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Abstract 
 
The number and quality of sensors available for both on-board vehicle and infrastructure-

based sensing is increasing while the cost of these sensors is rapidly decreasing.  On-board 
vehicle sensors can be utilized for both individual vehicle safety as well as automated vehicle 
control.  It is becoming imperative that “fusion” techniques be developed, i.e., methods to 
combine the wide variety of sensors available so that reliable and accurate information can be 
obtained even though individual sensors may fail or become extremely noisy.  The process of 
sensor fusion combines multiple sensor measurements in order to provide an accurate and 
coherent view of the vehicle and its environment. 

Sensor fusion has recently been studied in the Advanced Transportation Management and 
Information System (ATMIS) for the California Department of Transportation.  The objective 
of this project with the Partners for Automated Transit and Highways (PATH) group was to 
investigate sensor fusion methods for automated vehicle control.  The focus of the first year was 
to complete the development and implementation of a modular sensor fusion architecture for 
longitudinal vehicle control in platoon formation.  The sensor models, closed-loop vehicle 
models, and mathematical framework were then programmed and simulated with the use of 
MATLAB/Simulink in order to analyze the performance of the proposed system. 

Longitudinal control of vehicles in leader-follower mode is simple to implement and 
requires small computational ressources.  Lateral control, however, is more difficult to achieve 
due to the non-linear equations of motion goverened by the vehicle dynamics.  The PDA 
method can then be applied to the expanded, three-dimensional vehicle model to obtain fused 
estimates for the lateral and angular states.  Additional sensors, such as magnetic road markers 
embedded in certain freeways, DGPS, and accelerameters, can also be used to achieve lateral 
control.  Sensor fault diagnostic systems are discussed for future investigation. 
 To increase accuracy of target tracking, IMM algorithm was applied to three cases, i.e. 
longitudinally moving target tracking under no measurement noise, longitudinally moving target 
tracking under measurement noise, and longitudinal / lateral moving target tracking under 
measurement noise.  The IMM algorithm reduces the RMS position error by more than 65 % as 
well as indicates the current mode of a target with probability.  The final estimate which is 
fused using the measurements from three sensors, two radars and one lidar, reduces the RMS 
position error by 80%.  Even though the degree of error reduction depends on the choice of the 
process noise matrix that is determined by the maximum acceleration of the vehicle, the IMM 
algorithm and sensor fusion technique would improve the target tracking performance. 



 3

 

 

 

Contents 
 

 
1  Introduction                                                    1 

 
2  Longitudinal Response and Control Using the Kalman Filter           3 
   2.1  Intoroduction ……………………………………………………………………….  3 
   2.2  Kalman filter algorithm …………………………………………………………….  3 
   2.3  Kalman filter simulation results …………………………………………………….  5 

 
3  Probabilistic Data Association Filter                               10 
   3.1  Introduction………………………………………………………………………. 10 
   3.2  PDAF Algorithm………………………………………………………………………. 
1 0 
   3.3  PDAF Implementation ……………………………………………………..……….  15 
   3.4  PDAF Simulation Results ………..……………………………………………….  17 

 
4  Lateral Response and Control                                    20 
   4.1  Introduction ……………………………………………………………………….  20 
   4.2  Ackerman Steering Geometry …………………………………………………….  20 
   4.3  Tire Cornering Forces …………………………………………………………….  22 
   4.4  Transient Response ……………………………………………………………….  25 
   4.5  Simulation Results ………………………………………………………………….  29 
      4.5.1  Constant longitudinal acceleration ………………………………………….  30 
      4.5.2  Constant steering angle with initial velocity ………………………………….  30 
      4.5.3  Zero acceleration with initial velocity ……………………………………….  33  

 
5  Sensor Fusion Using the Interacting Multiple Model Algorithm        36       



 4

   5.1  Introduction ……………………………………………………………………….  36 
   5.2  The IMM Algorithm ……………………………………………………………….  37 
      5.2.1  Target modeling …………………………………………………………….  38 
      5.2.2  Sensor modeling …………………………………………………………….  39 
      5.2.3  Data fusion ………………………………………………………………….  40 
   5.3  The IMM Algorithm Verification ………………………………………………….  40 
      5.3.1  Simulation with no measurement noise …………………………………….  42 
      5.3.2  Influence of transition probabilities ………………………………………….  42 
      5.3.3  Simulation with measurement noise ………………………………………….  44 
   5.4  Simulation Results …….………………………………………………………….  46 
      5.4.1  Single sensor estimation results …………………………………………….  47 
      5.4.2  Three sensor estimation results ……………………………………………….  49 

 
6  Conclusion and Future Work                                     54 



 5

 

 

 

List of Figures 
 

 
1.1   Sensor fusion process ………………………………………………………………....  2 

 
2.1   Unfiltered measurement using sensor …………………………………………….…..  1 7 
2.2   Filtered estimate using sensor ………………………………………………………..  1 7 
2.3   Unfiltered measurement using sensor ………………………………………………..  2 8 
2.4   Filtered estimate using sensor ………………………………………………………..  2 8 
2.5   Unfiltered measurement using sensor ………………………………………………..  3 9 
2.6   Filtered estimate using sensor ………………………………………………………..  3 9 

 
3.1   Validation gating using the χ -squared distribution ………………………………..  12 
3.2   Leader and follower vehicle model …………………………………………………..  16 
3.3   Sensor model …………………………………………………………………………..  16 
3.4a  PDAF model …………………………………………………………………………..  17 
3.4b  PDAF block …………………………………………………………………………..  17 
3.5   Sensor measurements ………………………………………………………………..  18 
3.6   Fused estimates ………………………………………………………………………..  18 
3.7   Rate and range sensor errors ………………………………………………………….. 19 
3.8   Fused range, rate, and associated errors ……………………………………………..  19 

 
4.1   Steering configurations ………………………………………………………………..  21 
4.2   Ackerman geometry …………………………………………………………………..  21 
4.3   Simplified vehicle model ……………………………………………………………..  23 
4.4   Coordinates fixed to vehicle body …………………………………………………..  26 
4.5   Vehicle angles and dynamic components ……………………………………………..  27 
4.6   Constant longitudinal acceleration …………………………………………………..  29 



 6

4.7   Longitudinal response for constant steering angle with initial velocity ……………..  30 
4.8   Lateral repsonse for constant steering angle with initial velocity …………………..  31 
4.9   Angular response for constant steering angle with initial velocity …………………..  32 
4.10  Trajectory for constant steering angle with initial velocity …………………………..  32 
4.11  Longitudinal response for zero acceleration and initial velocity ……………………..  33 
4.12  Lateral response for zero acceleration and initial velocity …………………………..  34 
4.13  Angular response for zero acceleration and initial velocity …………………………..  34 
4.14  Trajectory for zero acceleration and initial velocity …………………………………..  35 

