Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

(H)Elping nerve growth factor: Elp1 inhibits TrkA’s phosphatase to maintain retrograde signaling

Published Web Location

https://doi.org/10.1172/jci136162
Abstract

Nerve growth factor (NGF) regulates many aspects of neuronal biology by retrogradely propagating signals along axons to the targets of those axons. How this occurs when axons contain a plethora of proteins that can silence those signals has long perplexed the neurotrophin field. In this issue of the JCI, Li et al. suggest an answer to this vexing problem, while exploring why the Elp1 gene that is mutated in familial dysautonomia (FD) causes peripheral neuropathy. They describe a distinctive function of Elp1 as a protein that is required to sustain NGF signaling by blocking the activity of its phosphatase that shuts off those signals. This finding helps explain the innervation deficits prominent in FD and reveals a unique role for Elp1 in the regulation of NGF-dependent TrkA activity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View