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Abstract

Through an extended numerical example, this paper develops a diagrammatic

analysis of steady-state parking and tra¢ c congestion in an isotropic downtown. The

model incorporates curbside parking, garage parking, and price-sensitive travel demand

in a uni�ed setting, and provides systematic policy analysis. In particular, we examine

the deadweight loss associated with underpriced curbside parking, as well as �rst- and

second-best curbside parking capacities. We also explore the transient dynamics and

stability of various downtown tra¢ c equilibria.
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1 Introduction

For many years, urban transport economists applied the economic and engineering tools

developed in the 1960�s and 1970�s for the analysis of freeways to the study of downtown

tra¢ c congestion. Parking was treated crudely as a �xed cost incurred at the end of a trip,

and the assumed form of the congestion function was that estimated for freeway tra¢ c.

Over the last decade, however, there has been increasing recognition that downtown tra¢ c

congestion di¤ers in important ways from freeway tra¢ c congestion. For one thing, parking

is of central importance in downtown transportation. Parking is a major user of land down-

town, curbside parking reduces street capacity, and cars cruising for parking slow downtown

in-transit tra¢ c (see Shoup (2005, 2006) and van Ommeren, Wentink, and Rietweld (forth-

coming), van Ommeren, Wentink, and Dekkers (2011) for empirical evidence). For another,

in heavily congested downtown areas, most of the congestion takes the form of queuing at

intersections, while �ow congestion is of dominant importance on freeways. As a result, the

congestion function for downtown tra¢ c may di¤er signi�cantly from that for freeway traf-

�c. Detailed analysis by transportation scientists of tra¢ c sensor data indicate that, with

heavy congestion, tra¢ c �ow on sections of freeways does not fall much as average density

increases (references from Coifman and Kim) whereas in heavily congested downtown

areas it does (references by Geroliminis). Put alternatively, at a macroscopic level (e.g.,

a metropolitan network of freeways or large areas of downtown), hypercongestion (situations

where tra¢ c �ow falls as tra¢ c density increases) is more important in downtown tra¢ c

than in freeway tra¢ c.

William Vickrey (1991) was the �rst urban transport economist to develop a model cus-

tomized for the study of downtown tra¢ c congestion. He conceived of downtown Manhattan
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as a bathtub. Tra¢ c density is analogous to the height of water in the bathtub; tra¢ c �ow-

ing into Manhattan, as well as trips initiated within Manhattan, are analogous to water

�owing into the bathtub; and tra¢ c �owing out of Manhattan, as well as trips terminated

within Manhattan, are analogous to water �owing out of the bathtub.1 Tra¢ c speed is neg-

atively related to tra¢ c density. Unfortunately, he did not fully develop the model before

his death. In a series of papers (Arnott and Inci, 2006, 2010; Arnott and Rowse, 2009, 2011)

we have been developing a sequence of models building on Vickrey�s conception. However,

our models di¤er from Vickrey�s conception in that they put parking and the interaction

between parking and tra¢ c congestion at center stage. Arnott and Inci (2006, 2010) exam-

ines steady-state equilibria in a bathtub model of downtown tra¢ c congestion with curbside

parking (but no garage parking) and with price-sensitive demand. Arnott and Rowse (2009)

extends that model to allow for garage as well as curbside parking but to keep it analytically

tractable assumes demand to be inelastic.

In recent empirical work, Daganzo and Geroliminis (2007; xxxxxx) provides strong em-

pirical support for Vickrey�s conception of downtown tra¢ c congestion. In particular, they

document a stable relationship between average velocity and average tra¢ c density (which

the transportation science literature terms the existence of a stable macroscopic fundamental

diagram (MFD)) at the level of large urban neighborhoods. As a result, bathtub models are

likely to attract more widespread attention than they have to date. Second, in the years to

come, the focus of the literature will likely shift to the equilibrium intra-day dynamics of

bathtub models, and it is important to have a good summary of their steady-state properties

before this shift occurs. This paper is a step towards this goal. We develop an extended

numerical example of a synthesized model that incorporates curbside parking, garage park-

1The bathtub analogy is imperfect. At least for a frictionless tub, sink, and drain, the rate at which
water �ows out of a bathtub is positively related to the height of the water in a bathtub. In Vickrey�s
bathtub model, the rate at which water �ows out of the bathtub is positively related to the height of the
water in the bathtub up to a critical height (which corresponds to capacity density), but above this critical
height the rate at which water �ows out of the bathtub is negatively related to the height of the water, until
another critical height is reached (which corresponds to jam density) at which the drain becomes completely
clogged.
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ing, and price-sensitive demand. We provide a diagrammatic exposition of the results, which

clari�es the basic insights. Working through an extended numerical example, with diagrams,

circumvents the technical complexity of the earlier papers and puts the economic insights

into sharper relief. We use the diagrammatic exposition to examine the deadweight loss

associated with the underpricing of curbside parking, as well as �rst- and second-best (with

the underpricing of curbside parking and tra¢ c congestion being the distortions) curbside

parking capacity, and to explore the possible multiplicity and stability of equilibria.

A PARAGRAPH ABOUT WHAT WE EXACTLY FIND NEW IN THIS

PAPER.

The paper is organized as follows. Section 2 outlines the base model and adapts the

fundamental diagram of tra¢ c �ow to downtown tra¢ c. Section 3 adds curbside parking to

the base model. Section 4 extends the analysis by incorporating both curbside and garage

parking to the model. Section 5 investigates the stability of various equilibria of the previous

sections. Section 6 provides concluding remarks for future research.

2 Tra¢ c Congestion with No Parking

To set the base for further analysis, we start by adapting the familiar diagrammatic analy-

sis of congested tra¢ c equilibrium with price-sensitive demand due to Walters (1961) to

downtown tra¢ c. For the moment, we ignore downtown parking, essentially assuming that

parking is costless. We assume that downtown is isotropic; one can imagine a boundless

Manhattan network of one-way streets. We also assume that the drivers are identical and

that the demand for trips initiated per unit area-time is stationary and is a function of the

full price of a trip, F :

D = D(F ) : (1)
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For simplicity we ignore the money costs of travel. Therefore, the user cost of a trip, UC,

equals the travel time cost of a trip, which equals the distance traveled, m, times travel time

per mile, t, times the value of time, �:

UC = �mt : (2)

Travel time per mile is an increasing, convex function of the density of tra¢ c per unit area,

V : t(V ), with t0 > 0, t00 > 0, and with t(0) > 0 being free-�ow travel time. In order

to distinguish between the full trip price and user cost, we assume that a toll of size � is

applied, so that the full price of a trip equals user cost plus the toll:

F = UC + � : (3)

In steady state, the number of trips initiated per unit area-time equals the number of

trips terminated per unit area-time. We refer to this as the steady-state condition, and the

steady-state number of trips per unit area time as throughput,2 and denote it by r. The

steady-state number of trips initiated per unit area-time is given by the demand function.

The steady-state number of trips terminated per unit area-time equals tra¢ c density divided

by the length of time each car spends in tra¢ c, mt. Thus, the steady-state condition is

D(�mt(V ) + �) =
V

mt(V )
: (4)

This equilibrium can be derived geometrically using the four-quadrant diagram of Figure

1. Quadrant II plots the relationship between user cost and tra¢ c density (UC = �mt(V ),

which combines (2) and t = t(V )). Quadrant III shows the 45-degree line. Quadrant IV

2Throughput has units of cars per unit area-time. In steady state, throughput is the same as the entry
�ow and exit �ow per unit area. We avoid the term �ow to avoid confusion. The fundamental identity of
tra¢ c �ow states that �ow, f , equals density times velocity. Applying that identity in the current context
gives f = V=t(V ). Flow, therefore, equals throughput times trip length. Then, throughput measures the
exit rate ( = entry rate) from the �ow of tra¢ c, which equals �ow divided by trip length.
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Figure 1: The Fundamental Tra¢ c Diagram applied to downtown tra¢ c

depicts the steady-state relationship between tra¢ c throughput and density,

r =
V

mt(V )
: (5)

The user cost curve in Quadrant I, marked as UC, relates user cost to throughput.3 The

supply curve relates the full price of a trip to throughput, and is labeled S in the �gure.