 
5.1   Structure of the IMM Algorithm ……………………………………………………..  37 
5.2   Longitudinally Moving Target Trajectory …………………………………………..  41 
5.3   Longitudinally Moving Target Velocity ……………………………………………..  41 
5.4   Mode Probability in Longitudinally Moving Target Tracking 
     (without measurementnoise) …………………………………….……………………  42 
5.5   Mode Probability : 11 12 21 220.9, 0.1, 0.1, 0.9π π π π= = = =  ………………………….  43 
5.6   Mode Probability : 11 12 21 220.8, 0.2, 0.2, 0.8π π π π= = = =  ………………………..  43 
5.7   Target position, measurement, and overall estimate in longitudinal target tracking 
     (with measurement noise) ……………………………………………………………..  44 
5.8   Mode probability in longitudinal target tracking (with measurement noise) ……….  45 
5.9   RMS position error in longitudinal target tracking (with measurement noise) ……..  45 
5.10  Trajectory of the planar motion target ………………………………………………..  46 
5.11  Target velocity ……………………………………………………………………..…..  47 
5.12  Target position, measurement, and overall estimate in longitudinal/lateral target tracking  
     (with single sensor) …………….……………………………………………………..  48 
5.13  Mode probability in longitudinal/lateral target tracking (with single sensor) ………..  48 
5.14  RMS position error in longitudinal/lateral target tracking 
     (with single sensor) …………………………………………………………………...  49 
5.15a Target position, measurement using sensor 1, and overall estimate 
     in longitudinal/lateral target tracking …………………………………………………..  50 
5.15b RMS position error in longitudinal/lateral target tracking 
     (unfiltered measurement using sensor 1 vs. filtered estimate using three sensors) …..  50 
5.16a Target position, measurement using sensor 2, and overall estimate 
     in longitudinal/lateral target tracking …………………………………………………..  51 
5.16b RMS position error in longitudinal/lateral target tracking (unfiltered measurement 

 using sensor 2 vs. filtered estimate using threes sensors) …………………………....  51  
5.17a Target position, measurement using sensor 3, and overall estimate 



 7

    in longitudinal/lateral target tracking …………………………………………….……  52 
5.17b RMS position error in longitudinal/lateral target tracking (unfiltered measurement 

 using sensor 3 vs. filtered estimate using three sensors) ……………………………..  52 
5.18  Mode probability in longitudinal/lateral target tracking (with three sensors) ………..  53 



 8

 

 

 

Chapter 1 

Introduction 
 
 

The number and quality of sensors available for both on-board vehicle and infrastructure-
based sensing is increasing while the cost of these sensors is rapidly decreasing.  On-board 
vehicle sensors can be utilized for both individual vehicle safety as well as automated vehicle 
control.  It is becoming imperative that “fusion” techniques be developed, i.e., methods to 
combine the wide variety of sensors available so that reliable and accurate information can be 
obtained even though individual sensors may fail or become extremely noisy.  The process of 
sensor fusion combines multiple sensor measurements in order to provide an accurate and 
coherent view of the vehicle and its environment. 

Sensor fusion has been widely used in applications such as robotics, geological surveying, 
traffic management, and more recently in the Advanced Transportation Management and 
Information System (ATMIS).  The initial proposal that was submitted to the Partners for 
Automated Transit and Highways (PATH) group in 2002 anticipated a project duration of two 
years.  The focus of the first year was to complete the development and implementation of a 
modular sensor fusion architecture for longitudinal vehicle control in platoon formation.  The 
sensor models, closed-loop vehicle models, and mathematical framework were then programmed 
and simulated with the use of MATLAB/Simulink in order to analyze the performance of the 
proposed system. 

The process of sensor fusion can be functionally represented by three tasks: data 
alignment, data association, and data fusion.  Inherent in all aspects of the fusion process is the 
use of models describing the sensors as well as the vehicles and the environment in which they 
operate.  The first task, data alignment, entails the incorporation of all available sensor data and  
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Figure 1.1 Sensor fusion process 
 
 

their transformation into a common spatial and temporal reference frame.  The second task, data 
alignment, involves the validation or rejection of the sensor data with the use of gating which is 
performed by verifying that the measurement lies within a region predicted by the model.  
Finally the third task, data fusion, combines the validated measurements using a weighted 
average or least-squares estimation method to provide an estimate of the signal with a lower 
variance.  A summary of the sensor fusion process is given in Figure 1.1. 
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Chapter 2 

Longitudinal Response and Control Using 

the Kalman Filter 
 
 

2.1  Introduction 
 The Kalman filter is a set of mathematical equation that provides an efficient 
computational (recursive) solution of the least-squares method.  This algorithm, in particular, is 
suitable in estimating the state of a system from measurements containing random process noise.  
In the following two chapters, two vehicles, one leader and one follower, are considered in order 
to determine a control scheme that allows one to maintain a specified relative position and 
velocity between two consecutive vehicles.  As the first step in a longitudinal vehicle control, 
the Kalman filter was implemented into a vehicle model and simple simulations were performed.   
 Three different sensors which are currently available on PATH experimental vehicles 
were modeled based on the sensor specifications and simulations using different sensors were 
compared.  Table 2.1 lists the sensor specifications, approximate costs for the hardware, and 
characteristics.     
 

2.2  Kalman Filter Algorithm 
In stochastic state estimation problems, the dynamic system is governed by  
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sensor specifications 
Approximate 

cost 
characteristics 

FMCW 
Radar 

Range 2-100m at 0.3m res., 
Range rate at 0.3m/s res., 
Azimuth at 0.002 rad res., 
10deg FOV 

$3,000 Insensitive to harsh 
condition, possibility to 
track multiple targets 

Lidar Range 0.1-60m at 0.1m res., 20-
80deg FOV 

$1,000-10,000 Sensitive to visibility and 
dirt 

DGPS Position +/-0.01m, Velocity +/-
0.01m/s 

$5,000+ Degraded performance 
when less than 5 
satellites in LOS 

Table 2.1 Sensors which are currently used on PATH experimental vehicles 
 
 

)()()()()()1( kwkukGkxkFkx ++=+                     (2.1) 
 

)()()()( kvkxkHkz +=                           (2.2) 
 

The random variable )(kw and )(kv  represent the process and measurement noise 
which are white and gaussian with a covariance matrix )(kQ  and )(kR , respectively.  They 
are also uncorrelated with each other.  The Kalman filter is the estimation algorithm which 
satisfies two statistical conditions such as the expected value of our estimate is equal to the 
expected value of the state and an estimation algorithm should minimize the expected value of 
the square of the estimation error [2.1]. 

The Kalman filter estimates a state at some time and then obtains feedback in the form 
of noisy measurement.  These two steps are called prediction and correction. 
 
1. Prediction 
 

)()()|(ˆ)()|1(ˆ kukGkkxkFkkx +=+                   (2.3) 
 

)()'()|()()|1( kQkFkkPkFkkP +=+                   (2.4) 
 
where ]))'|1(ˆ)1())(|1(ˆ)1([()|1( kkxkxkkxkxEkkP +−++−+=+                    
 
 The prediction step is responsible for predicting the current state and covariance matrix, 
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used in time t+1 to predict the previous state 
 
2. Correction step 
 

1)]1()1(')|1()1()[1(')|1()1( −+++++++=+ kRkHkkPkHkHkkPkK       (2.5) 
 

)]|1(ˆ)1()1()[1()|1(ˆ)1|1(ˆ kkxkHkzkKkkxkkx ++−++++=++          (2.6) 
 

)|1()1()1()|1()1|1( kkPkHkKkkPkkP +++−+=++            (2.7) 
 

The first task during the correction step is to compute the Kalman filter gain )1( +kK .  
The next step is to actually measure the process to obtain )1( +kz  ,and then to generate an a 
posteriori state estimate by incorporating the measurement as in (2.6).  The final step is to 
obtain an a posteriori error covariance estimate via (2.7)[2.2, 2.3].  

2.3  Kalman Filter Simulation Results 
The purpose of this simulation is to show how the Kalman filter can be implemented 

into a vehicle control model.  In order to simplify the real vehicle model, two assumptions were 
made that a vehicle does not have a length, which means vehicle is considered a point, and the 
mass is 1kg.  The leader and follower vehicles were traveling at a constant velocity of 10m/s 
and the initial distance between two vehicles is 30m.  The follower vehicle tried to keep the 
same velocity but decrease the distance from the leader vehicle up to 10 m.  After 25 seconds, 
the follower vehicle was increasing the distance again. 

Sensor 1, sensor 2, and sensor 3 are FMCW radar, lidar, and DGPS, respectively.  
Three sensors have different sampling times and measure noise covariances.  
 
