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Abstract

Human players in our laboratory experiment converge closely to the symmetric mixed Nash

equilibrium when matched in a single population version of the standard Hawk-Dove game.

When matched across two populations, the same players show clear movement towards an

asymmetric (and very inequitable) pure Nash equilibrium of the same game. These findings

support a distinctive prediction of evolutionary game theory.
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1 Introduction

Evolutionary game theory predicts that the matching protocol can affect equilibrium selection as

well as transitory dynamics. A leading example is the Hawk-Dove game (Maynard Smith, 1982),

which has a symmetric mixed Nash equilibrium (NE) and two pure aysmmetric NE. Evolutionary

game theory predicts convergence to the mixed NE with a single population matching protocol,

but with a standard two population matching protocol it predicts convergence to one of the pure

NE.

In this paper we report the first laboratory test of this distinctive prediction. The test is quite

stringent because the payoffs in our asymmetric pure NE are very unequal—members of one popu-

lation get a payoff five times larger than members of the other population. Thus the evolutionary

prediction must overcome equity considerations and somehow resolve a fierce multilateral war of

attrition.

Nevertheless, in four laboratory sessions, each with 10-12 human players, we observe close con-

vergence to the mixed NE in 10 one-population periods. Then, in 10 subsequent two-population

periods with the same subjects and payoff matrix, we see clear movement towards an asymmetric

pure NE in three of the four sessions.

Payoff Bimatrix NE profile NE payoffs

H
D

(
0, 0 15, 3
3, 15 9, 9

) 2
3H + 1

3D, 2
3H + 1

3D 5,5
H,D 15,3
D,H 3,15

Table 1: The Hawk-Dove Game

2 Theoretical Predictions

We use the Hawk-Dove payoff matrix in Table 1. In a one-population game, the fraction of Hawk

players is denoted sH , the fraction of Doves is 1− sH , and their expected payoffs are respectively

WH = 0(sH)+15(1−sH) = 15−15sH and WD = 3(sH)+9(1−sH) = 9−6sH . By solving WH−D =

WH −WD = 0, we obtain the symmetric mixed NE share s∗H = 2
3 with payoffs W ∗H = W ∗D = 5.

Since dWH−D

dsH
< 0, this equilibrium is stable under replicator dynamics or any other sign-preserving

dynamics (Weibull, 1995).

Now consider the two population game. Let siH denote the shares of Hawks in population i = 1, 2.
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Since the standard protocol here is to match only across populations, we have fitness functions

W1H = 0(s2H) + 15(1 − s2H), W1D = 3(s2H) + 9(1 − s2H) and W1H−1D = 6 − 9s2H . Hence

W1H−1D
>
<0 as s2H

<
>

2
3 . Likewise, in the other population, W2H−2D = 6− 9s1H

>
<0 as s1H

<
>

2
3 . Thus

for any sign preserving dynamics, siH
dt

>
<0 as s−iH

<
>

2
3 . That is, Hawk is the fitter strategy (and

therefore becomes more prevalent over time) in a given population whenever the fraction of Hawks

in the other population is less than 2/3 (Friedman, 1991; Weibull, 1995, pp. 183-186; Friedman,

1996, pp. 7).

Figure 1 shows the resulting phase portrait. The symmetric interior NE is a saddle point and hence

unstable. The two corner equilibria are stable, and specify one population playing all Hawk and the

other population playing all Dove. The saddle path s1H = s2H separates the basins of attraction of

these two pure asymmetric equilibria. In the single population case, play is by definition restricted

to the saddle path, so in that case the symmetric interior equilibrium is stable.

The theory so far assumes large populations in which sampling error is negligible. It applies as an

approximation to finite populations, resulting in the following predictions:

Prediction 1 In a one-population matching protocol, the average fraction of Hawk play will ap-

proximate s∗H = 2
3 .

Prediction 2 In a two-population matching protocol with equal populstion sizes, the average frac-

tion of Hawk play will approach s∗iH = 1 in one population and s∗−iH = 0 in the other, resulting in

an overall average of approximately 1
2 .

Finally, since the basins of attraction are separated by the diagonal s1H = s2H , we obtain

Prediction 3 The population i that more nearly converges to s∗iH = 1 in a 2 population matching

protocol will usually be the one that initially has a larger fraction of Hawk players.

3 Experimental Design

Each laboratory session involved n = 10 or 12 human subjects using a new software package called

ConG (Continuous Games). Subjects earn flow payoffs based on the matrix in Table 1, using the

the neutral labels A and B for the two alternative strategies instead of Hawk and Dove.

