cost model (5.1) and the turboprop technology operating cost model 
(5.2) (full estimation results are in Appendix A3.1 and A3.2).  

          

  𝑢        𝑠 𝑎𝑡        𝑎𝑠      

       𝑠 𝑎𝑡        𝑎𝑠      
(5.1)   

               

  𝑢        𝑠 𝑎𝑡        𝑎𝑠      

       𝑠 𝑎𝑡        𝑎𝑠      
(5.2)   

We see the turboprop operating costs are less sensitive to fuel price, an expected result 
based on conclusions from chapter 2. Turboprops burn less fuel per seat and per mile 
compared with jet aircraft. For the non-fuel operating cost, we see that the turboprop has 
a slightly higher cost related to seats and a significantly lower cost related to distance.  
 
5.1.2 Jet and Turboprop Ownership Cost  

In this section, we consider the cost of aircraft ownership, data for which is published in 
the US DOT Form 41, Schedule P-5.2. We collect data on aircraft depreciation and 
rentals for turboprops and jets separately for each airline    , aircraft type (n), and year-
quarter (q). To be consistent with the linear operating cost models, the data spans the 
years 2003-2009 inclusive and we deflate the cost values to be in constant 2006 dollars. 
We estimate separate vehicle ownership costs models following the equation in (5.3) for 
turboprop and jet aircraft, using ordinary least squares and panel specific standard errors 
and assumed autocorrelation within panels.  
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  𝑠 𝑎𝑡          (5.3)   

Where  

𝑠 𝑎𝑡    is the seat capacity  
   𝑎     are coefficients to be estimated  
 
The results are presented in Appendix A3.3 and A3.4. The constant terms were 
insignificant in both the jet and the turboprop operating cost models, so that the preferred 
model for ownership cost is simply a function of seat capacity and the airline fixed 
effects. Comparing the preferred model for turboprops and jets, we see that the value 
of    reflects the lower ownership costs of turboprops.  
 
5.1.3 High Speed Rail Cost  

Defining a HSR cost model presents a unique set of challenges compared with the aircraft 
cost model development. There are currently no HSR systems in the United States from 
which to collect cost and operating statistics. While there are many HSR systems across 
the world, publicly available data is limited and not available in a consistent format. For 
example, many HSR operators present their operating statistics in annual reports, yet 
these statistics may be aggregated with conventional rail operations. De Rus et al. (2009), 
in a comprehensive study of HSR system costs and HSR modeling techniques, notes the 
challenge of comparing (and therefore modeling) costs across HSR systems. Because 
HSR projects are built over various topographical landscapes, different technical 
solutions and levels of investment are needed. Therefore, instead of employing a 
statistical model to capture HSR costs, we will build an engineering model for HSR 
operating cost in which we sum the key drivers of cost.  
 
The data source chosen for the development of such a model is the California High Speed 
Rail Authority 2009 Business Plan Report to the Legislature. As discussed in chapter 1, 
the CA HSR system is one of the designated corridors to receive federal funding; it is 
also is under a state-wide mandate for the development of the system. Furthermore, as we 
are interested in short-haul travel, the 520 mile distance of the Phase 1 development from 
San Francisco to Anaheim and the 490 distance from San Francisco to Los Angeles is a 
good fit for the scope of the numerical example (the individual segments are presented in 
Table 5.1).  
 
Phase 1 development is expected to be complete in 2020, the year when operations begin. 
The CA HSR Business Plan reports projected operating statistics starting in 2020 from 
which we can estimate the number of operations a trainset makes in one year. The CA 
HSR Business Plan reports the number of train operations per day and the number of 
trainsets required to make this number of train operations per day (Table 5.2). It is also 
noted that trains can be made of one or two trainsets. Assuming that half of all train 
operations include a single trainset, we estimate the average operations per trainset-day to 
be 4.03, which we scale to 1470.4 operations per year.  
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Table 5.1 California High Speed Rail segments. 

Segment Start Segment End Distance (miles) 
San Francisco Bay Area San Jose 50 

San Jose Merced 120 
Merced Fresno 60 
Fresno Bakersfield 115 

Bakersfield Palmdale 85 
Palmdale Los Angeles Basin 60 

Los Angeles Basin Anaheim 30 
 

Table 5.2 Trainset operating statistics for CA HSR, 2020-2035. 

Year 

Train operations 
per day 

(Reported) 

Trainset 
operations per 

day (Estimated) 

Trainsets 
required 

(Reported) 

Operations per 
trainset-day 
(Estimated) 

2020 121 181.5 45 4.03 
2021 174 261.0 65 4.02 
2022 219 328.5 82 4.01 
2023 245 367.5 91 4.04 
2024 247 370.5 92 4.03 
2025 249 373.5 93 4.02 
2026 251 376.5 93 4.05 
2027 253 379.5 94 4.04 
2028 255 382.5 95 4.03 
2029 257 385.5 96 4.02 
2030 259 388.5 96 4.05 
2031 261 391.5 97 4.04 
2032 263 394.5 98 4.03 
2033 265 397.5 99 4.02 
2034 268 402.0 100 4.02 
2035 270 405.0 100 4.05 

 
In the following sections, we develop separate HSR cost models for ownership and 
operating costs such that the cost definitions are consistent with the aircraft cost models; 
in the final section of the chapter, we will consider the infrastructure development cost of 
HSR. One challenge related to these cost and operational estimates are that they are 
projected, not experienced. To this end, we put the cost projections into context by 
reviewing costs experienced for HSR systems across the world presented in de Rus et al. 
(2009). All values presented in this HSR section are in 2006 dollars.  
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5.1.3.1 Ownership Cost  
The CA HSR Business Plan reports that the cost of one HSR trainset, with an expected 
500 seats, is $32.17 million, or $64,340/seat. De Rus et al. (2009) reports three categories 
of HSR vehicle acquisition costs: a low cost scenario of $33,700/seat; a medium cost 
scenario of $56,167/seat; and a high cost scenario of $73,017/seat. The CA HSR Business 
Plan estimates are between the medium and high scenarios. 
 
To achieve a value of vehicle ownership cost per operation, we estimate the value of 
vehicle ownership for an increment of time and then scale this cost by the number of 
operations. We will do this by using the capital recovery formula presented by de 
Neufville (1990) shown in (5.4). This function converts the total purchase price into a 
present value of yearly payments (R) by capturing amortization of the present value of the 
trainset cost (P = $32.17 million) over N = 40 years at an interest rate of r = 3.5%. The 
interest rate is the published rate in the CA HSR Business Plan, and de Rus et al. (2009) 
reports that the expected useable life of a HSR train is 40 years. We achieve a value of 
$1.51 million in vehicle ownership costs per year. We divide this total over the 1470.4 
trainset operations per year (Table 5.2), and achieve a fixed vehicle cost per operation of 
$1026.93. 
  