It is obtained as a vertical shift of the user cost curve by � . The inverse demand function

3From (2) and t = t(V ), V = t�1(UC=(�m)). Substituting this into (5) gives r = t�1(UC=(�m))=(UC=�).
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provides the demand relation between the full trip price and throughput, and equilibrium is

given by the point of intersection of the demand and supply curves.

Figure 1 is plotted for speci�c functional forms and parameter values. The following are

maintained throughout the paper:

D(F ) = D0F
�a (6)

t(T ) =
t0

1� T
Vj

(7)

with parameter values

a = 0:2; t0 = 0:05; Vj = 1778:17; m = 2:0; � = 20:0 : (8)

The parameters chosen are the same as those assumed in Arnott and Inci (2006, 2010),

and the basis for their choice is given in Arnott and Inci (2006). Demand is assumed to be iso-

elastic, with demand elasticity equal to 0:2. The demand intensity parameter, D0, is allowed

to vary, in order to examine how equilibrium changes with demand. Travel congestion is

described by Greenshields�Relation, which speci�es a negative linear relationship between

velocity and density, and hence the form of the relationship between travel time and density

depicted in Quadrant II. Free-�ow travel time per mile, t0, is 0:05 hrs, which corresponds to

20 mph. Jam density, Vj, is 1778:17 cars/ml2. Trip distance is 2:0 mls and the value of time

is $20/hr. Figure 1 is drawn with the base case demand intensity of D0 = 3190:94.

Following Vickrey, travel on the upward-sloping portion of the user cost curve is termed

congested travel, and travel on the backward-bending portion is termed hypercongested travel.

With congested travel, travel time and user cost increase with throughput. With hyper-

congested travel, travel time and user cost decrease with throughput. Congested travel

corresponds to normal travel, and hypercongested travel to tra¢ c jam situations.

Figure 1 shows two equilibria. At E1 tra¢ c �ow is congested, at E2 tra¢ c �ow is
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hypercongested. There is also an equilibrium, E3, that cannot be shown in the diagram,

corresponding to gridlock �zero �ow and an in�nite full trip price. It is generally accepted

that E1 is a stable equilibrium. The stability of equilibria on the backward-bending portion of

the supply curve has been a matter of considerable dispute. Arnott and Inci (2010) examined

the issue for a somewhat di¤erent model4 that included curbside parking. If their model had

excluded curbside parking, the stability analysis would have proceeded as follows. Stability is

de�ned with reference to a particular adjustment dynamic. The natural adjustment dynamic

in this context is that the change in the density of cars equals the demand in�ow, D(F ),

minus the out�ow, T=(mt(T )). With demand based on either myopic foresight (when a

driver is deciding whether to take a trip, he bases his expectation of the full price on current

tra¢ c conditions) or perfect foresight, the analog of E1 is indeed stable, while E2 is unstable5

and E3 stable. Which of the two stable equilibria the tra¢ c network attains depends on the

density at the time when the demand function �rst became stationary.

Figure 2: Equilibrium and social optimum without parking

4Visit length is assumed to be Poisson distributed with mean length m.
5A steady-state equilibrium is unstable if the measure of initial tra¢ c conditions achieving this equilib-

rium is zero. One may call E2 to be saddle-path stable because it can be reached from initial tra¢ c conditions
on one of the arms of the steady state, which is a curve and thus measure zero.
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Figure 2 focuses on the upward-sloping portion of the user cost curve. Aggregate user cost

can be calculated as a function of throughput. On this portion of the user cost curve, marginal

social cost is de�ned as the derivative of aggregate user cost with respect to throughput, and

at a particular throughput equals the corresponding user cost plus the congestion externality

cost (the cost to inframarginal users due to the increase in throughput slowing them down).

Figure 2 displays the user cost curve and the marginal social cost curve, labeled MSC. In

social surplus analysis, the demand curve is interpreted as the marginal social bene�t curve,

labeld MSB, so that optimal throughput occurs at the point of intersection of the marginal

social cost and demand curves, O. The optimal throughput can be achieved by setting

an optimal congestion toll equal to the congestion externality cost, evaluated at the social

optimum, � �. In the no-toll equilibrium, E1, too many cars travel on the road since travel

is underpriced due to drivers not paying for slowing other drivers down. The deadweight

loss associated with having no toll is given by the area AE1O, and equals the loss in social

surplus from travel at throughput rE1 compared to throughput rO. These results are, of

course, broadly familiar, but we have been careful to derive them precisely in the context of

steady-state tra¢ c congestion in an isotropic downtown area, since we shall build on them

in the sections that follow, which add parking.6

3 Tra¢ c Congestion with Only Curbside Parking

We nowmodify the model to take into account that drivers must park. In this section, we rule

out garage parking and consider only curbside parking. Curbside parking a¤ects the analysis

in four ways. First, increasing the amount of curbside allocated to parking reduces the road

space available for tra¢ c �ow, which has the e¤ect of reducing jam density.7 Second, the

6We could extend the analysis to solve for optimal road capacity. But, here and throughout the paper
we take road capacity as �xed.

7We assume that curbside allocated to parking reduces jam density by the same amount whatever the
occupancy rate of the curbside parking. The rationale is that, under at least moderately congested conditions,
even if only one curbside parking space is occupied on one side of the block, tra¢ c �ow is e¤ectively excluded
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amount of curbside parking constrains the throughput of the downtown tra¢ c network to be

no more than the curbside turnover rate, which we term curbside parking capacity constraint

(CPC); if there are P curbside parking spaces per unit area and if the visit duration is l,

then curbside parking capacity is P=l; it is the maximum throughput that curbside parking

can accommodate. Third, if there is insu¢ cient curbside parking to ration the demand,

given the curbside parking fee, cruising for parking occurs, with travel time costs, including

cruising-for-parking time costs, adjusting to clear the market. And fourth, drivers pay a

curbside parking fee per unit time (meter rate)8, f .

To simplify, we provide a crude treatment of parking search. We assume that each driver

travels to his destination block. If a space is available, he takes it, and if it is not he drives

around the destination block until a space opens up. Furthermore, we ignore the random

variation that occurs due to the small number of parking spaces on each block, and assume

that curbside parking is either saturated (fully occupied) everywhere, or unsaturated every-

where.9 We shall consider optimal parking pricing and optimal curbside parking capacity,

conditional on curbside parking being e¢ ciently priced (�rst-best capacity) and ine¢ ciently

priced (second-best capacity). In all our analysis, we assume that no congestion tolling is

employed.10

We have already distinguished between throughput and �ow. Steady-state throughput

is the rate at which trips are initiated and terminated per unit area-time. Steady-state �ow

is the number of car-miles traveled per unit area-time. When cruising for parking occurs,

there is a further characteristic distinguishing throughput and �ow ��ow includes cars that

are cruising for parking.

from that lane for the entire block.
8To keep the analysis simple, we consider only linear curbside parking payment schedules.
9Realistically, at the level of the downtown area, there is a gradual transition between unsaturated and

saturated parking. As the demand for curbside parking increases, curbside parking becomes saturated on
an increasingly high proportion of blocks.