  - Sensor 1 (FMCW radar)           

sampling time : 0.02 sec. 

measurement noise covariance : 







=

1333.00
06667.0

R  

 
  - Sensor 2 (lidar)           

sampling time : 0.04 sec. 
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measurement noise covariance : 







=

6667.00
01333.0

R  

 
  - Sensor 3 (DGPS)           

sampling time : 0.5 sec. 

measurement noise covariance : 







=

0333.00
02667.0

R  

 
 The simulation results are shown in the following figures.  Different measurement 
noise covariances affect the result of filtered estimates as well as unfiltered measurements.  
Figure 2.1 and figure 2.2 show that the position error after filtering decreased more than 50 % 
even while the velocity error did not change a lot.  On the other hand, the velocity error clearly 
decreased up to more than 60% when sensor 2 was used.  By comparing these two simulation 
results, it can be concluded that the Kalman filter improves the error reduction when the 
measurement noise covariance of a sensor is big.  Even though the result of DGPS simulation 
shows that the maximum error of filtered estimates is bigger than that of unfiltered 
measurements, entire error was decreased. 
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Figure 2.1 Unfiltered measurement using sensor 1 
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Figure 2.2 Filtered estimate using sensor 1 
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Figure 2.3 Unfiltered measurement using sensor 2 
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Figure 2.4 Filtered estimate using sensor 2 
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Figure 2.5 Unfiltered measurement using sensor 3 
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Figure 2.6 Filtered estimate using sensor 3 
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Chapter 3 

Probabilistic Data Association Filter 
 

 

3.1  Introduction 
The Probabilistic Data Association Filter (PDAF) is a Bayesian approach to multiple 

target measurement association that uses conditional probabilities rather than likelihood 
measures.  Introduced by Bar-Shalom and Tse in 1975, the PDAF has been used extensively in 
sensor fusion applications to combine multiple measurements from a single sensor such that the 
output estimate has minimum estimation error covariance. [3.1]  It assumes that each target is 
isolated from all other targets and considers all other measurements external to a given validation 
region as false clutter points. [3.2] 

In the case of multiple sensors, the PDAF can be structured as a sequential Kalman Filter 
that weights the correction for each sensor based on the validity of each sensor measurement.  
Furthermore, studies have shown a certain number of advantages with sequential filtering versus 
parallel filtering of all sensor measurements such as greater estimation accuracy and less 
computation. [3.3] 
 

3.2  PDAF Algorithm 
The set of ‘validated’ measurements contains [ ]n k  elements and is obtained from a 

sensor at time k.  This set can be expressed as 
 

 { } [ ]
1

[ ] [ ] n k
i i

Z k z k
=

=                              (3.1) 
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and the set of all measurements up to and including time k is denoted as 
 

 { } 1
[ ] kk

l
Z Z l

=
=                                      (3.2) 

 
The i -th measurement at time k, [ ]iz k , is considered validated if it falls within a particular 
‘validation’ region.  The residual, or innovation, corresponding to measurement [ ]iz k  and a  
particular model is given by 
 

 ]1|[ˆ][][ −−= kkzkzkv ii                             (3.3) 
 
where ˆ[ | 1]z k k −  is the predicted measurement estimate and is given by 
 

 ˆˆ[ | 1] [ | 1]z k k Hx k k− = −                             (3.4) 
 
The measurement matrix H  is equal to the C matrix defined in the state-space output of the 
model and ˆ[ | 1]x k k −  is the predicted state estimate.  Combining Equations 3.3 and 3.4 yields 
the following expression for the measurement residual: 
 

 ˆ[ ] [ ] [ | 1]i iv k z k Hx k k= − −                            (3.5) 
 
With the innovation covariance, [ ]S k  as given before, the elliptical validation region is 

defined as 
 

 1 2{ : [ ] [ ] [ ] }T
i iz v k S k v k g− ≤                           (3.6) 

 
where g is a threshold determined from the χ -squared distribution tables with zn  degrees of 
freedom corresponding to the probability 1α  of rejecting the correct data return.  The number of 
degrees of freedom is equal to the dimension of the measurement vector.  In the two-
dimensional case the area of this region is denoted 
 

 
12 2detV g Sπ=                                (3.7) 
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12 2detV g Sπ=

Validation region

 
Figure 3.1 Validation gating using the χ -squared distribution 

 
 

Therefore, an increase in g or [ ]S k  will increase the size of the validation gate depicted in 
Figure 3.1. 

The PDAF technique states that the best estimate of the target state is the conditional 
mean based upon all observations that with some non-zero probability originated from the target, 
i.e., 
 

ˆ[ | ] [ ] | kx k k E x k Z =                                (3.8) 

 
The expected value of the state estimate is given by 
 

 
[ ]

,
0

[ ] | [ ] | [ ],
n k

k k
k i i

i

E x k Z E x k k Zβ χ
=

   =   ∑                       (3.9) 

 
where [ ]i kχ  denotes the event that the i-th validated measurement, [ ]iz k , is correct 
( 1, 2,..., [ ]i n k= ), 0[ ]kχ  is the event that no validated measurement is correct. 
 

 ]|[ˆ]],[|][[ kkxZkkxE i
k

i =χ                           (3.10) 

 
Combining Equations 3.8-3.10 yields the following expression for the state estimate conditioned 
upon all prior measurements: 
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  ∑
=

=
][

0
]|[][]|[ˆ

kn

i
ii kkxkkkx β                            (3.11) 

 
The probabilistic data association (PDA) is given by 
 

 ][,...,1,0},|][{][ kniZkPk k
ii == χβ                       (3.12) 

 and  
[ ]

0

[ ] 1
n k

i
i

kβ
=

=∑                               (3.13) 

A primary assumption made in the derivation of the PDA method is that the Probability Density 
Function (PDF) of the state conditioned upon past observations, the prior-PDF, is assumed 
normal with mean ]1|1[]1|[ˆ −−=− kkFxkkx  and covariance [ | 1]P k k − , i.e., 
 

 ( ) ( )1 ˆ| [ ]; [ | 1], [ | 1]k
kp x Z N x k x k k P k k− = − −                  (3.14) 

 
This assumption leads to the following equations for the PDA method: [3.4] 
 

 ( ) ( )
1[ ]

1
[ ] [ ] [ ] [ ]

n k

i k i k i
i

k f x k b k f x kβ
−

=

 = + 
 

∑                     (3.15) 

 ( )
1[ ]

0
1

[ ] [ ] [ ] [ ]
n k

k i
i

k b k b k f x kβ
−

=

 = + 
 

∑                      (3.16) 

 
where 

 
])[,0];[()1(

])[],1|[ˆ];[()1(])[(
1

1
1

kSkN

kSkkxkxNkxf

i

iik

να
α

−

−

−=

−−=
                  (3.17) 

 
is a truncated normal density that is zero outside the validation region and 
 

 
)1)(1(
)(][][][

21

21211

αα
αααα

−−
−+= −kVknkb                       (3.18) 

 
where 2α  is the probability that the correct return will not be detected. 
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 The state estimate conditioned on measurement i being correct is 
 

                 ][][]1|[]|[ˆ kvkWkkxkkx ii +−=                      (3.19) 
 
with the filter gain [ ]W k  given by 
 

 1[ ] [ | 1] [ ]TW k P k k H S k −= −                       (3.20) 
 
Thus the state estimate for one model in the PDAF is 

 ][][]1|[]|[][]|[ˆ
][

0
kvkWkkxkkxkkkx

kn

i
ii +−==∑

=

β                    (3.21) 

 
where the combined innovation is 
 

 
[ ]

1
[ ] [ ] [ ]

n k

i i
i

v k k v kβ
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The state estimate given by Equation 3.21 has the associated covariance [3.5] 
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where [ | ]oP k k  is the covariance associated with the condition of knowing the correct 
measurement and is obtained from the following expression 
 

