Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Voltage-Controlled Magnetic Dynamics in Nanoscale Magnetic Tunnel Junctions

Abstract

Spintronic devices, i.e., those utilizing the interaction of magnetic moments with electric voltages and currents in magnetic nanostructures, offer an exceptionally promising set of candidates for future electronic memory needs. Recently, the possibility of reversing the magnetization of nanoscale magnetic tunnel junction (MTJ) devices using the spin transfer torque (STT) effect has attracted the attention of industry and academia, since STT-MRAM has been demonstrated to be a strong candidate for a high speed, high density, and high endurance nonvolatile memory. Further, by replacing the current-driven (e.g., STT) switching mechanism for a voltage-controlled effect, a novel magnetoelectric RAM (MeRAM) architecture could result in considerable improvements in terms of density and dissipated energy during switching, both factors which are limited in STT-MRAM by the large currents required.

In this dissertation, the possibility of exploiting the voltage-controlled magnetic anisotropy (VCMA) effect on nanoscale MTJ devices as the driving mechanism for MeRAM will be introduced. Experimental results on the demonstration of current-assisted and purely voltage-controlled switching in the thermally-activated and precessional regimes are presented. The write energies in VCMA-driven switching of nanoscale MTJs are shown to be at least one order of magnitude smaller compared to STT-based schemes. The advantages and challenges in terms of scalability and energy-efficiency of this voltage-driven approach are discussed. Further, a compact model for co-simulation of VCMA-driven MTJs with CMOS is established and validated against experimental data. The compact model is refined by the parameters extracted from a detailed characterization of the voltage-driven dynamics in these devices. This includes experimental results on the accurate characterization of the temperature dependence of the perpendicular anisotropy and the VCMA effect in MTJs, as well as on the influence of higher order anisotropies over MTJ dynamics measured via ferromagnetic resonance (FMR).

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View