Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Erosion, Geological History, and Indigenous Agriculture: A Tale of Two Valleys

Abstract

Irrigated pondfields and rainfed field systems represented alternative pathways of agricultural intensification that were unevenly distributed across the Hawaiian Archipelago prior to European contact, with pondfields on wetter soils and older islands and rainfed systems on fertile, moderate-rainfall upland sites on younger islands. The spatial separation of these systems is thought to have contributed to the dynamics of social and political organization in pre-contact Hawai’i. However, deep stream valleys on older Hawaiian Islands often retain the remains of rainfed dryland agriculture on their lower slopes. We evaluated why rainfed agriculture developed on valley slopes on older but not younger islands by comparing soils of Pololū Valley on the young island of Hawai’i with those of Hālawa Valley on the older island of Moloka’i. Alluvial valley-bottom and colluvial slope soils of both valleys are enriched 4–5-fold in base saturation and in P that can be weathered, and greater than 10-fold in resin-extractable P and weatherable Ca, compared to soils of their surrounding uplands. However, due to an interaction of volcanically driven subsidence of the young island of Hawai’i with post-glacial sea level rise, the side walls of Pololū Valley plunge directly into a flat valley floor, whereas the alluvial floor of Hālawa Valley is surrounded by a band of fertile colluvial soils where rainfed agricultural features were concentrated. Only 5% of Pololū Valley supports colluvial soils with slopes between 5° and 12° (suitable for rainfed agriculture), whereas 16% of Hālawa Valley does so. The potential for integrated pondfield/rainfed valley systems of the older Hawaiian Islands increased their advantage in productivity and sustainability over the predominantly rainfed systems of the younger islands.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View