Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Retinal Structure and Function in Achromatopsia Implications for Gene Therapy

Abstract

Purpose

To characterize retinal structure and function in achromatopsia (ACHM) in preparation for clinical trials of gene therapy.

Design

Cross-sectional study.

Participants

Forty subjects with ACHM.

Methods

All subjects underwent spectral domain optical coherence tomography (SD-OCT), microperimetry, and molecular genetic testing. Foveal structure on SD-OCT was graded into 5 distinct categories: (1) continuous inner segment ellipsoid (ISe), (2) ISe disruption, (3) ISe absence, (4) presence of a hyporeflective zone (HRZ), and (5) outer retinal atrophy including retinal pigment epithelial loss. Foveal and outer nuclear layer (ONL) thickness was measured and presence of hypoplasia determined.

Main outcome measures

Photoreceptor appearance on SD-OCT imaging, foveal and ONL thickness, presence of foveal hypoplasia, retinal sensitivity and fixation stability, and association of these parameters with age and genotype.

Results

Forty subjects with a mean age of 24.9 years (range, 6-52 years) were included. Disease-causing variants were found in CNGA3 (n = 18), CNGB3 (n = 15), GNAT2 (n = 4), and PDE6C (n = 1). No variants were found in 2 individuals. In all, 22.5% of subjects had a continuous ISe layer at the fovea, 27.5% had ISe disruption, 20% had an absent ISe layer, 22.5% had an HRZ, and 7.5% had outer retinal atrophy. No significant differences in age (P = 0.77), mean retinal sensitivity (P = 0.21), or fixation stability (P = 0.34) across the 5 SD-OCT categories were evident. No correlation was found between age and foveal thickness (P = 0.84) or between age and foveal ONL thickness (P = 0.12).

Conclusions

The lack of a clear association of disruption of retinal structure or function in ACHM with age suggests that the window of opportunity for intervention by gene therapy is wider in some individuals than previously indicated. Therefore, the potential benefit for a given subject is likely to be better predicted by specific measurement of photoreceptor structure rather than simply by age. The ability to directly assess cone photoreceptor preservation with SD-OCT and/or adaptive optics imaging is likely to prove invaluable in selecting subjects for future trials and measuring the trials' impact.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View