  
          

          
 (5.4) M 

The fixed cost is for a single trainset with 500 seats. However, more than 500 passengers 
may be assigned to a HSR vehicle per operation. Therefore, we consider a variable cost 
related to a vehicle cost as well. As each trainset has 500 seats, we calculate a per seat 
cost of $2.06. This will be added to the variable cost, further explored in the following 
section.  
 
5.1.3.2 Operating Cost  
Direct and indirect operating costs are estimated and reported in the CA HSR Business 
Plan for the first 15 years of planned operation, 2020-2035 (Table 5.3). To be consistent 
with the operating costs considered for aircraft, we consider direct operating costs only: 
labor, power/energy, and direct maintenance of trainsets. The operating costs are reported 
for the year 2035 (presented in 2006 dollars).  
 
From the data in Table 5.2 we estimate there are 147,825 trainset operations per year in 
2035; with 500 seats per trainset, there are 73.9 million seat operations in the year 2035. 
The CA HSR business plan also reports in 2035, 43.1 million trainset-miles will be 
covered. Using the direct operating cost (DOC) figures in Table 5.3 along with the 
operating statistics, we estimate a DOC per seat-mile of $0.0386. We compare this DOC 
figure to the results presented in de Rus et al. (2009) for operating costs and direct 
maintenance costs of HSR systems in Europe (Table 5.4).   
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Table 5.3 Operating cost categories for High Speed Rail. 

 
Category 

Cost 
($ millions) 

Direct Operating 
Costs (DOC) 

Train Driving and Staffing 108.96 
Power/Energy with Green surcharge 344.47 
Maintenance of Trainsets and Vehicles 377.28 
Total DOC 830.71 

Indirect Operating 
Costs (IOC) 

MOW Materials and Contracts 68.64 
Maintenance of Way (MOW) Labor 41.61 
Program Contingency  54.69 
Station Services and Security  61.56 
Sales, Marketing and Reservations  68.85 
Control Center Operations  4.40 
General/Admin Support  17.91 
Total IOC 317.66 

 
We see that the value estimated from the CA HSR plan is less than those presented across 
the world. An explanation could be the significantly lower expected cost of energy. 
Comparing industrial energy prices by end-use sector from the United States and Europe, 
we find that in some instances the energy prices in Europe are almost double those 
experienced in the United States (European Union, 2010; Energy Information Agency, 
2010). A related issue that could be responsible for the operating cost discrepancy is the 
leverage a HSR operator has over the energy supplier; this is cited as a source of energy 
cost discrepancy across European HSR systems (de Rus et al., 2009). A final explanation 
could be labor and staffing rates. The CA HSR expects to use higher levels of automation 
seen in the systems listed below (California High Speed Rail Authority, 2008).  

Table 5.4 Operating cost for European High Speed Rail systems. 

Country Type of Train Seats 
Operating Cost per 

Seat-Mile ($) 

France 
TGV Reseau 377 0.182 
TGV Duplex 510 0.150 

Thalys 377 0.288 

Germany 

ICE-1 627 0.241 
ICE-2 368 0.336 
ICE-3 415 0.202 

ICE 3 Polyc. 404 0.238 
ICE-T 357 0.244 

Italy ETR 500 590 0.323 
ETR 480 480 0.318 

Spain AVE 329 0.310 
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Including variable vehicle operating cost, the final variable cost coefficient is  
                𝑠 𝑎𝑡    𝑠𝑡𝑎   . 
 
5.1.4 Travel Time  

We estimate travel time functions, with travel time as a function of distance, for the three 
vehicle types. For the aircraft, we use the operating statistics from the DOT Form 41 
dataset. For turboprop and jet aircraft, the travel time function is as follows:  

𝑡𝑡       𝑎𝑠          (5.5)   

Where tt is the travel time and asl is the average stage length traveled by an airline-
aircraft pair in a year-quarter. Again, the dataset is an unbalanced panel, and we estimate 
using ordinary least squares and panel specific standard errors and assumed 
autocorrelation within panels. The results are shown in Appendix 4.  
 
For the travel time function for HSR, the data is simply for one system, for one year, and 
for one vehicle type. We collect 44 observations of travel time (tt) and distance (which 
we will refer to as stage length, sl, as it is not an average) from the California High Speed 
Rail Authority (2010). The function is a simpler representation of travel time, and we use 
ordinary least squares for the estimation.  

𝑡𝑡      𝑠    (5.6)   

We find that the jet aircraft has the highest fixed travel time and the lowest variable travel 
time, while the HSR vehicle has the lowest fixed travel time and the highest variable 
travel time. Jet aircraft operations involve gate push-back, taxi, take-off; then they reach a 
cruising altitude at which they travel at very high speeds. While the HSR operation 
involves less of this fixed travel time, the speeds achieved by the system are significantly 
slower than jet travel. The turboprop aircraft experiences fixed and variable travel times  
between those of the jet and HSR. As an aircraft, it has a fixed travel time involving 
push-back, taxi and take-off, but compared with the jet achieves a lower cruising altitude. 
When it reaches that altitude, it travels slower than the jet aircraft, yet still faster than the 
HSR.  
 
It should be noted that all travel times estimated are vehicle travel times and not 
passenger travel times. Passenger travel times on a corridor could be defined more 
broadly, to include port (airport or HSR station) access time and a port processing 
(security) time. The inclusion of such additional times would likely affect the numerical 
examples to be presented below, yet the direction of influence is unclear. Related to a 
processing time, the CA HSR Business Plan notes that HSR travelers are not expected to 
face security screening, consistent with the current North East Corridor rail system; the 
processing time of air will therefore certainly be longer. Related to port access time, the 
HSR systems will have stations with high accessibility, located in the downtown areas 
with business and some residential density. However, the aircraft modes benefit from 
more dispersed origin and destination airports, which match the land patterns in the 
United States closely (Clever, 2006). The incorporation of additional travel time for 
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terminal access and egress is discussed in the following chapter and left as a direction for 
future research.  
 
5.1.5 Additional Inputs  

The additional inputs required for our model include the travel distance, passenger flows, 
the distribution of passengers across value-of-time groups, and the value of time for each 
group.  
 
