Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Porous silicon oxide–PLGA composite microspheres for sustained ocular delivery of daunorubicin

Abstract

A water-soluble anthracycline antibiotic drug (daunorubicin, DNR) was loaded into oxidized porous silicon (pSiO2) microparticles and then encapsulated with a layer of polymer (poly lactide-co-glycolide, PLGA) to investigate their synergistic effects in control of DNR release. Similarly fabricated PLGA-DNR microspheres without pSiO2, and pSiO2 microparticles without PLGA were used as control particles. The composite microparticles synthesized by a solid-in-oil-in-water emulsion method have mean diameters of 52.33±16.37μm for PLGA-pSiO2_21/40-DNR and the mean diameter of 49.31±8.87μm for PLGA-pSiO2_6/20-DNR. The mean size, 26.00±8μm, of PLGA-DNR was significantly smaller, compared with the other two (P<0.0001). Optical microscopy revealed that PLGA-pSiO2-DNR microspheres contained multiple pSiO2 particles. In vitro release experiments determined that control PLGA-DNR microspheres completely released DNR within 38days and control pSiO2-DNR microparticles (with no PLGA coating) released DNR within 14days, while the PLGA-pSiO2-DNR microspheres released DNR for 74days. Temporal release profiles of DNR from PLGA-pSiO2 composite particles indicated that both PLGA and pSiO2 contribute to the sustained release of the payload. The PLGA-pSiO2 composite displayed a more constant rate of DNR release than the pSiO2 control formulation, and displayed a significantly slower release of DNR than either the PLGA or pSiO2 formulations. We conclude that this system may be useful in managing unwanted ocular proliferation when formulated with antiproliferation compounds such as DNR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View