In the one population treatment, denoted T1P, each player j is matched each period with each of

the n − 1 other players. Her instantaneous payoff when n−jH of the other players are choosing A
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Figure 1: Phase portrait of evolutionary dynamics.

(or Hawk) is 15 − 15n−jH

n−1 if she plays A and is 9 − 6n−jH

n−1 if she plays B. In the two population

treatment, denoted T2P, each subject j in population i(j) is matched only with the n/2 subjects

in the other population −i and earns instantaneous payoff 15 − 15n−iH

n/2 for A or 9 − 6n−iH

n/2 for B,

where n−iH is the current number of Hawks in the other population −i.

The instantaneous payoffs are accumulated over each two minute period. For example, if all players

independently spend half their time as Hawks (A), then each player earns 1
2(15−15· 12)+ 1

2(9−61
2) =

6.75 points per period.

Subjects were assigned (without their knowledge) either to population i = 1 or to population

i = 2 at the beginning of the session. During the first 10 periods subjects played under the one

population treatment, T1P. Then, with no announcement or other indication, we switched to the

two population treatment, T2P, for the rest of the session, periods 11-20.

We ran four sessions using undergraduate subjects at the University of California, Santa Cruz.

Twelve subjects participated in each of the first three sessions and ten participated in the fourth.

Subjects were informed only that they would sometimes be matched with the entire group and

sometimes with the other of two groups; see Appendix A for a copy of all instructions. Sessions

lasted roughly 75 minutes and earnings, including a five dollar show up fee, averaged 14 dollars per

hour.
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Figure 2: Mean rates of Hawk play.

3.1 Results

We begin with a qualitative overview. Figure 2 shows that, averaging within each period and over

the four sessions, the fraction of total time in which players chose Hawk fluctuates narrowly around

the equilibrium value of 2/3 in the T1P treatment (periods 1-10). It also shows that the Hawk

fraction drops sharply in periods 11-20, when we impose the two population treatment T2P. Except

for period 19, the Hawk fraction remains above the predicted level of 1/2.

Figure 3 plots the Hawk fraction separately for each of the two populations within each period and

session. In T1P, the population index i is only an arbitrary labelling convention, and indeed we

see in periods 1-10 no trend towards separation of the populations. In T2P, the index i becomes

meaningful and here we see apparent separation in three of the four sessions. In session 3, first one

population and then the other moves towards mostly Hawk, but neither prevails in the end. In

sessions 1,2 and 4 the blue population plays almost exclusively Hawk by the end, while the Hawk

fraction shrinks in the red population. Indeed, in Sessions 2 and 4, Hawk play in the red population

drops to nearly zero by the last period.

In the T2P periods, one can see two forces at work. In the first few 20-second time intervals in

most periods, the Hawk fraction is relatively large in both populations. This leads to low profits,

and in the remaining 20-second time intervals the fraction usually decreases in the population with
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Figure 3: Hawk Play Over Time. Graphs show average fraction of Hawks in each 20 second time interval of
each session among members of population 1 (in blue) and population 2 (in red). Periods are separated by
vertical gray lines, and the vertical black line separates the T1P periods 1-10 from the T2P periods 11-20.
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the smaller Hawk fraction. Thus within periods, we see evidence of a multilateral war of attrition

that is often resolved by the end of the period.

Figure 4 shows an apparent pattern to the resolutions. It plots the Hawk fraction only in the last

20 second time interval of each period. Except in Session 3, we see that the separation trend builds

over time, and that we approach an asymmetric Nash equilibrium. The same data are replotted

in Figure 5, using the conventions of Figure 1 and a trianglar smoother to help detect trends. In

sessions 2 and 4 we observe near convergence to a corner pure NE, while in session 1 we observe

decisive movement only after period 16.

We now turn to formal tests of Predictions 1-3. We first run the random effects regression

sHpk = α+ β · T2Pp + ψk + εpk, (1)

where sHpk is the observed Hawk fraction in the final 20 seconds of period p in session k, T2Pp is

the indicator variable for T2P treatment, ψk is a session level random effect and εpk is a normally

distributed error term. The intercept α measures the Hawk fraction in T1P periods. The estimate

of 0.662 (p=0.000) is almost exactly the Prediction 1 value of 0.667.