Both Berry et al. (1996) and Adler et al. (2005) distinguish two passenger groups, 
business and leisure, using discrete choice models with data collected from  aviation 
passengers. Adler et al. (2005) estimates that passengers are 43 percent business and 57 
percent leisure. In the same study, it was found that the dollar values of in-flight time and 
schedule delay for the two groups are statistically different. The value of in-flight time is 
$69.70/hour for business passengers and $31.20/hour for leisure passengers while the 
value of schedule delay is $30.30/hour for business passengers and $4.80/hour for leisure 
passengers. Beyond the estimation, the use of different values of time for travel time and 
schedule delay is also represented in the literature. In a recent report by Ball et al. (2010), 
in-flight delay and schedule delay are valued at different rates, with the in-flight value of 
time being a weighted average across business and leisure travelers, $37.6/hour in 2007 
dollars, and the schedule delay being the weighted average of schedule delay from the 
Adler et al. (2005) study.  
 
The analytic total logistics cost function as currently written does not allow for different 
values of travel time and schedule delay. In the function, we consider that the value of the 
time spent in schedule delay to be equal to the value of travel time. In the following 
numerical example, we will consider the business passenger value of time to be 
$69.70/hour and that of leisure passengers to be $31.20/hour.  
 
To determine passenger flow, we collect data from the US DOT Form 41 Schedule T100 
database. T100 contains data on passenger traffic in the US at the segment level, from 
which we determine the number of aviation passengers traveling from San Francisco 
International Airport (SFO) and Los Angeles International Airport (LAX). The corridor 
flow one year, October 2007-September 2008, equates to 387 passengers per hour in each 
direction (when we consider there are 365 days in one year and 16 typical hours of 
vehicle operations per day).  
 
In considering the California Corridor from San Francisco to Los Angles, we use the 
Form 41 reported 377 miles between SFO and LAX. While the HSR distance is longer 
(SFO-Los Angeles is 418 miles, while San Francisco to Los Angeles is 490 miles), for 
illustration purposes will set the constant distance to be 377 miles.  
 
While we will consider the total logistics cost variation over fuel price, also it will 
become convenient to explore the sensitivity of the results to parameters beyond fuel 
price. Therefore, we will need to choose a value of fuel price to hold constant. Using 
Form 41 data, we estimate that across all jet and turboprop observations, the average fuel 
price paid in 2008 (converted to 2006 dollars) is $3.21/gallon.  
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Table 5.5 presents a summary of the additional inputs presented in this section.  

Table 5.5 Literature summary on traveler inputs.  

Parameter Parameter 
Value Description References 

Business traveler 
value of time (λh) 

$69.70/hour 
 

$30.30/hour 

In-flight time 
 

Schedule delay 
Adler et al. (2005) 

Leisure traveler value 
of time (λl) 

$31.20/hour 
 

$4.80/hour 

In-flight time 
 

Schedule delay 
Adler et al. (2005) 

Average traveler 
value of time (  ) 

$37.6/hour 
 

$15.77/hour 

In-flight time 
 

Schedule delay 
Ball et al. (2010) 

Percent  
Business travelers  

(% Qh) 
 

Leisure Travelers  
(% Ql) 

 
43 

 

57 

 

Adler et al. (2005) 

Total passenger 
demand per hour (Qt) 

387  

US DOT Distance traveled 
(miles) 377  

Fuel price ($/gallon) $3.21/gallon  
 
Values in bold are used in the numerical examples.  
 
5.2 Numerical Examples 
5.2.1 Sensitivity of Total Logistics Cost to Fuel Price   

When we plot the total logistics cost (TLC) per passenger against fuel price for all six 
vehicle combinations (Figure 5.1), we first see that the curves cross between $4.00/gallon 
and $6.25/gallon. This ―transition region‖ is contained, such that for fuel prices below 
$4.00/gallon there is a consistent cost ordering while for fuel prices above $6.25/gallon 
there is a different, but also consistent, cost ordering. Thus the minimum cost vehicle 
combination is only impacted by fuel price in a small transition area; and the fuel prices 
that bound the transition area are fuel prices we expect to experience in the next 25 years. 
In 2010, the Energy Information Administration (EIA) (2010) reports that jet fuel prices 
are $2.06. In 2020, the predicted fuel price is $3.58; this prediction rises to $6.00/gallon 
in 2035 (all EIA predictions are reported in 2006 dollars). This transition area is therefore 
particularly important to analyze for the California Corridor. In this transition area, the 
minimum cost designation changes from jets alone to turboprops alone to turboprops and 
HSR.  
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HSR TLC is not impacted by fuel price (as we assumed the HSR energy price is 
independent of fuel price) while the TLC for a corridor served by jets alone or turboprops 
alone increases almost linearly with fuel price. For the mixed vehicle cases with HSR as 
one of the vehicles, the rate of increase with fuel price decreases with fuel price. This is 
because, as fuel price increases, more and more passengers are assigned to the HSR, a 
vehicle unaffected by increasing fuel price.  

 
Figure 5.1 Total logistics cost vs. fuel price.   

We next evaluate how the vehicle frequency that minimizes total logistics cost changes 
over fuel price for each vehicle combination (Figure 5.2). As we expect, each plot of 
frequency vs. fuel price is monotonically decreasing. The curves decrease more slowly as 
fuel price increases because total logistics cost is concave in frequency. The minimum 
TLC cost technology does not necessarily have the highest frequency, as passengers also 
value travel time in addition to schedule delay.  
 
The results show that it is possible to increase the vehicle frequency that serves a corridor 
by switching modes, for example, from jet to HSR. The possibility of increasing 
frequency at the expense of increasing travel depends on the relationship between the unit 
costs of travel time and schedule delay, which, as discussed above, are assumed equal in 
this analysis. It is possible that with onboard amenities (such as wireless internet) and 
with uninterrupted ―laptop open‖ time, the value of schedule delay may become more 
heavily weighted compared with the value of in-vehicle time (Neels and Barczi, 2010).  
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Figure 5.2 Frequency vs. fuel price.  

5.2.2 Sensitivity of Total Logistics Cost to Distance   

To consider the sensitivity of these results to distance, we vary distance while holding 
fuel price and the other parameters constant (Figure 5.3). We find that, for the current set 
of parameters, there is a distance transition point between 300 and 375 miles. For 
corridors of distances below 300 miles, there is a clear order from highest to lowest cost 
vehicle combinations; a different but equally well-defined order exists for corridors of 
distances great than 375 miles. As the fuel price increases, the transition point occurs at a 
longer stage length. Longer stage lengths favor the faster jet technology, but higher fuel 
prices favor the HSR technology that is insensitive to fuel price. As fuel price increases, 
the transition from HSR to jet (along with the mixed technologies) therefore occurs at a 
longer stage length. Therefore, we find that for a given fuel price, there is a well-defined 
transition point, before and after which the order of minimum cost combinations are not 
impacted by distance.  
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Figure 5.3 Total logistics cost vs. distance.  