 [ | ] [ | 1] [ ] [ ] [ ]o TP k k P k k W k S k W k= − −                    (3.24) 
 
 The first term in the covariance given by Equation 3.24 reflects the possibility that there 
are no validated measurements returned from the target.  The second term ensures that only a 
validated measurement might be a correct measurement, while the third term is a positive 
definite matrix that increases [ | ]P k k  as a result of measurement origin uncertainty. 
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3.3  PDAF Implementation 
 The PDAF can be broken down into two basic computational stages at each discrete 
time step k: 
 
1) Prediction of fused state estimate and estimation error covariance based on dynamic system 
model 
 

1 1 1

4 4 4

( 1) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

x k Ax k w k
y k C x k v k

y k C x k v k

+ = +
= +

= +
M

  
QAkAPkkP

kkAkkx
T +−=−

−−=−

)1()1|(
)1|1()1|(ˆ

  

1 1

1 1 1

1 1 1
1

1 1 1

ˆ( ) ( | 1)
( ) ( | 1)

( ) ( ) ( )
( ) ( ) ( ) ( )

T

T

z k C x k k
S k C P k k C R

v k y k z k
V k v k S k v k−

= −

= − +
= −

=

 

 
2) Validation of all measurements from each sensor using g-sigma gating based on predicted 
measurement and measurement covariance.  For each sensor, 
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a) If the sensor measurement is valid, use in Kalman filter to correct fused state estimate 
and estimation error covariance 
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b) If the sensor measurement is not valid, do not use in Kalman filter 
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The vehicles and sensors are modeled as signal-flow block diagrams and then simulated 
with the MATLAB/Simulink software package, as shown in Figures 3.2 and 3.3.  The PDA 
method can then be applied with the signals illustrated in Figures 3.4a and 3.4b and the PDAF 
code described above is implemented with m-file scripts.  It should be noted that the input and 
sensor measurement signals are corrupted by noise using a random variable generator that adds 
the random number to the given signal. 
 
 

 

Figure 3.2 Leader and follower vehicle model 
 
 

 
Figure 3.3 Sensor model 
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Figure 3.4a PDAF model 

 
Figure 3.4b PDAF block 

 

3.4  PDAF Simulation Results 
 For the following 50 s simulations, the initial position and velocity of the leader vehicle 
are 30 m and 10 m/s, respectively, while the follower vehicle has an initial position of 0 m and a 
velocity of 10 m/s.  The requirements are to maintain a constant relative velocity between the 
two vehicles and to maintain a constant distance between them, initially 10 m, then 30 m after 25 
s.  In addition, at time t = 30 s, sensor 3 drops out and no longer returns measurements. 
 As shown in Figures 3.5 and 3.6, the desired relative position and velocity between the 
two vehicles are obtained within 7 s of each change maneuver by the leader.  The fused state 
estimates resulting from the PDA method are much cleaner than the noisy measured signals.  
Furthermore, the filtering process is relatively unaffected by the loss of measurements from 
sensor 3 when it drops out 30 s into the simulation. 
 Additional sensors can be added as needed; results for a four-sensor simulation are given 
in Figures 3.7 and 3.8 where the model now makes use of sensors that respond to counts of 
magnetic road markers embedded in the lanes of certain freeways within the PATH AHS 
architecture such as the I-15 High Occupancy Vehicle (HOV) lanes. 
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Figure 3.5 Sensor measurements 
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Figure 3.6 Fused estimates 
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Figure 3.7 Rate and range sensor errors 

 
 

 
Figure 3.8 Fused range, rate, and associated errors 
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Chapter 4 

Lateral Response and Control 
 

 

4.1  Introduction 
The vehicle control model previously developed, although suitable and effective for 

longitudinal control, does not account for rotation and lateral motion of the vehicle due to 
steering inputs.  In this section an analysis of vehicle steering design and the cornering forces 
developed in the tires during a turning maneuver are first presented, followed by a formulation of 
the three-dimensional equations of motion.  From these equations are obtained the longitudinal, 
lateral, and rotational states of the vehicle.  Finally, simulation results of vehicle transient 
response to steering and acceleration inputs are then presented and discussed for feasibility of 
implementing real-time lateral control. 
 

4.2  Ackerman Steering Geometry 
The two most common steering mechanisms employed by road vehicles are the ‘rack-

and-pinion’  and the ‘recirculating-ball’ designs.  The ‘rack-and-pinion’ type is the choice of 
most manufacturers and the ‘recirculating-ball’ type is a past favorite because the balls act as a 
rolling thread bearing, thus causing less friction and wear. 

The steering systems used on motor vehicles vary widely in design but are functionally 
quite similar.  The steering wheel connects by shafts, universal joints, and vibration isolators to 
the steering gearbox whose purpose is to convert the rotary motion of the steering wheel to a 
translational motion appropriate for steering the wheels. The lateral translation produced by the 
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Left turn

 
Figure 4.1 Steering configurations 

 
 
gearbox is relayed through the linkages to steering arms on the left and right front wheels, as 
shown in Figure 4.1. 
The kinematic geometry of the relay linkages and steering arms is generally not a parallelogram, 
which would produce equal left and right steering angles, but rather a trapezoid to more closely 
approximate “Ackerman” geometry that steers the inside wheel to a greater angle than the 
outside wheel.  Indeed, the prime consideration in the design of the steering system geometry is 
minimum tire scrub during cornering.  This requires that during the turn all tires should be in 
pure rolling without lateral sliding. [4.1]  To satisfy this requirement, the wheels should follow 
curved paths with radii originating from a common center, as shown in Figure 4.2.  
 

L

oδ iδ

t

R

 

Figure 4.2 Ackerman geometry 
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Ackerman steering geometry requires that 

 1tan
2

o
L

tR
δ −=

+
                             (4.1) 

1tan
2

i
L

tR
δ −=

−
                             (4.2) 

 
For small angles, as are typical of most turning maneuvers, the arctangent of the angle is 

very nearly equal to the angle itself, in radians.  At high speeds the radius of turn is much larger 
than the wheel-base of the vehicle.  Small angles can then be assumed and the difference 
between steer angles on the outside and inside front wheels is negligible.  Thus, for convenience, 
the two front wheels can be represented by one steer angle with a cornering force equivalent to 
both wheels and is approximated as 

 

 f
L
R

δ =                                 (4.3) 

 

4.3  Tire Cornering Forces 
Steady-state handling performance is concerned with directional behavior of a vehicle 

during a turn under non-time-varying conditions.  An example of a steady-state turn is a vehicle 
negotiating a curve with constant radius at constant forward speed.  In the analysis of steady-
state handling behavior, the inertia properties of the vehicle are not involved. 
 When a vehicle is negotiating a turn at moderate or higher speeds, however, the effect of 
the centrifugal force acting at the center of gravity can no longer be neglected.  To balance the 
centrifugal forces, the tires must develop appropriate cornering forces, i.e. a side forces acting on 
each of the tires which produces a slip angle. [4.2]  Thus, when a vehicle is negotiating a turn at 
moderate or higher speeds, the four tires will develop appropriate slip angles.  To simplify the 
analysis, the pair of tires on an axle are represented by a single tire with double the cornering 
stiffness, as shown in Figure 4.3.  The handling characteristics of the vehicle depend, to a great 

extent, on the relationship between the slip angles of the front and rear tires, fα  and rα , 

respectively. 
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Figure 4.3 Simplified vehicle model 

 
 
 The steady-state handling response of a vehicle at moderate and higher speeds will have 
a more complex relation with the steering input than that at low speeds.  From the geometry 

shown in Figure 4.3, the relationship between the steer angle of the front tire fδ , turning radius 

