Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Genomic Profiling of the Craniofacial Ossifying Fibroma by Next-Generation Sequencing.

Abstract

BACKGROUND: Ossifying fibroma (OF) of the craniofacial skeleton is a fibro-osseous lesion characterized by various patterns of bone formation in a cellular fibroblastic stroma. The molecular landscape of OF remains mostly unknown. There are a few known pathogenic abnormalities in OF, including HRPT2 mutations in conventional OF and SATB2 translocations in juvenile psammomatoid OF. On the other hand, conflicting reports exist regarding MDM2 gene amplification and chromosomal copy number alterations (CNA) in OF. METHODS: Surgically removed biopsies and curettage specimens from OF patients were obtained. Clinical, radiographic, and pathologic features of tumors were reviewed. Genomic DNA was extracted from formalin-fixed, paraffin-embedded blocks of tumor tissue. Capture-based DNA next-generation sequencing targeting the coding regions 529 cancer genes and select introns was performed. RESULTS: We identified 17 OF cases from 8 male and 8 female patients with mean age of 22 years (range 1-58 years). Nine case occurred in the gnathic bones and 8 in the extragnathic craniofacial bones. These cases included 3 juvenile psammomatoid OF, 6 conventional OF and 8 juvenile trabecular OF. Large-scale CNAs were present in 6 of 17 cases. Seven cases (41%) had focal amplifications including FOSB (n = 2, 11%), FOS (n = 4, 23%), COL1A1 (n = 4, 23%) and TBX3 (n = 5, 29%). Three cases (17%) had pathogenic CDC73 mutations. No cases showed focal MDM2 amplification. CONCLUSIONS: Here, we provided a comprehensive molecular characterization of OF that reveals a heterogeneous genetic profile with occasional large-scale CNAs (n = 6, 35%). FOS, FOSB, and TBX3 genes that regulate AP-1 transcriptional complex are frequently altered in OF (n = 7, 41%), chiefly in juvenile trabecular OF. These genes encode transcription factors that act as downstream effectors of the MAP kinase signaling pathway. MDM2 amplification is an exceedingly rare event in OF, if present at all, so identification of this event should continue to raise concern for low-grade gnathic osteosarcoma. In summary, our findings suggest that OF represents a heterogeneous group of tumors at the genetic level but dysregulation of the AP-1 pathway may play a role in pathogenesis of juvenile trabecular OF.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View