5.2.3 Sensitivity of Total Logistics Cost to Passenger Demand and Value of Time 

To consider the sensitivity of these results to passenger demand, we vary the total 
demand while keeping the 43/57 percent ratio of business/leisure passengers constant. 
We find for the set of parameters in Table 5.5, for passenger demands about 325 
passengers/hour and greater, there is an order of minimum-cost vehicle combinations that 
does not change. However for passenger demands lower than 325/hour, there is 
significant switching of minimum-cost designations across vehicle combinations. 
Therefore, we find that for more extreme demands (for example, higher demands than the 
California Corridor) jet aircraft alone minimize costs at the given level of parameters. 
This seems to conflict with the widespread belief that HSR becomes more competitive as 
corridor density increases. However, at the level of inputs explained by Table 5.5, the 
turboprop has a lower fixed cost and therefore, for low levels of passenger demands, has 
the minimum cost. At higher demand levels, the HSR certainly has higher frequencies 
compared with the jet, but the jet is able to achieve minimum cost due to the other cost 
incurred by the passengers, the travel time.  
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Figure 5.4 Total logistics cost vs. total passenger flow.  

In Figure 5.5, we find when we vary the ratio of business/leisure passengers that the 
order of minimum-cost vehicle combinations is fairly stable, except at very low 
percentages of business passengers.  

 
Figure 5.5 Total logistics cost vs. percent of business passengers.   
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When we fix the ratio of business to leisure value of time to   

  
      and vary the 

business (and leisure) passenger value of time, we find a specific transition point. Figure 
5.6 shows how the TLC varies with business passenger value of time. Again, we find a 
very specific transition point at   = $30-58/hour, which is close to the estimates 
presented in the literature (Table 5.5).  

 
Figure 5.6 Total logistics cost vs. business passenger value of time.   

5.3 High Speed Rail Infrastructure Costs  
An additional consideration related to HSR is the cost to construct the system. 
Infrastructure is presented as a consideration for HSR as HSR systems in the United 
States are either in the planning or early stages of development. While the air 
transportation system certainly incurred an infrastructure-related cost at one time and 
continues to incur costs a related to maintenance and possible expansion, the HSR system 
must be developed and then additionally maintained.  
 
The infrastructure costs of the CA HSR system are presented in the CA HSR Business 
Plan. Costs are presented in four broad categories. The first category is installing the 
necessary communication and electrification systems. The second is testing and 
commissioning of the system. The third is program implementation, which includes pre-
construction activities including environmental reviews, preliminary engineering, and 
pre-construction activities. The fourth considered is all other infrastructure costs, which 
are reported as specific to the corridors shown in Table 5.1. These include final design; 
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right-of-way; environmental mitigation; rail and utility relocation; earthworks items; 
structures, tunnels, and walls; grade separations; building items; and track items. All 
costs are presented in the CA HSR Business Plan as year of expenditure costs over all or 
a subset of the years 2009 and 2020 inclusive. We convert these values into the 2006 
present value of the total cost for each category using the following function:  
 

   
 

      
 

 (5.7) M 

where R is the value of a future payout in one year, N is the number of years over which 
the expenditure is incurred, i is the interest rate (set to 3.5% as reported in the CA HSR 
Business Plan), and P is the present value of all the infrastructure related expenditures. 
While the costs are not all incurred over the full 12 years, we can consider that the 
infrastructure charges can be allocated in this way because operations do not begin until 
2020. To convert the present value of the total infrastructure related cost, we use the 
capital recovery equation (5.4). For the capital recovery equation we define N, the 
number of years for which the payments can be amortized, to be 47. De Rus et al. (2009), 
in discussing a methodology for which to develop HSR cost functions, discusses that the 
operating life should be considered to be 35 years in addition to the construction time 
(which is 12 years noted in the CA HSR Business Plan). The totals presented in Table 5.6 
(in 2006 dollars) represent the infrastructure costs for the entire corridor of length 520 
miles.  

Table 5.6 Infrastructure and related costs for CA HSR.  

Category Present Value 
($ millions) 

Present Value per 
Mile ($ millions) 

Present Value per 
Year ($ millions) 

Infrastructure 28051.20 53.95 1224.97 
Systems and 

Electrification 3712.70 7.14 162.13 

Testing and 
Commissioning 87.75 0.17 3.83 

Program 
Implementation 3048.92 5.86 133.14 

Total 30560.48 67.12 1524.080 
 
For comparison we again consider the work of de Rus et al. (2009), which reports 
infrastructure and systems and electrification costs per mile (in 2006 million $/mile) for a 
variety of systems (Table 5.7). We see that the CA HSR estimate is on the higher end, 
similar to lines under construction in Italy and the Netherlands. De Rus et al. (2009) state 
that the differences in infrastructure and related costs vary widely with topography and 
geography, as well as the number and density of urban areas the system serves. There are 
many geography and density related challenges to building the CA HSR that could 
explain the cost discrepancy.  
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Table 5.7 Global infrastructure costs for HSR projects. 

Country Lines in Service Lines Under Construction 
Lower Upper Lower Upper 

Austria 
 

20.78 44.48 
Belgium 18.09 16.85 
France  5.28 21.12 11.23 25.84 
Germany 16.85 32.35 23.59 37.07 
Italy 28.65 15.73 73.92 
Japan 22.47 34.71 28.08 44.93 
Korea 38.42 

 Netherlands 
 

49.09 
Spain 8.76 22.47 10.00 19.66 

 
In the consideration of infrastructure related costs, we evaluate if the HSR system savings 
are larger than the infrastructure costs on a per seat basis. Considering the number of 
trainset operations per year from Table 5.2 we find that the infrastructure cost per 
trainset-operation is $9,028/operation or $18.06/seat. We plot the total logistics cost per 
passenger against fuel price for two distances, 100 miles and 377 miles, shown in Figure 
5.7, and evaluate if the savings from HSR is greater than $18.06/seat. The figures include 
a black dotted line representing the sum of the HSR total logistics cost per passenger with 
an added $18.06/seat to represent the infrastructure cost per seat. For a short distance of 
100 miles, compared with a single vehicle fleet of jets alone, the HSR system savings are 
larger than the infrastructure costs for all fuel prices. When compared with a system of 
turboprop aircraft alone, the HSR system savings are larger than the infrastructure costs 
for jet fuel prices greater than $3.25/gallon. For a distance of 377 miles, when compared 
with a system jet aircraft alone, the HSR system savings are larger than the infrastructure 
costs for jet fuel prices greater than $8.25/gallon, a fuel price not anticipated to be 
experienced through the timeframe 2035 (Energy Information Administration, 2010).  