10Because the distance traveled and the visit duration are �xed, the �rst best can be achieved just by
e¢ ciently pricing curbside parking, even though congestion tolling is not employed; the e¢ cient parking fee
includes the optimal congestion toll. This is why we refer to the optimal capacity with e¢ cient curbside
parking pricing as �rst-best.
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Two adjustments need to be made to the speci�cation of the congestion technology to

accommodate curbside parking. First, it is necessary to account for the reduction in road

capacity due to curbside parking. We assume that e¤ective jam density is related to the

amount of street space allocated to tra¢ c �ow. In particular, where 
 is the jam density

with no curbside parking, e¤ective jam density, Vj, equals jam density times the proportion

of street space allocated to tra¢ c �ow, 1�P=Pmax, where P is the density of curbside parking

spaces per unit area and Pmax its maximum value. Thus,

Vj = 
(1�
P

Pmax
) : (9)

Second, the speci�cation of the congestion technology needs to account for the congestion

interaction between cars in transit and cars cruising for parking. We make the simple as-

sumption that a car cruising for parking generates � times as much congestion as a car in

transit. Thus, where C is the density of cars per unit area that are cruising for parking, the

travel time function is

t(T;C; P ) =
t0

1� T+�C
Vj

: (10)

We maintain the following parameters for the rest of the paper:11

� = 1:5; 
 = 2667:36; Pmax = 11136 : (11)

We also assume that the curbside parking fee is $1/hr, so that the parking fee for the trip

is $2, and that curbside parking is permitted on one side of the street everywhere, so that

11The parameters are drawn from Arnott and Inci (2006) and were chosen to be broadly consistent with
observation. A city block is assumed to be 1=8 ml long, the one-way streets to have three lanes, and roads
to be 33 ft wide. Then each side of a block is 627 ft long. If parking is on one side of the street, so that
two sides of every city block have curbside parking, the maximum length of curbside around each city block
that could be devoted to parking is 1254 ft. But some of this curbside is used for crosswalks. On two sides
of a city block, there are four crosswalks. We assume that each crosswalk is 9 ft wide, so that the amount of
curbside around each city block allocated to parking is 1218 ft. With 21 ft devoted to each curbside parking
space, the number of curbside parking spaces on each block is 58. And since there are 64 blocks per ml2, the
number of curbside parking spaces per ml2 is 3712.
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P = 3716 and P=l = 1856. In the analysis that follows, we start with the short run, where

the level of curbside parking is �xed, and then move to the long run, where the level of

curbside parking is a policy choice variable.

3.1 The short run

We start with the �rst-best planning problem and its decentralization.

3.1.1 First-best optimum in the short run

Consider a benevolent social planner who has direct control of the transportation system

and its users. She would never choose cruising for parking because the same throughput

can be achieved at lower cost without it. Since the amount of curbside parking is �xed, she

chooses throughput to maximize social surplus. Resource cost per unit time is �T . Thus,

where X(r) is the social bene�t from throughput r (which equals the area under the inverse

demand curve up to throughput level r), she faces the maximization problem

max
r;T
X(r)� �T (12)

s:t:

r =
T

mt(T; 0; P )
((i))

r � P

l
: ((ii))

The �rst constraint is the steady-state condition and the second is the curbside parking ca-

pacity constraint, that throughput cannot exceed the curbside parking turnover rate. Figure

3 displays the solutions for two demand levels, D1 and D2. The curbside parking capacity

constraint is labeled CPC, and the marginal social cost of throughput, labeled, MSC(r), is

calculated as �[dT=dr](i) with [dT=dr](i) being calculated from the steady-state condition.

12



Figure 3: First-best optimum in the short run

With demand level D1, the curbside parking capacity does not bind, and the �rst-best

optimum, labeled O1, is at the point of intersection of the demand (marginal social bene�t)

and marginal social cost curves. Since we have assumed that the reduction in road capacity

caused by curbside parking depends on the amount of curbside that is allocated to curb-

side parking, independent of its occupancy rate, the marginal traveler generates no parking

externality. Marginal social cost therefore equals user cost plus the congestion externality

cost, so that the social optimum can be decentralized by setting the parking fee equal to the

congestion externality costs.

With demand level D2, the curbside parking capacity binds, and the �rst-best optimum,

labeled O2, is at the point of intersection of the demand curve and the curbside parking

capacity constraint. The marginal social cost now equals the user cost plus the congestion

externality cost plus a parking scarcity rent. The social optimum can then be decentralized

by charging a congestion toll equal to the congestion externality cost evaluated at the social

optimum plus a parking scarcity rent. Since in the model, each trip has a �xed length and

visit duration, the social optimum can also be decentralized without an explicit congestion
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toll by charging a parking fee equal to the congestion externality cost and the scarcity rent.

3.1.2 Second-best optimum in the short run

It is perhaps misleading to talk about a second-best optimum in the short run since the

planner has no margins of choice. The second-best optimum is simply the equilibrium that

generates the highest social surplus.

An equilibrium may entail unsaturated or saturated parking. Consider �rst equilibria

with unsaturated parking. Since parking is unsaturated, there is no cruising for parking.

The user cost is UC = �mt(T; 0; P ) and the full price is F = UC + fl, where T satis�es the

steady-state condition that T=(mt(T; 0; P )) = D(F ). From these results, the unsaturated

user cost curve can be derived, which is completely analogous to the user cost curve derived

in the previous section, except that curbside parking reduces road capacity. At levels of

throughput where the curbside parking capacity constraint does not bind, the supply curve

is derived as the unsaturated user cost curve shifted up by the curbside parking fee, and

any point of intersection of the demand curve and this portion of the supply curve is an

unsaturated equilibrium.

Now consider equilibrium with saturated parking. Parking is saturated because the

parking constraint binds, and except in the situation where it just binds there is cruising

for parking. Thus, equilibrium entails two density variables, the density of cars in transit

and the density of cars cruising for parking. These are determined by two equilibrium

conditions. The �rst is the familiar steady-state condition, but here modi�ed to take into

account curbside parking and cars cruising for parking:

D(F ) =
T

mt(T;C; P )
; (13)

where the full price equals the cost of in-transit time, plus the expected cost of cruising-for-
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parking time, plus the parking fee:

F = �mt(T;C; P ) +
�Cl

P
+ fl : (14)

Since C cars are cruising for parking and since the turnover rate of parking space is P=l,

the probability that a car cruising for parking gets a space per unit time is P=(Cl), so that

expected cruising-for-parking time is Cl=P . The second equilibrium condition, the cruising-

for-parking equilibrium condition, is that the rate at which cars exit the in-transit pool equal

the parking turnover rate:
T

mt(T;C; P )
� P
l
= 0 : (15)

The steady-state condition and the cruising-for parking equilibrium condition provide two

non-linear equations in the two unknowns, T and C. Their analysis is complex. Arnott and

Inci (2006) derive the conditions under which the two curves intersect in T -C space, and for

which therefore there exists a saturated equilibrium. Furthermore, they prove that if a satu-

rated equilibrium exists, it is unique. Here, we derive the properties we need for our diagram-

matic analysis through heuristic argument. We ask: What are the minimum and maximum

full prices consistent with the cruising-for-parking equilibrium condition being satis�ed, and

therefore for the existence of a saturated equilibrium. The equation T=(mt(T; 0; P ) = P=l

has two roots, the smaller corresponding to congested travel, the larger to hypercongested

travel. As intuition suggests, the minimum full price consistent with (15) being satis�ed

corresponds to the smaller root �a given level of throughput can be achieved with minimum

congestion when there are no cars cruising for parking. Less obviously, the maximum full

price consistent with (15) being satis�ed corresponds to the larger root �the most jammed

tra¢ c consistent with a given level of throughput occurs when none of the cars is cruising

for parking.

