Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Regulation of inflammatory biomarkers by intravenous methylprednisolone in pediatric ARDS patients: Results from a double-blind, placebo-controlled randomized pilot trial

Abstract

Objective

A double-blind, randomized controlled trial showed that low-dose glucocorticoid therapy in pediatric ARDS patients is feasible and may improve both ventilation and oxygenation indices in these patients. However, the molecular mechanisms underlying potential changes in outcomes remain unclear. Based on these clinical findings, this study was designed to examine the effects of intravenous methylprednisolone on circulating inflammatory biomarkers in pediatric ARDS patients.

Design

Double-blind, placebo-controlled randomized trial with blood collection on study entry and day 7.

Setting

Tertiary care children's hospital.

Patients

Children (0-18years) with ARDS undergoing mechanical ventilation.

Interventions

35 children were randomized within 72h of mechanical ventilation. The glucocorticoid group received methylprednisolone 2mg/kg loading dose followed by 1mg/kg/day continuous infusion from days 1 to 7. Both groups were ventilated following the ARDSnet recommendations. WBC and differential cell counts, plasma cytokines and CRP levels, and coagulation parameters were analyzed on days 0 and 7.

Results

At study entry, the placebo group had higher IL-15 and basophil levels. On day 7, in comparison to study entry, the placebo group had lower IL-1α, IFN-γ and IL-10 levels. The glucocorticoid group had lower INF-α, IL-6, IL-10, MCP-1, G-CSF and GM-CSF levels, and higher IL-17α levels on day 7 in comparison to study entry. Total and differential cell counts remained unchanged within the placebo group between days 0 and 7, whereas in the glucocorticoid group total WBC and platelets counts were increased on day 7. Pearson's correlation studies within the placebo and glucocorticoid groups revealed positive and negative correlations between cytokine levels, cell counts, coagulation parameters and relevant clinical parameters of disease severity identified in our previous study. Multiple regression models identified several cytokines as predictors for alterations in clinical parameters of disease severity.

Conclusion

This pilot study shows the feasibility of simultaneously measuring multiple inflammatory cytokines, cell counts and coagulation parameters in pediatric ARDS patients. We report statistical models that may be useful for future, larger trials to predict ARDS severity and outcomes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View