Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Zap70 Is Essential for Long-Term Survival of Naive CD8 T Cells

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4167606/
No data is associated with this publication.
Abstract

Survival of naive T cells requires engagement of TCR with self-peptide major histocompatibility Ags. The signaling pathways required to transmit this survival signal are poorly understood. In this study, we asked whether the tyrosine kinase Zap70 is required to transmit survival signals in naive CD8 T cells. In the absence of Zap70 expression, thymic development is completely blocked. Using a tetracycline-inducible Zap70 transgene (TetZap70), thymic development of Zap70-deficient TCR transgenic F5 mice was restored. Feeding mice doxycycline to induce Zap70 expression resulted in repopulation of the peripheral naive compartment. Zap70 transgene expression was then ablated by withdrawal of doxycycline. Survival of Zap70-deficient naive CD8 T cells depended on host environment. In hosts with a replete T cell compartment, naive T cells died rapidly in the absence of Zap70 expression. In lymphopenic hosts, Zap70-deficient T cells survived far longer, in an IL-7-dependent manner, but failed to undergo lymphopenia-induced proliferation. Analyzing mixed bone marrow chimeras revealed that intact Zap70-dependent signaling was important for integration of recent thymic emigrants into the mature naive compartment. Finally, we asked whether adaptor function conferred by Zap70 tyrosines 315 and 319 was necessary for transmission of homeostatic TCR signals. This was done by analyzing F5 mice expressing mutant Zap70 in which these residues had been mutated to alanines (Zap70(YYAA)). Inducible Zap70 expression rescued thymic development in F5 TetZap70 Zap70(YYAA) mice. However, in the absence of wild-type Zap70 expression, the Zap70(YYAA) mutant failed to transmit either survival or proliferative homeostatic signals.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item