R , wheel base L , and the slip angles of the front and rear tires fα  and rα , respectively, is 

given by 
 

 f f r
L
R

δ α α− + =                                (4.4) 

 

 Equation 4.4 indicates that the steer angle fδ  required to negotiate a given curve is a 

function of not only the turning radius R  but also the front and rear slip angles fα  and rα , 

respectively. [4.3]  These slip angles are dependent on the side forces acting on the tires and 

their cornering stiffness.  The cornering forces on the front and rear tires yfF  and yrF  can be 
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determined from the equilibrium of the vehicle in the lateral direction.  For small steer angles, 
the cornering forces acting at the front and rear tires are approximately given by 
 

2
r

yf
W V lF
g R L

=                                (4.5) 

2
f

yr

lW VF
g R L

=                                (4.6) 

 
where W  is the total weight of the vehicle, g  is the acceleration due to gravity, V  is the 
vehicle forward speed. [4.4] 

 The normal load on each of the front wheels fW  and that on each of the rear wheels rW  

under static conditions are expressed by 
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Equations 4.7 and 4.8 can be rewritten as 
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The slip angles fα  and rα  are therefore given by 
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where fCα  and rCα  are the cornering stiffness of each of the front and rear tires, respectively. 

[4.5]  The cornering stiffness of a tire varies with a number of operational parameters including 
inflation pressure, normal load, tractive or braking effort, and lateral force.  It may be regarded 
as a constant only within a limited range of operating conditions. [4.6] 
 

4.4  Transient Response 
 A vehicle may be regarded as a control system upon which various inputs are imposed.  
During a turning maneuver the steer angle induced by the driver can be considered as an input to 
the system and the motion variables of the vehicle, the state variables, may be regarded as 
outputs that can be measured by sensors for feedback.  The ratio of the yaw velocity, lateral 
acceleration, or curvature, to the steering input can then be used for comparing the response 
characteristics of different vehicles and their response characteristics. 
 Between the application of steering input and the attainment of steady-state motion, the 
vehicle is in transient state.  The behavior of the vehicle in this period is usually referred to as 
transient response.  The overall handling qualities of a vehicle depend, to a great extent, on its 
transient behavior.  The optimum transient response of a vehicle is that which has the fastest 
response with a minimum of oscillation in the process of approaching the steady-state motion. 

In analyzing the transient response, the inertia properties of the vehicle must be taken into 
consideration.  During a turning maneuver, the vehicle is in translation as well as in rotation.  
To describe its motion, it is convenient to use a set of axes fixed to and moving with the vehicle 
body because with respect to these axes the mass moments of inertia of the vehicle are constant, 
whereas with respect to axes fixed in space the mass moments of inertia vary as the vehicle 
changes its orientation. 

To formulate the equations of transient motion for a vehicle during a turning maneuver, it 
is necessary to express the absolute acceleration of the center of gravity of the vehicle (i.e., the 
acceleration with respect to axes fixed in space) using the reference frame attached to the vehicle 
body. [4.7] 
 Let ox  and oy  be the longitudinal and lateral axes, respectively, fixed to the vehicle 

body with origin at the center of gravity, and let xV  and yV  be the components of the velocity 

V  of the center of gravity along the axes ox  and oy , respectively, at time t  as shown in 
Figure 4.4. 
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Figure 4.4 Coordinates fixed to vehicle body 

 
 
As a vehicle is in both translation and rotation during a turn, at time t t+ ∆ , the direction and 
magnitude of the velocity of the center of gravity as well as the orientation of the longitudinal 
and lateral axes of the vehicle change.  The change of the velocity component parallel to the ox-
axis is given by 
 

 
( ) cos ( )sin

cos cos sin sin
x x x y y

x x x y y

V V V V V

V V V V V

θ θ
θ θ θ θ

+ ∆ ∆ − − + ∆ ∆

= ∆ − ∆ ∆ − − ∆ − ∆ ∆
             (4.13) 

 
Consider that θ∆  is small and neglect second-order terms, the above expression becomes 

 

 x yV V θ∆ − ∆                                (4.14) 

 
 The component along the longitudinal axis of the absolute acceleration of the center of 
gravity of the vehicle can be obtained by dividing the above expression by t∆ .  In the limit, this 
gives 
 

 x
x y x y z

dV da V V V
dt dt

θ= − = − Ω&                         (4.15) 
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The component xdV
dt  (or xV& ) is due to the changing magnitude of the velocity component xV  

and is directed along the ox  axis, and the component y
dV dt
θ  (or y zV Ω ) is due to the rotation 

of the velocity component yV .  Following a similar approach, the component of the absolute 

acceleration of the center of gravity of the vehicle along the lateral axis is  
 

 y
y x y x z

dV da V V V
dt dt

θ= + = + Ω&                       (4.16) 

 
 Referring to Figure 4.5, for a vehicle having plane motion, the equations of motion using 
the axes fixed to the vehicle body are given by 

 

 ( ) cos sinx y z xf f xr yf fm V V F F Fδ δ− Ω = + −&                    (4.17) 

 ( ) cos siny x z yr yf f xf fm V V F F Fδ δ+ Ω = + +&                    (4.18) 

 cos sinz z f yf f r yr f xf fI l F l F l Fδ δΩ = − +&                     (4.19) 
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Figure 4.5 Vehicle angles and dynamic components 
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where m  is the mass of the vehicle and zI  is the mass moment of inertia of the vehicle about 
the z  axis. 
 In deriving the above equations, it is assumed that the vehicle body is symmetric about 
the longitudinal plane (i.e., the xoz  plane) and that roll motion of the vehicle body is neglected.  
If the vehicle is neither accelerating nor decelerating in the longitudinal direction, the first 
equation of motion given by Equation 4.17 may be omitted and the lateral motions of the vehicle 
are governed by Equations 4.18 and 4.19. 

 The slip angles fα  and rα  can be defined in terms of vehicle motion variables zΩ  

and yV .  Referring to Figure 4.5 and using small angle approximations, 

 f z y
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l V
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α δ
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= −                            (4.20) 
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The lateral forces acting on the front and rear tires are a function of the corresponding slip angle 
and cornering stiffness and are expressed by 
 

 2yf f fF Cα α=                               (4.22) 

 2yr r rF Cα α=                                (4.23) 

 
Combining Equations 4.17 through 4.23 and assuming that xrF  is zero, the equations of motion 
of the vehicle become 
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In the above equations, fδ  represents the steer angle of the front wheel as a function of 

time.  If, in addition to the steer angle and longitudinal acceleration, external forces or moments, 
such as aerodynamic forces and moments, are acting on the vehicle, they should be added to 
Equations 4.24 through 4.26 as additional input variables.  When the input variables, such as 
steer angle and external forces, and the initial conditions are known, the response of the vehicle, 
expressed in terms of the state variables as functions of time, can be determined by solving the 
differential equations. 

 

4.5  Simulation Results 
 For the following simulations, the selected test vehicle is a Honda Accord.  Parameters 

for the Honda Accord used in the experiments were 1590m kg= , 22920 .xI kg m= , 1.22fl m= , 

1.62rl m= , and 2 60000 /f rc c N rad= = × .  The cornering stiffness is increased by a factor of 

two since both of the tires are lumped together at the front and at the back of the vehicle. [4.8] 
 

 
Figure 4.6 Constant longitudinal acceleration 
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4.5.1  Constant longitudinal acceleration 
 The first simulation set is a validation of the three-dimensional model for the 
longitudinal response of the vehicle.  A constant acceleration of 20.5 /u m s=  is applied to a 
vehicle initially at rest, i.e., with zero initial conditions, and no steering angle is applied, 

i.e., 0fδ = , such that vehicle is vehicle is accelerating in the longitudinal direction only. 