These two results greatly facilitate the analysis. Turn to Figure 4. First, imagine plotting
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Figure 4: Equilibria with curbside parking

the unsaturated user cost curve, which relates user cost to throughput for a given level of P

in the absence of cruising for parking, and which we denote by UC(r; P ). It is the same as

the user cost curve in Quadrant I of Figure 1, except that some road space is allocated to

curbside parking. Second, shifting this curve up by fl gives the unsaturated full price curve,

denoted as F (r; P ), which indicates how the full price is related to throughput with curbside

parking P when the curbside parking capacity constraint does not bind. Third, draw in the

curbside parking capacity constraint, which constrains throughput to be no greater than P=l.

The portions of the unsaturated full price curve to the left of the curbside parking capacity

constraint �where it does not bind �form part of the supply curve. The portion to the right

of the curbside parking capacity constraint is drawn as a dashed line since it is not relevant

to the analysis. We argued above that there is a minimum and a maximum full price at

which a saturated equilibrium can exist, and at each there is no cruising for parking. The

minimum full price at which a saturated equilibrium can exist is therefore the lower point

of intersection of the unsaturated full price curve and the parking capacity constraint, and
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the maximum full price is the upper point of intersection. Thus, a saturated equilibrium

must lie on the portion of the curbside parking capacity constraint above the upward-sloping

portion of the unsaturated full price curve and below the backward-bending portion. This

is the third piece of the supply curve. Equilibria then correspond to points of intersection of

the supply curve so de�ned and the demand curve.

Figure 4 shows three demand curves, each corresponding to a di¤erent demand inten-

sity. While not obvious from the diagram, for all three demand curves, gridlock, with zero

throughput and an in�nite full price, is an equilibrium. In the gridlock equilibrium, since

there is zero throughput, parking is unsaturated, so that the parking capacity constraint

does not bind, and the steady-state condition is satis�ed since the entry �ow and exit �ow

are both zero. Arnott and Inci (2010) show that the gridlock equilibrium is stable. With

low demand intensity (in the �gure, D1 with demand intensity D0 = 2000), there are three

equilibria: E1, which is unsaturated, congested, and stable; E2, which is unsaturated, hyper-

congested, and unstable; and the gridlock equilibrium, which is unsaturated, hypercongested,

and stable. The stability properties of the equilibria will be derived later. With medium

demand intensity (in the �gure, D2 with demand intensity D0 = 3000), there are again three

equilibria: E 01, which is saturated and stable; E
0
2, which is unsaturated, hypercongested, and

unstable, and the gridlock equilibrium. With high demand intensity (in the �gure, D3 with

demand intensity D0 = 4000), the equilibria corresponding to E1 and E2 disappear, with

only the gridlock equilibrium remaining. Later we shall display the various equilibria, as a

function of demand intensity, in a bifurcation diagram.

Let us consider the equilibrium E 01 in more detail. In this saturated equilibrium, the

stock of cars cruising for parking and in-transit adjust to clear the market, such that the full

price is at the point of intersection of the demand curve and the curbside parking capacity

constraint.12 The equilibrium values of T and C are 444:28 and 394:03, so that travel time

12Without cruising for parking, the throughput demanded would exceed the throughput supplied (con-
strained by the curbside parking capacity constraint). Cruising for parking serves as a dissipative rationing
mechanism. Here, cruising for parking is analogous to a bread line except that the service is random access
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is 0:1197 per ml. This implies a velocity of 8:36 mph, which corresponds to hypercongested

travel. The full trip price equals $11:03, of which $4:78 is in-transit travel time cost, $4:24

is expected cruising-for-parking time costs, and $2:00 is the parking fee.

We now consider the deadweight loss associated with ine¢ cient pricing in the equilibrium

E 01, conditional on the level of parking capacity. The deadweight loss equals social surplus at

the optimum minus social surplus in the equilibrium. In the example, the social optimum too

is at the point E 01. Since there is no cruising for parking in the social optimum, the socially

optimal level of T is the smaller root solving T=(mt(T; 0; P ) = P=l, which is T = 210:74, so

that travel time is 0:0567 hrs, which corresponds to a velocity of 17:64 mph and an in-transit

travel time cost of $2:27. Thus, the deadweight loss due to ine¢ cient pricing is $6:75 per

driver and $12; 528 per ml2-hr. The social optimum could be decentralized by charging each

driver $8:75.

Since in the model both trip length and visit duration are �xed, it makes no di¤erence

whether this charge takes the form of a congestion toll or a parking fee. But generally it

does.13 The congestion toll would be set equal to the congestion externality cost, and the

parking fee would be set equal to the marginal social cost of a parking space for the duration

of a visit, both evaluated at the social optimum. The congestion externality cost is familiar,

and is computed as the increase in the total unsaturated user cost corresponding to a unit

increase in throughput, r, holding �xed curbside parking capacity (and hence ignoring the

curbside parking capacity constraint). Since total unsaturated user cost per unit time is

�T , the marginal social cost of throughput, holding �xed parking capacity is �@T=@r, where

rather than FIFO.
13Return to the �rst-best social optimization problem. Let � be the Lagrange multiplier on the steady-

state condition and � be the multiplier on the curbside parking capacity constraint. The �rst-order condition
with respect to r is X 0(r) � � � � = 0. The �rst-order condition with respect to T is �� + �(1=(mt) �
TtT =(mt

2)) = 0, so that � = �mt=(1 � TtT =t). �mt is the user cost and �mt[1=(1 � TtT =t) � 1] =
�mTtT =(1�TtT =t) is the congestion externality cost. Also, � = X 0(r)��. If P were optimized (which it is in
the long-run optimization problem), the corresponding �rst-order condition would be: ��TtP =(mt2)+�=l =
0 =) ��rtPP=t+�r = 0 =) � = �tPP=t =) � = �mtPP=(1�TtT =t). In the long-run optimum, a parking
space has no scarcity rent and its rent equals the parking congestion externality cost. Thus, in the short
run, we de�ne the parking scarcity rent to be �� �mtPP=(1� TtT =t).
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@T=@r is calculated along the condition that T=(mt(T; 0; P ) = r, which equals $2:63. The

�rst-best congestion toll would be set equal to the congestion externality cost, which equals

the di¤erence between this marginal social cost of throughput and the unsaturated user cost,

and therefore equals $0:36.

Even if there were no congestion, a parking fee would still be needed to ration the

available curbside parking spaces. We term this the parking scarcity rent. Thus, the �rst-

best parking fee would contain two components, the parking scarcity rent and the parking

externality cost, which we de�ne to be the increase in total congestion cost per unit time

associated the additional parking needed to accommodate a unit increase in throughput,

but holding the level of throughput �xed : �l@T=@P , where @T=@P is calculated along the

condition that T=(mt(T; 0; P )) = r, holding throughput �xed, which is $0:18. The parking

scarcity rent is calculated as a residual. The social bene�t from a marginal trip is $11:03.

To ensure that parking spaces go to those who value them the most requires that trip

price equal this amount. In the decentralized �rst best, the trip price would have four

components, the (unsaturated) user cost of a trip, the congestion externality cost, the parking

externality cost, and the parking scarcity rent. The parking scarcity rent would therefore be

$11:03� $2:27� $0:36� $0:18 = $8:22, and the �rst-best parking fee would be $8:40.

