Skip to main content
eScholarship
Open Access Publications from the University of California

System-level modeling for geological storage of CO2

Abstract

One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO2 storage that consider geological, economic, and environmental issues by linking detailed representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO2 storage, including CO2 capture and separation, compression, pipeline transportation to the storage site, and CO2 injection. Within our system model we are incorporating detailed reservoir simulations of CO2 injection and potential leakage with associated HSE effects. The platform of the system-level modeling isGoldSim [GoldSim, 2006]. The application of the system model is focused on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO2 or methane and nitrogen. Using this approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs, risks, and benefits of CO2 injection.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View