Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Opponent-process additivity—I: Red/green equilibria

Abstract

A red/green equilibrium light is one which appears neither reddish nor greenish (i.e. either uniquely yellow, uniquely blue, or achromatic). A subset of spectral and nonspectral red/green equilibria was determined for several luminance levels, in order to test whether the set of all such equilibria is closed under linear color-mixture operations. The spectral loci of equilibrium yellow and blue showed either no variation or visually insignificant variation over a range of 1-2 log10 unit. There were no trends that were repeatable across observers. We concluded that spectral red/green equilibria are closed under scalar multiplication; consequently they are invariant hues relative to the Bezold-Brücke shift. The additive mixture of yellow and blue equilibrium wavelengths, in any luminance ratio, is also an equilibrium light. Small changes of the yellowish component of a mixture toward redness or greeness must be compensated by predictable changes of the bluish component of the mixture toward greenness or redness. We concluded that yellow and blue equilibria are complementary relative to an equilibrium white; that desaturation of a yellow or blue equilibrium light with such a white produces no Abney hue shift; and that the set of red/green equilibria is closed under general linear operations. One consequence is that the red/green chromatic-response function, measured by the Jameson-Hurvich technique of cancellation to equilibrium, is a linear function of the individual's color-matching coordinates. A second consequence of linear closure of equilibria is a strong constraint on the class of combination rules by which receptor outputs are recoded into the red/green opponent process. © 1974.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View