Figure 5 is the same as Figure 4, except for plotting the user cost curve and focusing

on the �rst-best and second-best optima with the demand function D2. The social surplus

at the optimum equals social bene�t, the area below the demand curve and to the left of

the curbside parking, minus aggregate user cost, 0JHI. It therefore equals the area JAE 01H

plus the area above AE 01 and below the demand curve. The social surplus at the second-best

optimum equals consumer surplus, the area above AE 01 and below the demand curve, plus

parking fee revenue, JBKH. Thus, the deadweight loss due to the underpricing of curbside

parking is given by BAE 01K. Raising the parking fee does not alter consumer surplus but

increases parking fee revenue, and therefore converts deadweight loss dollar for dollar into

tax revenue. Thus, the extra revenue is raised not just with no excess burden but also with
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Figure 5: Equilibrium and social optimum with curbside parking

no burden. An obvious question is therefore why local governments choose to forgo such an

e¢ cient source of revenue.

3.2 The long run

We now turn to the determination of optimal �rst-best and second-best capacities.

3.2.1 First-best optimal capacity

Increasing curbside parking capacity constraint by a small amount has two e¤ects, one

positive and one negative. The positive e¤ect is to raise throughput and hence the social

bene�t from travel, the area under the demand curve up to the curbside parking capacity

constraint. The negative e¤ect is to reduce the amount of road space available to tra¢ c �ow,

which causes the unsaturated user cost curve to rise. These e¤ects are displayed in Figure

6. Allocating more curbside to parking causes the curbside parking capacity constraint to
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shift to the right, which generates the surplus to marginal travelers of HALJ , equal to the

bene�t they receive minus the user cost they incur. But it also causes the user cost curve to

shift up, increasing the costs of inframarginal drivers by KBHG, and reducing their surplus

by the same amount. At �rst-best optimal capacity the two areas are equal.

Figure 6: The �rst-best optimal curbside parking capacity

It will be instructive to determine �rst-best optimal capacity through an alternative

geometric construct. The point M in Figure 5 gives the marginal social cost of a trip with

parking capacity of 3712, which constrains throughput to be less than or equal to 1856. If

parking capacity is reduced slightly, the throughput of 1856 cannot be achieved. If parking

capacity is increased slightly, the throughput of 1856 can be achieved but at higher marginal

social cost. Thus, with parking capacity endogenous, M gives the minimum marginal social

cost associated with throughput of 1856. There is a point corresponding to M for every

level of throughput, up to some maximum. Joining these points gives the long-run marginal

social cost curve, labeled LRMSC. This long-run marginal social cost curve is de�ned up to

the throughput at which the corresponding curbside parking capacity constraint is tangent

to the corresponding unsaturated user cost curve, rmax, at which point it is vertical. rmax
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is the maximum level of throughput that can be accommodated on downtown streets with

lrmax units of curbside parking.

Figure 7: First-best optimal curbside parking capacity

If the demand curve lies everywhere below the long-run marginal social cost curve, the

socially optimal level of throughput is zero. Otherwise, the �rst-best throughput, r�, occurs

at the point of intersection of the demand curve and the long-run marginal social cost curve,

associated with which is �rst-best parking capacity, P � = lr�. Figure 6 shows how the

LRMSC curve is constructed, and Figure 7 displays the full LRMSC curve, the parking

capacity constraint P = lrmax and the short-run user cost curve corresponding to rmax,

UC(r; lrmax) The socially optimal level of throughput occurs at O, the point of intersection

of the demand curve and long-run marginal social cost curve, equals r�, and corresponds to

curbside parking capacity of lr�. 0A is the unsaturated user cost associated with throughput

r� and curbside parking capacity lr�, and 0B is the corresponding long-run marginal social

cost. Decentralization of the social optimum entails charging a parking fee equal to BA.

Since at the �rst-best optimum the curbside parking capacity constraint only �just binds�,

the parking fee contains no scarcity rent, so that the parking fee equals the sum of the
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congestion externality cost and parking externality cost.

First-best parking capacity has been derived on the assumptions that the transient dy-

namics will lead to the e¢ cient equilibrium. Providing the �rst-best level of parking capacity

and applying �rst-best pricing does not ensure this, however. Now consider the determina-

tion of second-best optimal capacity, where the distortion is underpriced curbside parking.

Start at a saturated equilibrium. Increasing parking capacity a small amount unambiguously

increases social surplus. With underpriced curbside parking, social surplus equals consumer

surplus plus fee revenue, both of which are increased by an increase in throughput.

3.2.2 Second-best optimal capacity

Next start at an unsaturated, congested equilibrium. Reducing parking capacity a small

amount unambiguously increases social surplus. Because parking is unsaturated, equilibrium

lies at the point of intersection of the upward-sloping portion of the (short-run) supply curve

and the demand curve. Reducing parking capacity lowers that portion of the supply curve,

increasing throughput and hence social surplus. Thus, a second-best optimum that lies

on the upward-sloping portion of the supply curve corresponding to the second-best level

of curbside parking capacity entails the capacity constraint just binding (so that there is

no cruising for parking). A more di¢ cult argument establishes the same to be true for a

second-best optimum that lies on the backward-bending portion of the supply curve.

This line of reasoning points to a method for determining second-best optimal through-

put and capacity. Plot the UC(r; rl) curve, along which the parking capacity constraint

just binds. Shifting the curve up by the amount of the parking fee generates the long-run

supply curve, which we label LRS(r) in Figure 8. The second-best optimal throughput, r��,

corresponds to that point of intersection of the demand curve and the long-run supply curve

with the highest level of throughput (and hence the highest level of surplus).14 Similar to the

14If the demand curve lies everywhere below the long-run supply curve, second-best capacity is zero.
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Figure 8: Second-best optimal curbside parking capacity

�rst-best optimum, simply setting curbside parking capacity at its second-best level, lr��,

does not ensure that the second-best optimum will be attained.

Figure 9: The relationship between �rst- and second-best optimal capacity

The relationship between �rst- and second-best optimal capacity is shown in Figure 9,
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which plots the long-run marginal social cost curve, the long-run supply curve, and the

demand curve. With both �rst- and second-best optimal capacity the curbside parking

capacity constraint just binds, so that parking capacity equals throughput times visit length,

and the analysis can be conducted in terms of throughput. The �rst-best optimum is at the

point of intersection of the long-run marginal social cost curve and the demand curve. The

second-best optimum corresponds to that point of intersection of the demand curve and the

long-run supply curve with the highest level of throughput.

Consider �rst the case where demand is �moderate�, so that the demand curve intersects

the long-run supply curve on its upward-sloping portion, as is illustrated by D1 in the �gure.

The long-run marginal social cost curve lies above the upward-sloping portion of the long-run

user cost curve UC(r; rl). Thus, if, with �rst-best capacity, curbside parking is underpriced

(so that the long-run supply curve lies below the long-run marginal cost curve at r�), which

we assume, second-best capacity and throughput exceed their �rst-best levels. In the �gure,

the �rst-best levels of throughput and capacity correspond to O1, and the second-best levels

of throughput and capacity correspond to E1.

Consider next the case where demand is �high�, so that the demand curve does not

intersect the long-run supply curve on its upward-sloping portion, as is illustrated by D2 in

the �gure. Again, if, with �rst-best capacity, curbside parking is underpriced, second-best

capacity and throughput exceed their �rst-best levels. The intuition is that, with underpriced

curbside parking and �rst-best capacity, throughput and hence social surplus can be increased

by increasing capacity to the point where cruising for parking is just eliminated.
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4 Tra¢ c Congestion with Both Curbside and Garage

Parking

In the downtowns of small towns, the suburbs of small cities, and the residential neighbor-

hoods of medium-sized cities, there is typically enough parking space curbside to accom-

modate demand without severely impeding tra¢ c �ow. But in most locations where tra¢ c

congestion is a serious problem, curbside parking needs to be supplemented by o¤-street

parking, whether in a parking lot or garage, or mandated by minimum parking require-

ments.

