Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Contact Lenses Wettability In Vitro: Effect of Surface-Active Ingredients

Abstract

Purpose

To investigate the release of surface-active agents (surfactants) from unworn soft contact lenses (SCLs) and their influence on the lens surface wettability in vitro.

Methods

Surface tension (ST) of blister pack solutions was measured by pendant-drop technique. STs at the air-aqueous interface and contact angles (CAs) of four conventional and seven silicone hydrogel SCLs were evaluated in a dynamic-cycling regime using a modified captive-bubble tensiometer-goniometer. Measurements were performed immediately after removal from blister packs, and after soaking in a glass vial filled with a surfactant-free solution, which was replaced daily for 1 week. Lens surface wettability was expressed as adhesion energy according to Young equation.

Results

STs of all blister pack solutions were lower than the reference ST of pure water (72.5 mN/m), indicating the presence of surfactants. When lenses were depleted of surfactants by soaking, the STs for all studied lenses and advancing CAs of selected lenses increased (p < 0.001). Receding CAs of all studied lenses were 12 degrees +/- 5 degrees and were not affected by the presence of surfactants. For most of the conventional lenses, the surface wettability was largely dependent on surfactants, and reduced significantly after surfactant depletion. In contrast, most silicone hydrogel lenses exhibited stable and self-sustained surface wettability in vitro.

Conclusions

The manufacturer-added surfactants affected wetting properties of all studied SCLs, although to different degrees.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View