Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Longitudinal patterns in progesterone metabolites in pregnant and non-pregnant Steller sea lions (Eumetopias jubatus)

Abstract

Similar to the several pinniped and a few terrestrial carnivore species, the Steller sea lion has a seasonal synchronized mating scheme enabled by a female reproductive cycle that includes embryonic diapause, delayed implantation, and pseudopregnancy (a state in which the corpus luteum produces progesterone for approximately as long as in pregnant females). Due to this, circulating systemic progesterone concentrations cannot be used to differentiate pregnant and nonpregnant females during early gestation. With the use of advanced measurement technologies such as liquid chromatography tandem mass spectrometry (LC-MS/MS) additional steroid hormones are measurable which can provide additional information on the endocrine pathways throughout gestation. Our objectives were to further characterize endocrine patterns in female Steller sea lion pregnancy by 1) quantifying longitudinal profiles of hormone metabolites in pregnant and non-pregnant female sera, and 2) evaluating hormone profiles to identify pregnant animals within the early stage of gestation. Three gestation stages were delineated based on what is believed to be the period of implantation (September-October): EARLY (August- November), MID (December-February), and LATE (March to May). Five steroids, Progesterone (P4), 5α-dihydroprogesterone (DHP), 17αOH-progesterone (17OHP), 20αOH-progesterone (20OHP), and androstenedione (A4), were detected in both pregnant and non-pregnant animals. A significant difference in P4 concentrations was measured between EARLY and MID gestation (p ≤ 0.01) in both pregnant and non-pregnant animals. During MID gestation there was a significant difference (p ≤ 0.05) between pregnant and non-pregnant animals in all pregnanes measured. Significant patterns of correlation between P4 and 17OHP and between P4 and DHP were detected during EARLY and MID gestation in non-pregnant animals. While those significant correlations also exist in EARLY pregnant animals, this pattern was lost by MID gestation. This loss of correlation suggests a potential shift in progesterone metabolism from ovarian to alternative tissue (e.g. fetal gonads or adrenal glands) by MID gestation in Steller sea lions. We were unable to identifying a steroid hormone biomarker capable of differentiating pseudopregnancy from pregnant animals and conclude that such a biomarker likely falls outside of the traditional progesterone metabolic pathway.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View