Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Significant alteration of liver metabolites by AAV8.Urocortin 2 gene transfer in mice with insulin resistance.

Abstract

INTRODUCTION: Urocortin 2 (Ucn2) is a 38-amino acid peptide of the corticotropin-releasing factor family. Intravenous (IV) delivery of an adeno-associated virus vector serotype 8 encoding Ucn2 (AAV8.Ucn2) increases insulin sensitivity and glucose disposal in mice with insulin resistance. OBJECTIVE: To determine the effects of Ucn2 on liver metabolome. METHODS: Six-week-old C57BL6 mice were divided into normal chow (CHOW)-fed and high fat diet (HFD)-fed groups. The animals received saline, AAV8 encoding no gene (AAV8.Empt) or AAV8.Ucn2 (2x1013 genome copy/kg, IV injection). Livers were isolated from CHOW-fed and HFD-fed mice and analyzed by untargeted metabolomics. Group differences were statistically analyzed. RESULTS: In CHOW-fed mice, AAV8.Ucn2 gene transfer (vs. saline) altered the metabolites in glycolysis, pentose phosphate, glycogen synthesis, glycogenolysis, and choline-folate-methionine signaling pathways. In addition, AAV8.Ucn2 gene transfer increased amino acids and peptides, which were associated with reduced protein synthesis. In insulin resistant (HFD-induced) mice, HFD (vs CHOW) altered 448 (112 increased and 336 decreased) metabolites and AAV8.Ucn2 altered 239 metabolites (124 increased and 115 reduced) in multiple pathways. There are 61 metabolites in 5 super pathways showed interactions between diet and AAV8.Ucn2 treatment. Among them, AAV8.Ucn2 gene transfer reversed HFD effects on 13 metabolites. Finally, plasma Ucn2 effects were determined using a 3-group comparison of HFD-fed mice that received AAV8.Ucn2, AAV.Empt or saline, where 18 metabolites that altered by HFD (15 increased and 3 decreased), but restored levels to that seen in CHOW-fed mice by increased plasma Ucn2. CONCLUSIONS: Metabolomics study revealed that AAV8.Ucn2 gene transfer, through increased plasma Ucn2, provided counter-HFD effects in restoring hepatic metabolites to normal levels, which could be the underlying mechanisms for Ucn2 effects on increasing glucose disposal and reducing insulin assistance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View