As shown in the plots given in Figure 4.6, the longitudinal position response is parabolic 
over time and the longitudinal velocity response is linear.  At 60t s= , the position 900x m=  
and the velocity 30 /xv m s=  which match the expected results from a second-order, linear, 
longitudinal model under constant acceleration. 

 
4.5.2  Constant steering angle with initial velocity 

 In the second simulation set, a constant steering angle 0.01f radδ =  is applied to a 

vehicle travelling with an initial velocity 0 25 /v m s= .  For each simulation, the vehicle state 
responses are obtained and compared for various longitudinal acceleration inputs.  Results for 
all six states and the vehicle trajectory are given in Figures 4.7 through 4.10. 
 

 
Figure 4.7 Longitudinal response for constant steering angle with initial velocity 
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From the plots given in Figure 4.7, the constant steering angle input results in a decrease 
in the longitudinal velocity.  Indeed, for zero acceleration, the longitudinal velocity drops from 
its initial value of 0 25 /v m s= , although this drop is rather negligible over the time span of 5 
seconds. 
 As shown in Figure 4.8, the vehicle responds quickly to a small steering input since the 
initial velocity is large.  The vehicle begins by moving in the opposite direction of that desired 
as it first swerves in the postive y-direction for the initial 0.25 seconds.  The vehicle then moves 
in the negative y-direction, as desired.  This phenomenon is due the initial cornering force on 
the tire, and for zero acceleration, the lateral velocity reaches a steady-state value of –0.12 m/s 
after 1 second. 

From the plots given in Figure 4.9, the yaw angle is roughly linear versus time for 
various longitudinal acceleration inputs.  The first peak in the angular velocity response is 
consistent with the initial cornering force upon a steering input which causes a momentary 
rotation in the opposite direction.  The lateral velocity reaches a steady-state value of 0.62 rad/s 
after 1 second. 

As shown in Figure 4.10, after 5 seconds, the vehicle has traveled a longitudinal distance 
of roughly 120 m.  The difference in lateral position between positive and negative acceleration 
is small, less than 0.3 m after 5 seconds, but increasing. 

 
Figure 4.8 Lateral repsonse for constant steering angle with initial velocity 
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Figure 4.9 Angular response for constant steering angle with initial velocity 

 
 

 

Figure 4.10 Trajectory for constant steering angle with initial velocity 



 40

4.5.3  Zero acceleration with initial velocity 
In the third simulation set, zero longitudinal acceleration is applied to a vehicle travelling 

with an initial velocity 0 25 /v m s= .  For each simulation, the vehicle state responses are 
obtained and compared for various steering angle inputs. Results for all six states and the vehicle 
trajectory are given in Figures 4.11 through 4.14. 
 From the plots given in Figure 4.11, the longitudinal velocity decreases for increasing 
steering angle due to the tire cornering forces that tend to oppose forward motion as the vehicle 
maneuvers a turn.  For a steering angle of 0.1 radians, roughly 6 degrees, the longitudinal 
velocity drops to 19.5 m/s after 5 seconds.  At higher velocity, smaller steering angles should be 
applied in order to minimize the longitudinal velocity gradient. 

As shown in Figure 4.12, the vehicle responds quickly to the steering input since the 
initial velocity is large.  The vehicle again begins by moving in the opposite direction of that 
desired as it first swerves in the postive y-direction for the initial 0.3 seconds.  The vehicle then 
moves in the negative y-direction, as desired.  For a steering angle of 0.01 radians, roughly 0.6 
degrees, the lateral velocity reaches a steady-state value of –0.15 m/s after 1 second. 
 
 
 

 
Figure 4.11 Longitudinal response for zero acceleration and initial velocity 
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Figure 4.12 Lateral response for zero acceleration and initial velocity 

 
Figure 4.13 Angular response for zero acceleration and initial velocity 
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Figure 4.14 Trajectory for zero acceleration and initial velocity 

 
 
 From the plots given in Figure 4.13, the yaw angle is roughly linear over time for all 
three steering angles.  For the smaller steering angle of 0.01 radians, the angular velocity 
response reaches a steady state value of 0.06 rad/s after 0.25 seconds while the angular velocity 
response exhibits an initial peak at about 0.3 seconds for larger steering angles before 
approaching its final value. 

As shown in Figure 4.14, after 5 seconds, the vehicle has traveled a longitudinal distance 
of roughly 120 m.  The difference in lateral position between the small and larger steering 
angles is more significant, almost 3 m after 5 seconds.  Steering angles of less than 0.1 radians 
are more suitable for turning and lane-changing maneuvers. 
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Chapter 5 

Sensor Fusion Using the Interacting 

Multiple Model (IMM) Algorithm 
 
 

5.1  Introduction 
In Automated Highway System (AHS), the safety of drivers is the most critical issue.  

In the same sense, tracking performance can be evaluated by how accurately and quickly we can 
estimate target position and velocity.  In order to improve the quality of estimation, accurate, 
which implies expensive, sensors can be used if finances are not a concern.  The alternative is 
to increase the number of sensors. The question to be addressed is then how to improve the 
accuracy of target estimation by using the limited number of sensors.  
 Many of the adaptive algorithms based on Kalman filter have been proposed to 
accomplish this task, and one of the effective methods is the Interacting Multiple Model (IMM) 
algorithm.  It has multiple models, each of which matches to a particular mode such as uniform 
motion with constant velocity and maneuvering motion with acceleration.  Sensor fusion using 
the IMM algorithm combines the estimates which are produced by equivalent numbers of filters 
and modes. 
 In this chapter, we consider a single target in planar motion utilizing three different 
sensors.  The estimate with a single sensor is first considered to evaluate the IMM algorithm, 
and then sensor modeling and longitudinal/lateral motion estimate will be discussed in detail.   
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5.2  The IMM Algorithm  
 The main idea of the IMM algorithm is to weight the estimates from the filters matched 
to the different modes.  Different modes have different state space models.  The weights are 
based on the time variant mode probabilities that imply how close the estimate from each filter is 
to the corresponding model.  Since the IMM algorithm mixes the estimates from different 
models instead of choosing which mode is true in each time step, it is called a soft switching 
algorithm, which does not include hard decision [5.1].  Figure 5.1 is the structure of the IMM 
algorithm when two models are used. 
 
In each time step, the IMM algorithm performs four steps to yield the overall state estimates. 
 

1. Interacting or mixing of the estimates: from the estimate, )1/1(ˆ −− kkxi  and mode 
probability, )1( −kiµ  of each filter in the previous step, obtain the mixing estimate, 

)1/1(ˆ −− kkx o
i  and covariance, )1/1( −− kkP o

i under the assumption that a 
particular mode is in effect at the present time.  The mixing estimate is used as an initial 
state in current step.   

 

 

Figure 5.1 Structure of the IMM Algorithm 
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2. Model-conditional filtering: using the Kalman filter, update state and covariance, 
)/(),/(ˆ kkPkkx ii . 

3. Mode probability update: using the likelihood function, update the mode probability, 
)(kiµ . 

4. Combination of estimates: based on the mode probability, weigh the estimate from each 
filter and combine them, )/(),/(ˆ kkPkkx .    

 
5.2.1  Target modeling 

Since a moving target has time variant dynamics, a number of models can be established 
to describe a target’s motion.  Even though more models can give better overall estimates, it is 
less efficient since more time will be required to yield the estimate.  In the sense of acceleration 
of a target, the constant velocity and acceleration modes are most commonly considered to build 
models.  In this project, these two models are used.  Linear accelerations are normally quite 
small and thus can be reasonably covered by a process noise in a nearly constant velocity model, 
i.e. the uniform motion (constant velocity model) plus a zero-mean noise with an appropriate 
covariance representing the small acceleration [5.2].  Alternatively, this mode can be described 
as a constant velocity model with no process noise.  On the other hand, the acceleration mode 
has the acceleration increment during the sampling time and this should be included in state 
space model.  When the state space equation is given by 

 
)1()1()( −+−= kGwkFxkx ,                   (5.1) 

 
x  is the state vector of a target defined as  
 

][ ′= ηηηξξξ &&&&&&x                         (5.2) 
 
where ξ  and η  denote longitudinal and lateral position respectively. .  In equation (5.1) 
w signifies process noise, which is zero-mean, white, and Gaussian with covariance )(kR . 

