Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Intraoperative Laparoscopic Near-Infrared Fluorescence Cholangiography to Facilitate Anatomical Identification: When to Give Indocyanine Green and How Much.

Abstract

Recent technological advances have enabled real-time near-infrared fluorescence cholangiography (NIRFC) with indocyanine green (ICG). Whereas several studies have shown its feasibility, dosing and timing for practical use have not been optimized. We undertook a prospective study with systematic variation of dosing and timing from injection of ICG to visualization. Adult patients undergoing laparoscopic biliary and hepatic operations were enrolled. Intravenous ICG (0.02-0.25 mg/kg) was administered at times ranging from 10 to 180 minutes prior to planned visualization. The porta hepatis was examined using a dedicated laparoscopic system equipped to detect NIRFC. Quantitative analysis of intraoperative fluorescence was performed using a scoring system to identify biliary structures. A total of 37 patients were enrolled. Visualization of the extrahepatic biliary tract improved with increasing doses of ICG, with qualitative scores improving from 1.9 ± 1.2 (out of 5) with a 0.02-mg/kg dose to 3.4 ± 1.3 with a 0.25-mg/kg dose (P < .05 for 0.02 vs 0.25 mg/kg). Visualization was also significantly better with increased time after ICG administration (1.1 ± 0.3 for 10 minutes vs 3.4 ± 1.1 for 45 minutes, P < .01). Similarly, quantitative measures also improved with both dose and time. There were no complications from the administration of ICG. These results suggest that a dose of 0.25 mg/kg administered at least 45 minutes prior to visualization facilitates intraoperative anatomical identification. The dosage and timing of administration of ICG prior to intraoperative visualization are within a range where it can be administered in a practical, safe, and effective manner to allow intraoperative identification of extrahepatic biliary anatomy using NIRFC.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View