Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Magnetism and Negative Magnetoresistance of Two Magnetically Ordering, Rare-Earth-Containing Zintl phases with a New Structure Type: EuGa2Pn2 (Pn = P, As)

Published Web Location

https://doi.org/10.1021/cm901219uCreative Commons 'BY' version 4.0 license
Abstract

Single crystals of EuGa2Pn2 (Pn=P, As) were grown from a molten Ga flux and characterized by single-crystal X-ray diffraction at 100(1) K. They are isostructural and crystallize in a new structure type (monoclinic, P2/m, a=9.2822(9) A, =3.8967(4) A, c=12.0777(11) A, Β=95.5220(10), R1= 0.0148, wR2=0.0325 (EuGa2P2) and a=9.4953(7) A, b=4.0294(3) A, c=12.4237(9) A, Β =95.3040(10), R1=0.0155, wR2=0.0315 (EuGa2As2)). The structures consist of alternating layers of two-dimensional Ga2Pn2 anions and Eu cations. The anion layers are composed of Ga2Pn6 staggered, ethane-like moieties having a rare Ga-Ga bonding motif; these moieties are connected in a complex fashion bymeans of shared Pn atoms. Both structures showsmall residual electron densities that can be modeled by adding a Eu atom and removing two bonded Ga atoms, resulting in structures (< 2%) wheremost of the atoms are the same, but there is a difference in bonding that leads to one-dimensional ribbons of parallel Ga2Pn6 staggered, ethane-like moieties. The compounds can be understood within the Zintl formalism, but show metallic resistivity. Magnetization measurements performed on single crystals show low-temperature magnetic anisotropy as well as multiple magnetic ordering events that occur at and below 24 and 20 K for the phosphorus and arsenic analogs, respectively. The magnetic coupling between Eu ions is attributed to indirect exchange via an RKKY interaction, which is consistent with the metallic behavior. The compounds display large negative magnetoresistance of up to-80 and-30%(MR=[(F(H)-F(0))/F(H)] 100%) for Pn=P,As, respectively,which is maximal at the magnetic ordering temperatures in the highest measured field (5T).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View