Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Functional Assessment of Coronary Artery Disease Using Whole-Heart Dynamic Computed Tomographic Perfusion

Abstract

Computed tomographic (CT) angiography is an important tool for the evaluation of coronary artery disease but often correlates poorly with myocardial ischemia. Current dynamic CT perfusion techniques can assess ischemia but have limited accuracy and deliver high radiation dose. Therefore, an accurate, low-dose, dynamic CT perfusion technique is needed. A total of 20 contrast-enhanced CT volume scans were acquired in 5 swine (40±10 kg) to generate CT angiography and perfusion images. Varying degrees of stenosis were induced using a balloon catheter in the proximal left anterior descending coronary artery, and a pressure wire was used for reference fractional flow reserve (FFR) measurement. Perfusion measurements were made with only 2 volume scans using a new first-pass analysis (FPA) technique and with 20 volume scans using an existing maximum slope model (MSM) technique. Perfusion (P) and FFR measurements were related by PFPA=1.01 FFR-0.03 (R2=0.85) and PMSM=1.03 FFR-0.03 (R2=0.80) for FPA and MSM techniques, respectively. Additionally, the effective radiation doses were calculated to be 2.64 and 26.4 mSv for FPA and MSM techniques, respectively. A new FPA-based dynamic CT perfusion technique was validated in a swine animal model. The results indicate that the FPA technique can potentially be used for improved anatomical and functional assessment of coronary artery disease at a relatively low radiation dose.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View