5.4 Conclusions  
The numerical example presented in this section shows that the minimum cost vehicle 
combination is sensitive to key parameters. For several parameters, including fuel price, 
there is a small transition zone within which the cost ordering changes significantly, and 
outside of which the orderings are stable. In the case of fuel price, we find this transition 
area to be in the $4.00/gallon to $6.25/gallon range, which is the range of fuel prices 
expected by the EIA between the years 2010-2035. We obtain similar results for several 
other parameters, but not all of them. This allows for more detailed, targeted studies of 
corridors with these models. The numerical example provides insight into HSR and 
aircraft operations over the California Corridor. We find that for shorter distances the 
HSR system has a lower cost than the aircraft modes over a wide range of fuel prices; this 
cost advantage erodes with distance. This points to the possibility of focusing on the role 
of rail in providing shorter distance service, for example, between San Diego and Los 
Angeles, a-167 mile corridor.  
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Distance = 100 miles 

 
 

Distance = 377 miles 

 
Figure 5.7 Total logistics cost vs. fuel price with infrastructure cost curve.   
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6.
 
Conclusions  
 
 
6.1 Contributions 
This research presents a methodology to determine the vehicle size, technology mix, and 
frequency to serve an intercity transportation corridor at minimum total logistics cost. 
Total logistics cost include both vehicle operating costs and costs incurred by the 
passenger. These costs are summed and compared for single and mixed vehicle scheduled 
services. The total logistics cost function captures the cost-reducing potential of 
alternative vehicles with different cost structures and service attributes. The models are 
formulated to be sensitive to fuel price, which may change significantly in the future as a 
result of market conditions or environmental policies.  
 
In this research we develop two categories of models: empirical models and analytic 
models. Empirical vehicle operating cost models provide direct insights into the 
relationship between operating cost and fuel price and guide development of the analytic 
models. The analytic models provide a characterization of the intercity transportation 
system through which we can conceptually evaluate the relationship between optimum 
service characteristics and fuel price, among other factors.  
 
The empirical models examine the roles of input substitution and induced technological 
change in managing fuel-related costs. Using Leontief cost models, which assume that 
the mix of inputs required to operate a given air vehicle is insensitive to factor prices, we 
find the minimum cost vehicle mix is highly sensitive to fuel price over the range of fuel 
prices experienced through 2010. We evaluate supplier-to-supplier input substitution by 
developing and comparing predictions from a Leontief model and a translog cost model 
estimated from the same data, at fixed values of seat capacity over a variety of distances 
and fuel prices. By building the two models and comparing their predictions, we illustrate 
a method to determine the prediction potential of a Leontief technology model and assess 
the importance of input substitution at the vehicle level. Also, in developing the translog 
model, we establish a comprehensive picture of the variables that influence operating 
cost. We find relationships between seat capacity, fuel price, and other key variables that 
have yet to be documented in the literature.  
 
The empirical operating and passenger cost models together form a total logistics cost 
function through which the minimum cost vehicle technology and operational frequency 
can be determined. However, the scenarios for which empirical model predictions can be 
used are limited. The data used to generate such models reflect current vehicle 
technology, such as materials, propulsion systems, and the type of fuel. These models 
cannot, therefore, predict the impact of changes in such technologies. With the analytic 
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models, in contrast, we draw relationships between variables based on our underlying 
understanding of the nature of transport system production. To support the development 
of analytic models, we use the empirical models to identify induced technological change 
and input substitution as the qualitative changes in response to a fuel price increase or 
environmental policy. 
 
In this thesis, we demonstrate the capability of analytic total logistics cost models to 
explore the impact of fuel price on the intercity transportation system. The analytic 
models consider aircraft vehicle size to be endogenous and continuous. By defining 
vehicles generically and characterizing them simply – by a fixed cost, a variable cost per 
seat, and a passenger cost in the form of travel time – this study enables the consideration 
of a multiplicity of intercity transportation vehicles. This is the benefit of employing 
continuum approximation models and capturing all pertinent costs incurred from 
operating and traveling in vehicles in one function.  
 
Finally, in analyzing an intercity transportation corridor, this research allows for 
passengers with heterogeneous values of time. We begin by considering discrete 
passenger groups, each defined by a demand rate and a value of time. We then allow 
value of time to follow a continuous (uniform) distribution, such that the necessary 
parameters are a minimum and a maximum value of time. Considering a distributed value 
of time captures a more realistic picture of passenger preferences. By not pre-defining the 
value of time, we consider it a variable for parametric analysis. As values of time change 
with socioeconomic changes, this further generalizes the models presented.  
 
In this research, we take a systems-level view to investigate the effects of climate change 
policy on aviation and develop a methodology to capture the system optimal response. 
This system optimal view presents the best achievable, or lowest total logistics cost, 
organization of intercity transportation. However, as we originally relaxed the constraint 
of existing institutions, we will want to compare this unconstrained model to a 
competitive model that captures the actions of existing intercity transportation 
institutions, such as the carriers. Comparing the system optimal and competitive models 
will shed light on the gap between ideal and realized. Furthermore, by quantifying the 
difference in fuel consumption and cost between the two models, we capture the 
monetary and GHG emissions cost of existing institutional constraints. It is recommended 
that these two models be components in a broader framework to support the formation 
and analysis of climate policy. 
 
A proposed framework for intercity transportation system environmental impact 
assessment includes environmental impact models and environmental policy impact 
models. Environmental impact models characterize the level of emissions and resulting 
ecological and welfare impact from a given transportation system, while environmental 
policy impact models estimate what the system would look like – what and how vehicles 
will be operated over what network – after an environmental policy is instituted. The 
environmental impact models, generally computer-based models that take intercity 
transportation system characteristics as inputs, create a baseline picture of system 
pollutants and their effects. These inputs may inform the environmental policy scenarios 
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which become the inputs for the environmental policy impact models. This is a group of 
models that capture how an environmental policy scenario impacts system characteristics, 
such as vehicles in the system, operational levels and network structures. The output of 
the environmental policy impact models becomes an input for a second run of the 
environmental impact models to calculate a level of pollutants after an environmental 
policy. This framework, depicted in Figure 6.1, shows the relationship between 
environmental impact models and environmental policy impact models and that 
environmental considerations can be incorporated as both model inputs (as a policy) and 
outputs (as resulting pollutant profiles).  

 
Figure 6.1 Intercity transportation environmental impact assessment framework. 