Prediction 2 calls for a decline of approximately 0.167 in the overall Hawk fraction when we switch

to the 2 population protocol T2P. The T2P coefficient estimate is −0.097 (p=0.000). Thus the

drop is not quite as strong as predicted, but it is in the right direction and of the right order of

magnitude.

Prediction 2 calls for separation in Hawk fractions across populations as well as an overall drop.

To test this, we run the following random effects regression on the last 20-second data each period:

|s1Hpk − s2Hpk| = α+ β · T2Pp + ψk + εpk, (2)

where siHpk is the average level of Hawk play for population i in session k over the last 20 seconds

of period p. The intercept estimate 0.139 (p=0.0331) indicates a nearly 14 percent average abso-

lute separation between the two populations with the T1P protocol, presumably due to sampling

variance. The T2P coefficient estimate 0.293 (p-0.000) indicates that the two population protocol

more than triples the separation on average. Of course, Figures 3-5 show that separation increases

over time, so its average probably is far larger than 0.139 + 0.293 by the last period.

Figures 3-5 also reveal that one population tends to consistently maintain a higher Hawk fraction

across T2P periods. Exact binomial tests confirm that in 3 out 4 sessions (sessions 1,2 and 4) one

7



Figure 4: Hawk Play at Period End. Graphs show average fraction of Hawks in last 20 second time interval
of each period among members of population 1 (in blue) and population 2 (in red). The vertical black line
separates the T1P periods 1-10 from the T2P periods 11-20.
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Figure 5: Smoothed period to period dynamics in (s1H
pk , s

2H
pk ) space using mean behavior from the final 20

seconds of each period. Blue series correspond to the one population treatment while red series correspond
to two population treatments.
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Figure 6: Cumulative distribution functions for the fraction of time each player used the Hawk strategy in
periods 1-10 Players assigned to population with the larger Hawk fraction in periods 11-20 are shown in red
and those assigned to the other population are shown in blue.

population is significantly more likely than the other to play Hawk across periods.

Our final test of Prediction 2 examines the Euclidean distance dpk between the observed Hawk

fraction in the two populations over the last 20 seconds of the period and the closer of the two pure

strategy equilibria. To test the prediction that this distance is significantly smaller under the T2P

treatment than under the T1P treatment, we run the following random effects regression

dpk = α+ β · T2Pp + ψk + εpk. (3)

The intercept estimate is 0.60 (p=0.000) and the treatment coefficient estimate is -.268 (p=0.000),

indicating that the average T2P period is about half as far from a corner equilibrium as an average

T1P period. Thus Prediction 2 does a good job of organizing several aspects of our data.

We turn finally to Prediction 3. Recall from Figures 4-5 that even in sessions 2 and 4, the Hawk

factions jump across the saddle path in period 11 before converging towards the appropriate asym-

metric pure NE in the remaining periods. Figure 3 also suggests ongoing multi-player wars of

attrition, especially early on in the period. Hence Prediction 3 at best describes broad tendencies.
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Our test therefore simply calculates the Hawk fraction for each subject over the T1P periods, and

separates them by their population’s fate in the T2P periods. Prediction 3 is that the population

that more closely evolves in T2P towards s∗iH = 1 (call it h) will be the one that had more Hawk

play in the prior T1P periods. Figure 6 plots the relevant cumulative distribution functions. As

predicted, the h populations indeed had more Hawkish members in periods 1-10, an impression

confirmed via the standard Kolmogorov-Smirnov test (p=0.003).

To check the robustness of results obtained in the four sessions just analyzed, we ran a second

set of three sessions. The second set differed from the first only in that subjects were randomly

reassigned to a new population in each T2P period. Results were qualitatively similar. During T1P

periods Hawk proportions in the final 20 seconds of periods averaged 0.694, again close to mixed

strategy equilibrium. In the T2P treatment the overall average Hawk fraction again dropped nearly

ten percent (p = 0.000). Moreover, within period, we observed significant separation between the

populations, with the average Hawk fraction 45 percentage points larger in one population than the

other. The T2P periods of the new sessions were generally noisier than in the main set of sessions,

but they all showed a greater degree of separation than our outlier Session 3.

4 Discussion

Our findings are broadly consistent with all three predictions from evolutionary game theory. In

the single population treatment we find the the average Hawk fraction late in the period is almost

exactly the symmetric mixed NE value of 2/3. When we subsequently divide subjects into two

populations, the overall rate of Hawk play drops significantly, though not quite as far as predicted.