We shall treat o¤-street parking �which we shall refer to generically as garage parking

�in the simplest possible way, by assuming that it is provided continuously over space at a

constant cost of c = $2:5 per hour. In fact, in the downtowns of major metropolitan areas,

because of economies of scale in garage construction, there is typically an irregular grid of

parking garages, some public, some private, which engage in spatial competition with one

another. Arnott and Rowse (2009) model this spatial competition, taking into account the

technology of garage construction. But here we provide a simpler treatment in order to focus

on the interaction between curbside and garage parking.

In what follows, we shall employ the terms �user cost�and �travel cost�to refer to the

cost borne directly by users, in-transit travel time cost and cruising-for-parking time cost,

and distinguish it from garage parking cost.

We start by considering �rst-best optimal curbside parking capacity when it is optimal

to provide both curbside and garage parking, as it is in the example. Panel A of Figure 10

plots user cost for the �rst-best level of parking capacity. Aggregate resource costs equal

aggregate user costs plus garage parking costs. Consider the e¤ects of increasing curbside

capacity by a small amount, holding throughput �xed. Doing so has two e¤ects. The �rst

is to decrease e¤ective jam density, causing the user cost curve to shift up, from UC(r; P �)

26



Figure 10: User cost for a given level of curbside parking capacity (Panel A) and the full
�rst-best optimum (Panel B) with curbside and garage parking

to UC(r; P � + �P ) in the �gure, and aggregate user costs to increase. The second is to

decrease the number of garage parking spaces that need to be provided. For the given

number of travelers, �rst-best optimal curbside parking capacity is such that a unit increase
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in capacity causes aggregate user costs to increase by cl, the saving in garage parking costs.

We now need to determine optimal throughput. At the �rst-best optimum, the change in

social surplus from an extra traveler is the same whether he is accommodated by increasing

the amount of curbside parking or of garage parking. Assume the latter. The marginal

social cost of the added traveler, MSC, is then the marginal travel cost, MTC, plus the

garage cost, cl. And the optimum number of travelers is such that the marginal social cost

of an added traveler equals the marginal social bene�t. Panel B of Figure 10 displays the full

�rst-best optimum. First-best optimal curbside parking capacity is P � = 2504, and �rst-best

optimal throughput is r� = 4816.

We now turn to the situation where no congestion tolling is applied and where curbside

parking is priced below the unit cost of garage parking, which is the case in most cities. When

both curbside and garage parking are provided, drivers will choose whichever is cheaper.

Thus, the stock of cars cruising for parking adjusts so that the full prices of curbside and

garage parking are equalized: fl + (�Cl)=P = cl. Rearranging, we have that

C = Ĉ � (c� f)P
�

; (16)

thus, when both curbside and garage parking are provided in equilibrium, the stock of cars

cruising for parking increases in proportion to the di¤erential between the curbside and

garage parking rates and to curbside parking capacity constraint. This yields the obvious

but important result that cruising for parking can be eliminated by providing no curbside

parking.

Figure 11 is like Figure 4 but adds garage parking. We start by de�ning two di¤erent

short-run, quasi-supply curves for the same level of curbside parking, P . The �rst corre-

sponds to the situation where a driver pays the curbside parking fee but experiences no

cruising for parking since curbside parking is unsaturated, so that the full price of travel is

F1 = �mt(T; 0; P ) + fl. The second corresponds to the situation where curbside parking is
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Figure 11: Equilibria with curbside and garage parking

saturated and garage parking occurs, so that there is cruising for parking with the stock of

cars cruising for parking given by (16), so that the full price of travel is F2 = �mt(T; Ĉ; P )+cl,

where Ĉ is given by (16). Since the stock of cars cruising for parking reduces e¤ective jam

density, the second lies inside and to the left of the �rst. Now add the curbside parking

capacity constraint of P = 3712 (so that P=l = 1856). To the left of the constraint, parking

is unsaturated and the stock of cars cruising for parking is zero, so that the �rst quasi-supply

curve applies. To the right of the constraint, garage parking is provided, so that (16) holds

and the second quasi-supply curve applies. The supply curve, shown as the bold line S in

the �gure, contains �ve portions: (i) the portion of the second quasi-supply curve to the

right of the parking constraint; (ii) the two portions of the �rst quasi-supply curve to the

left of the parking constraint; and (iii) two segments of the parking constraint, each joining

the �rst and second quasi-supply curves.15 On (i), the scarcity rent on curbside parking is

zero and there is no cruising for parking; on (ii) the scarcity rent on curbside parking is c,

15The vertical segments of the supply curve on the curbside parking capacity constraint are an artifact
of the model. In reality, curbside parking transitions smoothly rather than abruptly between unsaturated
and saturated parking, and the supply curve of o¤-street parking is upward-sloping rather than �at, both of
which would smooth the throughput supply curve.
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and this rent is dissipated by cruising for parking, with the stock of cars cruising for parking

given by (16); and on (iii) the scarcity rent on curbside parking is between 0 and c, and

this rent is dissipitated by cruising for parking, with the stock of cars cruising for parking

varying between 0 and Ĉ.

The demand curve is drawn for D0 = 3300. With this demand curve and the assumed

forms of the congestion and parking technologies, there are �ve equilibria, one of which,

the gridlock equilibrium, cannot be displayed on the diagram. As expected, these equilibria

alternate between stable and unstable equilibria. There are three stable equilibria. One is

the gridlock equilibrium, which as before we label as E3; the second, E6, is a hypercongested

equilibrium with saturated curbside parking and no garage parking; and the third is a con-

gested equilibrium with saturated parking and no garage parking. How the set of equilibria

changes as demand intensity changes will be considered later.

Figure 12: Deadweight losses associated with the two stable equilibria

Figure 12 displays the deadweight losses associated with the two stable equilibria when

curbside parking may be supplemented with garage parking. It is analogous to Figure 5.

The short-run marginal social cost curve corresponding to the curbside parking capacity
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constraint P=l = 1858, MSC(r;P ), is given by the locus AYXO, where O is the social

optimum. Notice the discontinuous increase in the locus at curbside parking capacity, which

indicates that the level of curbside parking is suboptimal. The social surplus at the optimum

is given by the area between the demand and marginal social cost curves up to the �rst-best

optimal level of throughput, rO. The social surplus at the equilibrium E5 equals consumer

surplus plus the curbside parking fee revenue, 0ABC. Thus, the deadweight loss associated

with equilibrium E5 is given by the area ARE5OXY � 0ABC, which is xxxx per hour.

The social surplus at the equilibrium E7 is determined analogously and is given by the area

ASE7OXY � 0ABC, which is xxxx per hour. The �gure reinforces a point made in Figure

5, that the deadweight loss due to underpricing curbside parking can be substantial. It

also illustrates another source of possible deadweight loss. If the transient dynamics are

unfavorable, downtown tra¢ c can end up at an inferior stable equilibria. In the example,

ending up at equilibrium E7 rather than at equilibrium E5 generates deadweight loss of

RSE7E5, which in the example equals xxxx.