The state transition matrices and the noise gain matrices are 
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and            
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where subscripts 1 and 2 in equations (5.3) and (5.4) denote mode 1 (constant velocity motion) 
and mode 2 (acceleration motion) and T is the sampling time.  
The measurement model is  
 

)()()( kvkHxkz +=                         (5.5) 
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Measurement matrix implies that only position of the target is measured from each 

sensor.  The mode sequence is assumed to be a first order Markov chain with transition 
probabilities  
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                          (5.7) 

 
5.2.2  Sensor modeling 

For simulation, three sensors are modeled under the assumption that they are radars, 
which is most commonly used in target tracking.  Since a radar measures the range and azimuth, 
they should be converted to the Cartesian coordinates.  In simulation, predetermined target 
trajectory is converted to the polar coordinates and then converted to the Cartesian coordinates 
again after mixing with measurement noise.  The most crucial value of the sensor is the 
standard deviation of the range measurement and the azimuth measurement, rσ  and θσ  
respectively.  The approximation of the covariance of these converted measurement errors can 
be calculated as follows [5.2]. 

 









−

+−==
θθ

θθσσ θ

2cos2sin
2sin2cos

2
]cov[

222

b
brwR r             (5.8) 



 47

where  
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+=                             (5.9) 

 
Three sensors are used, each with different standard deviations of the range and azimuth 
measurement.  
 
 - Sensor 1 and sensor2 : }05.0,5.0max{ rmr =σ , rad01.0=θσ  
 - Sensor 3 : }03.0,3.0max{ rmr =σ , rad005.0=θσ  
 
5.2.3  Data fusion 
 In order to fuse the estimates, the sequential process is used.  After the first step of the 
IMM algorithm is completed using )1/1(ˆ −− kkxi and )1/1( −− kkPi , the measurement in the 
second step is performed with the measurement from sensor 1.  Sensor 2 and sensor 3 
measurements are used to update the predicted states and covariances, )/(ˆ kkxi  and )/( kkPi .  
That is, the second step is repeated three times.  
 

5.3  The IMM Algorithm Verification 
 Before applying the IMM algorithm to a planar motion target tracking, the algorithm 
was verified by applying to the longitudinally moving target.  In this case, the measurement 
noise can be assumed to be determined exclusively by rσ .  The state transition matrix, noise 
gain matrix, and measurement matrix can be described by the following matrices:  
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where 2Q  is the process noise matrix for the second mode.  
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Figure 5.2 Longitudinally Moving Target Trajectory 

 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Target velocity

time(sec)

ve
lo

ci
ty

(m
/s

)

 
Figure 5.3 Longitudinally Moving Target Velocity 
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Figure 5.4 Mode Probability in Longitudinally Moving Target Tracking  

(without measurement noise) 
 

 
5.3.1 Simulation with no measurement noise 
 The first simulation is performed without measurement noise.  Since there is no 
measurement noise, perfect tracking is achieved.  The most interesting part is shown in Figure 
5.4.  According to the target velocity plot (Figure 5.3), two mode changes occur at 4 and 8 
seconds.  Based on the IMM algorithm, each filter should catch the mode change and it should 
change mode probabilities, i.e. mode probability for uniform motion is expected to increase after 
4 seconds and decrease again after 8 seconds.  In Figure 5.4, the expected result is shown.  
Before 4 seconds, mode probability for uniform motion stays under 0.3 and mode probability for 
maneuvering motion stays over 0.7.  Right after 4 and 8 seconds, two mode probabilities start 
changing and they are completely switched in 0.7 seconds.  Between 5 and 8 seconds, the mode 
probability for uniform motion is almost 0.9. 
 
5.3.2  Influence of transition probabilities 
 Initially, transition probabilities are set as 11 12 21 220.95, 0.05, 0.05, 0.95π π π π= = = =  
and the simulation result is shown in Figure 5.4.  Since it is assumed that the probability that a 
target keeps its current mode is high, mode changes occur in short period and clearly presented 
in Figure 5.4.  On the other hand, when different values are chosen as transition probabilities,  
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Figure 5.5 Mode Probability : 11 12 21 220.9, 0.1, 0.1, 0.9π π π π= = = =  
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Figure 5.6 Mode Probability : 11 12 21 220.8, 0.2, 0.2, 0.8π π π π= = = =  



 51

the mode changes have different characteristics.  As expected, the difference between marginal 
values of each mode probability decreases as transition probabilities between two modes 
increases.  In Figure 5.6, two mode probabilities during uniform motion (0 ~ 4 seconds and 8 ~ 
12 seconds) are almost mixed, which makes it delicate to distinguish the current mode from the 
figure.  In addition, transient response speed changes.  In the first simulation, the actual mode 
change occurs at 4 seconds but the conversion point is at 4.8 seconds.  That is to say, there is 
0.8 second time delay.  However, this time delay is vanishing as different transition 
probabilities are adapted.  In the second and third simulations (Figure 5.5 and Figure 5.6), time 
delays are 0.4 and 0.1 seconds, respectively.  Even though these three simulations assumed that 
there is no measurement noise, it helps us understand the influence of transition probabilities.  
The next chapter deals with the case when there exists measurement noise, and it shows that the 
result is more complex and more uncertain.  
 
5.3.3  Simulation with measurement noise 
 The IMM algorithm applied the same situation as above, except with the addition of 
measurement noise.  Measurement noise prevents perfect tracking and introduces RMS position 
error into the estimation of true target position.  As mentioned in the previous chapter, the mode 
probabilities shown in Figure 5.8 do not follow the same pattern as in Figure 5.4.  A criterion of 
tracking performance is RMS position error which is defined as the difference between actual  
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Figure 5.7 Target position, measurement, and overall estimate in longitudinal target tracking 

(with measurement noise) 
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Figure 5.8 Mode probability in longitudinal target tracking (with measurement noise) 
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Figure 5.9 RMS position error in longitudinal target tracking (with measurement noise) 



 53

target position and estimated target position using the filter.  For the first two seconds in Figure 
5.7, the estimated values stay at zero and it is due to the difference between the target’s actual 
initial condition and the model’s initial condition.  Another important result is that this state 
space model fits well for the target’s uniform motion.  Almost perfect target tracking during the 
target’s uniform motion is achieved.  This result can be checked in terms of RMS position error 
in Figure 5.9 as well.  Overall, the filtered estimates have 25% of the RMS position error 
associated with unfiltered values. 
 

