Skip to main content
eScholarship
Open Access Publications from the University of California

Electron Cyclotron Resonances in Electron Cloud Dynamics

Abstract

We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code "POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View