Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Estimation of skeletal muscle mass in 4-year-old children using the D3-creatine dilution method

Abstract

Background

Given limited experience in applying the creatine-(methyl-D3) (D3Cr) dilution method to measure skeletal muscle mass (SMM) in young children, the feasibility of deployment in a fielding setting and performance of the method was assessed in a cohort of 4-year-old children in Dhaka, Bangladesh.

Methods

Following D3Cr oral dose (10 mg) administration, single fasting urine samples were collected at 2-4 days (n = 100). Twenty-four-hour post-dose collections and serial spot urine samples on days 2, 3 and 4 were obtained in a subset of participants (n = 10). Urinary creatine, creatinine, D3Cr and D3-creatinine enrichment were analyzed by liquid chromatography-tandem mass spectrometry. Appendicular lean mass (ALM) was measured by dual-energy x-ray absorptiometry and grip strength was measured by a hand-held dynamometer.

Results

SMM was measured successfully in 91% of participants, and there were no adverse events. Mean ± SD SMM was greater than ALM (4.5 ± 0.4 and 3.2 ± 0.6 kg, respectively). Precision of SMM was low (intraclass correlation = 0.20; 95% CI: 0.02, 0.75; n = 10). Grip strength was not associated with SMM in multivariable analysis (0.004 kg per 100 g of SMM; 95% CI: -0.031, 0.038; n = 91).

Conclusions

The D3Cr dilution method was feasible in a community setting. However, high within-child variability in SMM estimates suggests the need for further optimization of this approach.

Impact

The D3-creatine (D3Cr) stable isotope dilution method was considered a feasible method for the estimation of skeletal muscle mass (SMM) in young children in a community setting and was well accepted among participants. SMM was weakly associated with both dual-energy x-ray absorptiometry-derived values of appendicular lean mass and grip strength. High within-child variability in estimated values of SMM suggests that further optimization of the D3Cr stable isotope dilution method is required prior to implementation in community research settings.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View