5.4  Simulation Results 
 The same Matlab code for the IMM algorithm in chapter 4 is used to simulate the planar 
motion target tracking.  Figure 5.10 shows the trajectory of the target and Figure 5.11 displays 
the longitudinal and lateral velocities of the target.  These plots show that a relatively slow lane 
change from the first lane to the second lane, which is in front of the Adaptive Cruise Control 
(ACC) vehicle, occurs at 3.5 seconds.  The maximum longitudinal acceleration is 2m/s2, and 
the maximum lateral acceleration is 1m/s2.  Since the process noise covariance is determined 
based on the maximum acceleration increment over a sampling time, the maximum acceleration 
is crucial in target modeling.  When slightly different process noise covariance is adopted, it 
can be verified that RMS position error blows up.   
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Figure 5.10 Trajectory of the planar motion target 
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Figure 5.11 Target velocity 

 
 
In the following simulation, sampling time T is set at 0.1 seconds and sensor scanning time is 
0.02 seconds.  Process noise covariance for each model is determined by the following matrix 
form: 
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5.4.1 Single sensor estimation results 
 Target tracking is performed using sensor 1.  The simulation results are shown in 
Figures 5.12, 5.13 and 5.14.  In Figure 5.12, estimates during the first several seconds have 
much error.  It can also be checked from the fact that the unfiltered RMS position error in 
Figure 5.14 is smaller than the filtered for the first 3 seconds.  It is not only due to the 
difference between the target’s actual initial condition and the model’s initial condition but also 
due to the assumption in the sensor model.  According to equation (5.8), measurement error 
covariance is a function of  the azimuth θ .  Actually, the field of view of radar is very narrow 
( o5± ) and multiple sensors should be used to cover o90± .  However, in sensor modeling, it is 
assumed that a single sensor covers o90± .  This assumption causes large measurement error  
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Figure 5.12 Target position, measurement, and overall estimate in longitudinal/lateral target 

tracking (with single sensor) 
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Figure 5.13 Mode probability in longitudinal/lateral target tracking (with single sensor) 
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Figure 5.14 RMS position error in longitudinal/lateral target tracking 

(with single sensor) 
 
 
covariance when azimuth is large and affects RMS position error.  In the same sense, estimates 
are increasing as time goes by because the distance between the target and ACC vehicle is 
getting larger.  As both longitudinal acceleration and lateral acceleration are considered, total 
mode changes occur six  times at 2, 3.5, 4, 5, 6, and 7.5 seconds.  The change of two 
accelerations makes the mode probability analysis more complicated.  The fact that the target is 
moving with constant velocity after 7.5 seconds can be barely checked from Figure 5.13.  In 
spite of complex mode probabilities, overall RMS position error is decreased by 28%.  The 
maximum RMS position error is 2.7 m at 8.7 seconds. 

 
5.4.2  Three sensor estimation results 
 Three different sensors are used to perform the final simulation of the IMM algorithm.  
Sensor 1 and sensor 2 have the same measurement error covariance and sensor 3 has a smaller 
one.  As shown in Figures 5.15b, 5.16b, and 5.17b, measurement error increases as the distance 
of target and ACC vehicle increases.  The maximum RMS position errors of unfiltered 
measurements using each sensor are 6.7m, 5.2m, and 2.6m, respectively.  These values are large 
enough to threaten the safety of the driver and the vehicle if there is no filtering.  After the 
IMM filtering and data fusion, RMS position error definitively decreases by less than 0.5m.   
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Figure 5.15a Target position, measurement using sensor 1, and overall estimate in 

longitudinal/lateral target tracking 
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Figure 5.15b RMS position error in longitudinal/lateral target tracking  

(unfiltered measurement using sensor 1 vs. filtered estimate using three sensors) 
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Figure 5.16a Target position, measurement using sensor 2, and overall estimate in 

longitudinal/lateral target tracking 
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Figure 5.16b RMS position error in longitudinal/lateral target tracking  

(unfiltered measurement using sensor 2 vs. filtered estimate using three sensors) 
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Figure 5.17a Target position, measurement using sensor 3, and overall estimate in 

longitudinal/lateral target tracking 
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Figure 5.17b RMS position error in longitudinal/lateral target tracking  

(unfiltered measurement using sensor 3 vs. filtered estimate using three sensors) 



 60

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mode probability

time(sec)

P
ro

ba
bi

lit
y

Unifrom
Maneuver

 
Figure 5.18 Mode probability in longitudinal/lateral target tracking (with three sensors) 

 
 
when compared with single sensor estimation (max. RMS position error = 2.7m in Figure 5.5), 
sensor fusion with three sensors provides a more accurate estimation (max. RMS position error = 
0.8m). 
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Chapter 6 

Conclusion and Future Work 
 
 
 Applied optimal estimation techniques such as the Kalman filter allow one to obtain 
quality state estimates for a stochastic system corrupted by input and measurement noise.  When 
more than one sensor is availble, the quality of the state estimates can be further increased with 
the PDA method as it assigns a weight to the measurement residual for each sensor measurement.  
With the use of multiple and redundant sensors, the PDAF can be constructed as a set of 
sequential Kalman filters and the accuracy of the fused estimates is maintained even with the 
permanent or intermittent loss of sensor measurement data. 
 Longitudinal control of vehicles in leader-follower mode is simple to implement and 
requires small computational ressources.  Lateral control, however, is more difficult to achieve 
due to the non-linear equations of motion goverened by the vehicle dynamics.  The PDA 
method can then be applied to the expanded, three-dimensional vehicle model to obtain fused 
estimates for the lateral and angular states.  Additional sensors, such as magnetic road markers 
embedded in certain freeways, DGPS, and accelerameters, can also be used to achieve lateral 
control. 

Highway safety, traffic, and congestion issues have motivated a significant amount of 
research in the area of vehicle and highway automation. However, this research cannot become 
viable without reliable fault diagnostics and fault-handling systems.  Both semi-automated 
vehicles (such as the cases of adaptive cruise control and lane-keeping algorithms) as well as 
fully automated vehicles on dedicated automated highway systems have been studied.  Further 
research should be conducted towards the development of a fault diagnostic system that can 
monitor the health of the sensors and actuators on an automated vehicle and identify the source 
of any fault that occurs. 
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Fault diagnostic design consists of two primary tasks: fault detection and fault 
identification.  Fault detection can generally be performed by setting a threshold value that 
indicates the maximum allowable size of the measurement residual before a fault is declared.  
Stochastic change detection algorithms such as the Kalman Filter and the Probabilistic Data 
Association Filter (PDAF) are quite commonly used for fault detection.  For increased 
robustness, adaptive thresholds and parameter estimation algorithms (PAA) are also used in 
order to explicitly account for modeling error. 

Identification of faults, however, is a more complex problem since each fault must have a 
unique effect upon the residuals in order to perform correct identification.  Many of the residual 
generation design techniques enforce this condition or the stronger condition that the fault effects 
on the residuals are independent of each other.  Hypothesis testing, heuristics, and pattern 
recognition are useful techniques for fault identification.  Fuzzy logic and knowledge-base 
methods can also be applied. 

The challenge of radar health monitoring, for example, should be studied in order to 
obtain increased radar reliability.  The use of an inexpensive and redundant sensor framework is 
extremely valuable in the radar health monitoring task.  Another important problem to be 
considered is the loss of targets on sharp curves and on grades since a typical range and range-
rate sensor such as a radar may lose track of targets on sharp curves or return contaminated 
measurements. 
 To reducing the target tracking error, the sensor fusion technique and the Interacting 
Multiple Model (IMM) algorithm can be combined.  Since the Kalman filter based on a single 
state space model has a defect in the case that a target changes its mode, the IMM algorithm 
using more than two different models is inevitable.  Even though sensor fusion and IMM 
algorithm are totally different techniques, these can cooperate to provide the optimal estimates.  
By comparing the simulation results of unfiltered measurements and filtered estimates, it shows 
that the RMS position error is reduced by 28% by using a single sensor and the IMM algorithm.  
The error reduction is greater when three sensor data are fused.  The advantage in using the 
IMM algorithm is not only error reduction but also mode prediction.  When the mode 
probability data can be analyzed accurately, the motion of a target can be predicted, which 
prevents collision between the leading vehicle and following vehicle. 
 This study is focused on a single target tracking problem.  However, in many 
applications, the IMM algorithm is commonly used in multi target tracking.  So the future work 
should be extended to the multiple target tracking with multiple sensors.  In addition, if the fault 
modes are modeled and put into the IMM algorithm, fault detection and fault diagnosis can also 
be achieved. 
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