Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Electronic Theses and Dissertations bannerUC Irvine

Synthesis and Optimization of Surface Functionalized Mesoporous Silica Nanoparticles for Bioconjugation Platforms

Abstract

A large amount of emphasis has been dedicated in recent years to introduce nanoparticles as a viable candidate for targeted therapies. In comparison to other candidates, mesoporous silica nanoparticles have the advantages of being biocompatible, easy to produce, and have the ability to prove to be a theranostic platform. To better study the specific targeting of diseased cells, adhesion studies of drug carrying bioconjugation constructs in fluid environments is required. The goal of this project was to develop a platform based on mesoporous silica nanoparticles that will be used for future multivalent adhesion studies. Specifically, mesoporous silica nanoparticles were synthesized with various sizes and aspect ratios, containing fluorescent dye to enable tracking studies, and with surface treatments that optimized stability and introduced primary-amine functional groups to facilitate attachment with targeted proteins and biomarkers. The effects of various parameters such as solvents, washing methods, secondary modifications and difference in concentrations of the starting materials for the synthesis mixture on the nanoparticles were studied in detail in this thesis. A portion of the study is also dedicated to optimizing a washing procedure to stabilize the particles in an aqueous medium in order to facilitate further modifications. The results of the work in this project can be utilized to provide a platform for further assays in flow chambers after bioconjugation with targeting proteins through orthogonal chemistries to study the adhesion properties in much greater detail.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View