More importantly, the Hawk fractions separate substantially in the two population treatment and

(in 3 of 4 sessions) clearly approach an asymmetric pure NE. Finally, we find evidence that the

initial level of Hawkishness is higher in the population that converges towards all-Hawk in the two

population treatment.

These findings are particularly striking given the relatively small populations we study and the

extreme inequity of the asymmetric pure equilibria. Far from passively acceding to dynamics, the

subjects in both populations apparently engage in multi player wars of attrition as they attempt

to capture the higher payoffs for their own population. However, such attempts fail decisively for

one of the populations in three of the four sessions, and the evolutionary forces predominate.
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Appendix: Experimental Instructions

Instructions (C)

Welcome. This is an experiment in the economics of decision-making. If you pay close attention to

these instructions you may earn a significant amount of money that will be paid to you in cash at

the end of the experiment.

The Basic Idea

In each of several periods, you will be able to choose one of two actions: A or B. Each period you

will be matched with other players. Your earnings depend on the combination of your action and

the other players actions that period.

The earnings possibilities will be represented in a GAME MATRIX like the one above. Your action

will determine the row of the matrix (A or B) and each other players action will determine a column

of the matrix (a or b). The cell corresponding to this combination of actions will determine your

EARNINGS. In each cell are two numbers. The first of the two numbers (shown in bold) is your

earnings from this action combination. The second is the other player’s earnings. You earn points

from each match, and the points are scaled down by the number of other players.

For example, if there are 7 other players and 4 of them chose A and 3 chose B, then your payoff

would be (4*0 + 3*15)/7 = 45/7 = 6.43 if you chose A, and it would be (4*3 +3*9)/7 = 39/7 =

5.57 if you chose B.

You will not have to do this arithmetic yourself. The computer does the calculations and, as

explained below, the bottom graph on your screen will display your earnings as you go along.

How to Play

There will be several periods. Each period will last 120 seconds and a counter at the top of the

screen will show how much time is left. The computer randomly chooses the initial action, but
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you can change your action at any time by clicking the two radio buttons or by using the up and

down arrow keys. The row corresponding to your chosen action be highlighted in blue as in the

figure, and the columns will be shaded in blue according to the number of players currently choosing

that action. You and the other players may change your actions as often as you like each period.

The numbers in the payoff matrix are the payoffs you would earn if you maintained the same action

throughout the period. For instance if you played B for the entire period and all other players

played b in the example above, then you would earn 9 points and the other players also would earn

9 points each.

If you played A for the first half of the period and B for the second half while the other players

played b for the entire period, your earnings would be 1
2(15) + 1

2(9) = 12, while the other players

earnings would be 1
2(3) + 1

2(9) = 6. This is because you spent half of the period in the upper right

corner and half in the lower right corner of the payoff matrix.

In general, your payoffs in the period will depend on how much time is spent in each of the cells

on the payoff matrix. The more time you spend in any one cell, the closer the final payoffs will be

to the payoffs in that cell.

To the right of the screen are two graphs showing outcomes over the course of the period. The

top graph shows your action (in blue) and the average action of all other players (in red) over the

period. The graph is labeled Percentage of A If this now reads 100 it means that at the moment

you chose A. If it is 0 it means at that moment you chose B, and it switches between 0 and 100 as

you switch actions.
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The bottom graph shows your earnings over the course of the period in blue. The more area

below your earnings curve, the more you have earned. In other words, the higher the blue line the

more you are currently earning. The red line shows the corresponding average payoff for the other

players.

Earnings

You will be paid at the end of the experiment based on the sum of point earnings throughout the

experiment. These total earnings are displayed as the Total Payoff at the top of the screen.

Frequently Asked Questions

Q1. Is this some kind of psychology experiment with an agenda you haven’t told us?

Answer. No. It is an economics experiment. If we do anything deceptive or don’t pay you cash

as described then you can complain to the campus Human Subjects Committee and we will be in

serious trouble. These instructions are meant to clarify how you earn money, and our interest is in

seeing how people make decisions.

Q2. If I choose the rows and the other players chooses the columns, does their screen look different

than mine?

Answer. On everyone’s screen, the same choices are shown as rows. For example if another player

chooses row B then it shows up on your screen as a choice of column b. Of course, the payoff

numbers for any choice combination are the same on both screens, but are shown in a different

place.

Q3. Who am I matched with? Everyone else in the room?

Answer. Sometimes you are matched with all other players in the room. Sometimes we divide the

players into two groups and we match you only with players in the other group.
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