Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Charge Carrier Dynamics in Transition Metal Oxides Studied by Femtosecond Transient Extreme Ultraviolet Absorption Spectroscopy

Abstract

With the ability to disentangle electronic transitions that occur on different elements and local electronic structures, time-resolved extreme ultraviolet (XUV) spectroscopy has emerged as a powerful tool for studying ultrafast dynamics in condensed phase systems. In this dissertation, a visible-pump/XUV-probe transient absorption apparatus with femtosecond resolution was constructed to investigate the carrier relaxation dynamics in semiconductors after photo-excitation. This includes timescales for carrier thermalization by carrier-carrier and carrier-phonon scattering. The 30 – 72 eV photon energy coverage (17 – 40 nm wavelength) generated by a table-top XUV light source is suitable for probing the 3p-to-3d core level absorptions of various transition metal oxides (TMOs) with specificities to elements and oxidation states.

In Chapter 1, a brief introduction to charge carrier dynamics in semiconductor-based materials is given. In addition, fundamentals of core-level spectroscopy and the high harmonic generation (HHG) process are also addressed in this introductory chapter. Specifications of the experimental apparatus that was constructed are summarized in Chapter 2, including the design concepts and characterization of performance. Chapter 3 presents the spectral tunability of the XUV pulses generated from a semi-infinite gas cell (SIGC), as well as the data acquisition procedures. Charge carrier relaxation dynamics in Co3O4 following the charge transfer excitation pathway at 400 nm are documented in Chapter 4. In Chapter 5, various visible pump wavelengths are used to excite Co3O4 and the differences in the carrier dynamics versus excitation wavelength are considered. After selectively photoexciting a Si/TiO2 heterojunction, the resulted electron transfer process is observed and reported in Chapter 6. The concluding remarks of the dissertation are made in Chapter 7, while several ongoing time-resolved experiments are addressed in the Appendix sections.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View