Environmental impact models represent computer-based environmental models that 
simulate system inputs and capture the profiles of pollutants. These models are well 
developed and it can be expected that future models will continue the decades long trend 
toward increased modeling capability using more accessible, powerful and less expensive 
computer resources. However, while substantial efforts to improve the fidelity, usability, 
and level of integration of environmental impact models are underway, the need for 
environmental policy impact models has received less attention. This group of models 
can capture the long and short term impact of an environmental policy along with the 
system optimal and competitive responses. The outputs of these models then become 
inputs in the environmental impact models, such that the policy impact models show the 
operational profile of the system and the impact models estimate the environmental 
impact of such an operational profile.  
 
In the proposed future work, we focus on the environmental policy impact models 
component, and suggest model refinements and developments.  
 
6.2 Future Work   
The research presented in this thesis can be built upon in many directions. The model can 
be refined, such that additional modes or details are captured; it can be expanded upon, 
such that additional system components are added; and additional models can be built for 
comparative purposes.  
 

•Operational levels
•Vehicle technology 
profile

•Vehicle technologies
•Route options

Environmental policy 
impact models

Environmental 
impact models

•Pollutant profiles

•Environmental policy 
scenarios
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The modes considered could include other intercity modes, such as bus, auto, and 
conventional rail. While the addition of multi-passenger modes could be done with little 
change to the existing models, the addition of personal auto transportation would require 
additional variables. These variables would be necessary to capture an individual 
passengers potential to not be assigned to the multi-passenger modes and rather be 
assigned to personal transportation. Additional refinements come in the addition of 
stochastic delay attributed to a mode related to weather, mechanical failures, and 
congestion in the total logistics cost function. A passenger would internalize these costs 
along with a central planner, as they generate excess time in the system along with excess 
operating cost.  
 
The total logistics cost model developed in this dissertation could be extended to an 
intercity transportation network. The extension could come in the form of considering the 
local access and egress system as part of the intercity corridor or in considering a line-
haul network, with the former illustrated here. The corridor could be extended into three 
phases of transport: access, line-haul, and egress. In the model developed in this thesis, 
the cost faced by the passenger is the time spent in the system, in terms of schedule delay 
and travel time in vehicle. As trips do not begin or end at the terminal (the airport or the 
high speed rail terminal), passengers internalize an expanded definition time in the 
system: time spent in access and egress from the terminal. Furthermore, a central planner 
may internalize the operating cost of different access modes. Considering true-origin and 
true-destination enables an expanded definition of intercity vehicles. A mode with no 
access time, egress time, or schedule delay, such as auto, will be able to differentiate 
itself from a mode with access time. A mode with a port in the center of a highly dense 
city may find it has a lower relative cost when access cost is considered.  
 
An additional model to develop is one that captures the competitive relationship between 
intercity transportation carriers. The ―ideal,‖ or system optimal, arrangement could be 
compared with a competitive cost-based model that evaluates how operations will change 
when the intercity modes compete over a corridor. A competitive model of intercity 
travel using a game theoretic framework could include players such a high speed rail or 
other surface intercity transportation operator, a single airline with a mixed technology 
fleet, or multiple airlines with single vehicle technology fleets. In the competitive models, 
demand must be elastic such that passengers switch between players, or modes, or choose 
auto or a no-travel option. Two categories of models, one that assumes the players set 
their schedules and vehicle technology independently (simultaneous), and one that 
assumes a dominant player (leader-follower game) could be developed; it is natural that 
in the context of intercity transportation the dominant player be an airline with jet aircraft 
especially for medium-haul distances. As system optimal models are used for policy 
planning and represent the best possible achievable outcome, they are a baseline against 
which the models of actual outcomes, the competitive models, can be compared.  
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Appendix 1: Jet Aircraft Operating Cost 
Model Estimates  
 

A1.1  Aircraft Models and Airlines in Operating Cost Analysis 
 

Year of 
Intro. 

Aircraft Model Seats 

1992 
Canadair RJ-
200/ER/-440 49 

2001 Canadair RJ-700 68 
2002 Embraer EMB-170 72 
1982 BAE-146-200 88 
1988 BAE-146-300 91 
2004 Embraer EMB-190 100 
1997 Boeing B-7 7-200 111 
1990 Boeing B-737-500 113 
2003 Airbus A318 114 
1996 Airbus A319 123 

1998 
Boeing B-737-
700/700LR 128 

1988 Boeing B-737-400 143 

1988 
Airbus A320-
100/200 148 

1998 Boeing B-737-800 150 
2001 Boeing 737-900 169 
1996 Airbus A321 170 

1982 
Boeing B-767-
200/ER 178 

1983 Boeing B-757-200 184 
1998 Boeing B-757-300 222 

1986 
Boeing B-767-
300/ER 231 

1995 
Boeing 777-
200/20LR/233LR 282 

1997 Boeing B-767-400 286 
1989 Boeing B-747-400 360 

 

 

Airlines 
Air Wisconsin 
AirTran 
Alaska 
Aloha 
America West 
American 
ATA 
Atlantic Southeast 
Comair 
Continental 
Delta 
Frontier 
Hawaiian 
Horizon 
Independence Air 
JetBlue 
Midwest 
National 
Northwest 
Pinnacle 
Skywest 
Southwest 
Spirit 
Trans World 
United 
USAir 
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A1.2  Jet Aircraft Translog Operating Cost Model Results 

 Model 1 Model 2 

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

t -0.002*** 0.001 -0.002*** 0.001 
First Order Terms 

Seats 0.400*** 0.083 0.447*** 0.029 
Average stage length 0.803*** 0.054 0.737*** 0.019 
Labor price 0.296*** 0.038 0.329*** 0.013 
Fuel price 0.408*** 0.037 0.417*** 0.014 
Utilization -0.124*** 0.036 -0.090*** 0.014 
Materials price 0.302 0.210 0.375*** 0.084 
Average age 0.037*** 0.007 0.033*** 0.005 
Technology age 0.004** 0.002 0.003** 0.002 

Second Order Terms 
Seats 0.206*** 0.062 0.200*** 0.050 
Average stage length 0.126*** 0.033 0.145*** 0.030 
Labor price 0.038*** 0.012 0.043*** 0.010 
Fuel price 0.155*** 0.034 0.134*** 0.028 
Utilization -0.011 0.007 -0.009* 0.005 
Materials price 0.717 0.632 

 Average age -0.001*** 4.44*10-4 0.200 0.050 
Technology age -1.28*10-4 0.0003 

 Interaction Terms 
Seats – Average stage length -0.162** 0.079 -0.146*** 0.065 
Seats – Labor price -0.123*** 0.044 -0.125*** 0.032 
Seats – Utilization 0.015 0.033 

