Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

The role of surface albedo feedback in climate

Abstract

A coarse resolution coupled ocean - atmosphere simulation in which surface albedo feedback is suppressed by prescribing surface albedo, is compared to one where snow and sea ice anomalies are allowed to affect surface albedo. Canonical CO2-doubling experiments were performed with both models to assess the impact of this feedback on equilibrium response to external forcing. It accounts for about half the high-latitude response to the forcing. Both models were also run for 1000 yr without forcing to assess the impact of surface albedo feedback on internal variability. Surprisingly little internal variability can be attributed to this feedback, except in the Northern Hemisphere continents during spring and in the sea ice zone of the Southern Hemisphere year-round. At these locations and during these seasons, it accounts for, at most, 20% of the variability. The main reason for this relatively weak signal is that horizontal damping processes dilute the impact of surface albedo feedback. When snow albedo feedback in Northern Hemisphere continents is isolated from horizontal damping processes, it has a similar strength in the CO2-doubling and internal variability contexts; a given temperature anomaly in these regions is associated with approximately the same change in snow depth and surface albedo whether it was externally forced or internally generated. This suggests that the presence of internal variability in the observed record is not a barrier to extracting information about snow albedo feedback's contribution to equilibrium climate sensitivity. This is demonstrated in principle in a "scenario run,'' where estimates of past, present, and future changes in greenhouse gases and sulfate aerosols are imposed on the model with surface albedo feedback. This simulation contains a mix of internal variations and externally forced anomalies similar to the observed record. The snow albedo feedback to the scenario run's climate anomalies agrees very well with the snow albedo feedback in the CO2-doubling context. Moreover, the portion of the scenario run corresponding to the present-day satellite record is long enough to capture this feedback, suggesting this record could be used to estimate snow albedo feedback's contribution to equilibrium climate sensitivity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View