Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Soil invertebrates in Australian rain gardens and their potential roles in storage and processing of nitrogen

Abstract

Research on rain gardens generally focuses on hydrology, geochemistry, and vegetation. The role of soil invertebrates has largely been overlooked, despite their well-known impacts on soil nutrient storage, removal, and processing. Surveys of three rain gardens in Melbourne, Australia, revealed a soil invertebrate community structure that differed significantly among sites but was stable across sampling dates (July 2013 and April 2014). Megadrilacea (earthworms), Enchytraeidae (potworms), and Collembola (springtails) were abundant in all sites, and together accounted for a median of 80% of total soil invertebrate abundance. Earthworms were positively correlated to soil organic matter content, but the abundances of other taxonomic groups were not strongly related to organic matter content, plant cover, or root biomass across sites. While less than 5% of total soil N was estimated to be stored in the body tissues of these three taxa, and estimated N gas emissions from earthworms (N2O and N2) were low, ingestion and processing of soil was high (e.g., up to 417% of the upper 5 cm of soil ingested by earthworms annually in one site), suggesting that the contribution of these organisms to N cycling in rain gardens may be substantial. Thus, invertebrate communities represent an overlooked feature of rain garden design that can play an important role in the structure and function of these systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View