 
Seats – Materials price 0.123 0.273 
Seats – Fuel price 0.123*** 0.048 0.127*** 0.028 
Seats - Average age -0.021** 0.010 -0.016*** 0.005 
Seats – Technology age 0.003 0.007 

 

Fuel price – Average stage 
length 

9.88*10-5  0.030 

Fuel price – Labor price -0.114*** 0.037 -0.097*** 0.025 
Fuel price – Average Age -0.014*** 0.005 -0.016*** 0.004 
Fuel price – Materials price -0.582*** 0.245 -0.316** 0.143 
Fuel price – Utilization -0.008 0.026 

 

Fuel price – Technology age 0.001 0.003 
Average stage length – Labor 
price 0.012 0.027 
Average stage length – 
Utilization -0.040** 0.020 -0.042*** 0.014 
Average stage length – 0.085 0.171 
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 Model 1 Model 2 

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Materials price 
Average stage length – 
Average Age -0.001 0.005 
Average stage length – 
Technology age  -0.006 0.004 
Labor price – Utilization -0.007 0.021 
Labor price – Materials price 0.026 0.152 
Labor price – Average Age 0.015*** 0.005 0.012*** 0.003 
Labor price – Technology 
age 0.003 0.003 

 

Technology age – Utilization 0.002 0.003 
Technology age – Materials 
price 0.010 0.019 
Technology age – Average 
age -0.001* 0.001 -0.001** 0.000 
Materials price – Average 
Age  

0.043* 0.025   
0.044*** 0.018 

Materials price – Utilization 0.096 0.101 

 
Utilization – Average age  -0.003     .005 

Airline Effects 
American -0.002 0.020 0.004 0.020 
Alaska -0.125*** 0.020 -0.126*** 0.020 
JetBlue 0.035 0.035 0.035 0.031 
Continental -0.014 0.021 -0.014 0.020 
Independence  -0.045 0.059 -0.065 0.058 
AirTran 0.035 0.029 0.033 0.029 
Frontier 0.088** 0.041 0.088** 0.041 
Hawaiian -0.089 0.127 -0.139 0.110 
America West -0.017 0.023 -0.023 0.022 
Spirit -0.002 0.047 -0.005 0.046 
Northwest -0.029 0.020 -0.030 0.020 
United 0.110*** 0.017 0.106*** 0.017 
USAir 0.027 0.021 0.021 0.022 
Southwest -0.306*** 0.027 -0.309*** -0.027 
Midwest -0.032 0.032 -0.033 0.032 
Air Wisconsin 0.189*** 0.057 0.162*** 0.053 
Comair 0.008 0.044 -0.008 0.041 
SkyWest -0.070 0.051 -0.090* 0.048 
Horizon -0.031 0.075 -0.049 0.072 
Trans World -0.095* 0.053 -0.095* 0.049 
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 Model 1 Model 2 

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

ATA 0.070** 0.034 0.071** 0.034 
Atlantic Southeast -0.005 0.046 -0.019 0.044 
Pan Am Clipper Connection -0.083 0.062 -0.103** 0.052 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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A1.3  Jet Aircraft Pilot Cost per Block Hour Model Results 

Variable  
Parameter 
Estimate Standard Error 

Constant  314.438*** 39.920 
Seats 0.828*** 0.176 

Airline Effects 
American -25.110 25.299 
Alaska -20.503 28.213 
JetBlue -180.870*** 31.739 
Continental -49.119** 24.533 
Independence  -188.609*** 37.497 
AirTran -164.132*** 30.843 
Frontier -132.280*** 30.638 
Hawaiian 8.420 61.310 
America West -173.594*** 24.456 
Spirit -221.711*** 48.908 
Northwest -70.711*** 24.013 
United -41.738 26.556 
USAir -82.430** 35.450 
Southwest -108.392*** 26.724 
Midwest -86.371*** 36.884 
Air Wisconsin -215.511*** 33.358 
Comair -185.863*** 33.426 
SkyWest -176.738*** 34.009 
Horizon -147.673*** 39.278 
Trans World -204.455*** 40.344 
ATA -153.566*** 53.292 
Atlantic Southeast -189.164*** 41.761 
Pan Am Clipper Connection -244.283*** 32.920 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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A1.4  Jet Aircraft Fuel Consumption Linear Model  

 Full Model  Preferred Model  

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Constant  497.638** 224.433 
 Average stage length -0.388 0.237 2.392*** 0.175 

Seats -4.021** 1.984 3.488*** 0.970 
Average stage length –  
Seats 0.0175*** 0.00191 

  Airline Effects 
Air Wisconsin  88.345 95.192 -490.506*** 49.100 
AirTran 126.303** 62.524 -727.460*** 91.610 
America West 122.482** 56.713 -611.329*** 118.635 
American 558.048** 268.120 92.937 334.827 
American Eagle  42.622 107.023 -675.819*** -57.589 
Alaska -250.841*** 61.314 -1033.857*** 121.057 
Aloha -55.811 149.729 -1562.045*** 249.149 
Atlantic Southeast 423.453 104.047 -174.969 124.797 
JetBlue -35.199 81.920 -848.261*** 145.828 
Comair 124.432 102.512 -861.667*** -574.414 
Continental 291.747** 130.065 -470.137*** 155.185 
Express Jet 81.152 115.5483 -700.754*** 72.030 
Frontier -34.323 69.112 -927.286*** 110.398 
Hawaiian 187.373*** 68.88476 -315.227*** 100.775 
Mesa 29.107 102.048 -750.054*** 77.500 
Northwest -378.042** 164.086 -825.624*** -407.044 
SkyWest -59.377 129.569 -1076.967*** 141.734 
Southwest 121.120*** 51.124 -774.777*** -486.948 
Spirit -378.042** 164.086 -970.158*** 166.591 
Trans States -2.061 110.386 -649.159*** 74.051 
United  260.616*** 77.146 -488.175*** 133.609 
USAir  145.843** 65.886 -487.559*** 103.647 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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A1.5  Jet Aircraft Operating Cost (without Fuel) Linear Model  

 Full Model  Preferred Model  

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Constant  2927.21*** 723.6904 
 Average stage length -1.848*** 0.796 3.022*** 0.357 

Seats -9.203* 5.390 11.146*** 2.628 
Average stage length –  
Seats 0.030*** 0.005 

