Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Electrochemical polarization and impedance of reinforced concrete and hybrid fiber-reinforced concrete under cracked matrix conditions

Abstract

In this paper, we investigate the influence of cementitious matrix cracking on the electrochemical polarization and impedance behaviors of corroding reinforced concrete and crack-resistant reinforced hybrid fiber-reinforced concrete (HyFRC). Samples were exposed to a chloride environment for 2.5 years while in either a continuous tensile stress state or in a nonloaded condition, and were periodically monitored for Tafel polarization responses. Electrochemical impedance spectroscopy (EIS) was additionally performed at the conclusion of the test program. Greater severity of corrosion-induced matrix splitting cracks along the length of embedded steel reinforcing bars and subsequent formation of anodic surfaces were found to affect several electrochemical parameters, including increase of the corrosion current and decrease of the ohmic resistance of concrete. Cathodic and anodic Tafel coefficients and Stern-Geary coefficients for passive and active samples are also reported, highlighted by a Stern-Geary coefficient of B = 28.1 mV for active corrosion.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View