Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Generic on-line/off-line threshold signatures

Abstract

We present generic on-line/off-line threshold signatures, in which the bulk of signature computation can take place "off-line" during lulls in service requests [6]. Such precomputation can help systems using threshold signatures quickly respond to requests. For example, tests of the Pond distributed file system showed that computation of a threshold RSA signature consumes roughly 86% of the time required to service writes to small files [12]. We apply the "hash-sign-switch" paradigm of Shamir and Tauman [161 and the distributed key generation protocol of Gennaro et al. [7] to convert any existing secure threshold digital signature scheme into a threshold on-line/off-line signature scheme. We show that the straightforward attempt at proving security of the resulting construction runs into a subtlety that does not arise for Shamir and Tauman's construction. We resolve the subtlety and prove our Signature scheme secure against a static adversary in the partially synchronous communication model under the one-more-discrete-logarithm assumption [2]. The on-line phase of our scheme is efficient: computing a signature takes one round of communication and a few modular multiplications in the common case.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View