Figure 13: Social bene�t from increasing the curbside meter rate

Figure 13 examines the social bene�t from increasing the curbside meter rate such that the

price di¤erential between garage and curbside parking is reduced. Suppose that the curbside
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parking rate is raised half the distance to its e¢ cient level, from $1:00=hr to $1:75=hr. Doing

so changes the value of Ĉ. Denote the corresponding user cost curves by UC$1
Ĉ
and UC$1:75

Ĉ
,

and the corresponding type-5 equilibria by E$15 and E
$1:75
5 . The gain in parking meter revenue

is given by the area ABJH, while the gain in social surplus equals the area LE$15 E
$1:75
5 K.

Thus, in contrast to the previous section where the gain in social surplus from increasing the

meter rate exactly equals the increase in meter revenue, here the gain in social surplus may

be several times the increase in meter revenue. The marginal burden of curbside parking

fee revenue is then negative. Raising the meter rate, not only does the government obtain

more revenue but also consumer surplus increases. In the previous section, the increase

in the meter rate simply converted travel costs dollar for dollar into meter revenue. Here,

the increase in the meter rate converts cruising-for- parking time costs dollar for dollar into

meter revenue, with the added gain that the decrease in the stock of cars cruising for parking

reduces tra¢ c congestion, bene�ting everyone.

Figure 14: Social bene�t from increasing the curbside meter rate

Figure 14 displays a bifurcation diagram, indicating the equilibrium throughputs at each

level of demand intensity with the base-case parameter values. Equilibria of type 4 are
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congested, stable, and unsaturated. Equilibria of type 1 correspond to equilibria of type

5 when there is no garage parking. The other equilibrium types are illustrated in Figure

11. Start at low levels of demand intensity. There is more than enough curbside parking to

accommodate the demand. All three equilibria are unsaturated. E4 is the most e¢ cient of the

equilibria and is congested; E2 is hypercongested and unstable; and E3 is the dysfunctional,

but stable, gridlock equilibrium. As demand intensity increases, a level is reached at which

the e¢ cient equilibrium becomes saturated, switching from a type 4 to a type 1 equilibrium.

For an interval of higher demand intensities, the stable, saturated e¢ cient type 1 equilibrium

co-exists with the equilibria of types 2 and 3. The scarcity rent on curbside parking in

the type 1 equilibrium is positive but not su¢ ciently high to make the construction of

garage parking pro�table, and tra¢ c may be either congested or hypercongested. As demand

intensity increases further, another level of demand intensity is reached at which the scarcity

rent on curbside parking is su¢ ciently high to make garage parking pro�table, and the

type 1 equilibrium switches to a type 5 equilibrium. In the type 5 equilibrium, curbside

parking is saturated, with the stock of cars cruising for parking being given by (16), tra¢ c

is congested, and garage parking occurs. As with the type 4 and type 1 equilibria, the type

5 equilibrium co-exists with equilibria of types 2 and 3. As the level of demand intensity

increases further, another level of demand intensity is reached at which two new types of

equilibrium emerge, types 6 and 7. A type 7 equilibrium has saturated curbside parking

and no garage parking, and is hypercongested and stable. A type 6 equilibrium has both

saturated curbside parking and garage parking, with the stock of cars cruising for parking

being given by (16) and is hypercongested and unstable. As demand intensity increases

yet further, the type 2 equilibrium becomes saturated, and the type 2, 6, and 7 equilibria

collapse into a type 7 equilbrium. Finally, the demand intensity becomes so high that the

downtown street use can be rationed only with gridlock.

Consider next second-best optimal capacity, when the distortion is again the underpricing

of curbside parking. When demand intensity is su¢ ciently high that garage parking occurs in

33



Figure 15: The second-best optimal curbside parking capacity with curbside and garage
parking

the second-best optimum, the second-best capacity analysis of the previous section must be

substantially modi�ed. Expanding curbside parking capacity has four e¤ects. First, curbside

parking revenue increases; second, fewer garage spaces need to be constructed; third, per (16)

the stock of cars cruising for parking increases; and fourth, the amount of roadspace for tra¢ c

circulation is reduced. Fortunately, the diagrammatic analysis does not need to treat all

these e¤ects explicitly. Social surplus can be decomposed into consumer surplus, government

surplus, and producer surplus. Since garage parking is priced at cost, there is no producer

surplus, and government surplus is simply the curbside meter revenue. Thus, the second-best

curbside parking capacity is that which maximizes the sum of consumer surplus and curbside

meter revenue. Figure 15 displays two short-run supply curves, one with curbside parking

capacity P , S(r; P ), the other with curbside parking capacity P +�; S(r; P +�). The shape

of the supply curves is similar to that shown in Figure 11. The expansion of curbside parking

capacity causes the curbside parking capacity constraint to shift to the right, and the portion

of the supply curve to the right of the curbside parking capacity constraint to shift to the

left. The latter causes equilibrium throughput to fall from rL to rM , resulting in a loss of
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consumer surplus of BAML. The increase in curbside parking revenue is given by GHNR.

At an interior optimum of curbside parking capacity, the two areas are equal.

Three qualitative results are immediate. The �rst is that there should be no curbside

parking when it is provided free; providing curbside parking reduces consumer surplus with

no compensating increase in curbside parking revenue. The second is that, over the interval

of throughputs for which an interior solution is optimal and with inelastic demand, second-

best curbside parking capacity falls with demand intensity; as demand increases, the increase

in curbside parking revenue from an increase in curbside parking capacity of �P remains

constant but the loss in consumer surplus increases due to the convexity of the congestion

technology. The third is that below some level of demand intensity it is e¢ cient to allocate

all curbside to parking, while above another level of demand intensity it is e¢ cient to allocate

no curbside to parking.

Now consider the case where no garage parking occurs in the second-best optimum. We

are then in the situation displayed in Figure 8 of the previous section. The curbside parking

constraint just binds at the second-best optimum, which is given by the point of intersection

of the demand curve and the long-run supply curve (conditional on only curbside parking).

Reference to Figure 16 in the text.

5 Stability Analysis

Arnott and Inci (2010) provided a thorough stability analysis of a variant of the model

presented above with only curbside parking. Stability analysis of tra¢ c congestion has proved

di¢ cult since it requires solving for the out-of-equilibrium dynamics of tra¢ c �ow over time

and space. The treatment of downtown as isotropic simpli�es the analysis considerably since

at any point in time tra¢ c �ow is the same throughout the downtown area; the analysis then

entails solving ordinary rather than partial di¤erential equations. Arnott and Inci further
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Figure 16: The possibility of no garage parking in the second-best optimum

simpli�ed the problem by making some special assumptions16 that render the di¤erential

equation system autonomous (time does not enter the analysis explicitly), which permits

phase-plane/state-space analysis.

Figure 17 reproduces Figure 11 in their paper. The vertical plane corresponds to states of

the downtown tra¢ c system with saturated parking and therefore with cruising for parking.

The state of the system is then characterized by T and C. The horizontal plane corresponds

to states of the downtown tra¢ c system with unsaturated parking and therefore no cruising

for parking. The state of the system is then characterized by T and S, where, recall, S is

the density or stock of occupied curbside parking spaces per unit area. In the vertical plane,

the _C = T=(mt(T;C; P ) � P=l = 0 curve gives the locus of points for which the density of

cars cruising for parking is unchanging over time, and the _T = D(F )� T=(mt(T;C; P ) = 0

(where F is given in (14)) lines are the corresponding locus of points for the density of cars

in transit. One _T = 0 line corresponds to jam density, for which both the in�ow and out�ow

16They assume that trip lengths and visit durations are negative exponentially distributed and that
aggregate travel demand at a point in time is a function only of the density of cars in-transit and cruising
for parking at that time.
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Figure 17: Transient dynamics of downtown tra¢ c when there is only curbside parking

rates are zero. We shall refer to the other _T = 0 line as the _T = 0 locus. The arrows give

the direction of motion. The vertical plane displays the _T = 0 and _S = 0 loci and the arrows

indicate the direction of motion.

