Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Sex differences in the induction of angiotensin converting enzyme 2 (ACE-2) in mouse lungs after e-cigarette vapor exposure and its relevance to COVID-19.

Abstract

The COVID-19 pandemic has affected over 114 million people and has resulted in >2.5 million deaths so far. Some people have greater susceptibility which influences both SARS-CoV-2 infectivity and COVID-19 severity. Smoking is associated with increased ACE-2, the receptor for SARS-CoV-2, which facilitates its entry through the lung. However, despite the widespread use of e-cigarettes, also known as vaping, little is known regarding the effects of vaping on ACE-2 expression and how this affects SARS-CoV-2 infection. In addition, the added effect of nicotine in the vapor is also unknown. Thus, we tested whether vaping induces ACE-2 expression in the mouse lung. BALB/c mice exposed to e-cigarette vapor (±nicotine) resulted in a significant increase in peribronchiolar inflammation and influx of immune cells into the airways. Vapor increased monocyte chemoattractant protein-1, interleukin 1β, and KC levels in bronchoalveolar lavage fluid in both sexes, which were further enhanced by nicotine (whereas increase in interleukin 6 was sex and nicotine independent). The reduction in basal inspiratory capacity with vapor exposure occurred independent of sex or nicotine. The increase in methacholine-induced airway hyper-responsiveness was independent of sex; however, in female mice it was only significant in the nicotine-exposed group. Lung ACE-2 expression was increased in male mice in a nicotine-dependent manner as compared with female mice. Collectively, while vaping (±nicotine) induced airway inflammation and impaired lung function, the induction of lung ACE-2 occurred to a significantly greater degree in males exposed to vapor containing nicotine as compared with females. Thus, via these effects on ACE-2 expression in the lungs and airways, vaping itself may facilitate SARS-CoV-2 entry into the airways.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View