Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Low Temperature Direct Growth of Graphene Films on Transparent Substrates by Chemical Vapor Deposition

Abstract

Graphene, two dimensional sheet of carbon atoms has recently gained attention as some of its properties are very useful for electronics, optoelectronics and photovoltaic applications. Its high mobility makes it useful in radio-frequency applications and its transparency makes it useful as transparent electrodes in photovoltaics. It is known that chemical vapor deposition (CVD) is one of the techniques that can be used to synthesize graphene.

A lot of work has been done on selecting appropriate substrates and hydrocarbon sources. Nickel, having a high solubility at high temperatures has been in focus lately. Ethylene which has a lower breaking point compared to other hydrocarbons has a good efficiency in the synthesis of graphene. Complexity associated with graphene synthesis and transfers onto transparent substrates constitute the major obstacles to using this material for photovoltaics and optoelectronics applications.

Here we show a novel method of obtaining graphene directly on glass via chemical vapor deposition (CVD) using ethylene as the hydrocarbon source and nickel as the catalyst. The low cracking temperature of ethylene which is 542.8 °C permits us to use glass substrates directly in the CVD furnace.

To improve the thickness of graphene, a good manipulation of pressure and hydrogen during the growth process will be useful. We introduce a novel catalyst etching technique after the growth results in graphene settling down on the glass substrate in a transfer-free process. Raman spectroscopy indicated good uniformity and high quality before and after the etching process.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View