The details of the analysis and the results are quite complex. Su¢ ce it for the moment

to note that the results are consistent with the diagrammatic analysis in section 3. The E1,

E2, and E3 in Figure 17 correspond to the E1, E2, and E3 in Figure 4. In section 3, we

claimed that E1 and E3 are stable equilibria while E2 is unstable. Figure 17 presents these

results and also makes precise the relevant notions of stability: E1 and E3 are locally stable,

while E2 is unstable. We note too for future reference that an increase in demand intensity

has no e¤ect on the _C = 0 and _S = 0 loci but causes the _T = 0 locus to shift downward.
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The stability analysis of Figure 17 analysis applies when all parking is curbside. In the

remainder of this section we show how it can be adapted to the situation with both curbside

and garage parking, and then apply the adapted stability analysis to determine the stability

of the equilibria analyzed in section 4.

Figure 18: Transient dynamics of downtown tra¢ c when there are curbside and garage
parking, case I

In the analysis of section 4, since the curbside parking fee is lower than the garage parking

fee, garage parking occurs only when curbside parking is saturated. Thus, the addition of

garage parking does not a¤ect the stability analysis in the T �S plane, for which parking is

unsaturated. In the T�C plane, the addition of garage parking adds the parking equilibrium

condition that C � Ĉ � (c� f)lP . When C < Ĉ, curbside parking is cheaper than garage

parking so that no one parks in a garage, and the stability analysis of Figure 17 continues

38



to apply. When C � Ĉ, however, the stability analysis of Figure 17 needs to be modi�ed. If

C > Ĉ, garage parking is cheaper than curbside parking. We assume that when this occurs

the number of cars cruising for parking falls instantaneously such that C = Ĉ is satis�ed.

Thus, above C = Ĉ, the direction of motion is vertically downward. The direction of motion

along C = Ĉ is as indicated. An intersection point of C = Ĉ with the _T = 0 locus is

an equilibrium with garage parking if and only the throughput associated with it exceeds

P=l. Since the _C = 0 line gives the locus of (T;C) such that throughput equals P=l, this

condition is satis�ed if and only if the point of intersection lies below the _C = 0 line. Thus,

an intersection point of C = Ĉ with the _T = 0 locus is an equilibrium with garage parking if

and only if it lies below the _C = 0 line. This implies that no equilibrium with garage parking

exists when the parking equilibrium condition lies above the _C = 0 line. Figure 18 displays

the con�guration of the T � C plane when the parking equilibrium condition is added, and

the price di¤erential between curbside and garage parking is su¢ ciently low that the C = Ĉ

line intersects the _C = 0 locus.

There are three cases to consider. In case I, the parking equilibrium condition lies below

E1. In case II, the parking equilibrium condition lies above E1 and intersects the _T = 0

locus. In case III, the parking equilibrium condition lies above E1 and does not intersect the

_T = 0 locus. We shall consider the three cases in turn.

Turn to Figure 18, which displays case I. With the introduction of the parking equilib-

rium condition, the equilibrium E1 disappears and is replaced by two candidate equilibria,

E4 and E5. E4 can be ruled out as an equilibrium with garage parking since the throughput

associated with it is less than P=l. E5 meets the conditions for an equilibrium, and is stable.

Now turn to Figure 19, which displays case II. With the introduction of the parking equilib-

rium condition, E1 remains an equilibrium, and E4 and E5 emerge as candidate equilibria.

The throughput at both E4 and E5 exceeds P=l. E4 is unstable and E5 is stable. Now

turn to Figure 20, which displays case III. With the introduction of the parking equilibrium

condition, E1 remains an equilibrium, and there is no equilibrium with garage parking. In-
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Figure 19: Transient dynamics of downtown tra¢ c when there are curbside and garage
parking, case II

creasing D0, which causes the _T = 0 locus to shift down, provides another way of generating

the bifurcation diagram of Figure 14.

6 Directions for Future Research

Diagrammatic analysis is insightful since it draws on geometric intuition, but it can only go

so far. The above analysis omits a number of important considerations, which cannot be

easily handled via diagrammatic analysis. First, households are assumed to be identical, but

of course driver heterogeneity is important. Arnott and Rowse (2008) explore how drivers

who di¤er in their visit durations and values of the time sort themselves between curbside
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Figure 20: Transient dynamics of downtown tra¢ c when there are curbside and garage
parking, case III

and garage parking, and how, when drivers di¤er, curbside parking time limits can be used to

reduce cruising for parking. Second, only steady-state equilibria are explored but the demand

for parking spaces varies systematically over the course of the day. Ideally the meter rate

would be adjusted over the day to clear the market for curbside parking. However, most

cities apply single-step curbside parking fees, in which the curbside parking fee is �xed over

the business day and free at other times, with the result that cruising for parking occurs

during peak hours.

Third, mass transit is ignored. Via the Envelope Theorem, our analysis carries through

if mass transit is organized e¢ ciently, treated implicitly in the demand function. But if mass

transit is not organized e¢ ciently, welfare analysis should take into account how parking
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policy a¤ects the deadweight losses in the mass transit market. Fourth, our analysis assumes

that garage parking is supplied and priced at constant cost. Extending the analysis to treat

an upward-sloping supply curve for garage parking is straightforward, but extending it to

treat spatial competition between garage parking operators is not. The spatial competition

model presented in Arnott (2006) and Arnott and Rowse (2009) is coherent but its behavior

is likely unrealistic since it ignores capacity constraints. The market power exercised by

garage parking operators is likely su¢ ciently important that it should be explicitly treated

in the analysis of downtown parking policy. Fifth, the analysis assumes downtown to be

isotropic, but of course spatial variation in parking policy re�ecting spatial variation in

tra¢ c is important; resident parking regulation in residential neighborhoods is one example.17

Sixth, our analysis pays no attention to land use, except for the allocation of exogenous road

space to parking. This may be a reasonable short-run assumption in the context of downtown

tra¢ c congestion, but over longer periods the allocation of downtown space to roads is an

important aspect of downtown tra¢ c policy, and the e¤ects of downtown parking policy on

land use both inside and outside the downtown area may be signi�cant. Seventh, our models

ignore two important aspects of downtown parking, heavily subsidized employer-provided

parking18 and minimum parking requirements. These may be treated as exogenous in a

model of downtown parking, and better yet should be derived as properties of equilibrium.

Seventh, our analysis assumes that downtown tra¢ c congestion is appropriately modeled

using classic tra¢ c �ow theory, which was developed from freeway tra¢ c. One alternative

is to model congestion using intersection queuing theory. Another is to employ a tra¢ c and

parking microsimulator. Eighth, much of our second-best analysis takes the underpricing

of curbside parking to be an exogenous distortion. This can reasonably be challenged since

typically the downtown parking authority determines both meter rates and the allocation

of curbside to parking. Also, there seems to widespread agreement that downtown curbside

17For reasons explained earlier, treating spatial variation analytically is likely to prove intractable. In
policy analysis it can be treated by employing a downtown tra¢ c and parking microsimlutor, such as VISSIM.

18Small and Verhoef (2007) make the informed guess that US urban commuters pay for at most 2.5% of
their workplace parking costs. The percentage is higher in the downtowns of large metro areas.
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parking is underpriced due to lobbying by downtown merchant associations, who argue that

it is needed to compete with free suburban shopping center parking and to keep downtown

vital. If this is correct, then parking policy should be evaluated either taking these objectives

into account or taking them into account via political economy constraints.
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