Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

PbS Nanoparticles Capped with Tetrathiafulvalene­tetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport

Published Web Location

https://doi.org/10.1021/nn406127s
Abstract

We fabricate a field-effect transistor by covalently functionalizing PbS nanoparticles with tetrathiafulvalenetetracarboxylate. Following experimental results from cyclic voltammetry and ambient-pressure X-ray photoelectron spectroscopy, we postulate a near-resonant alignment of the PbS 1Sh state and the organic HOMO, which is confirmed by atomistic calculations. Considering the large width of interparticle spacing, we observe an abnormally high field-effect hole mobility, which we attribute to the postulated resonance. In contrast to nanoparticle devices coupled through common short-chained ligands, our system maintains a large degree of macroscopic order as revealed by X-ray scattering. This provides a different approach to the design of hybrid organic-inorganic nanomaterials, circumvents the problem of phase segregation, and holds for versatile ways to design ordered, coupled nanoparticle thin films.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View