 Airline Effects 
Air Wisconsin  -446.699 604.698 141.159 429.931 
AirTran -245.594 297.746 -587.831*** 230.240 
America West 506.852 458.520 121.076 423.029 
American 4627.376*** 1202.379 4525.655*** 1261.702 
American Eagle  -1407.432*** 414.309 -987.274*** 107.471 
Alaska -468.584 367.820 -898.286*** 347.322 
Aloha 3103.488*** 1006.948 1497.725 1050.043 
Atlantic Southeast -243.910 348.087 -244.009 238.408 
JetBlue -609.477 408.240 -1000.499** 442.607 
Comair -778.532* 404.847 -649.411*** 187.607 
Continental 721.357*** 308.258 304.969 275.767 
Express Jet -806.462* 433.808 -463.443*** 131.434 
Frontier -566.650 371.387 -1086.396*** 323.638 
Hawaiian -218.149 330.912 70.612 292.730 
Mesa -290.692 425.052 -52.242 314.233 
Northwest 126.960 359.862 -217.446 346.508 
SkyWest -744.739* 430.347 -898.368*** 223.527 
Southwest -912.741*** 294.320 -1152.409*** 246.138 
Spirit -175.452 523.030 -422.205 530.884 
Trans States -1000.567*** 424.393 -456.385*** 109.281 
United  64.194 384.052 -317.343 337.320 
USAir  1593.440*** 650.395 1429.206*** 595.325 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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Appendix 2: Total Logistics Cost Model, 
Case 2-2 
 
 
A2.1  Full Total Logistics Cost Function, Case 2-2  
 

  
   

 
        

   

   
 

    
   

 
 

 

  
   

 
     

  
       

 
      

                           
                      

    
     

 
      

                           
                       

    
     

 
       

 
  

   

   
   

         
   

       
           

  

 
 
A2.1  Truncated Total Logistics Cost Function, Case 2-2  
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Appendix 3: Linear Operating Cost 
Model Results 
 
 
A3.1  Turboprop Aircraft Fuel Consumption Linear Model  

 Full Model  Preferred Model  

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Constant  85.799* 46.468 
 Average stage length 0.076 0.201 0.495*** 0.026 

Seats 0.049 0.954 2.030*** 0.112 
Average stage length –  
Seats 0.010** 0.004 

  Airline Effects 
American Eagle  3.936 5.515 8.231** 4.066 
SkyWest  -17.152*** 6.978 -12.202*** 3.154 
Mesaba  -9.853** 4.670 -8.314*** 3.183 
ExpressJet  15.155*** 6.193 18.402*** 5.855 
Trans States  4.184 4.071 6.937** 3.497 
Horizon  -5.541 7.111 -1.638 4.150 
Mesa  2.481 8.377 -1.285 9.275 
Air Wisconsin 4.320 4.447 2.307 4.523 
Executive  -22.688* 13.305 -37.882*** 10.142 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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A3.2  Turboprop Aircraft Operating Cost (without Fuel) Linear Model  

 Full Model  Preferred Model  

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Constant  -57.971 703.828 
 Average stage length 1.820 3.085 0.317 0.792 

Seats 21.032* 12.157 13.807*** 3.237 
Average stage length –  
Seats -0.052 0.056 

 Airline Effects 
American Eagle  115.015 148.158 197.847 140.509 
SkyWest  -133.427 135.675 15.338 80.909 
Mesaba  12.184 104.755 146.718 100.250 
ExpressJet  -99.556 104.793 -24.064 110.598 
Trans States  299.596* 181.281 388.846*** 164.932 
Horizon  0.169 143.073 143.562* 84.490 
Mesa  11.342 261.496 135.219 277.789 
Air Wisconsin 432.041*** 172.019 571.315*** 189.281 
Executive  -199.379 251.152 36.562 192.452 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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A3.3  Jet Aircraft Ownership Linear Model  

 Full Model  Preferred Model  

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Constant  929.227 749.464 
 Seats 6.627*** 1.767 10.675***   1.990 

Airline Effects 
Air Wisconsin  -820.899 657.698 -148.654 140.264 
AirTran -662.324 576.432 -224.038 245.522 
America West -91.468 556.152 243.152 312.189 
American -692.662 543.391 -452.212 382.900 
American Eagle  -945.615 674.277 -221.108 101.784 
Alaska -532.760 544.226 -196.468 297.515 
Aloha 1934.179** 877.941 2338.229 742.130 
Atlantic Southeast -887.830 579.415 -443.828 248.454 
JetBlue -340.663 584.889 70.272 307.717 
Comair -712.101 659.335 -32.215 132.071 
Continental 46.384 549.637 371.439 326.912 
Express Jet -684.819 687.377 64.563 114.790 
Frontier -492.157 576.523 -73.631 270.369 
Hawaiian -1131.029* 578.753 -685.388 240.440 
Mesa -334.695 667.085 343.143* 192.052 
Northwest -689.539 541.733 -378.398 315.643 
SkyWest -428.038 684.211 248.813 219.491 
Southwest -1181.760** 572.253 -753.621 247.601 
Spirit -15.036 640.095 254.543 501.295 
Trans States -678.567 675.641 48.163 104.821 
United  -924.575* 548.385 -578.680 292.511 
USAir  -23.517 602.395 302.223 386.246 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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A3.4  Turboprop Aircraft Ownership Linear Model  

 Full Model  Preferred Model  

Variable  
Parameter 
Estimate 

Standard 
Error 

Parameter 
Estimate 

Standard 
Error 

Constant  -21.190 63.213 
 Seats 7.353*** 1.235 7.070*** 0.594 

Airline Effects 
American Eagle  145.569*** 41.481 137.770*** 39.436 
SkyWest  135.540*** 37.078 122.934*** 23.745 
Mesaba  63.849* 35.911 52.287** 26.875 
ExpressJet  91.060*** 39.366 83.169** 37.633 
Trans States  131.923*** 43.224 124.070*** 34.507 
Horizon  7.489 31.067 -3.151 24.251 
Mesa  9.649 103.882 -1.742 102.211 
Air Wisconsin 199.885* 118.259 187.855 115.550 
Executive  70.858 84.738 66.571 87.746 
***Variables are significant at the 1% level  
**Variables are significant at the 5% level   
*Variables are significant at the 10% level  
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Appendix 4: Travel Time Model Results 
 
A4.1  Jet Aircraft  

Variable  
Parameter 
Estimate 

Standard 
Error 

Constant  0.628*** 0.0175 
Distance .00205*** 2.5*10-5 

 
A4.2  Turboprop Aircraft  

Variable  
Parameter 
Estimate 

Standard 
Error 

Constant  0.350*** 0.0162 
Distance 3.97*10-3***   9.06*10-5  

 
A4.3  High Speed Rail  

Variable  
Parameter 
Estimate 

Standard 
Error 

Constant  0.125** 0.0434 
Distance 5.57*10-3*** 1.33*10-4 

 
 
 
 




